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Plastic strain rate quantified from dislocation dynamics in dusty plasma shear flows
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Dynamics of dislocations and defects are investigated in 2D dusty plasma experiments with two counterprop-
agating flows. It is experimentally demonstrated that the Orowan equation is able to accurately determine the
plastic strain rate from the motion of dislocations, well agreeing with the shear rate defined from the drift velocity
gradient. For a higher shear rate, the studied system is in the liquidlike flow state, as a result, the determined
shear rate from the Orowan equation deviates from its definition. The obtained probability distribution function
of dislocations from the experiments clearly shows that the dislocation motion can be divided into the local and
gliding ones. All findings above are further verified by the corresponding Langevin dynamical simulations with
various levels of shear rates. The dislocation and defect analysis results from these simulations clearly indicate
that the defect and dislocation dynamics in the sheared dusty plasmas clearly exhibit two stages as the shear rate
increases.
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I. INTRODUCTION

In the investigations of the crystal plasticity [1], the dis-
location dynamics are often used to predict the macroscopic
mechanical properties of materials [1]. For example, Orowan
originally interpreted the mechanism of the plastic flow as
the dynamical process of the dislocation motion using an
analytical expression, known as the Orowan equation [2]. The
Orowan equation is defined as

γ̇ = ρ�b · �v, (1)

where γ̇ is the plastic strain rate, while ρ, �b, and �v are the
density, the Burgers vector [3], and the average velocity of dis-
locations, respectively. The Orowan equation, or its modified
form, is widely used to determine the plastic strain rate for var-
ious solid materials [4–11]. However, in these studies [4–11],
the dislocation velocity is obtained from either the empirical
equations or the numerical simulations. From our literature
search, we have not found the use of the Orowan equation
with the direct experimental measurements of dislocations or
defects.

To measure the dislocation velocity accurately in experi-
ments, two-dimensional (2D) physical systems are desired,
due to the precise measurements of positions and velocities
[12]. The typical 2D physical systems include electrons on
a liquid helium surface [13], ions confined magnetically in a
Penning trap [14], granular materials [15], colloids [16], and
dusty plasmas [12]. All of these 2D systems [12–16] provide
the direct experimental observations of individual “particles,”
so that the corresponding dislocations or defects can be easily
identified.

Dusty plasma, or complex plasma, typically refers to a
partially ionized gas containing micron-sized dust particles
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[17–28]. In the typical laboratory conditions, these dust parti-
cles are highly charged to −103 ∼ −105e, so that they can
be confined and levitated in the plasma sheath, forming a
single-layer suspension, i.e., 2D dusty plasma [12,29]. Due
to their high charge, these dust particles are strong coupled,
exhibiting collective behaviors of either liquids [22,27,30–34]
or solids [35–42]. The experiment diagnostic of direct video
imaging in 2D dusty plasmas allows the individual particle
tracking at the kinetic level [12,24]. Thus, from the static
snapshots of 2D dust plasmas in experiments, the defects,
including their locations, can be directly determined from
the corresponding Voronoi diagrams [12,43,44], and then the
dynamics of defects can be further investigated quantitatively,
as we will study here.

The plastic deformation and the dislocation dynamics are
both investigated in dusty plasma experiments. The plastic
deformation under the slow uniaxial compression [39] shows
that the lattice becomes locally sheared and this local strain
is relaxed by shear slips. In Ref. [40], the slow plastic creep
under shear is applied on 2D dusty plasmas, so that the
exponents of the shear rate dependence on the shear stress
and defect density are both determined. In Refs. [41,42], the
experiment observations show that the dislocations may move
in the glide plane faster than the transverse wave, even faster
than the longitudinal wave. However, we have not found any
investigations of the relation between the plastic deformation
and the dislocation dynamics in dusty plasma experiments.
Here, we would like to demonstrate the accuracy of the
Orowan equation in 2D dusty plasma experiments, i.e., using
the dislocation motion to quantitatively describe the plastic
deformation.

This paper is organized as follows. In Sec. II, we briefly in-
troduce the dusty plasma experiments containing shear flows,
as well as the corresponding simulations. In Sec III, we cal-
culate the shear rate using the Orowan equation, and compare
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it with the shear rate definition of the flow velocity gradient.
Furthermore, we also calculate the probability distribution
function (PDF) of the dislocation displacement, and study the
dislocation dynamics as the shear rate increases. Finally, it is
a brief summary.

