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Influence of dissipation and effective interaction on the dense plasma dynamic structure factor
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The ionic dynamic structure factor is examined to assess the relative roles of dissipation and the effective
ionic interaction. Two disparate physically based models of dissipation, which can differ numerically by orders
of magnitude, are used in molecular dynamics. We find a negligible impact on the amplitudes of the dynamic
structure factors for physically realistic parameter values. We then examine the effective ionic interaction by
varying its strength, the size of the atomic core (through a pseudopotential), and the screening model. We find
that “diffusive” peaks in the dynamic structure factor are very sensitive to the form of the ionic interaction, and
this sensitivity arises primarily from atomic physics through the pseudopotential. This suggests that it would be
useful to employ the measured zero-frequency dynamic structure factor Sii(k, 0) as a constraint on the effective
interaction, which in turn can be used to compute physical properties.

DOI: 10.1103/PhysRevE.103.063210

I. INTRODUCTION

The dynamic structure factor (DSF) has historically played
a central role in revealing microscopic dynamics of many-
body systems [1–4] because it is measured in scattering
experiments and reveals density fluctuations. Advances in
light sources have increased interest in the DSF. Because an
experimental sample can be either deliberately preheated or
heated by a probe beam, the DSF of dense plasmas is of
particular interest. The basic structure of the ionic DSF of
dense plasmas has been well known for decades from molecu-
lar dynamics (MD) simulations and memory function models
[5]. Simple models have revealed the importance of dynamical
local field corrections in determining the locations and widths
of the peaks in the DSF [6].

Recently, the DSF has been revisited for warm dense mat-
ter (WDM), with a focus on the role of dissipation caused
by background species [7–9]. The interest in this problem
stems from the fact that while dissipation occurs naturally and
strongly in plasmas such as dusty plasmas, strong dissipation
appears to be observed in WDM without as clear of an expla-
nation, which suggests that WDM is similar to suspensions
[10] and granular systems [11]. Dissipation in WDM has
been studied by including collisions with background species
through a Langevin model. Many MD studies of WDM have
employed a Yukawa interaction with Langevin dissipation
[7–9]. Most of these studies yield the expected result [10,12]
that stronger dissipation favors a stronger Rayleigh peak rel-
ative to the Brillouin peak; collisions with an external bath
spoil the conditions for collective motion.

Here, we examine the impact of two modeling choices on
the DSF. First, we reexamine the role of dissipation with a
focus on its origin. We consider two physics-based models
of dissipation that have quite different origins and predict
very different dissipation rates. These two models are used in

MD to explore the impact of dissipation on the DSF. Despite
the disparate predictions of these models, we show that both
predictions for dissipation are far too small to be measurable,
suggesting that dissipation plays a very small role in determin-
ing the DSF in dense plasmas. Second, because our interest is
in the ion-ion DSF, we examine the role of the effective ionic
interaction in the amplitude of the “diffusive” peak, which
has, to date, been largely ignored as a source of an enhanced
Rayleigh peak. We find that this interaction plays a substantial
role in determining the DSF; in particular, the functional form
of the interaction in Fourier space is found to be connected
with specific features of the DSF.

II. LANGEVIN DYNAMICS

Consider a plasma with nuclei, with coordinates {ri(t )}
and velocities {vi(t )} and interacting through forces Fi, sur-
rounded by a bath of electrons that introduce a systematic
drag force −miγ vi and a stochastic force ξ . Such system-bath
dynamics are often modeled with a Langevin equation of the
form

F i ≈ −miγ vi + ξ . (1)

Here, mi is the mass of the ith nucleus and γ is the Langevin
parameter. The parameter γ is constrained by the fluctuation-
dissipation theorem, which ensures that the nuclei tend toward
the electron-bath temperature Te. Physically, γ appears as the
strength of a dissipative drag force on the ions due to the
electrons, and an appropriate theoretical model is needed to
specify γ accurately.

