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The thermodynamic and structural properties of two-dimensional dense Yukawa liquids are studied with
molecular dynamics simulations. The “exact” thermodynamic properties are simultaneously employed in an
advanced scheme for the determination of an equation of state that shows an unprecedented level of accuracy
for the internal energy, pressure, and isothermal compressibility. The “exact” structural properties are utilized to
formulate a novel empirical correction to the hypernetted-chain approach that leads to a very high accuracy level
in terms of static correlations and thermodynamics.
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I. INTRODUCTION

The two-dimensional Yukawa one-component plasma (2D-
YOCP) consists of charged point particles that are confined
on a two-dimensional surface and are immersed in a polariz-
able neutralizing background with their interactions described
by the Yukawa (screened Coulomb) pair potential φ(r) =
(Q2/r) exp(−r/λ). Here Q is the particle charge and λ the
screening length defined by the polarizable background. Ther-
modynamic state points of the 2D-YOCP are specified by
two dimensionless variables [1,2]: the coupling parameter
� = βQ2/d and the screening parameter κ = d/λ, where
β = 1/(kBT ) with kB Boltzmann’s constant and where d =
(πn)−1/2 is the two-dimensional (2D) Wigner-Seitz radius
with n the particle density. The coupling parameter provides a
measure of the strength of the unscreened particle interactions
with the strong coupled (liquid) regime characterized by �� 1
[3,4], while the screening parameter dictates the interaction
softness that varies from infinitely long-ranged Coulomb-like
in the one-component plasma (2D-OCP) limit of κ → 0 to
extremely short-ranged hard sphere-like in the opposite limit
of κ → ∞.

The 2D-OCP system has been long known to be rele-
vant for classical electron layers trapped over the surface of
liquid He [5–8]. In more recent years, a renewed interest
in 2D-YOCP systems was sparked by the observation that
they can adequately model dust monolayers levitating in the
sheath region of low temperature noble gas discharges [9–13]
and to investigate combustion phenomena in confined geome-
tries [14]. As a consequence, a considerable amount of effort
has been dedicated to investigate the phase behavior [15–18]
as well as the structural [19–21], thermodynamic [22–27], and
dynamic properties [28–32] of the 2D-YOCP.
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This work focuses on two issues which are still not fully
resolved for 2D-YOCP liquids: (i) the acquisition of an ac-
curate equation of state through the reduced excess internal
energy that can also be employed to accurately estimate other
thermodynamic properties over the entire range of screening
parameters relevant to experimental realizations of Yukawa
systems, (ii) the development of an accurate integral equation
theory approach that would allow for the reliable computation
of structural properties without necessarily resorting to com-
puter simulations.

To address the first issue, systematic molecular dynamics
simulations are carried out in the entire 2D-YOCP liquid
regime that are utilized for direct extraction of the internal
energy, pressure, and inverse isothermal compressibility. A
novel approach is then presented that simultaneously utilizes
these exact thermodynamic data to acquire an equation of state
through the internal energy that is robust with respect to ther-
modynamic integration and thermodynamic differentiation.

To address the second issue, systematic long molecular
dynamics simulations are performed in the entire 2D-YOCP
liquid regime that are employed for the direct extraction of
the radial distribution function and its characteristic func-
tional features. In the absence of a straightforward way
to adapt to the 2D-YOCP advanced ultra-accurate integral
equation theory approaches that are available for the three-
dimensional-YOCP (3D-YOCP) [33], the exact data for the
magnitude of the global radial distribution function maxi-
mum are used to construct an empirical modification to the
hypernetted-chain approach. In spite of its simplicity, the
emerging approximation leads to very accurate predictions for
the structural (and thermodynamic) properties of 2D-YOCP
liquids.