II. SHEAR FLOW EXPERIMENTS AND SIMULATIONS

To demonstrate the accuracy of the Orowan equation, we
use the data from two dusty plasma experiments [45,46] with
different shear modulation methods. For these two experi-
ments, micron-sized dust particles are introduced into RF
plasma, forming a single layer suspension in a 2D triangular
lattice [45,46]. Then, two laser beams are applied on the dusty
plasma suspension to generate shear flows in the steady state.
During the experiment, the motion of several thousand dust
particles inside the field of view of the camera is recorded at
the rate of 55 frame/s, with a resolution of 0.039 mm/pixel
in Ref. [45] or 0.036 mm/pixel in Ref. [46]. The details of
the experimental operations are presented in Refs. [45,46].
Next, we briefly summarize the difference between these two
experiments, as well as the relevant parameters in our analysis.

In Experiment I [45], each laser beam is rastered in both the
x and y directions in the Lissajous pattern inside a rectangle.
As a result, all particles inside the two rectangles (about 4 mm
width each in the y direction), are pushed in the ±x directions
by two laser beams, as shown in Fig. 1 of Ref. [45]. Then, a
movie of the steady state shear flow containing 5000 frames is
recorded for our data anlysis here. In this experiment [45], the
Wigner-Seitz radius is a = 0.26 mm, the nominal 2D dusty
plasma frequency is ωpd = 75 s−1, the screening parameter
is κ = a/λD = 0.5, where λD is the screening length of the
Yukawa potential, and the gas damping rate is νgas = 2.7 s−1.

In Experiment II [46], two laser beams are rastered op-
positely only in the ±x directions, which are separated by
4.7 mm on the suspension. The full width at half maximum
of the intensity profile of each manipulation laser beam is
about 0.2 mm, which is about the Wigner-Seitz radius, narrow
enough to manipulate one single particle in one moment. As
a result, two narrow particle flows are generated by the laser
manipulation, causing the shear-induced melting in the central
region, and later 400 frames of the steady state shear flow are
recorded for the data analysis here. In this experiment [46], the
Wigner-Seitz radius is a = 0.21 mm, the nominal 2D dusty
plasma frequency is ωpd = 86 s−1, the screening parameter is
κ = 0.47, and the gas damping rate is νgas = 2.7 s−1.

We calculate the flow velocity profile Vx of the steady state
shear flow in these two experiments, as presented in the insets
of Fig. 1. Here, we mainly focus on the central region of the
profile, as marked between two vertical dashed lines in the two
insets. For each of these two experiments, the flow velocity
profile in the central region is always nearly linear, as the
corresponding fit of the solid line shown in Fig. 1. The slope
of the linear fit γ̇ = ∂Vx/∂y is just the shear rate in the central
region, which is γ̇ = 0.00150ωpd in Fig. 1(a) for Experiment
I, and γ̇ = 0.00906ωpd in Fig. 1(b) for Experiment II, respec-
tively. In Fig. 1, the flow velocity Vx at the center point slightly
deviates from zero for both of the experiments, due to some
nonideal features of the experiments, for example, the slight
overall drift of all particles in the field of view. Note, Fig. 1(a)
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FIG. 1. Profiles of the flow velocity in the two two-dimensional
(2D) dusty plasma experiments of Ref. [45] (a) and Ref. [46] (b),
labeled as Exp I and Exp II, respectively, with different laser ma-
nipulation methods. For each of these two experiments, we mainly
present the flow velocity profiles only in the central region, as
the portion marked between two vertical dashed lines in the inset.
Clearly, for each experiment, the flow velocity profile in the central
region is always nearly linear, and the linear fit just corresponds to
the shear rate, as the solid lines shown here. Note that, in our data
analysis later, we always choose this central region as our studied
region.

for Experiment I presents the linear fit of the flow velocity
for the total recorded 5000 frames in the steady shear flow in
Ref. [45], while in the later data analysis, this movie is divided
into 5 parts, i.e., 1000 frames each, so that we can perform five
measurements of the studied physical quantities to determine
their uncertainty error bars. However, for Experiment II in
Fig. 1(b), there are only 400 frames data in the steady shear
flow, just enough to perform one measurement.