Recently, Stanton, Glosli, and Murillo (SGM) [13] de-
veloped a multiscale MD model in which they used the
low-velocity stopping power to model electron drag, employ-
ing the model of Skupsky [14] to include partial electron
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degeneracy. Their prescription leads to the estimate

γ = 4Z2e4m2
e ln �eff

3π h̄3mi(1 + e−η )
, (2)

where η = μ/Te, μ is the chemical potential, Z is the charge
of the ion, e is the elementary charge, h̄ is the reduced Plank
constant, and ln�eff is the effective Coulomb logarithm. The
effective Coulomb logarithm, in turn, is given by [14]

ln �eff =
∫ ∞

0
dk

k3(1 + e−η )

(eλ2
T k2/(16π )−η + 1)

(
k2 + k2

T F

)2 , (3)

where k is the wave number, λT =
√

2π h̄2/(mekBTe) is the
thermal de Broglie wavelength, kB is the Boltzmann constant,
and kT F is the inverse of the Thomas-Fermi screening length.
A simple interpolation formula for (3) was also given in
Ref. [14]:

ln �eff ≈ 1
2

[
ln

(
1 + �2

0

) − 1
]
, (4a)

�2
0 = 12me(kBTe)2

4π h̄2e2ne

(
0.37 + 4

9
η2

)
, (4b)

where ne is the electron number density. We found, however,
that Eq. (4) yields spurious results at low densities and temper-
atures; this was confirmed by evaluating Eq. (3) numerically.

Through an approximation that the integrand in Eq. (3) at

large k cuts off the integral at kc =
√

16π/λ2
T , which we will

refer to as the modified Skupksy (MS) model, we were able
to perform the integration analytically to obtain the improved
form,

ln �eff ≈ 1

2

[
(1 + �2) − �2

1 + �2

]
, (5a)

�2 = 8me

h̄2

[
(α2kBTe)

√
π + E

√
π

F

]1/
√

π

k2
DF ′

1
2

(η)/F1
2
(η)

, (5b)

α2 = 3e

2
F ′

1
2
(η)/F1

2
(η), (5c)

where EF is the Fermi energy, k2
D = 4πnee2/(kBT ) is the

Debye wave vector squared, and the function F1
2
(η) is the

standard Fermi integral

F1
2
(η) =

∫ ∞

0

x1/2dx

ex−η + 1
, (6)

and is related to the electron number density by

ne = (2mekBTe)3/2

2π2h̄3 F1
2
(η). (7)

A comparison between these two approximations [Eqs. (4)
and (5)] and the numerical integration of Eq. (3) is shown in
Fig. 1. We clearly see that the Skupsky interpolation form in
(4) underestimates the Coulomb logarithm around the Fermi
temperature and performs worse at lower densities, where it
becomes negative. Conversely, the MS model yields almost
perfect results for a wide range of densities and temperatures.

Alternatively, the Langevin parameter γ can be obtained
from the Rayleigh model [15], which predicts a γ value of

γ = 2π
me

mi
Z̄

(
4πni

3

)1/3
√

kBTe

me
, (8)

FIG. 1. Comparison of Coulomb logarithm Skupsky [Eq. (3)]
with the simple interpolation of Skupsky [Eq. (4)] and with MSM
[Eq. (5)] for (a) ne = 1 × 1019/cc, (b) ne = 1 × 1021/cc, (c) ne =
1 × 1023/cc, and (d) ne = 1 × 1025/cc, respectively. The simple
interpolation clearly underestimates when the temperature is low,
especially with a low density; moreover, in fact, the simple inter-
polation of the Coulomb logarithm given in [Eq. (4)] is negative in
some cases [see (a) and (b)].

where ni is the ion number density, and Z is the average
ionization degree. This model is based on classical mechan-
ics, while the SGM and MS models are based on quantum
mechanics. It is worth noting the very different behaviors
predicted by the SGM and Rayleigh models; for exam-
ple, γRM vanishes as Te decreases, in contrast to the SGM
model, which includes Fermi degeneracy through the Skup-
sky stopping-power model. In addition, the dependence on Z̄
differs between the SGM and Rayleigh models.