The paper is organized as follows. In Sec. II, the molec-
ular dynamics simulations are presented and their results are
discussed. In Sec. III, the simulation data are employed for
the determination of a new 2D-YOCP liquid equation of state
which is extensively compared to other equations of state
that are already available in the literature. In Sec. IV, the
simulation data are employed for the construction of a novel
integral equation theory approximation of empirical nature
whose accuracy and validity region are quantified. In Sec. V,
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FIG. 1. The 2D-YOCP state points that are investigated with
NVT MD simulations in the (log � − κ ) phase diagram. All the
simulated state points (black open circles) belong to the dense fluid
region of the phase diagram which roughly extends between the
curve � = 0.1�m(κ ) (blue) and the melting curve � = �m(κ ) (red).
Here �m(κ ) denotes the coupling parameter resulting from the an-
alytical parametrization of the melting line of Eq. (1) [15]. The
exact numerical values for the simulated state points can be retrieved
from the information provided in the inset table: for each screening
parameter κ , the coupling parameter was augmented with a constant
step �� between �min and �max.

the results are summarized and possible future developments
are discussed.

II. MOLECULAR DYNAMICS SIMULATIONS

A. Simulation parameters

Molecular dynamics (MD) simulations were performed
to determine the thermodynamic and structural properties
of dense 2D-YOCP liquids. MD simulations were carried
out for nearly 150 state points characterized by screening
parameters that are relevant to experimental 2D-YOCP re-
alizations [12,13,17], i.e., κ = {0.5, 1, 1.5, 2, 2.5, 3}, and
coupling parameters that cover the entire dense fluid portion
of the phase diagram, i.e., 0.1 � �/�m(κ ) � 1.0. The state
points were summarized in Fig. 1. In the above, �m(κ ) is
the 2D YOCP melting line as determined by the analytical
parametrization [15]

�m(κ ) = �OCP
m

1 − 0.388κ2 + 0.138κ3 − 0.0138κ4
, (1)

where �OCP
m = 131.0 denotes an approximation for the 2D-

OCP melting point that is consistent with the results of both
computer simulations [34] and experiments [5].

All the simulations were performed with the LAMMPS pack-
age [35] and employed 4096 particles in the canonical NV T
ensemble. The dynamics was resolved with a timestep of
�τ = 0.001d

√
βm while the interaction potential was trun-

cated at r = 20d for κ = 0.5 and at r = 10d for κ > 0.5.
Two set of simulations were performed: one set of short MD
simulations consisting of 219 timesteps for equilibration fol-
lowed by 219 timesteps for statistics (that were employed to
collect 2048 samples for the thermodynamic properties) and
one set of long MD simulations consisting of 219 timesteps
for equilibration followed by 224 timesteps for statistics (that
were employed to collect 65 536 samples for the structural
properties).

B. Structural properties

Concerning structural properties, the focus lies on the ra-
dial distribution function, g(r), which was extracted from the
long MD simulations with the histogram method [36] for a bin
width of �r = 0.002d . The narrow bin width was selected so
that the magnitude of the first g(r) maximum is determined
with very high accuracy since it constitutes the MD simulation
input that is employed for the construction of our integral
equation theory approximation, see Sec. IV for details. Natu-
rally, such a narrow bin width necessitates longer simulations
since a large number of uncorrelated samples are necessary to
obtain highly resolved radial distribution functions which are
unaffected by the omnipresent statistical noise. Some exam-
ples of the radial distribution functions obtained from the long
MD simulations are illustrated in Fig. 2, where it is apparent
that the g(r) curves are subject to negligible statistical errors.
Further support for the accuracy of the present radial distri-
bution functions comes from the observation that some key
figures of merit including the magnitude and position of the
first maximum, first nonzero minimum, and second maximum
are consistent with the results available in the literature from
Langevin dynamics simulations for κ = {0.5, 1.0} [21]. Tab-
ulated values of the basic g(r) figures of merit are provided
in the Supplementary Material [37] for all the state points
summarized in Fig. 1.