To mimic these two dusty plasma experiments [45,46],
we also perform two types of simulations. We use Langevin
dynamical simulations, with the equation of motion for each
dust particle i

mr̈i = −∇	φi j − νmṙi + ζi(t ) + Fex. (2)

Here, the four terms on the right-hand side of Eq. (2) are
the particle-particle interaction, the frictional gas drag, the

063214-2



PLASTIC STRAIN RATE QUANTIFIED FROM … PHYSICAL REVIEW E 103, 063214 (2021)

Langevin random kicks, and the external manipulation force,
respectively. The interparticle interaction is the Yukawa po-
tential [47], φ(r) = Q2exp(−r/λD)/4πε0r, where, Q is the
particle charge and r is the distance between two particles.
All simulations here are performed using LAMMPS [48].

The difference between these two dusty plasma experi-
ments [45,46] is mainly in the laser manipulation method,
where in Ref. [45] the laser beams are rastered nearly uni-
formly in a rectangular region, while in Ref. [46] the laser
beams are rastered only in the x direction. Thus, for Simula-
tion I, we specify this external force as Fex = ±F0exp[−(y ±
15)8/108]maω2

pd in the x direction to achieve a pretty uniform
rectangular region as in Experiment I [45]. While, for Simula-
tion II, we specify this external force as Fex = ±F0exp[−(y ±
10)2/0.25]maω2

pd in the x direction [49] to mimic the forces
from the rastered laser beams in Experiment II [46]. As the
verification of our specified expressions of Fex, we confirm
that, the obtained velocity profiles from these two types of
simulations are very similar to the corresponding experimen-
tal results in Fig. 1. As compared with the experiments, our
Langevin dynamical simulations also have some advantages.
For example, the simulations contain much more data with a
much longer time duration to provide more statistics, so that
some nonideal features, like the nonzero flow velocity in the
center, are greatly suppressed.

Here are some details in our Langevin dynamical simula-
tions. The initial configuration of both types simulations starts
from a perfect crystal in the solid state, containing N = 4096
particles. The initial value of the coupling parameters � =
Q2/(4πε0akBT ) is specified as 800 for all simulation runs,
where T is the kinetic temperature of dust particles and kB is
the Boltzmann constant. We choose the screening parameter
as κ = 0.5 and 0.47, and the gas damping rate as ν/ωpd =
0.036 and 0.031, just corresponding to the conditions of Ex-
periment I [45] and Experiment II [46], respectively. The
integration time step is specified as 1.41 ∗ 10−3ω−1

pd , and the

time interval between two consecutive frames is 0.1414ω−1
pd .

The periodic boundary conditions are used in the both x and
y directions. When the system generates the steady shear flow
after the external force is applied, we record the positions and
velocities of all particles in the temporal duration of tωpd =
14 142 for the later data analysis. Other simulation details are
similar to Ref. [49].

III. RESULTS

A. Demonstration of the Orowan equation

For 2D systems, the expression of the Orowan equation [2]
is expressed as γ̇ = Ndis

S bvdis, where ρ in Eq. (1) is replaced
to Ndis/S, due to the two dimensionality. Here, S is the area of
the analyzed region, Ndis is the dislocation number, and vdis is
the average velocity of dislocations in the analyzed region.
The Burgers vector represents the magnitude and direction
of the lattice distortion resulting from a dislocation in the
crystal lattice [3]. For the Burgers vector of one dislocation
in the triangular lattice, its magnitude is equal to one lattice
constant, and its direction is parallel to the direction of the
dislocation motion [50]. The dislocation and its location can
be directly determined from the Voronoi diagram, calculated
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FIG. 2. Comparison of the shear rates obtained from various
experiments and simulations using two different methods, one is
from the Orowan equation γ̇1 = ρ(�b · �v)x , the other is from the def-
inition of the flow velocity gradient γ̇2 = ∂Vx/∂y. Clearly, when the
shear rate is not very large, the shear rates obtained from these two
methods well agree with each other, since all of our obtained data
points almost fall on the straight dashed line of γ̇1 = γ̇2. Thus, using
both 2D dusty plasma experiments and simulations, we demonstrate
that the Orowan equation can accurately measure the macro plastic
strain rate using the micro motion of dislocations, especially when
γ̇ � 0.005ωpd.

from particle positions in the 2D dusty plasma experiments.
Then, we can obtain the static distribution of dislocations in
each frame, and analyze the motion or dynamics of these
dislocations by tracking them between consecutive frames.
Thus, using the powerful diagnostic of the individual particle
motion at the kinetic level in 2D dusty plasma experiments, we
are able to determine the plastic strain rate directly from the
corresponding Voronoi diagrams using the Orowan equation
without any assumptions.

