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Kinetic model for electron-ion transport in warm dense matter
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We present a model for electron-ion transport in warm dense matter that incorporates Coulomb coupling
effects into the quantum Boltzmann equation of Uehling and Uhlenbeck through the use of a statistical potential
of mean force. Although the model presented here can be derived rigorously in the classical limit [S. D.
Baalrud and J. Daligault, Phys. Plasmas 26, 082106 (2019)], its quantum generalization is complicated by the
uncertainty principle. Here we apply an existing model for the potential of mean force based on the quantum
Ornstein-Zernike equation coupled with an average-atom model [C. E. Starrett, High Energy Density Phys. 25, 8
(2017)]. This potential contains correlations due to both Coulomb coupling and exchange, and the collision
kernel of the kinetic theory enforces Pauli blocking while allowing for electron diffraction and large-angle
collisions. We use the Uehling-Uhlenbeck equation to predict the momentum and temperature relaxation times
and electrical conductivity of solid density aluminum plasma based on electron-ion collisions. We present
results for density and temperature conditions that span the transition from classical weakly-coupled plasma
to degenerate moderately-coupled plasma. Our findings agree well with recent quantum molecular dynamics
simulations.
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I. INTRODUCTION

The microscopic physics of warm dense matter (WDM) is
subject to a multitude of physical effects, including electron
degeneracy, partial ionization, large-angle scattering, diffrac-
tion, and moderate Coulomb coupling leading to correlations.
Such conditions are present in experiments involving extreme
compression of materials [1–3], in astrophysics [4,5], and
along the compression path in inertial confinement fusion
(ICF) experiments [6]. As a result of the demanding con-
ditions for theoretical modeling, the description of WDM
has been highly reliant on computational techniques. How-
ever, ab initio computation proves too expensive for many
problems, whereas faster methods often involve uncontrolled
approximations or have uncertain applicability. To support
computational efforts, explore larger regions of parameter
space, and expediently provide data tables for hydrodynamic
simulations, reliable and fast tools for the computation of
transport coefficients in WDM remain desirable.

In this work, we introduce a model for electron-ion
transport based on the quantum Boltzmann equation of
Uehling-Uhlenbeck [7], but with a modification motivated by
the classical mean force kinetic theory [8] in which aspects of
many-body interactions are modeled by treating binary colli-
sions as occurring via the potential of mean force (PMF). The
model accounts for at least some degree of partial ionization,
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electron degeneracy, moderate Coulomb coupling, diffrac-
tion, and large-angle collisions. The approximate regimes in
which these different physical processes are important can be
roughly understood in terms of the degeneracy parameter � ≡
Te/TF and Coulomb coupling parameter � = 〈U 〉/〈K〉 with
the statistical averages taken using a Maxwell-Boltzmann
distribution for ions and a Fermi-Dirac distribution for elec-
trons. Te is the electron temperature, TF ≡ EF /kB the Fermi
temperature, 〈U 〉 the average interaction energy and 〈K〉 the
average kinetic energy of a particle. The average speed of
electrons shifts from the thermal speed to the Fermi speed
as degeneracy increases, a phenomenon that causes electrons
to become increasingly weakly coupled at high density. The
Coulomb couplings �ii and �ie for ion-ion and electron-ion
interactions, respectively, can be expressed as

�ii = Z2e2/a

kBT
(1)

and

�ie = Ze2/a

kBT

Li3/2[−ξ ]

Li5/2[−ξ ]
, (2)

where a = (3/4πn)1/3 is the Wigner-Seitz radius, Li is the
polylogarithm function (closely related to the Fermi integral)
and ξ ≡ exp(μ/kBT ) where μ is the electron chemical poten-
tial related to � through the normalization of the Fermi-Dirac
distribution [9]:

−Li3/2[−ξ ] = 4

3
√

π
�−3/2. (3)
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FIG. 1. Parameter regimes of fully ionized hydrogen plasma. The
solid black line is the boundary between weak and strong electron
coupling �e = 1 and turns over due to the electron degeneracy; the
dotted lined is the separation between weak and strong ion coupling
�i = 1; and the dashed line is the separation between classical and
degenerate electrons � = 1. The darker blue oval denotes the sector
of WDM. Region 1 (yellow) is classical weakly coupled plasma;
region 2 (light blue) is characterized by classical strong coupling;
region 3 (pink) by quantum weak coupling; and region 4 (green)
by both quantum electrons and strongly coupled ions. We expect
the theory presented here to apply to each region 1–4. The red line
demarcates the region of validity of plasma-type transport theories;
beyond this is the regime of condensed matter.

The conditions � = 1 and � = 1 divide the density-
temperature parameter space into multiple regions, as seen
in Fig. 1. The regimes can be broken down into (1) classical
weakly coupled, (2) classical strongly coupled, (3) quantum
weakly coupled, and (4) classical strongly coupled ions with
degenerate weak or strongly coupled electrons. WDM ex-
ists at the intersection of all of these regions marked by the
blue oval, where no small expansion parameter is available.
Transport in region (1) is well-understood in terms of the
Landau-Spitzer theory [10], and region (3) has been suc-
cessfully modeled through quantum weak-coupling theories
such as the quantum Landau-Fokker-Planck equation [11].
Progress has recently been made extending classical plasma
transport theory into region (2) for � � 20 through use of
mean force kinetic theory (MFKT) [8,12,13], which has also
been successfully applied in region (4) for WDM in the
case of ion transport [14]. Other existing kinetic methods
for predicting transport in WDM typically fall into the cate-
gories of binary collision theories [11,15–18], linear response
theories [19–21], and nonequilibrium Green’s functions and
field-theoretic methods [22–25].