C. Thermodynamic properties

Concerning thermodynamic properties, the focus lies on
the internal energy (U ), pressure (P), and inverse isothermal
compressibility [KT = −V (∂P/∂V )T ] with V = N/n the vol-
ume of a homogeneous system with N particles and n density.
In two dimensions, V is strictly the area. However, aiming
to be consistent with the nomenclature developed for three-
dimensional systems, we shall still refer to it as volume also
for two-dimensional systems. In what follows, we shall dis-
cuss normalized (reduced) thermodynamic properties with the
internal energy expressed as u = U/(NkBT ), the pressure as
p = P/(nkBT ), and the inverse isothermal compressibility as
μ = KT /(nkBT ). In addition, since the ideal gas contributions
are all known, we shall ignore them and discuss exclusively
the reduced excess thermodynamic properties that are emerg-
ing from the interaction part of the Hamiltonian.

The reduced excess internal energy is related to the
ensemble averaged total potential energy per particle,
uex = 〈U〉/N with U = ∑N

i

∑N
j>i βφ(ri j ) and ri j the distance

between any particle pair [38]. The reduced excess pressure
is related to the (two-dimensional) microscopic virial W =
−(1/2)

∑N
i

∑N
j>i βw(ri j ) with w(r) = r[dφ(r)/dr], through
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FIG. 2. Radial distribution functions extracted from long MD
simulations with the histogram method. Results for constant screen-
ing parameter [(a) κ = 1, (b) κ = 2, (c) κ = 3] and varying coupling
parameters within 0.1 � �/�m(κ ) � 1.

the virial equation pex = 〈W〉/(NV ) [38]. The reduced excess
inverse isothermal compressibility is obtained from the so-
called hypervirial theorem from which it follows that μex =
[〈W〉 − 〈(δW )2〉 + 〈X 〉]/N , with (δW )2 = W2 − 〈W〉2 the
microscopic virial fluctuations, X = (1/4)

∑N
i

∑N
j>i βx(ri j )

the (two-dimensional) microscopic hypervirial, and x(r) =
r[dw(r)/dr] [36].

Therefore, to obtain uex, pex, μex from MD simulations, it
is sufficient to collect samples for U , W , X at regular time-
intervals in the course of the simulation, to invoke the ergodic
hypothesis for the computation of the ensemble averages, and
to utilize the aforementioned expressions. This procedure was
followed for the short MD simulations, since it was observed
that relatively few samples are required for the determination
of uex, pex, μex with a negligible statistical uncertainty.

Figure 3 illustrates two sample collection examples for
all three thermodynamic properties at two 2D-YOCP state
points characterized by κ = 3.0. It is evident that all samples
fluctuate around a constant average value without systematic

deviations; a behavior that confirms that sufficient time was
provided before the sampling procedure for the simulated
system to efficiently equilibrate. In addition, the magnitude
of the fluctuations is extremely small, which confirms that
the properties are accurately determined. It is worth noting
that compressibility samples cannot be collected directly in
the course of the simulation, in contrast to energy and pres-
sure samples. In particular, the hypervirial theorem for μex

involves the virial fluctuations, which can be evaluated only
after the simulation is completed and the average virial is
known. Therefore, to generate a set of compressibility sam-
ples which could be used for uncertainty analysis, we adopted
the bootstrap resampling technique [39] that allowed us to
construct 2048 compressibility samples from the simulation
data at each state point.

The resulting uex, pex, and μex values for all the roughly
150 state points of interest were tabulated in the Supplemen-
tary Material [37]. Both the average value and the standard
deviation of each quantity are provided for the 2D-YOCP state
points depicted in Fig. 1. All three thermodynamic properties
obtained from the MD simulations are determined with a
negligible statistical uncertainty that is quantified by a relative
standard deviation (defined as the ratio between the standard
deviation and the average value) which never exceeds 10−4.

It should be pointed out that, when the radial distribution
function is known, then the reduced excess internal energy and
reduced excess pressure can be computed from the following
integral relations [38]

uex(�, κ ) = πnβ

∫ ∞

0
rφ(r; �, κ )g(r; �, κ )dr, (2)

pex(�, κ ) = −πnβ

2

∫ ∞

0
r2 dφ(r; �, κ )

dr
g(r; �, κ )dr. (3)

This indirect extraction procedure was followed in earlier MD
simulation works focusing on the thermodynamics of 2D-
YOCP liquids [15,25]. Our direct extraction procedure was
preferred because, apart from being much faster, it allows for
the quantification of statistical uncertainties in the determina-
tion of thermodynamic properties and does not suffer from tail
or truncation errors.