Figure 2 shows a comparison of the Langevin parameter
among the SGM, MS, and Rayleigh models. The left panel
shows the Langevin parameter for ni = 1.16 × 1023/cc and
Zi = 3. We see that the SGM model underpredicts γ by ∼30%
compared to the MS model when the temperature is less than

FIG. 2. Comparisons of the Langevin parameter obtained from
the Rayleigh, SGM, and MS models. The left panel shows γ for
ni = 1.16 × 1023/cc and Zi = 3. The SGM model underpredicts
γ ∼ 30% compared to the MS model when the temperature is less
than ∼105 K. The right panel shows γ for T = 600 K and Zi = 1. In
this case, γ predicted by the Rayleigh model is fairly close to that
predicted by the MS model at low densities, but γ is overpredicted
by the Rayleigh model at high densities.
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FIG. 3. A comparison of the Yukawa, SM, and force-matched
density functional theory (FM-DFT) potentials for lithium, with
T = 600 K and ρ = 0.513g/cc.

∼105 K. The Rayleigh model is within an order of magnitude
of the MS model at low temperatures, but the difference is
larger at higher temperatures. The right panel of Fig. 2 shows
the Langevin parameter for T = 600 K and Zi = 1. In this
case, γ predicted by the Rayleigh model is fairly close to
that predicted by the MS model at low densities, but γ is
overpredicted by the Rayleigh model at high densities. The
difference between γ predicted by the SGM model and that of
the MS model increases as the density decreases, as expected
based on the results shown in Fig. 1.

Next, we compared the computational models and experi-
mental data [16] for liquid lithium at T = 600 K. We used the
Yukawa potential, the Stanton-Murillo potential (SM) [17],
and the force-matched density functional theory (FM-DFT)
potential [18]. Our MD simulations employed second-order
velocity-Verlet integration and a linked-cell list method with a
cutoff radius rcut = 8 Å because all of the potentials we exam-
ined are short range and exponentially decrease with r. For all
results presented, we simulated 104 particles with a time step
of dt = 0.01/ωi, where ωi is the ion plasma frequency, and
data were collected over N = 80 000 time steps based on the
convergence test by Choi et al. [19]. All results are averaged
over 20 runs.

Figure 3 shows these three potentials for lithium, with
temperature T = 600 K and ρ = 0.513/cc (we assume Z = 1
for the Yukawa and SM potentials). The Yukawa and SM
potentials are very similar and are always repulsive, whereas
the FM-DFT potential has attractive regions.

Figure 4 shows the DSF from MD (T = 600 K and ρ =
0.513/cc) and experimental data [16] for three different wave
numbers. In Fig. 4, the DSFs calculated using the Yukawa,
SM, and FM-DFT potentials are shown in the left, middle,
and right columns, respectively; the (a), (b), and (c) rows show
results for k = 1.12, 1.88, and 2.37 Å, respectively.

Each panel shows the results with no Langevin
damping (γ = 0; solid blue line), the Rayleigh model
(γ =
2.6 × 10−3ωi; green dot), the SGM model (γ = 8.3 ×
10−4ωi; red dotted line), the MS model (γ = 2.6 × 10−3ωi;
black dashed line), and experimental data (cross marks).

FIG. 4. Comparisons of simulation results (T = 600 K and ρ = 0.513/cc) and experimental data [16] for three different wave numbers.
The Rayleigh peak of the DSF does not depend on the Langevin parameter γ ; this result is expected because γ is very small relative to ωi.
The Yukawa and SM potentials do not reproduce the experimental DSFs; however, the FM-DFT potential predicts the DSF well, revealing the
sensitivity of the Rayleigh peak to the DSF.
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FIG. 5. The DSF Sii(k, 0) for various values of χee,0(k), Te, and vei(k). (a),(b) The DSF for Ti = Te = 600 K; (c),(d) the DSF for Ti =
Te = 6 × 105 K; ρ = 0.513/cc. The parameter λ is a parameter in SM potentials and varies from 0 (Yukawa potential) to 1 (the traditional
von Weizsäcker correction at Te = 0). The amplitude of Sii(k, ω = 0) is shown to depend on the vei(k) at low Te; however, this dependency
decreases at higher Te. The zero-temperature Taylor model fails to predict Sii(k, ω = 0) at high temperatures, as expected.