The model presented in this work is physically intuitive,
contains much of the relevant physics, and can be evalu-
ated relatively quickly. It is based on the Uehling-Uhlenbeck
equation (named BUU equation from this point on, with the
letter B referencing Boltzmann), which accounts for degener-
acy and diffraction [7]. Correlations in a moderate Coulomb

coupling regime are modeled through the assertion that the
binary scattering is mediated by the equilibrium statistical
potential of mean force (PMF). The PMF is computed using
a recent combined Average-Atom + Two-Component-Plasma
model [18,26]. The result has the advantage of retaining the
dominant aspects of the relevant physics, while remaining
relatively fast to evaluate in comparison to fully dynam-
ical calculations. In the classical limit the model can be
rigorously derived [8], but while this derivation cannot be
easily extended to the quantum domain due to the uncertainty
principle, it is reasonable to apply the PMF to the BUU
equation.

Explicit results are computed for momentum and energy
relaxation rates of aluminum at conditions spanning the WDM
regime. The results for energy relaxation are found to be
equivalent to a recent model by Daligault and Simoni [27]
if interactions are assumed to occur via the PMF in that
theory. It is found that large-angle collisions contribute to the
momentum relaxation rate and thus the electrical conductiv-
ity. Predictions made with our theory show good agreement
with quantum molecular dynamics simulations of electrical
conductivity at WDM conditions [28].

We begin by detailing the model in Sec. II. We introduce
the PMF into the BUU equation and discuss what the concept
means in the context of a degenerate plasma. In Sec. III
we apply this to electron-ion momentum and temperature
relaxation, where we obtain the degeneracy- and correlation-
dependent “Coulomb integral” that replaces the traditional
Coulomb logarithm. In Sec. IV, we evaluate the model
for the solid-density aluminum and compare to common
and simple alternatives and discuss the relative importance
of the effects of correlation, large-angle scattering, Pauli
blocking, and diffraction. We conclude and summarize in
Sec. V.

II. A KINETIC EQUATION FOR TRANSPORT IN WDM

A. The Uehling-Uhlenbeck collision operator

We consider the collision integral from the right-hand side
of the BUU equation [7],

Css′
q =

∫
dv′d�

dσ

d�
u[ f̂s f̂s′ (1 + θs fs)(1 + θs′ fs′ )

− fs fs′ (1 + θs f̂s)(1 + θs f̂s′ )], (4)

where u ≡ v − v′ is the relative velocity of the scatter-
ing particles, the “hatted” quantities f̂s are evaluated at the
post-collision velocity v̂ = v + 	v and θs = (±1/gs)(h/ms)3

where gs is an integer accounting for particle statistics
with gs = ge = 2 for electrons, the + sign corresponds with
Bosons and the − sign with Fermions. Calculation of dσ/d�

is carried out via a partial wave expansion in terms of the
phase shifts δl (η). The determination of the phase shifts from
the Schrödinger equation is discussed in the Appendix.

The BUU equation describes the evolution of the Wigner
quasi-probability distribution function fs. It was originally
proposed as an extension of the Boltzmann equation to ac-
count for degeneracy [7], but a consistent derivation of the
equation was not accomplished for some time. Early meth-
ods involved applying the BBGKY hierarchy to the kinetic
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equation for the Wigner function and often fell short of fully
obtaining the BUU equation, i.e., to include the θs terms
[29,30]. Ultimately, a derivation was carried out using the
BBGKY hierarchy in the density operator formalism [31].
This required a modification of the typical weak-correlation
assumption in derivations of the Boltzmann equation. Instead
of neglecting three-body correlations entirely, Boercker and
Dufty included the quantum correlations of two scattering
particles with a third spectator particle to preserve Fermion
antisymmetry, without including correlations due to the in-
teraction. By this method they self-consistently derived the
BUU equation with the statistical θs factors, but came to the
conclusion that the degeneracy must be accounted for in cal-
culating the scattering cross section in addition to influencing
the statistical availability of scattering states encapsulated in
the θs terms.

The BUU equation as originally formulated is applicable
to moderately dense gases in which degeneracy is present but
the amount of correlation is small. In the case of WDM, the
equation has several deficiencies. First, the electron number
density and therefore the average ionization state of the sys-
tem must be provided as an input. Second, in a plasma it is
well known that transport rates predicted by Eq. (4) diverge
if the cross section is computed using the Coulomb potential
because the Coulomb force is of an infinite range. This is
typically resolved in an ad hoc manner by enforcing a large
distance limit on the impact parameter. Third, the derivation of
the BUU equation, while including correlations due to Fermi
statistics, does not allow for correlations due to the interaction
and thus applies only in the limit of weak coupling. The
remainder of this section describes how all three deficien-
cies can be addressed in a consistent fashion in the WDM
regime.

For a tenuous and hot (read classical and weakly coupled)
plasma the equilibrium ionization state is determined by the
Saha equation [32]]. The divergence in the Coulomb loga-
rithm is related to the neglect of correlation: in plasmas the
collective affect of the surrounding plasma introduces Debye
screening that limits the range of the interaction. A recent
approach called “mean force kinetic theory” has provided a
self-consist derivation for plasmas through a new expansion
parameter of the BBGKY hierarchy [8]. In standard deriva-
tions of the Boltzmann equation, the BBGKY hierarchy is
truncated via neglecting correlations involving three or more
particles and making certain assumptions about two-particle
correlations. In mean-force kinetic theory the BBGKY hier-
archy is re-arranged in terms of an expansion parameter that
is the difference between the exact nonequilibrium distribu-
tion function and its equilibrium limit. The hierarchy is then
truncated by assuming this difference is negligible for reduced
distribution functions in three or more particle coordinates;
i.e. that the high order correlations take their equilibrium
values. The result is a collision integral identical in form to
that of the Boltzmann equation, but in which the scattering
particles interact through the PMF. In addition, there is a term
on the left-hand side of the kinetic equation that enforces the
nonideality of the equilibrium limit in the equation of state.
The result is capable of describing transport in weak to mod-
erately coupled plasmas (� � 20) based on the equilibrium
structural properties of the plasma.