III. EQUATION OF STATE

Practical equations of state specify the analytical relation
between the reduced excess internal energy and the 2D-YOCP
state variables, i.e., uex(�, κ ). Once the equation of state is
determined, all other thermodynamic properties of the system
follow from standard thermodynamic identities. In particular,
for 2D-YOCP systems, an analytical expression for uex(�, κ )
allows the computation of the reduced excess Helmholtz free
energy from

fex(�, κ ) =
∫ �

0

uex(�′, κ )

�′ d�′, (4)

the reduced excess pressure from

pex(�, κ ) = �

2

∂ fex(�, κ )

∂�
− κ

2

∂ fex(�, κ )

∂κ
, (5)
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FIG. 3. Samples collected for the (a,d) excess internal energy, (b,d) excess pressure, and (c,f) excess inverse isothermal compressibility
from the short MD simulations at two 2D-YOCP state points that are defined by κ = 3.0 and � = 200 (green), � = 1000 (magenta). In each
plot, the sample average has been demarcated with a black line.

and the reduced excess inverse isothermal compressibility
from

μex(�, κ ) = pex(�, κ ) + �

2

∂ pex(�, κ )

∂�
− κ

2

∂ pex(�, κ )

∂κ
.

(6)

A. Equations of state available in the literature

In strongly coupled liquids, the reduced excess internal
energy can be conveniently decomposed into the sum of two
contributions [40]: a static part ust describing the energy of
the system with its constituents frozen in a regular structure
(at zero temperature) and a thermal part uth accounting for
the finite temperature effects that cause the particles to be
displaced from such regular structure. The reduced excess in-
ternal energy decomposition reads as uex(�, κ ) = ust (�, κ ) +
uth(�, κ ) for the YOCP with the static component given by
ust (�, κ ) = M(κ )� where M(κ ) is the Madelung constant.

For the 3D-YOCP, the Madelung constant is given by a
simple closed-form expression [41] that can be obtained from
the unitary packing fraction limit (also known as asymptoti-
cally high density limit) of the Percus-Yevick approximation
for hard spheres [42,43] or the ion-sphere model [44,45].
In addition, Rosenfeld and Tarazona (RT) showed that the
thermal component obeys the particularly simple scaling
uth(�, κ ) ∝ [�/�m(κ )]2/5 in the dense fluid region [41,46]
where the 3D-YOCP �m(κ ) is given by Eq. (4) of Ref. [47]
and should not be confused with the 2D-YOCP �m(κ ) that
is described by Eq. (1). A particularly attractive feature of
the RT scaling has to do with its validity for a variety
of three dimensional systems characterized by different in-
teractions and molecular topology [46,48–50]. Furthermore,
there exists a deep connection between isomorph theory and
the RT scaling, with systems that follow the RT scaling
often also being R-simple [49]. In fact, it has been demon-
strated that 3D-YOCP liquids are R-simple in an extensive
region of their phase diagram [51]. R-simple systems pos-

sess isomorph curves, i.e., lines of constant excess entropy
along which a large set of thermodynamic, structural, and
dynamic properties are approximately invariant when ex-
pressed in properly reduced units [52,53]. The static part
of the excess internal energy naturally produces no entropy,
thus the excess entropy is exclusively computed from the
thermal part of the excess internal energy via sex(�, κ ) =
uth(�, κ ) − ∫ �

0 [uth(�′, κ )/�′]d�′. Hence, the RT scaling is
compatible with isomorph theory only if �/�m(κ ) is an ac-
curate representation for the isomorphs. This last is true for
the 3D-YOCP [51], but in general the melting line constitutes
an isomorphic line only to a first order approximation [54].

For the 2D-YOCP, the situation is more complicated. The
Madelung constant does not possess an analytical expression
that can be derived from purely theoretical considerations,
while the existence of a RT scaling for the thermal component
is still open for debate and the functional form of the scaling is
unknown. Moreover, no analytical representation is available
for the 2D-YOCP isomorphs, neither is it even known whether
the 2D-YOCP is R-simple. This lack of rigorous theoretical
foundation for the construction of a 2D-YOCP equation of
state has led, over the years, to the emergence of various func-
tional forms for the analytical parametrization of the reduced
excess internal energy.

