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Stochastic electron motion in colliding plane waves
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The stochastic dynamics of an electron in counterpropagating linearly polarized laser beams is analyzed using
a recently developed 3/2-dimensional Hamiltonian approach. It is shown that perpendicular canonical momenta
suppress stochasticity, helping to explain the results from recently reported numerical studies of stochastic
dynamics in a similar setting. The stochasticity in a perpendicular polarization setup is demonstrated. Lastly, the
impact of radiation friction effects is considered, and shown to be negligible in the classical radiation reaction
limit.

DOI: 10.1103/PhysRevE.103.063213

I. INTRODUCTION

The stochastic dynamics of electrons interacting with
multiple electromagnetic waves has been studied using the
Hamiltonian formalism [1,2] and investigated via numeri-
cal simulations [3–6]. Recently, a novel approach [7] was
proposed, where the dynamics of the relativistic electron in
two collinearly polarized counterpropagating plane waves was
described with a 3/2-dimensional (3/2D) Hamiltonian, al-
lowing one to apply the techniques used in previous studies
of stochastic dynamics in such systems [8,9]. However, the
effects of perpendicular canonical momenta P⊥ of the electron
were not considered in the previous analysis of stochasticity.
Considering these effects enables a better understanding of the
recent numerical results of stochastic heating in colliding laser
pulses, such as the dependence on the initial laser phases [5].

In this paper, we expand on a previous stochastic motion
analysis [7] to account for perpendicular canonical momenta
P⊥, and allow for an arbitrary angle between linear polariza-
tions of two counterpropagating waves. We discuss the effect
of P⊥ on stochastic heating, and relate that effect to the impact
of the initial laser phases. Finally, we consider stochastic
heating in the presence of radiation friction.

II. STOCHASTIC MOTION

To provide context for the present discussion, it is in-
structive to revisit the well-known problem of the interaction
between a single electron in vacuum with the laser pulse
described by a vector potential a1 = a1 sin(η)ex, where η =
t − z, a1 = eE1/mcω is the normalized amplitude of the vec-
tor potential, E1 is the maximum electric field of the laser, λ

is the laser wavelength, c is the speed of light in vacuum, and
m and −e are the electron’s mass and charge, respectively. In
what follows, we use dimensionless units, normalized by the
introduced constants as follows: The length is normalized by
k = 2π/λ, time by ω, the electron’s velocity v and canonical
momenta P by c and mc, respectively, and the electric and
magnetic fields by e/mcω. The outlined problem has three

well-known integrals of motion,

γ − Pz = H = const, Px,y = const, (1)

where Px,y,z are components of P = γ v − A, γ is the Lorentz
factor of the electron, and A is the vector potential of the
electric −∂t A and magnetic ∇ × A field. In the reference
setup A equals simply a1. The expression for the Lorentz
factor of the electron follows from the integrals of motion in
Eqs. (1),

γ = 1

2

(
H + Ep

H

)
, (2)

where Ep = 1 + (Px + Ax)2 + (Py + Ay)2. In the rest of the
paper, we will refer to the maximum of Eq. (2) as ponderomo-
tive scaling γp. Now, consider that a second laser was added to
the setup, described by a2 = a2 sin(k2τ )(αex + √

1 − α2ey),
where τ = t + z, k2 is the wave number of the second laser,
and α is the cosine of the angle between a1 and a2. The intro-
duction of a2 breaks the conservation of H , and it was shown
that even a2 � a1 can enhance the maximum Lorentz factor
γ . Significant physical insight into this phenomenon was ob-
tained by using a 3/2-dimensional Hamiltonian description
[7] of the electron dynamics in colliding laser beams, where it
was shown that the role of the perturbation laser a2 is to cause
the onset of stochasticity in H , with the stochastic change in H
then leading to an increase of electron energy γp. A performed
analysis of stochasticity [7] was, however, limited to the case
of parallel pulse polarization with both lasers propagating
along the general momenta of the electron, P⊥ = 0. In this
section, we will generalize the analysis of stochastic heating to
the case of P⊥ �= 0. We show that both Px � a1 and Py � a1

suppress stochasticity. For cases where stochasticity is still
present, we show that Py > 0 and Px � a1 increase the lower
stochastic limit Hmin, while keeping the higher stochastic limit
Hmax intact. Based on the Hmin/max limits, we explain how |Px|
and |Py| affect the limits of stochastic heating relative to the
ponderomotive scaling max(γs)/Ep, where γs is the pondero-
motive scaling Eq. (2) for the initial value of the dephasing
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FIG. 1. Top panel: Unperturbed trajectories χ0(τ ) for Px < a1