We clearly see that neither Langevin model predicts any
noticeable difference. This result is expected because γ is
very small relative to ωi, but conflicts with other reports [8,9]
that have found that the DSF, especially in diffusive modes,
strongly depends on γ . However, these studies employed
values of γ that were 2–3 orders of magnitude larger than the
values of γ examined in this study, and at such large values
of γ , strong dissipation is expected.

Note that the FM-DFT model predicts the DSF well for
the entire ranges of frequency and wavelength. Witte et al.
[20] performed density functional theory molecular dynamics
(DFT-MD) and reported that their simulation showed rea-
sonable agreement with the experiment [16]. Mokshin and
Galimzyanov [21] reported that a pseudopotential provided a
good agreement with the experimental data [16]. This sug-
gests the sensitivity the potential has in creating a strong
Rayleigh peak in the DSF.

III. INTERACTION POTENTIALS

Given the insensitivity of the DSF to dissipation and
the small electron-ion mass ratio, we can use the Born-
Oppenheimer approximation to express the ionic DSF as

Sii(k, ω) = Im

{
χ0(k, ω)

1 − veff (k)χ0(k, ω)[1 − Gii(k, ω)]

}
, (9)

veff (k) = 〈Z〉2vC (k) + |vei(k)|2χee(k). (10)

In the first line, the response-function representation, formu-
lated in terms of the ideal-gas response χ0(k, ω) and the
dynamic local field correction (DLFC) of ions Gi(k, ω), is
used. Strong coupling (i.e., structure) is included via the
DLFC, which is treated to very high accuracy in an MD im-
plementation, whereas internal dissipation occurs in the sense
of Landau damping via χ0(k, ω) and collisionally via the
DLFC; we now focus on the remaining term: the functional
form of veff (k). In the second line, the effective ionic pair
interaction is written in terms of the Coulomb interaction of

the ionic core vC (k) and a screening term that involves the
electron-ion pseudopotential vei(k) and the valence-electron
response function χee(k). Writing the DSF in this representa-
tion gives insight into how the behavior of the DSF depends
on the Fourier transform of the interaction; for example, if
veff (k) ≈ 0 for any k, then the measured response will be
that of an ideal gas (pure Rayleigh peak), completely in-
dependent of χ0(k, ω)[1 − Gii(k, ω)]. Similarly, the sign of
veff (k) determines whether a pole occurs where the denomina-
tor vanishes, 1 − veff (k)χ0(k, ω)[1 − Gii(k, ω)] ≈ 0. We can
understand the role of the effective interaction intuitively by
neglecting the DLFC and expanding χ0 at high frequencies to
obtain 1 − veff (k)nk2/(mω2) = 0. For the special case of pure
Coulomb interactions, the dispersion relation yields a constant
frequency ω = ωi; similarly, for the Yukawa potential, an ion-
acoustic dispersion ω = ωik2/(k2 + k2

s ) is found (ks = 1/λs

where λs is a screening length associated with properties of
background). In general, however, veff (k) can be oscillatory
and therefore can have zero crossings and sign changes. In
particular, note that for veff (k) = 0, the denominator is equiv-
alent to the ideal-gas case (at that k value); there can be no
peak other than ω = 0.

For vei, we considered the Coulomb, Yukawa, and modified
Ashcroft (MA) potentials [22]. The MA potential is

vei(r) =
{

Ao, r < Ro

−Z/r, r � Ro,
(11)

where Ao is a well depth and Ro is a radius.
For χee(k), we considered exchange-correlation (XC)

contributions at long wavelengths through the local field cor-
rection Gee(k) [17], given by

χee(k) = χee,0(k)

1 − vee(k)χee,0(k)[1 − Gee(k)]
, (12)