B. The quantum potential of mean force

Extending mean-force kinetic theory to include quantum
effects is complicated by two issues: the exclusion princi-
ple complicates the mathematics of the necessary statistical
averaging, and more significantly the uncertainty principle
muddles the very meaning of a potential of mean force. Clas-
sically, the mean force is the force experienced between two
particles at rest with a given separation, with a statistical
averaging over all of the remaining particles in the plasma
at equilibrium. In the quantum case, knowing particles are
“at rest with a given separation” is impossible according to
the uncertainty principle. Mathematically, this prevents fac-
toring of the kinetic and potential (configuration) terms in the
equilibrium density matrix, and ultimately prevents a general
derivation of the PMF by extension of known classical means.

Despite this complication, the PMF must have some mean-
ing in at least a semiclassical sense. An electron-ion pair
will still induce well-defined correlations in the plasma, and
these correlations can in turn influence the force felt by the
interacting pair at least over the average of many scattering
events at many velocities. This is reflected in the screened
potential

Usc(r) = φ(r)

kBT
e−r/λsc , (5)

with degeneracy-dependent screening length (as per Ref. [9])

λ2
sc = λ2

D

√
Li3/2(−ξ )

Li1/2(−ξ )
, (6)

which can be seen as a weak-correlation limit of the PMF
both for classical and quantum plasmas. The essential chal-
lenge of applying the mean force concept to WDM is how
to encapsulate this effect in a binary potential when the cou-
pling is no longer weak. It has long been known that weak
correlations influence the potential in the form of plasma
screening in both the classical (Debye-Huckel) and quantum
(Thomas-Fermi) limits. One other classical derivation of the
PMF is via the Ornstein-Zernike equation, which defines the
direct correlation function [33]. Fortunately, a quantum analog
of the Ornstein-Zernike equation exists (see [34] for its first
appearance in the literature to our knowledge), and this equa-
tion has been used successfully to calculate the equilibrium
pair correlation function in WDM by Starrett and Saumon
[18,26,35]. Furthermore, it has been used to define a quantum
PMF for electron-ion interactions, and this potential has been
used to predict electrical conductivities in the relaxation time
approximation, with good agreement with quantum molecular
dynamics simulations [36].

Despite the mathematical difficulty in obtaining an ex-
pression for the quantum PMF from the quantum BBGKY
hierarchy, we postulate that a such a potential must arise
naturally from the procedure of rearranging the BBGKY hi-
erarchy as in Ref. [8], and that this potential is that which is
derived from the quantum Ornstein-Zernike equation. We turn
to such a potential obtained with the quantum hypernetted-
chain-approximation, coupled with an average-atom model
that accounts for the structure and ionization state of the ions
[18,26,35,36] (subsequently referred to as the AA-TCP model
for “average-atom two-component plasma.” This potential can
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FIG. 2. Electron-ion potential of mean force as obtained via the
model described in Ref. [36] for solid-density (2.7 g cm−3) warm
dense aluminum at 1, 25, and 500 eV (thick curves). In the high-
temperature limit the potential approaches the screened Coulomb
potential of a classical plasma (thin curves); as the temperature
decreases it is altered by both degeneracy and correlations leading
to different scale lengths of the potential in addition to the nonmono-
tonic behavior.

be expressed as

V MF(r) = −Znuc

r
+

∫
d3r′ n

ion
e (r′)

|r − r′|

+ V xc[nion
e (r)] + n0

i

∫
d3r′Cie(|r − r′|)

−β
hii(r

′)

+ n̄0
e

∫
d3r′Cee(|r − r′|)

−β
hie(r′), (7)

where Cie and Cee are the electron-ion and electron-electron
direct correlation functions, respectively, hie and hii are the
electron-ion and ion-ion pair correlation functions, respec-
tively, nion

e (r) is the density of bound electrons, β = kBT , and
V xc is the exchange correlation functional. V xc may be chosen
in accordance with the requirements of the plasma conditions
and computational resources available (in the present case, as
described in Ref. [26], the zero-temperature Dirac exchange
functional [37] is used). In Eq. (7) the first three terms rep-
resent the potential for individual ions interacting with free
electrons while the last two terms come from the Ornstein-
Zernike equation for the electron-ion system. Calculation of
the potential requires closure, which in this case is provided
by the quantum hypernetted-chain-approximation for the ion-
ion correlations and through coupling to an Average-Atom
model for the electron-ion correlations. Such methods can be
substantially faster than full dynamical calculations such as
molecular dynamics, wherein lies the primary benefit of the
theory proposed in this work. In Fig. 2 we show example
electron-ion scattering potentials from the AA-TCP model
for warm dense aluminum at conditions that span the weakly
coupled classical to moderately coupled degenerate regimes;
see regions (1) and (4) of Fig. 1. The figure demonstrates the
convergence of the PMF with a screened Coulomb potential in
the weakly coupled limit, and the importance of correlations
in the calculation of the potential in the region of moderate
coupling.