Earlier attempts to obtain an analytical uex(�, κ ) ex-
pression include the equation of state proposed by Hart-
mann and collaborators [15], uH

ex(�, κ ) = [aH(κ ) + 1/κ]� +
bH(κ )�(κ )1/3 with the coefficients aH(κ ), bH(κ ) specified
in Eqs. (3), (4), and (7) of Ref. [15] as well as the equa-
tion of state presented by Vaulina [55] uV

ex(�, κ ) = [aV(κ ) +
1/κ]� + bV(κ ) with the coefficients aV(κ ), bV(κ ) specified
below Eq. (4 b) of Ref. [55]. In spite of a satisfactory accu-
racy for κ � 1.5, these uex(�, κ ) expressions have two major
problems: they become very inaccurate for larger screening
parameter values and do not lead to accurate thermodynamic
properties via Eqs. (5) and (6). Thus, in what follows, we
focus on two more accurate uex(�, κ ) expressions.
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Kryuchkov and collaborators proposed the following
uex(�, κ ) equation of state that reads as [25]:

uK
ex(�, κ ) = M(κ )� + aK(κ ) ln[1 + bK(κ )�sK (κ )], (7)

with M(κ ) the Madelung constant for 2D-YOCP crystals with
triangular lattice that can be fitted with [22,25]

M(κ ) = − 1.1061 + 0.5038κ − 0.11053κ2

+ 0.00968κ3 + 1/κ, (8)

while the unknown coefficients of the thermal component
are aK(κ ) = 0.357 + 0.094κ , bK(κ ) = 1.655 exp(−0.769κ ),
sK(κ ) = 0.688 − 0.052κ . It is worth noting that an alternative
fit for the thermal component was provided, where all the κ

dependence was absorbed in the form �/�m(κ ) with �m(κ )
given by Eq. (1) [25]. The accuracy of the later fit, which pre-
dicts uex within a few percent over the entire dense fluid region
of the 2D-YOCP for κ � 3.0 [25], supports the possibility of
a modified RT scaling that is applicable to the 2D-YOCP.

Finally, Feng and coworkers proposed the following
uex(�, κ ) equation of state that reads as [26]:

uF
ex(�, κ ) = aF(κ )� + bF(κ )�0.407, (9)

where the unknown coefficients for the static and thermal
part are described by aF(κ ) = 2(0.8394 + 0.5162κ )−6.4 and
by bF(κ ) = 2 exp(−1.579 − 0.3935κ ).

Particular care should be taken during the application of
these equations of state in the OCP limit (κ = 0). In this
limit, it is necessary to replace the reduced excess internal
energy uex with uex − �/κ to explicitly take into account
the diverging background contribution �/κ . It is evident that
the equations of state proposed by Kryuchkov, Hartmann, or
Vaulina can be safely applied in the OCP limit by simply
removing the �/κ term, while the equation of state proposed
by Feng and collaborators should not be applied in the OCP
limit since the divergence is not removable.

B. Alternative equation of state

The equations of state for uex(�, κ ) discussed in Sec. III A
were all obtained by fitting simulation data for the reduced
excess internal energy alone. In what follows, an alternative
approach is presented that determines the equation of state for
uex(�, κ ) by simultaneously fitting simulation data for the re-
duced excess internal energy, pressure, and inverse isothermal
compressibility with the aid of the thermodynamic Eqs. (4),
(5), and (6). Initially, the internal energy is expressed as
uex(�, κ ) = M(κ )� + uth(�, κ ) with M(κ ) as given by Eq. (8)
and the thermal component defined as

uth(�, κ ) = a(κ )� + b(κ )�2/5 + c(κ )� ln(�). (10)

This parametrization is applicable in the OCP limit by simply
removing the �/κ term in the M(κ ) expression.