(Px = 0, Py = 0, a1 = 3.0 for the black solid curve), and for Px > a1

(Px = 15, Py = 0, a1 = 5.0 for the green dashed curve). Bottom
panel: Corresponding magnitudes of normalized harmonics |χ̂0,n| for
Px > a1 (curve on the left), and for Px < a1 (curve on the right). The
blue solid line shows the long tail of Fourier harmonics, and the red
dashed curves show the exponential decay of harmonic amplitudes.
Red stars show the exponential cutoff estimates (10) and (11)

rate H0. We verify our analysis with a series of Poincaré maps
obtained from a numerical integration of Eqs. (3)–(5) below.

We begin by describing the dynamics of the electron
interacting with both laser beams A = a1 + a2 as a 3/2D
Hamiltonian [7] system,

H = 1

χ
{1 + [Px + a1 sin(η) + αa2 sin(k2τ )]2

+ [Py +
√

1 − α2a2 sin(k2τ )]2} = γ − Pz, (3)

dη

dτ
≡ η̇ = −∂H

∂χ
= H

χ
, (4)

dχ

dτ
≡ χ̇ = ∂H

∂η
= 2a1 cos(η)[Px + a1 sin(η)]

χ
, (5)

where χ = γ + Pz. Because the onset of stochasticity is typ-
ically attributed to the overlap of high harmonic resonances
[8], it is instructive to begin the analysis with the study of
the Fourier harmonics χ̂0(�) of unperturbed (a2 = 0) χ0(τ )
electron motion, and analyze how the spectrum depends on
Px,y. As Fig. 1 illustrates, unperturbed electron motion χ0(τ )
is a nonlinear periodic oscillation with a base frequency �,
and so the Fourier spectrum consists of discrete harmonics
χ̂0,n, where n is the harmonic’s number. A typical χ̂0(�)
spectrum has a tail of Fourier harmonics with a power-law
amplitude decay |χ̂0,n| ∝ 1/n2, followed by an exponen-
tial cutoff |χ̂0,n| ∝ exp[−(n − nc)], where nc is the cutoff

harmonic number,

n2
c = �2

c

�2
≈ 1

�2
max

(
1

χ

d2χ

dτ 2

)
. (6)

The cutoff frequency �c ≈ max(χ̈0/χ0) corresponds to the
most rugged parts of χ0(τ ). Unless Px ≈ a1, max(χ̈0/χ0)
occurs at minima min(χ0) ≡ χm along the unperturbed tra-
jectory, so we can estimate the cutoff frequency as

�2
c = 1

χ

d2χ

dτ 2

∣∣∣∣
χm

= 2a1H4

× a1 cos2(ηm) − sin(ηm)[Px + a1 sin(ηm)]{
1 + P2

y + [Px + a1 sin(ηm)]2
}3 , (7)

where ηm is the value of η corresponding to χm. It fol-
lows from the Hamiltonian Eq. (3) that sin(ηm) = −a1/Px

for |Px| < a1, and sin(ηm) = −Px/|Px| otherwise. We can use
Eqs. (6) and (7) to determine the number of unsuppressed
Fourier harmonics nc by comparing �c with the frequency of
unperturbed motion �. To find �, we solve for implicit η0(τ )
dependence,

τ + const = 1

H2

[(
1 + P2

x + P2
y + a2

1

2

)
η0

−2a1Px cos(η0) − a2
1

4
sin(2η0)

]
, (8)

and calculate the unperturbed frequency as

� = 2π

τ (η0 + 2π ) − τ (η0)
= H2

1 + P2
x + P2

y + a2
1/2

. (9)