III. TRANSPORT RATES

Comprehensive methods to derive hydrodynamic equa-
tions, such as that of Chapman and Enskog have been
developed for the Boltzmann equation [38], but their exten-
sion to the BUU equation faces considerable mathematical
challenges and has not been accomplished to our knowledge.
To demonstrate predictions for macroscopic transport rates,
we focus on electron-ion relaxation in which the respec-
tive electron and ion distribution functions are known but
the species are not in equilibrium with each other. We con-
sider both temperature relaxation and momentum relaxation,
which is related to the electrical conductivity. A restric-
tion imposed by considering only electron-ion relaxation is
that it provides only one contribution to processes such as
electrical conductivity that are also influenced by electron-
electron interactions. Although models such as the quantum
Landau-Fokker-Planck equation have been solved using a
Chapman-Enskog technique to address both contributions in a
comprehensive hydrodynamic theory [15], they do not address
strong coupling. A recent modification has been proposed to
incorporate strong coupling via a modified Coulomb loga-
rithm computed using the PMF and finds that in the strongly
degenerate regime and for high-Z systems the electron-ion
collisions are dominant [39]. However, the Fokker-Planck
form of the collision operator itself is only expected to ap-
ply when momentum transfer during collisions is small (i.e.,
weak coupling). For instance, it can be derived from a small
momentum transfer expansion of the BUU equation. Here,
we focus on the electron-ion relaxation using the full BUU
equation to isolate the influence of large momentum transfer
in the collision operator.

Concentrating on the electron-ion contribution also al-
lows for a commensurable comparison with quantum MD
simulations of electrical conductivity [28]. Since electrons
are often treated using the Born-Oppenheimer approxima-
tion in these simulations, they are also limited to treat only
the electron-ion contribution to transport processes. Although
electron-electron interactions are expected to contribute to the
total conductivity, it is only recently becoming possible to go
beyond Born-Oppenheimer and simulate dynamic electrons
in WDM following advancements in wave-packet MD [40],
mixed quantum-classical MD [41,42], Bohmian quantum
methods [43], Kohn-Sham DFT MD [44], time-dependent
DFT [45] and quantum Monte Carlo [46]. Addressing contri-
butions from both electron and ion dynamics will be the next
step in both the theory and simulation development.

A. General formalism

A binary mixture of two species s and s′ out of equilibrium
will relax towards equilibrium through s − s, s − s′ and s′ −
s′ collisions, which are modeled by moments of the collision
operator Eq. (4),

〈χ〉s−s′ =
∫

dvχ (v)Cs−s′
qB , (8)

where χ (v) is some polynomial function of the velocity. To
simplify, we utilize the following properties: d� dσ

d�
is in-

variant under reversal of the collision, i.e., (v, v′) ↔ (v̂, v̂′)
where v and v′ are the precollision velocities of particles one
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and two, respectively, the “hat” ˆ indicates a post-collision
quantity, and the phase-space volume element is invariant, i.e.,∫

dvdv′ = ∫
d v̂d v̂′. We thus obtain

〈χ〉s−s′ =
∫

dv

∫
d�

dσ

d�
u

∫
dv′[χ (v̂) − χ (v)]

× fs fs′
(
1 + θs f̂s

)(
1 + θs f̂s′

)
. (9)

Relevant χ (v) include

χ (v) =
⎧⎨
⎩

1 → [χ (v̂) − χ (v)] = 0,

msv → [χ (v̂) − χ (v)] = ms�v,

msv
2 → [χ (v̂) − χ (v)] = ms	v2,

(10)

where 	v = v̂ − v. Substituting variables v = v′ + u,
defining mss′ = msms′/(ms + ms′ ), and utilizing the
following relations obtained from the collision kine-
matics: ms	v = mss′	u,	u · 	u = −2u · 	u and
(2v · 	v + 	v2) = (mss′/ms)	u · [v′ + (mss′/ms)u], shows
that (see Ref. [47]),

χ (u) =
⎧⎨
⎩

1 → [χ (v̂) − χ (v)] = 0,

msv → [χ (v̂) − χ (v)] = mss′	u,

msv
2 → [χ (v̂)−χ (v)]=mss′

(
v′−V s+mss′

ms′
u
) · 	u,

(11)

where

	u = u

(
sinθcosφx̂ + sinθsinφŷ − 2sin2 θ

2
û
)

. (12)

With this expression it is easy to verify the useful identity

(u + �u)2 = u2. (13)

The preceding discussion and the collision operator Eq. (4)
are in principle applicable to transport in any semiclassical
system. As it pertains to WDM, ion-ion scattering is contained
within this formalism as ion dynamics are classical and elec-
tron degeneracy effects enter only via the PMF. Application
of the theory to ion-ion scattering was validated in Ref. [14].
The case of the electron-electron terms requires further work
due to the subtleties associated with defining the PMF that
are discussed in section II and will be investigated in another
work. However, the model at the level to which we have devel-
oped it has immediate applicability to the case of electron-ion
scattering.

B. The relaxation problem

We restrict our analysis to the class of problems in
which electrons and ions in the plasma are in respective
equilibrium with themselves with different fluid quantities
Te, Ti, V e, and V i, respectively. In such a system, the elec-
tron and ion fluid variables will equilibrate on a timescale
long compared to the respective electron-electron and ion-ion
collision times. The ions have a classical Maxwellian velocity
distribution,

fi(v
′) = ni

v3
Ti

e−(v′−V i )
2
/v2

Ti

π3/2
, (14)

and the electrons have a Fermi-Dirac velocity distribution

fe(v) = ne

[
v3

Te

(−π3/2Li 3
2
(−ξ )

)(
1 + e(v−V e )2/v2

Te

ξ

)]−1

,

(15)
where vT s = √

2kBTs/ms and ξ = exp (μ/kBT ), the ion veloc-
ity is v′ and electron velocity is v. We can write

fe fi(1 + θe f̂e)

= ni

v3
Ti

e−(v′−V i )
2
/v2

Ti

π3/2
ne

×
[
v3

Te

(−π3/2Li 3
2
(−ξ )