As the major result of this paper, we demonstrate that the
Orowan equation can accurately determine the shear rate in
our 2D dusty plasma experiments. As presented in Fig. 2, we
compare the shear rates calculated from the Orowan equation
γ̇1 with those from the flow velocity gradient γ̇2, using the
data from both our 2D dusty plasma experiments and the
corresponding simulations. We find that all of our obtained
data points almost fall on the straight dashed line of γ̇1 = γ̇2 in
Fig. 2, especially when the shear rate is smaller than 0.005ωpd.
The results in Fig. 2 suggest that the shear rates obtained from
these two methods are in good agreement with each other,
especially when γ̇ � 0.005ωpd. Thus, the Orowan equation
can be used to measure the macro plastic strain rate accurately
from the micro motion of dislocations. Our numerical simu-
lations further verify this demonstration. Note, in Fig. 2, the
error bars of the data point of Experiment I come from the
maximum and minimum of five measurements of the shear
rates, while the data point of Experiment II is only obtained
from one measurement, without an error bar.

When the shear rate is larger than 0.005ωpd, our simulation
results show that the shear rate calculated from the Orowan
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FIG. 3. Probability distributions function (PDF) of the dislo-
cation displacement �r = |r(�t ) − r(0)| in the central analyzed
region for the two different 2D dusty plasma experiments of
Refs. [45,46]. For each experiment, there are two prominent peaks in
the plot of the �r distribution. We interpret that these two prominent
peaks indicate that the dislocation motion contains two main modes
during the plastic deformation, the local motion and the gliding
motion [2]. Four vertical dashed lines indicate the displacement of
CT �t and CL�t of the corresponding experiments. Here, CL and CT

are the speeds of the longitudinal and transverse waves of 2D Yukawa
crystals in the conditions of these two experiments.

equation γ̇1 seems to be slightly higher than those from the
flow velocity gradient γ̇2. However, this deviation does not
occur in the result of Experiment II. We speculate that the
deviation between γ̇1 and γ̇2 in our simulations may be related
to the state of the analyzed region, as we will discuss later.
Note that, since the shear is applied only in the x direction,
while using the Orowan equation, we only consider the com-
ponents of the Burgers vector and the dislocation velocity in
the x direction.

B. Dynamics of dislocations and defects

To further study the micro-mechanism of the plastic defor-
mation in the sheared 2D dusty plasmas, we calculate the PDF
of the dislocation displacement �r = |r(�t ) − r(0)| in the
central analyzed regions, as shown in Fig. 3. For both of the
experiments in Refs. [45,46], there are two prominent peaks
in the distribution of �r, as in Fig. 3. From our interpretation,
these two prominent peaks represent two main modes of the
dislocation motion during the plastic deformation, which are
the local motion and the gliding motion [2]. Note, here �r is
calculated from the variation of the location of each disloca-
tion between two consecutive frames, within the time interval
�t , which are 1.364ω−1

pd and 1.564ω−1
pd for Experiments I and

II, respectively.
To compare the dislocation displacement �r with the prop-

agation distance of the longitudinal and transverse waves
during the time interval �t , we also add four vertical dashed
lines of CT �t and CL�t in Fig. 3. Here CL and CT are the
longitudinal and transverse wave speeds of 2D Yukawa solids

with the same κ value in these two experiments. For Experi-
ment I [45], the central analyzed region is in the solid state,
as a result, all data points of �r related to the first peak are
always less than CT �t , i.e., the local motion of dislocations
is always slower than transverse sound speed. However, in
Experiment II [46], the analyzed region completely melts due
to the shear flow, as a result, some data points of �r related
to the first peak do exceed CT �t . In addition, in Fig. 3, there
is small probability that the gliding distance of the dislocation
can exceed CL�t , which is the further experimental verifica-
tion of the supersonic dislocations, as observed in the previous
dusty plasma experiments of Refs. [41,42].