Combining Eq. (6) with results from Eqs. (7) and (9) gives

n2
c = 2a1

(
1 + P2

x + P2
y + a2

1/2
)2

(|Px| − a1)[
1 + P2

y + (|Px| − a1)2
]3 (10)

for the |Px| � a1 case, and

n2
c = 2

(
1 + P2

x + P2
y + a2

1/2
)2(

a2
1 − P2

x

)
(
1 + P2

y

)3 (11)

in the |Px| � a1 case. Estimates (10) and (11) agree with the
Fourier transforms χ̂0 shown in Fig. 1, where the sharp corners
in the Px � a1 case result in a long tail of harmonics, while
the Px � a1 case has a virtually instantaneous exponential
cutoff of its spectrum. It follows from Eqs. (10) and (11) that
both |Px| � a1 and |Py| � a1 result in a low-frequency cutoff
�c ≈ � and therefore suppress stochasticity. However, for
moderate values of |Px| and Py|, there exists a long tail of un-
suppressed Fourier harmonics in the spectrum of unperturbed
motion. From Chirikov’s stochasticity criterion, this long tail
in the spectrum allows for island overlap and results in a wider
stochastic region [8].

Our next step is to determine how components of canonical
momenta P⊥ affect the stochasticity boundaries Hmax/min. For
an electron with an initial Hamiltonian H0, Eq. (2) predicts
that an increased stochastic region will subsequently lead to
further heating for cases where the stochastic limits Hmax >

Ep or Hmin < 1. To find the Hmax/min limits, we note that the
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FIG. 2. Hamiltonian H (solid blue curves) and sin(η) (dashed or-
ange curves) for a1 = 10, a2 = 0.1, k2 = 1. The top panel shows the
case with Px/a1 ≈ 0.25, where “kicks” occur at sin(η) = −a1/Px.
The bottom panel shows the case with Px/a1 = 1.8, where “kicks”
occur at sin(η) = −Px/|Px| = −1.

evolution of the Hamiltonian,

dH

dτ
= 2a2k2 cos(k2τ )

χ
[αPx +

√
1 − α2Py

+ αa1 sin(η) + a2 sin(k2τ )], (12)

is adiabatic outside of regions with minimal χ . If the second
laser a2 is a perturbation a2 � a1, from Eqs. (3) and (12)
it follows that the value of H changes during “kicks” at

sin(η) = −a1/Px for Px < a1 and sin(η) = −Px/|Px| other-
wise, as illustrated in Fig. 2. The change in H during one
kick is

�Hn =
∫

dH

dτ
dτ =

∫
χ

H

dH

dτ
dη, (13)

and the difference in the phase of a2 between two consecutive
kicks is

�ψn = 2πk2

�n+1
= 2πk2

H2
n+1

(
1 + P2

x + P2
y + a2

1

2

)
, (14)

if |Px| > a1, and

�ψn = [π ± 2 arcsin(Px/a1)]k2

H2
n+1

(
1 + P2

x + P2
y + a2

1

2

)
,

(15)

otherwise. The sequence of kicks described by (13)–(15) will
lead to stochasticity if [8]

K ≡
∣∣∣∣ d�ψn

dHn+1

d�Hn

dψn

∣∣∣∣ � 1. (16)

From Eq. (16), we can obtain the limits of stochasticity
Hmax/min, and the corresponding maximum electron energy
(2). Details of the calculation are outlined in Eqs. (17)–(20)
below, followed by the resulting expressions for the stochastic
boundaries.

As discussed above, the motion outside the kick regions
can be approximated as adiabatic, allowing us to substitute
the unperturbed trajectory Eq. (8) into Eq. (12) for evaluating
the integral in Eq. (13). For kicks in the |Px| < a1 regime, the
outlined substitution yields

k2τ = φ̃ + k2

H2

([
1 + P2

x + P2
y + a2

1

2

]
η − 2P2

x sin(η) − 2Px

√
a2

1 − P2
x cos(η) +

(
P2

x

2
− a2

1

4
sin(2η)

)
+ 1

2
Px

√
a2

1 − P2
x cos(2η)

)
,

(17)
where

φ̃ = const − k2

H2

(
1 + P2

x + P2
y + a2

1

2

)
arcsin

(Px

a1

)
. (18)