)(
1 + e(v′+u−V e )2

/v2
Te

ξ

)]−1

×
[

1 −
(

1 + e(v′+u+(mei/me )	u−V e )2
/v2

Te

ξ

)−1]
, (16)

from which the relation of the factor (1 + θe f̂e) to Pauli
blocking can be seen in terms of the Fermi-Dirac occupation
number: the contribution to the collision integral from colli-
sions to or from occupied states is zero. This simplification
occurs from the combination of θe = (−1/2)(h/ms)3 with
the prefactor nev

3
Te/Li 3

2
(−ξ ) in the Fermi Dirac distribution

through the relation Eq. (3).
Electron-ion temperature and momentum relaxation rates

depend on the energy exchange density Qs−s′
and friction

force density Rs−s′
, respectively. These can in turn be written

in terms of the moments Eq. (9), assuming a uniform plasma,
as

Qei = 〈
1
2 me(v − V e)2

〉e−i
(17)

and

Rei = 〈mev〉e−i, (18)

which, in the respective limits of 	T = Te − Ti 	 T and
	V = Ve − Vi 	 V , yield simple relaxation rates dTe/dt =
ν

(ε)
ei 	T and dV e/dt = ν

(p)
ei 	V .

The integration over the ion velocity can be simplified sig-
nificantly in the limit that the ion velocities are much smaller
than the electron velocities: meTi 	 miTe, which (due to the
small electron-to-ion mass ratio) is true when temperature dif-
ferences are not extreme, coinciding with our expansion about
the equilibrium state. Note that we also make the simplifying
replacement mei ≈ me. By expanding Eq. (16) in the limit
that the electron distribution is approximately constant over
the range of accessible ion velocities, the integral over the
ion velocities can be carried out analytically. The evaluation
of this integral differs for the calculation of Qei versus Rei.
Therefore we examine each case separately.

1. Temperature relaxation

The energy-exchange density Eq. (17) in this case becomes

Qei = mei

∫
du

∫
d�

dσ

d�
u�u

×
∫

dv′
(
v′ + mei

mi
u
)

fi fe
(
1 − |θe| f̂e

)
. (19)
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Inserting Eq. (16), applying the expansion |v′| 	 |u|, as-
suming zero drift velocities and |Te − Ti| 	 Te, Ti and using
Eq. (13) we perform the integral over v′ and write∫

dv′
(
v′ + mei

mi
u
)

fi fe(1 − |θe| f̂e)

≈ me

mi

nenie−u2/v2
Teξu

π3/2v3
Te(1 + ξe−u2/v2

Te )2Li 3
2
(−ξ )

. (20)

The result is written to facilitate comparison with the classical
limit,

Qei = −3
me

mi
neνei(Te − Ti ), (21)

in terms of a collision frequency

νei = ν0�ei, (22)

where

ν0 ≡ 4
√

2πniZ2e4

3
√

me(kBTe)3/2
= 2.906 × 10−12 Zni[m−3]

(Te[eV])3/2
(23)

and a generalized Coulomb integral �ei. Effects of degeneracy
and strong coupling are contained in the Coulomb integral,

�ei = 1

2

∫ ∞

0
dηI (η) (24)

I (η) ≡ G(η)
σ (1)(η, �)

σ0
, (25)

where η ≡ u/vTe and

σ (1)(η, �) = 4π

∫ π

0
dθ sin2 θ

2
sin θ

dσ

d�
(26)

is the momentum transfer cross section, which can be written
in terms of the phase shifts δl as

σ (1)

σ0
= 4π

η2

∞∑
l=0

(l + 1) sin2(δl+1 − δl ), (27)

with a convenient reference cross section being the squared
thermal de Broglie wavelength σ0 = h̄2/(mevTe)2. The func-
tion

G(η) ≡ ξe−η2
η5

[−Li 3
2
(−ξ )](ξe−η2 + 1)2

(28)

determines the relative availability of states that contribute
to the scattering. This is plotted in Fig. 3 for several values
of the degeneracy parameter �, where it is shown that in
the classical limit scattering is dominated by energy transfers
around the thermal energy, and as degeneracy increases the
envelope of relevant energy-transfers narrows about the Fermi
energy. It should be noted that the relaxation rate obtained in
Eq. (22) is identical to that obtained in Eq. (71) of Ref. [27]
by very different means.

2. Momentum relaxation

Momentum relaxation occurs through collisions between
electron and ion populations with different average velocities.

FIG. 3. Statistical weighting function G from the integrand for
temperature and momentum relaxation, spanning the transition from
classical to degenerate conditions. The relevant collision velocities
become narrowly centered around the Fermi velocity at strong de-
generacy. This represents the availability of regions of phase space
for scattering particles to leave/enter, with the Pauli principle greatly
restricting the available states at collision energies below the Fermi
energy when the plasma is degenerate.

The force density Eq. (18) associated with these collisions is

Rei =
∫

du
∫

d�
dσ

d�
u

∫
dv′mei�u fe fi(1 + θe f̂e). (29)

Inserting Eq. (16), again applying the expansion |v′| 	 |u|,
identity 13, and assuming |Te − Ti| 	 Te, Ti, Vi 	 vTi and
Ve 	 vTe, the integral over v′ can be performed analytically,∫

dv′mei fe fi(1 + θe f̂e)

≈ 2meneniξe−η2
[u · �V (1 − ξe−η2

) − ξe−η2
�u · �V ]

π3/2v5
Te[−Li 3

2
(−ξ )](ξe−η2 + 1)3

.

(30)

The remaining integrals are simplified by choosing a coordi-
nate system aligned with �V in which û = sin θ ′ cos φ′x̂ +
sin θ ′ sin φ′ŷ + cos θ ′�V̂ and additionally rotating �u into
this coordinate system. We follow the classical example and
write the resulting expression in the form

Rei = −nemeνei(V e − V i ), (31)

where the frequency νei is the same that appears in the case of
temperature relaxation in Eq. (22). It is interesting to note that
Eq. (30) contains a term that is nonlinear in the momentum
exchange me�u and thus contains effects due to large angle
collisions. The quantum Landau-Fokker-Planck equation re-
sults from the small collision angle limit of the BUU equation
and thus neglects this term, leading to a different expression.
Since this term vanishes when ξ → 0, in the classical limit
the Boltzmann and Landau-Fokker-Planck equations have the
same momentum moment [48].