Gee(k) ≈ γ0k2 =
(

1 − κ0

κ

)
πk2

4kF
, (13)
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FIG. 6. Effective potentials veff (r) and DSF Sii(k, ω = 0) ob-
tained using different approximations of χee,0(k) (TA, DA, SMA)
with Ti = Te = 600 K, ρ = 0.513/cc. (a) veff (r) obtained by Fourier
transformation of veff (k) using different approximations of χee,0(k)
(TA, DA, SMA). (b) Sii(k, ω = 0) obtained from MD for each po-
tential. It can be seen that the amplitude of Sii(k, ω = 0) depends on
χee,0(k). Moreover, the amplitude of Sii(k, ω = 0) increases with λ

in the SMA.

where kF = (3π2ne)1/3 is the Fermi wave number, κ and κ0

are the isothermal compressibilities for interacting and nonin-
teracting electron gases, respectively [23], and χee,0(k) is the
usual static Lindhard response function. Detailed expressions
for γ0 can be found in Refs. [17,24,25]. For the susceptibility,
we compared Taylor’s zero-temperature approximation (TA)
[26], Dandrea’s approximation (DA) [27], and the Stanton-
Murillo approximation (SMA) [17].

Figure 5 shows the DSF Sii(k, ω = 0) for various sets of
electron temperatures, vei(k) and χee,0(k). We employ the
random-phase approximation (RPA), i.e., Gi(k, ω) = 0, and
we assume that Ti = Te. The parameter λ is a factor in the
SMA that varies from 0 (Yukawa potential) to 1 (the tra-
ditional von Weizsäcker correction at Te = 0). Figures 5(a)
and 5(c) show the DSF for A0 = 0.0 and R0 = 0.25, and
Figs. 5(b) and 5(d) show the DSF for A0 = 0.5 and R0 = 1.0;
Figs. 5(a) and 5(b) show the DSF for Ti = Te = 600 K, and
Figs. 5(c) and 5(d) show the DSF for Ti = Te = 6 × 105 K;
ρ = 0.513/cc. The first row in Fig. 5 shows that Sii(k, ω = 0)
depends on the the potential vei(k) and on χee,0(k) at low
temperatures. However, the second row shows that Sii(k, ω =
0) is independent of temperature at high temperatures. The
Taylor model assumes zero electron temperature and is there-
fore inaccurate at high temperatures. Figure 5 suggests that a
strong Rayleigh peak of Sii(k, ω) can arise from certain forms
for the effective potential, especially adjusting χee,0(k) at low
temperatures.

In Fig. 5, we assumed the RPA for Gii(k, ω). However,
the RPA should not be applied when plasmas are strongly

coupled. In Figs. 5(a) and 5(b), the plasma-coupling parameter
 is 158; i.e., the plasmas being studied are strongly coupled.
We performed MD simulations to determine whether a strong
Rayleigh peak in Sii(k, ω) can be created with a potential
without using the RPA. Figure 6 shows the potentials that we
examined and the corresponding Sii(k, ω = 0) from the MD,
with (A0, R0) = (0.0, 1.0),  = 158, and different values of
χee,0(k).

Figure 6(a) shows the effective potentials veff (r) obtained
by Fourier transformation of veff (k) for different approx-
imations of χee,0(k) (TA, DA, SMA). Figure 6(b) shows
Sii(k, ω = 0) obtained from MD simulations for each poten-
tial with Ti = Te = 600 K, ρ = 0.513/cc. Figure 6(b) shows
that the amplitude of Sii(k, ω = 0) depends on χee,0(k). It also
suggests that the amplitude of Sii(k, ω = 0) increases as λ

increases in the SMA. The MD results support our argument
that a strong Rayleigh peak can be obtained by adjusting
χee,0(k) in strongly coupled plasmas.

IV. CONCLUSIONS

We have examined the functional form of the plasma DSF
to assess the relative contribution of dissipation and the ef-
fective ionic interaction. We considered two physically based
dissipation models from very different theoretical origins to be
included in our MD model. Despite the differences between
these dissipation models, the Langevin parameters from these
models are 2–3 orders of magnitude smaller than ωi, and
dissipation thus has a negligible impact on the DSF regardless
of the ionic interaction potential employed. We also find that
the FM-DFT potential predicts the functional form of the DSF
reasonably well over wide ranges of frequencies and wave
numbers. Next, we examined various forms of the effective
ionic interaction, varying its strength, the size of the atomic
core, and the form of the screening. We find that certain forms
of the interaction can lead to “diffusive” peaks in the DSF and
that this arises from atomic physics through the pseudopoten-
tial vei(r). We also find that the sensitivity of Sii(k, ω = 0) to
χee,0(k) decreases with weaker coupling.