Note that in the stochastic regime where H exhibits random behavior, the φ̃ also becomes random. To simplify the notation
below, we combine φ̃ with all other constants independent of η. We can now approximate the trajectory around the kick with a
Taylor expansion of Eq. (17) at sin(ηm) = −Px/a1, allowing for the following approximation for integrals in (13):∫

τkick

cos(k2τ )dη =
∫ ∞

−∞
cos

(
φ̃ + k2

H2

(
1 + P2

y

)
η + 1

3

(
a2

1 − P2
x

)
η3 + Px

√
a2

1 − P2
x η4 − 1

60

(
4a2

1 − 7P2
x

)
η5

)
dη. (19)

The phase of cosine terms in the integral in Eq. (19) varies rapidly away from the η = 0 point, and so for an asymptotic analysis
is suffices to keep the lowest nonlinear term (η3 for Px < a1 and η5 for Px = a1).

The analysis done in Eqs. (17)–(19) can be repeated for Px � a1, where kicks occur at sin(ηm) = −Px/|Px|, and the resulting
approximations for integrals in Eq. (13) are different from Eq. (19):∫

τkick

cos(k2τ )dη =
∫ ∞

−∞
cos

(
φ̃ + k2

H2

[
1 + P2

y + (Px − a1)2
]
η + a1

3
(Px − a1)η3 − a1

60
(4a1 − Px)η5

)
dη. (20)

For even larger Px � a1 values, the kick approximation is no longer valid, and the motion is not stochastic, in agreement with
the analysis of the trajectory Fourier spectrum in Eq. (10).

Note that in the Hamiltonian description, the phase trajectory explicitly depends only on P⊥ and the initial conditions
η(τ0), χ (τ0), and does not depend on the initial phases φ1 and φ2 of the lasers. In a previous study of the interaction between the
multipicosecond laser and the overdense plasma target [5], the stochastic electron dynamics of the electron in the presence of
incident and reflected laser pulses was numerically simulated using noncanonical variables γ v, a1 sin(φ1), a2 sin(φ2) to describe
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the electron dynamics, resulting in the appearance of laser phases φ1 and φ2 in the final answer. The use of canonical variables
χ and η (η corresponding to the “phase slip” from Ref. [5]) enables us to understand the physics of the stochasticity onset,
illustrating that stochasticity is impacted by canonical momenta P⊥ rather than the laser phases.

Equipped with approximations (19) and (20), we can now evaluate the integral Eq. (13) in the Px < a1, Px = a1, and Px > a1

regimes, and assess the impact of Px and Py on the stochastic boundaries Hmax/min. For moderate values of Px < a1, “kicks”
correspond to sin(ηm) = −Px/a1, giving the stochasticity condition∣∣∣∣∣8πa2

(√
1 − α2

a5/3
1 |Py|β5/2(
a2

1 − P2
x

)1/3 Ai

[
a2/3

1

(
1 + P2

y

)
β(

a2
1 − P2

x

)1/3

]
− α

a4/3
1 β2(

a2
1 − P2

x

)1/6 Ai′
[

a2/3
1

(
1 + P2

y

)
β(

a2
1 − P2

x

)1/3

]

+ a5/3
1 a2β

5/2

21/3
(
a2

1 − P2
x

)1/3 Ai

[
(2a1)2/3

(
1 + P2

y

)
β(

a2
1 − P2

x

)1/3

])(
1 + P2

x + P2
y + a2

1

2

)[
π ± 2 arcsin

(Px

a1

)]∣∣∣∣∣ � 1, (21)

where we introduced the parameter β = (k2/a1H2)2/3. For Px � a1, the stochasticity condition is∣∣∣∣∣8π2a4/3
1 a2β

5/2

(Px − a1)1/3

(
[α(Px − a1) +

√
1 − α2Py]Ai

[(
1 + (Px − a1)2 + P2

y

)
a1/3

1 β

(Px − a1)1/3

]

+ a2

21/3
Ai

[(
1 + (Px − a1)2 + P2

y

)
(4a1)1/3β

(Px − a1)1/3

])(
1 + P2

x + P2
y + a2

1

2

)∣∣∣∣∣ � 1. (22)