3. Electrical conductivity

The electrical conductivity is an important transport co-
efficient that depends largely on the electron-ion collisional
momentum relaxation rate. Considering a Fermi-Dirac elec-
tron population flowing through a stationary Maxwellian ion
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population due to an applied electric field, the frictional force
balances the electric force

Rei = −eneE, (32)

which in the form of Eq. (31) is connected to the current
through Ohm’s law,

J = σE, (33)

where J = −eneV e. Using the electron-ion collisional friction
[Eq. (31)], the resulting electrical conductivity is

σ = e2ne

meνei
, (34)

where νei is defined in Eq. (22). The assumption of a Fermi-
Dirac electron distribution means that electron-electron (e-e)
collisions do not contribute to the relaxation; distortions in
the electron distribution away from equilibrium amount to
a higher-order approximation that could be explored, e.g.,
through the Chapman-Enskog expansion. The e-e collisions
do not contribute substantially in the degenerate regimes due
to Pauli blocking, and at high temperatures the e-e contribu-
tion is well understood via the Landau-Spitzer theory. The
intermediate regime where both degeneracy and e-e colli-
sions are important is discussed by Shaffer and Starrett [39]
in the context of the quantum Fokker-Planck equation. The
application of the BUU equation to this regime to relax the as-
sumption of small-momentum-transfer collisions will require
a Chapman-Enskog expansion of the BUU equation and will
be addressed in further studies.

IV. RESULTS AND DISCUSSION

To illustrate the application of the model, we now turn
to evaluating it, with input potentials provided by the AA-
TCP model [26,35] for aluminum at a density of 2.7 g cm−3,
over a range of temperatures spanning from the degenerate
moderately coupled to classical weakly coupled regimes. The
phase shifts are obtained as described in the Appendix, and
the numerical integration limits over the relative velocity η are
determined by considering the range over which the weighting
function Eq. (28) is larger than 10−6.

A. Relaxation rates in solid density aluminum plasma

Figure 4 shows a comparison of the reference electron-
ion relaxation rate computed from different models. Standard
models include the well-established Landau-Spitzer result
[10], which in the limit meTi 	 miTe reduces to

νLS
ei ≈ ν0 ln �LS, (35)

which has been verified in the classical limit given sufficiently
weak coupling [49,50]. The relaxation rate predicted by the
LFP model is (see Eqs. (14)– (17) of Ref. [11]),

νLFP
ei = ν0

(
ln �LFP

ξ

1 + ξ

3
√

π�3/2

4

)
. (36)

We further note that our expression for the temperature re-
laxation rate [given by Eqs. (21)–(27)] is the same as that
recently obtained by a substantially different approach by
Daligault and Simoni (see Eqs. (71)–(75) of Ref. [27]) if

FIG. 4. Electron-ion collisional relaxation times (τ = ν−1
ei, ) as a

function of temperature in solid density (2.7 g cm−3) aluminum. This
demonstrates the influence of different physical effects, as the LFP
equation does not contain effects due to strong coupling or strong
scattering, and the Landau-Spitzer theory additionally does not ac-
count for electron degeneracy in the scattering physics.

the PMF is used for calculating the transport cross section
there. This equivalency can be seen through use of the relation
ne(h/

√
πmevTe)3 = −2Li3/2(−ξ ) from the normalization of

the Fermi-Dirac distribution.
At a given density, as temperature decreases the Coulomb

logarithm will eventually reach zero due to neglect of strong
coupling physics. The resulting divergence of the Landau-
Spitzer result is due to the presence of the (inverse) Coulomb
logarithm

ln �LS = ln
bmax

bmin
. (37)

The maximum impact parameter is modeled as the larger of
the screening length λsc [Eq. (6)] or the Wigner-Seitz radius
a = (3/4πni )1/3, and the minimum is the larger of the classi-
cal distance of closest approach rL = e2/kBT or the thermal
de Broglie wavelength λdB = h̄/(mekBTe)1/2 [17]. In WDM,
the vanishing Coulomb logarithm is often resolved through
the modification (see, e.g., Ref. [17])

ln �LFP = 1

2
ln

(
1 + b2

max

b2
min

)
, (38)

which we apply in our evaluation of the LFP model. This is
often further altered, as is done in the Lee-More conductiv-
ity model [17], by enforcing that the minimum value of the
Coulomb logarithm be 2:

ln �fix = max

[
2,

1

2
ln

(
1 + b2

max

b2
min

)]
. (39)

The approximations inherent in this approach are two-fold:
small-angle collisions must be assumed to obtain the LFP
equation, and the choice of maximum and minimum im-
pact parameters represents an uncontrolled expansion in the
strongly coupled regime. The convergent kinetic equation in
our approach avoids these limitations.

Figure 4 confirms the expectation that all expressions agree
at high temperatures associated with the weakly coupled clas-
sical regime, while at low temperature the models differ as
a result of the different levels of inclusion of the physics
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of strong coupling and degeneracy. In each case there is
a minimum in the relaxation time. In all cases except the
Landau-Spitzer result, this minimum can be attributed to a
combination of both degeneracy and strong coupling: strong
coupling increases the collisionality of the system while the
onset of degeneracy reduces the collisionality through Pauli
blocking. The decreased level of ionization at lower temper-
atures also reduces the collisionality. If the density is less
than 1023 cm−3 as temperature is reduced the plasma will first
become strongly coupled and then degenerate, and if the den-
sity is greater than 1023 cm−3 the electrons will be degenerate
when the transition to strong coupling occurs.