For the comparison with the experimental results, we also
calculate the PDF of the dislocation displacement �r using
our simulations with various shear rates, as shown in Fig 4.
For both types of our simulations, the PDF of the dislocation
displacement also contains two prominent peaks, the same
as the experimental results in Fig. 3. For various shear rates
shown here, the most probability distribution of �r, i.e., the
peak location of the local motion, increases monotonically
with the shear rate, while the location of the second peak
remains almost unchanged. When the shear rate increases, the
temperature of the analyzed region substantially increases due
to the viscous heating effect [45], so that the thermal motion
of dislocation is also enhanced, causing the peak location of
the local motion increases. The second peak of �r represents
the gliding motion of dislocations, and the units of the glid-
ing displacement should be proportional to the length of the
Burgers vector, when a dislocation glides from one position to
the other adjacent site. For the gliding motion of dislocations,
the location of �r related to the second peak seems to be
always at the location of �r ≈ 2a for both experiments and
simulations, as shown in Figs. 3 and 4. This peak location
just corresponds to the gliding displacement of the dislocation
in one step, which is just one lattice constant of b ≈ 2a in
the triangular lattice, i.e., the length of the Burgers vector
[50]. Note, the value of CL�t in Fig. 3 is much larger than
CL�t in Fig. 4, because �t between two consecutive frames
in our simulations is 0.1414ω−1

pd , only about one tenth of the
experimental time interval in Fig. 3.

Figure 4 provides the detailed dynamics of the local and
gliding motions of dislocations. For the dislocation local
motion, some data points of �r related to the first peak
can exceed CT �t when γ̇ > 0.005ωpd, however, when γ̇ <

0.005ωpd, all data points related to the first peak of �r are
entirely less than CT �t , as shown in Fig. 4. These features
are similar to the experimental results in Fig. 3. In fact, for
Experiment I and Experiment II, the analyzed regions are in
the solid and liquid states, respectively. Here, we can divide
the simulation data points into two groups of the solid and
liquid states of the analyzed region, respectively, as indicated
by the filled and open symbols in Fig. 4. For the filled symbols
corresponding to the solid state of the central region, all data
points corresponding to the first peak of �r cannot exceed
CT �t , not for the open symbols of the liquid state of the
central region.

We also calculate the most probability distribution of �r
and the total probability of the dislocation gliding motion as
in Figs. 5(a) and 5(b), so that the effect of the shear rate on
the local and gliding motions can be quantified. As shown in
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FIG. 4. Probability distribution function of the dislocation dis-
placement �r in the central region obtained from two types of
2D Yukawa simulations. The PDF of the dislocation displacement
contains two prominent peaks corresponding to the local and gliding
motions, consistent with our experimental results in Fig. 3. For both
types of simulations, when the shear rate increases, the most proba-
bility distribution of �r, i.e., the peak location of the local motion,
increases monotonically, while the individual gliding displacement
of dislocations nearly remains unchanged. The dynamics around the
first peak of the dislocation displacement �r are related to the ther-
mal motion of the 2D Yukawa system. When the shear rate is higher,
the viscous heating effect [45] substantially increases the temperature
of the analyzed region, so that the location of the first peak increases.
The gliding displacement of dislocations is unchanged for different
shear rates, because the gliding displacement is proportional to the
length of the Burgers vector, which is one lattice constant.

Figs. 5(a) and 5(b), it seems that the most probability distribu-
tion of �r and the total probability of the dislocation gliding
motion exhibit the same variation trend with the shear rate,
which can be divided into two distinctive stages. In the first
stage of γ̇ � 0.005ωpd, they both increase slowly, while in
the second stage of γ̇ > 0.005ωpd, they both increase steeply,
until their growth rates both slow down gradually when
γ̇ � 0.008ωpd.
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FIG. 5. The most probability distribution of the dislocation dis-
placement (a), the total probability of the dislocation gliding motion
(b), and the dislocation fraction (c), as well as the defect fraction
(d) in the central analyzed regions, as the functions of the shear
rate γ̇ . When γ̇ � 0.005ωpd, from panels (a) and (b), both the most
probability distribution of the dislocation displacement and the total
probability of the dislocation gliding motion increase slowly. Within
this range of the shear rate, the dislocation fraction increases with
the shear rate monotonically to its maximum when γ̇ ≈ 0.005ωpd in
panel (c). When γ̇ ≈ 0.005ωpd, the defect fraction from the Voronoi
diagrams is ≈0.3 as shown in panel (d), corresponding to the typical
liquid state as in Ref. [12]. In panel (d), when γ̇ ≈ 0.008ωpd, the
defect fraction reaches the saturation level, and the increase of the
total probability of the dislocation gliding motion in panel (b) slows
down gradually.