To compare Eqs. (21) and (22) with results obtained from nu-
merically integrating Eqs. (3)–(5), we calculated the Poincaré
maps of the electron’s dynamics in lasers with various a1,
a2, k2, and α, for various initial H and P⊥. The resulting
Poincaré maps (see Fig. 3, for example) allow us to estimate
the stochastic boundary βmax/min since

Hmin/max =
√

k2/a1β
3/2
max/min. (23)

Figure 4 demonstrates the agreement between estimates from
Eqs. (21) and (22) and numerical simulations with initial
β = (0.1)2/3. Despite preserved Kolmogorov-Arnol’d-Moser
(KAM) surfaces (such as the smooth curve on the top and
island in Fig. 3) preventing the precise measurement of the
stochastic boundary in some simulations, the results shown in

FIG. 3. Poincaré cross sections for an electron with initial
H (0) = 3, η(0) = 0, and P⊥ = Pyey from a setup with the parameters
a1 = 10, a2 = 1, k2 = 9, α = 1. The red dots show stochastic motion
for Py = 2, and the black line at H = 3 shows regular motion for
Py = 5.

Fig. 4 show good agreement of the numerical results with the
analysis.

From the estimates in Eqs. (21) and (22), and given the
asymptotics of the Airy function [Ai(x) ∼ 0.36 − 0.26x for
x → 0 and Ai(x) ∼ 0.28x1/4 exp(−2x3/2/3) for x → ∞], it
follows that the stochastic region βmax − βmin is maximized
for P⊥ = 0. Both βmax and βmin decrease with the growth of

FIG. 4. Stochastic boundary Eqs. (21) and (22) for K = 5, plot-
ted with blue lines for laser amplitudes a1 = 10, a2 = 1, in the cases
of parallel (α = 1, top panels) and perpendicular (α = 0, bottom pan-
els) polarizations. Electrons have either Px = 0 or Py = 0 on the left
and right panels, respectively. Red dots show the stochastic boundary
from the series of Poincaré simulations with initial β = (0.1)2/3,
η(0) = 0, and k2 = 9 or 1089 (the use of larger values of k2 allows for
a more precise measurement of β from the Poincaré maps in some
simulations, since the stochastic region remains in H > 1). Black
dots mark simulations with no stochasticity.
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FIG. 5. Poincaré cross sections for α = 1, a1 = 2, a2 = 0.1,
k2 = 50, P⊥ = 0 (left panels), and P⊥ = 1.0ey (right panels). The
corresponding ponderomotive energies γp ≈ 2.4 (P⊥ = 0) and 2.6
(P⊥ = 1.0ey).

|P⊥|, however, the βmin boundary is much less sensitive to both
Px and Py. From Eq. (23) we then conclude that Hmax decreases
with |P⊥|, while Hmin remains intact. At large |P⊥| it follows
from Eqs. (21) and (22) that stochasticity becomes completely
suppressed, in agreement with the spectral analysis above.

Because Hmin increases with P2
y , stochastic energy is sup-

pressed if its maximum max(γs) corresponds to Hmin < 1.
However, if max(γs) corresponds to Hmax > Ep, the efficiency
of stochastic heating max(γs)/Ep remains the same with an
increase of Py. Hmax > Ep requires large k2,

k2 >
[
1 + (Px + Ax )2 + (Py + Ay)2

]
a1β

3/2
min, (24)

as in the simulation shown in Fig. 5.
The analysis above demonstrated that large |P⊥| � a1

suppresses stochastic heating. For larger amplitudes of the
main laser a1, the perpendicular canonical momentum will no
longer be conserved due to radiation friction effects. To see
how radiation friction (RF) affects the stochastic heating, we
use the classical Landau and Lifshitz [10] approximation for
RF force,

f = ρ f {−γ 2v[(E + v × B)2 − (v · E)2]

+ γ [(∂t + v · ∇)E + v × (∂t + v · ∇)B]

+ [E × B + B × (B × v) + E(v · E)]}, (25)

where E = −∂t a1, B = ∇ × a1, ρ f = 2kre/3, and re =
e2/mc2 ≈ 2.8 fm is the classical radius of the electron. Es-
timating γ ∼ a2

1, E ∼ a1, it follows from Eq. (25) that the
RF force is comparable to the Lorentz force when ρ f a5