The term proportional to (	u)2 in Eq. (29) is a result of
large-angle collisions, and is thus not present in the LS or
QLFP theories. The LS and QLFP theories also do not account
for correlations in the plasma beyond the assumed presence
of a screening length. The LS theory ignores both degen-
eracy and large-angle scattering. The QLFP theory extends
further into the degenerate regime and has fixed the vanishing
Coulomb log, but does not account for either correlations or
large-angle scattering when there is strong Coulomb coupling.
The divergence between the QLFP results using the two dif-
ferent prescriptions for the Coulomb log illustrates the lack of
strong-coupling physics in the method.

B. Electrical conductivity of solid-density aluminum plasma

We proceed to evaluate the electrical conductivity accord-
ing to Eq. (34) for aluminum at 2.7 g cm−3, as a demonstration
of the model in a regime marked by partial ionization and
a simultaneous transition from weak to strong coupling and
classical to degenerate statistics. For comparison we select
the Lee-More model, the model of Shaffer and Starrett [39]
and the QMD simulations of Witte et al. [28]. The electrical
conductivity coefficient predicted by the LM model [17] is

σe = ne2

m

{
3
√

m(kT )3/2

2
√

2πZ2nie4 ln �fix

}
4

3

∫ ∞
0

t2dt
1+exp(t−μ/kT )∫ ∞

0
t1/2dt

1+exp(t−μ/kT )

, (40)

which we relate to the friction force density R and thus the
scattering rate, νei = e2ne/σme, giving

νLM
ei = ν0

[
ln �fix

Li3/2(−ξ )

Li3(−ξ )

]
. (41)

The Starrett and Shaffer model similarly uses the quan-
tum PMF to mediate scattering, but in the context of the
QLFP equation. To introduce the effect of large-angle col-
lisions into the model they introduce a Coulomb logarithm
defined via the relaxation-time approximation (RTA) which
we will refer to as ln�SS. For a commensurate comparison
with our method (where we assume a Fermi distribution
for the electrons) and the QMD simulations, we neglect the
higher-order Chapman-Enskog corrections associated with
electron-electron interactions that can be obtained in the SS
model. The electron-ion contribution corresponds with the
first order of the Chapman-Enskog expansion,

σ1,qLFP = 3(4πε0)2(kBT )3/2

4
√

2πmeZe2 ln �ss

Li3/2(−ξ )

Li0(−ξ )
. (42)

FIG. 5. Electron-ion contribution to the electrical conductivity
of solid density aluminum (2.7 g cm−3) as derived through the cur-
rent work (solid line) the Starrett and Shaffer model evaluated at
first order (dashed line) and at high order (dot-dashed line) in the
Chapman-Enskog expansion, the Lee-More model (thin dashes), the
LS conductivity (dotted line), along with QMD results of Witte
et al. [28] using the Perdew–Burke-Ernzerhof and Heyd–Scuseria–
Ernzerhof exchange-correlation functionals.

With the identification of

Li0(−ξ ) = −ξ

1 + ξ
(43)

and [from Eq. (36)]

ln �
ξ

1 + ξ

3
√

π�3/2

4
→ ln �, (44)

and Eq. (3) it can be seen that this is equivalent in form to
Eq. (34) with the difference being the Coulomb logarithm.

The resulting predictions for the conductivity are shown in
Fig. 5. Similarly to the relaxation times, there is a minimum
in the conductivity near the Fermi temperature. This again
can be attributed to both correlations and Pauli blocking [39].
Also as in the case of the relaxation times, the LS theory
fails to accurately predict the conductivity when degeneracy
and correlations are important, as expected. Furthermore, the
commonly used Lee-More theory performs poorly as a result
of the correlations. Interestingly, the Lee-More theory can be
reproduced by replacing the Coulomb logarithm in the stan-
dard QLFP formulation with the fixed version prescribed in
the Lee-More theory. Although we focus on the electron-ion
contribution, it is known that electron-electron interactions
cause a contribution of comparable magnitude in the classical
weakly coupled limit (the Spitzer correction) [10]. However, it
can be expected that e-e collisions will be greatly suppressed
below the Fermi temperature due to Pauli blocking and there-
fore the corrections due to a higher-order Chapman Enskog
expansion will be diminished at lower temperatures. Indeed,
this is seen for the QLFP equation [15].

More interesting are the comparisons of the present theory
with the Shaffer-Starrett formulation of the QLFP theory [39]
and with the QMD simulations of Witte et al. [28]. The QLFP
equation corresponds to the limit of the BUU equation in
which the distribution functions are expanded in the limit of
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small momentum transfer in a collision, and the scattering
cross section is evaluated in the limit of weak coupling. As
such, it may expected that these formulations should agree in
the limit of weak coupling. However, the present theory and
the SS theory differ in their incorporation of the potential of
mean force, and the curves appear to not yet have reached
this limiting behavior at 1000 eV. The QMD simulations also
make an interesting direct comparison. QMD simulations do
not directly include e-e collisions but account for some level
of the electronic interactions through the mean field [51].
Thus, it seems most appropriate to compare the QMD sim-
ulations with theories evaluated to treat only the electron-ion
interactions, as is done in Fig. 5. Indeed, the agreement with
these simulations is remarkable for most of the range of avail-
able data, even down to 1 eV where it is unclear whether the
BUU equation can be expected to be valid as higher-order
quantum correlations come into play.