The fractions of the dislocation and defect for various
shear rates are presented in Figs. 5(c) and 5(d). When γ̇ �
0.005ωpd, the dislocation fraction increases with the shear rate
monotonically to its maximum, as in Fig. 5(c). Within this
shear rate range, the increase of the most probability distribu-
tion of �r and the total probability of the dislocation gliding
motion are not substantial, as shown in Figs. 5(a) and 5(b). Ac-
cording to the definition of the Orowan equation, Eq. (1), the
plastic strain rate is proportional to the product of the density
and velocity of dislocations here. When γ̇ � 0.005ωpd, the
increase of the dislocation velocity v is very small, since the
steady particle flow has not been generated yet. As a result,
the increase of the plastic strain rate γ̇ should be mainly due
to the increase of the dislocation density ρ from Eq. (1). As
shown in Fig. 5(d), the defect fraction increases monotoni-
cally with the shear rate, until reaching its saturation level
when γ̇ ≈ 0.008ωpd, when the increase of the total probability
of the dislocation gliding motion slows down.

When the shear rate increases from zero, the state of the
central analyzed region changes from the solid to the liquid.
Thus, we speculate that the different behaviors of the dislo-
cation dynamics in the ranges of the larger and smaller shear
rates mentioned above are related to the different states of the
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analyzed region. As shown in Fig. 5(d), when γ̇ ≈ 0.005ωpd,
the defect fraction from the Voronoi diagrams is around 0.3,
corresponding to the typical liquid state as in Ref. [12]. When
the shear rate is smaller than 0.005ωpd, the analyzed region is
closer or almost in solid state, so that the shear flow in this
region is the typical plastic flow, just the typical condition
for the use of the Orowan equation. When the shear rate is
larger than 0.005ωpd, the analyzed region is in the liquid state,
so that the shear flow changes from the plastic flow to the
liquidlike flow as in Ref. [51], which is not typical for the
use of the Orowan equation any more. As a result, the use
of the Orowan equation with the liquidlike flow systems may
contains some errors, as the deviation between the shear rates
determined from two methods in Fig. 2 for the higher shear
rates �0.005ωpd.

IV. SUMMARY

To summarize, in the 2D dusty plasma experiments con-
taining shear flows, we demonstrate that the Orowan equation
can be used to determine the shear rate. For both 2D dusty
plasma experiments, we find that the plastic strain rate de-
termined from the Orowan equation using the motion of
dislocations well agrees with the shear rate defined from
the drift velocity gradient. In our literature search, we have
not found any previous experimental demonstration of the
Orowan equation in any physical systems. All of these find-
ings are verified by our Langevin dynamical simulations of

the shear flows in dusty plasmas performed here, with 24
different levels of the shear rates. For higher shear rates, in our
simulations, the studied system is in the liquidlike flow state,
not typical for the use of the Orowan equation, as a result,
the shear rate determined from the Orowan equation deviates
from its definition.

In addition, to understand the microscopic mechanism of
the plastic deformation and shear flow, we also study the
detailed dislocation/defect dynamics for various shear rates
in our experiments and simulations. We find that, as the shear
rate increases, the defect/dislocation dynamics in the sheared
dusty plasmas clearly exhibit the two-stage behavior. When
the shear rate γ̇ /ωpd � 0.005, the studied region is in the
solid state, the local and gliding motions of dislocation are not
effected by the shear rate much, the plastic strain rate here is
mainly proportional to the dislocation density. When the shear
rate γ̇ /ωpd � 0.005, the dislocation fraction is saturated, and
the system is in the liquidlike flow state, where the most prob-
ability distribution of the dislocation displacement increases
steeply with the shear rate.
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