1 ∼ 1.
For lasers with a wavelength of about 0.5 μm, the ρ f a5

1 ∼ 1
condition is satisfied for a1 � 40. Substituting a1 = a1 sin(η)
into Eq. (25) gives the expression

f = ρ f {a1H (1 − vz) sin(η)ex − va2
1H2 cos2(η)

+ a1Hvx sin(η)ez + a2
1(1 − vz) cos2(η)ez}, (26)

FIG. 6. Top panel: Decay of P⊥(τ ) and H caused by radiation
friction for λ = 1 μm, a1 = 100, and initial P⊥ = 100ey. Bottom
panel: Corresponding evolution on χ (τ ).

that we combine with the equations of motion for the electron,

dP
dτ

= γ

χ
f . (27)

The P⊥ components of (27) are

dPx

dτ
= − ρ f a2

1H2

χ

(
[Px + Ax] cos2(η) − sin(η)

a1

)
, (28)

dPy

dτ
= − ρ f a2

1H2

χ
[Py + Ay] cos2(η), (29)

where Ax,y are components of A = a1 + a2. The evolution of
χ is described by

dχ

dτ
= ∂H

∂η
+ γ

χ
(v · f + fz). (30)

Using Eq. (26), expression (30) can be rewritten as

dχ

dτ
=∂H

∂η
+ H + χ

2χ
ρ f

{
a2

1 cos2(η)

× [
1 − v2

z − H2(vz + v2)
] + 2a1Hvx sin(η)

}
, (31)

where the velocity components can be expressed as

vx,y = 2(Px,y + Ax,y)

χ + H
, vz = χ − H

χ + H
. (32)

Finally, Eq. (4) does not change in the presence of RF, since

dη

dτ
= 1 − vz

1 + vz
= γ − pz

γ + pz
= H

χ
= −∂H

∂χ
. (33)

It follows from Eqs. (28) and (29) that |P⊥| > a1 converges
to Px ∼ a1 and Py ∼ √

1 − α2a2. For electrons with an initial
P⊥ = 0, the period of electron motion T = 2π/� ∼ a2

1, and,
since χ = γ + Pz ∼ a2

1, from Eq. (28) it follows that Px(T ) ∼
ρ f a3

1. Since for lasers with a micron wavelength ρ f ∼ 10−8, it
follows that Px and Py will remain zero for laser amplitudes
a0 � 103, consistent [11] with the classical approximation
from Ref. [10] given by Eq. (25). Since ρ f H2 � � for P⊥ �
a0 values, the dynamics described by Eqs. (28) and (29) are
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much slower than the characteristic period of electron motion
(as illustrated in Fig. 6), and so the analysis of stochastic
heating performed for taking P⊥ constant remains valid.

III. CONCLUSION

In this paper, we described stochastic heating of an electron
with anarbitrary canonical momentum P in the presence of
two counterpropagating linear plane waves with an arbitrary
angle between the polarization. We demonstrated that the
onset of stochasticity is possible for both parallel and perpen-
dicular polarization setups. For the a2 � a1 case, we derived
the stochasticity threshold and showed how the stochastic
region of H decreases with an increase of perpendicular
canonical momenta P⊥. We demonstrated that for |P⊥| � a1,
the Fourier spectrum of unperturbed a2 = 0 electron motion

has a long tail of harmonics with a power-law amplitude decay
|χ̂0,n| ∝ 1/n2, allowing for a resonant overlap and the onset
of stochasticity, in agreement with the Chirikov criterion. [8]
Meanwhile, in the |P⊥| � a1 case, the exponential cutoff in
the Fourier spectrum |χ̂0,n| ∝ exp(−n) prevents the onset of
stochasticity. The presented results reveal the physics behind
the impact of P⊥ on the stochasticity boundary. Finally, we
expanded the Hamiltonian analysis to include the impact of
radiation friction in the classical radiation reaction limit. We
demonstrated that within the applicability of classical approx-
imation from Ref. [10], the impact of P⊥ is much slower than
the period of electron motion, and the Hamiltonian analysis
P⊥ = const for stochastic heating remains valid.

The presented results are useful for understanding the elec-
tron dynamics in counterpropagating laser pulses such as,
for example, the incident-reflected laser pulses in laser-target
interactions [5,6,12].
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