The good agreement between QMD and the BUU pre-
dictions provides evidence that large momentum transfer
collisions and their associated contribution to the momen-
tum scattering rate are real and significant effects influencing
the electrical conductivity. This points to important physics
beyond what is captured by the QLFP theory, or its mod-
ifications, as is shown by comparing with the first-order
Chapman-Enskog solution of the Shaffer-Starrett model from
[39] (the first order of this method is equivalent to the electron-
ion relaxation model described in the previous section and
therefore provides a commensurate comparison). At the same
time, it is also important to note deviations of the distribution
functions away from their equilibrium profiles are possible
and lead to contributions from electron-electron collisions that
influence the total conductivity at these conditions. Shaffer
and Starrett predict these to make order-unity contributions
over most of the range of conditions plotted in Fig. 5 [39],
while this contribution is diminished in the degenerate limit
as the exclusion principle restricts electron-electron scattering
as well as deviations away from the Fermi-Dirac function.
This can be seen in the comparison of first order and high
order Chapman-Enskog curves of SS. Interestingly, there is
strong agreement between the high order SS curve and the
BUU curve obtained by our method. This can be attributed in
part to the definition of the SS Coulomb log which is obtained
in the relaxation time approximation of the BUU equation.
However, the SS method still differs in the physics involved:
(1) it does not contain the effect of large-angle collisions
in the distribution functions which are retained in the BUU
equation, but (2) it carries more accurate information about
the distribution functions due to Chapman-Enskog. The good
agreement between the two methods at low temperatures is
thus likely a coincidence arising from the competition of these
two effects. Further development will be required to evaluate
this effect (for instance a full Chapman-Enskog solution of the
BUU equation), as well as to provide a conclusive test using
QMD.

V. CONCLUSIONS

We have presented a model for transport in plasmas with
weak to moderate Coulomb coupling and weak to moderate
electron degeneracy. The model is based on the quantum

Boltzmann equation of Uehling and Uhlenbeck, in which
the two-body scattering is mediated by the equilibrium po-
tential of mean force. This incorporates correlations in the
equilibrium limit while maintaining the simplicity of binary
collisions in the dynamical equation. This is relevant to
electron-ion collisions in WDM. As input into the model, we
utilized an existing model for the potential of mean force
derived from the quantum Ornstein-Zernike equations and
an average-atom quantum hypernetted-chain-approximation
model [18,26,35].

The model was used to compute momentum and energy
relaxation rates. The transport coefficients were written anal-
ogously to the classical Landau-Spitzer (LS) result in terms of
a “Coulomb integral” that takes the place of the traditional
Coulomb logarithm. The Coulomb integral depends on the
level of degeneracy, and Coulomb coupling enters through the
calculation of the momentum-transfer cross section solving
the Schrödinger equation with the PMF as the scattering po-
tential. The momentum relaxation rate was found to contain a
term with nonlinear dependence on the momentum exchange.
In the classical limit this term vanishes and large angle colli-
sions only influence the relaxation rate through their presence
in the transport cross section.

We concluded by calculating the temperature and mo-
mentum relaxation rates and electrical conductivity in solid
density aluminum plasma over a range of temperatures that
covered the transitions between weak and moderate cou-
pling and weak and moderate degeneracy. Predictions were
compared with other leading models. It was found that all
models behave as expected in the classical weak-coupling
limit, and diverge widely in the limit of a degenerate mod-
erately coupled plasma. We assessed the relative importance
of the different relevant physical processes that complicate the
problem as degeneracy and coupling simultaneously increase:
diffraction, Pauli blocking, correlations, and large-angle
scattering.

This work can be improved through inclusion of electron-
electron collisions and higher-order terms of a Chapman-
Enskog expansion. Additionally, further work will be required
to obtain a rigorously derived convergent kinetic equation
with the appropriate potential of mean force. Ultimately,
current and near-future experimental measurements [1,52,53]
and ab initio simulations [40–46] will be needed for dis-
crimination between the validity of the various models of
relaxation in WDM. This will enhance our understanding
of the basic physics of WDM, and allow increased fidelity
in the rapid calculation of transport coefficients for use in
hydrodynamic simulations of naturally and experimentally
occurring WDM.
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APPENDIX: DETERMINATION OF PHASE SHIFTS

Solution of the scattering problem comes down to solution
of the radial Schrödinger equation [54],

d2ul

dr2
+

[
k2 − l (l + 1)

r2
− 2mei

h̄2 V (r)

]
ul = 0,

with potential V , wave number k, and angular quantum
number l . Cross sections are calculated in the partial wave
expansion [55]

dσ

d�
=

∣∣∣∣∣ 1

2ik

∞∑
l=0

(2l + 1)
(
e2iδl − 1

)
Pl (cosθ )

∣∣∣∣∣
2

, (A1)

in terms of the phase shifts δl . Using the properties of the
Legendre polynomials Pl the transport cross section can be
expressed as a sum over phase shifts:

σ (1)

σ0
= 4π

∫ π

0
dθ sin2 θ

2
sin θ

dσ

d�

= 4π

η2

∞∑
l=0

(l + 1) sin2(δl+1 − δl ). (A2)

The phase shifts can be extracted from the asymptotic behav-
ior of the wave function ul beyond the range of the potential
at point R (defined as a point beyond with the influence of
the potential on the wave function is negligible) through the
relation:

tan δl = kR j′l (kR) − βl jl (kR)

kRy′
l (kR) − βl yl (kR)

(A3)

with

βl = 1

ul/r

d (ul/r)

dr

∣∣∣∣
r=R

, (A4)

where jl (yl ) are the spherical Bessel (Neumann) functions.
For l > 30 it is faster and still accurate to use the WKB phase
shifts [54]

δ
(WKB)
l = −

∫ ∞

(l+1/2)/k

√
k2 − (l + 1/2)2

r2
dr

+
∫ ∞

rC

√
k2 − (l + 1/2)2

r2
− 2me

h̄2 U (r)dr, (A5)

where rC the largest root of the function inside the radical in
the last term.
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