This finding suggests that the zero-frequency DSF
Sii(k, ω = 0) can be used as a constraint on the effective
interaction, which in turn can be used to compute physical
properties.

ACKNOWLEDGMENTS

The authors would like to thank Luke Stanek for offering
a force-matched DFT potential for lithium. This work was
supported by the Air Force Office of Scientific Research under
AFOSR Grant No. FA9550-17-1-0394.

[1] K. Sturm, Dynamic structure factor: An introduction, Z.
Naturforsch. A 48, 233 (1993).

[2] J. H. Chu and L. I, Direct Observation of Coulomb Crystals and
Liquids in Strongly Coupled rf Dusty Plasmas, Phys. Rev. Lett.
72, 4009 (1994).

[3] T. C. Killian, Ultracold neutral plasmas, Science 316, 705
(2007).

[4] O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers,
C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E.
Hinkel, L. F. B. Hopkins, J. L. Kline, S. L. Pape, T. Ma, A.
G. MacPhee, J. L. Milovich, A. Pak, H.-S. Park, P. K. Patel,
B. A. Remington, J. D. Salmonson, P. T. Springer, and R.
Tommasini, Fuel gain exceeding unity in an inertially confined
fusion implosion, Nature (London) 506, 343 (2014).

063210-5

https://doi.org/10.1515/zna-1993-1-244
https://doi.org/10.1103/PhysRevLett.72.4009
https://doi.org/10.1126/science.1130556
https://doi.org/10.1038/nature13008


YONGJUN CHOI AND MICHAEL S. MURILLO PHYSICAL REVIEW E 103, 063210 (2021)

[5] J. P. Hansen and I. R. McDonald, Microscopic simulation of
a strongly coupled hydrogen plasma, Phys. Rev. A 23, 2041
(1981).

[6] S. Ichimaru, H. Iyetomi, and S. Tanaka, Statistical physics of
dense plasmas: Thermodynamics, transport coefficients and dy-
namic correlations, Phys. Rep. 149, 91 (1987).

[7] J. Dai, Y. Hou, J. Yuan, Unified First Principles Descrip-
tion from Warm Dense Matter to Ideal Ionized Gas Plasma:
Electron-Ion Collisions Induced Friction, Phys. Rev. Lett. 104,
245001 (2010).

[8] P. Mabey, S. Richardson, T. G. White, S. H. Glenzer, J.
Vorberger, D. O. Gericke, A. Wierling, and G. Gregori, A
strong diffusive ion mode in dense ionized matter predicted by
langevin dynamics, Nat. Commun. 8, 14125 (2017).

[9] H. Kählert, Dynamic structure factor of strongly coupled
Yukawa plasmas with dissipation, Phys. Plasmas 26, 063703
(2019).

[10] P. Pusey and R. Tough, Langevin approach to the dynamics of
interacting Brownian particles, J. Phys. A: Math. General 15,
1291 (1982).

[11] P. Maynar, M. G. de Soria, and E. Trizac, Fluctuating hydrody-
namics for driven granular gases, Europhys. J. Spec. Top. 179,
123 (2009).

[12] W. Hess and R. Klein, Generalized hydrodynamics of systems
of brownian particles, Adv. Phys. 32, 173 (1983).

[13] L. G. Stanton, J. N. Glosli, and M. S. Murillo, Multiscale
Molecular Dynamics Model for Heterogeneous Charged Sys-
tems, Phys. Rev. X 8, 021044 (2018).

[14] S. Skupsky, Energy loss of ions moving through high-density
matter, Phys. Rev. A 16, 727 (1977).

[15] A. V. Plyukhin, Generalized fokker-planck equation, brownian
motion, and ergodicity, Phys. Rev. E 77, 061136 (2008).

[16] T. Scopigno, U. Balucani, A. Cunsolo, C. Masciovecchio, G.
Ruocco, and F. Sette, Inelastic X-ray scattering determination
of the dynamic structure factor of liquid lithium, Philos. Mag.
B 79, 2027 (2009).

[17] L. G. Stanton and M. S. Murillo, An analytic screening potential
for dense, strongly-coupled plasmas, Phys. Rev. E 91, 033104
(2015).

[18] L. J. Stanek, R. C. ClayIII, M. W. C. Dharma-wardana, M.
A. Wood, K. R. C. Beckwith, and M. S. Murillo, Efficacy of
the radial pair potential approximation for molecular dynam-
ics simulations of dense plasmas, Phys. Plasmas 28, 032706
(2021).

[19] Y. Choi, G. Dharuman, and M. S. Murillo, High-frequency
response of classical strongly coupled plasmas, Phys. Rev. E
100, 013206 (2019).

[20] B. B. L. Witte, M. Shihab, S. H. Glenzer, and R. Redmer, Ab
initio simulations of the dynamic ion structure factor of warm
dense lithium, Phys. Rev. B 95, 144105 (2017).

[21] A. V. Mokshin and B. N. Galimzyanov, Self-consistent de-
scription of local density dynamics in simple liquids. The
case of molten lithium, J. Phys.: Condens. Matter 30, 085102
(2018).

[22] M. W. C. Dharma-wardana and G. C. Aers, Determination
of the pair potential and the ion-electron pseudopotential for
aluminum from experimental structure-factor data for liquid
aluminum, Phys. Rev. B 28, 1701 (1983).

[23] K. Nagao, S. A. Bonev, and N. W. Ashcroft, Cusp-condition
constraints and the thermodynamic properties of dense hot hy-
drogen, Phys. Rev. B 64, 224111 (2001).

[24] F. Perrot and M. W. C. Dharma-wardana, Exchange and corre-
lation potentials for electron-ion systems at finite temperatures,
Phys. Rev. A 30, 2619 (1984).

[25] M. S. Murillo, J. Weisheit, S. B. Hansen, and M. W. C. Dharma-
wardana, Partial ionization in dense plasmas: Comparisons
among average-atom density functional models, Phys. Rev. E
87, 063113 (2013).

[26] R. Taylor, A simple, useful analytical form of the static electron
gas dielectric function, J. Phys. F 8, 1699 (1978).

[27] R. G. Dandrea, N. W. Ashcroft, and A. E. Carlsson, Electron
liquid at any degeneracy, Phys. Rev. B 34, 2097 (1986).

063210-6

https://doi.org/10.1103/PhysRevA.23.2041
https://doi.org/10.1016/0370-1573(87)90125-6
https://doi.org/10.1103/PhysRevLett.104.245001
https://doi.org/10.1038/ncomms14125
https://doi.org/10.1063/1.5099579
https://doi.org/10.1088/0305-4470/15/4/030
https://doi.org/10.1140/epjst/e2010-01198-x
https://doi.org/10.1080/00018738300101551
https://doi.org/10.1103/PhysRevX.8.021044
https://doi.org/10.1103/PhysRevA.16.727
https://doi.org/10.1103/PhysRevE.77.061136
https://doi.org/10.1080/13642819908223091
https://doi.org/10.1103/PhysRevE.91.033104
https://doi.org/10.1063/5.0040062
https://doi.org/10.1103/PhysRevE.100.013206
https://doi.org/10.1103/PhysRevB.95.144105
https://doi.org/10.1088/1361-648X/aaa7bc
https://doi.org/10.1103/PhysRevB.28.1701
https://doi.org/10.1103/PhysRevB.64.224111
https://doi.org/10.1103/PhysRevA.30.2619
https://doi.org/10.1103/PhysRevE.87.063113
https://doi.org/10.1088/0305-4608/8/8/011
https://doi.org/10.1103/PhysRevB.34.2097