The first two terms in Eq. (10) were inspired from the
successful equation of state proposed by Hamaguchi and
collaborators for 3D-YOCP liquids [56,57], which contained
terms proportional to �, �s, and �−s with s = 1/3. After
trial and error, a different s exponent was adopted and the
�−s term had to be dropped since it led to a nonmonotonic
prefactor with respect to κ . The linear term acts as correction
to the static component M(κ )�. The logarithmic term acts as a

TABLE I. Numerical coefficients for the Pade’ approximants of
Eqs. (11), (12), and (13) that determine the κ-dependent coefficients
a(κ ), b(κ ), c(κ ) appearing in the parametrization of the thermal part
of the reduced excess internal energy, see Eq. (10).

i = 0 i = 1 i = 2 i = 3 i = 4

an
i −0.022587 −40.935 43.6611 −12.2860 3.22385

ad
i – 1569.37 −1524.38 553.496 −188.020

bn
i 0.361510 3.53190 −3.43696 0.864783 −0.224233

bd
i – 9.46041 −8.99282 3.02666 −0.897450

cn
i 0.002812 −0.003326 0.000993 – –

cd
i – −1.17692 0.442468 – –

residual introduced to adjust the values for small coupling pa-
rameters [�/�m(κ ) ≈ 0.1] and was inspired from known low
coupling expansions of the 3D-OCP internal energy in terms
of � ln(�) [58]. The κ-dependent coefficients were expressed
as Padé approximants

a(κ ) = an
0 + an

1κ
1/2 + an

2κ + an
3κ

2 + an
4κ

5/2

1 + ad
1κ

1/2 + ad
2κ + ad

3κ
2 + ad

4κ
5/2

, (11)

b(κ ) = bn
0 + bn

1κ
1/2 + bn

2κ + bn
3κ

2 + bn
4κ

5/2

1 + bd
1κ

1/2 + bd
2κ + bd

3κ
2 + bd

4κ
5/2

, (12)

c(κ ) = cn
0 + cn

1κ
1/2 + cn

2κ

1 + cd
1κ

1/2 + cd
2κ

. (13)

Alternative expressions for the Padé approximants containing
only powers of κ or of κ1/4 were also tested, but proved to be
less accurate than the above approximants.

The OCP coefficients an
0, bn

0, and cn
0 were determined

by fitting the OCP simulation results for the thermal com-
ponent of the reduced excess internal energy that were
tabulated in Table II of Ref. [34]. The remaining coefficients
were determined as follows. Starting from the reduced ex-
cess internal energy from MD simulations uMD

ex , the thermal
component of the excess internal energy was computed as
uMD

th = uMD
ex − M(κ )�. Then, uMD

th was fitted with Eq. (10)
six times, one for each value of κi belonging to the set
κ = {0.5, 1.0, 1.5, 2.0, 2.5, 3.0} and for all corresponding �

values depicted in Fig. 1. The resulting six values of c(κi )
were fitted with the Padé approximant given in Eq. (13)
to define the coefficients cn

1, cn
2, cn

3, cd
1, and cd

2. The result-
ing six values for a(κi), b(κi) were stored for later analysis.
Afterwards, the leading contribution to the thermal pressure
pMD

th,l = pMD
ex − pst (�, κ ) − δp(�, κ ) and the leading contribu-

tion to the thermal inverse compressibility μMD
th,l = μMD

ex −
μst (�, κ ) − δμ(�, κ ) were computed. The thermodynamic
Eqs. (4), (5), and (6) were employed to obtain the static
components pst (�, κ ) and μst (�, κ ) from ust (�, κ ) = M(κ )�
and the residual components δp(�, κ ) and δμ(�, κ ) from
δust (�, κ ) = c(κ )� ln(�). On the other hand, by applying the
thermodynamic Eqs. (4), (5), and (6) to the leading component
of the fit for the excess internal energy, a(κ )� + b(κ )�2/5, we
obtained that the leading contribution to the thermal pressure
could be expressed as

pth,l (�, κ ) = ap(κ )� + bp(κ )�2/5, (14)
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TABLE II. Mean absolute relative deviations between the predictions of the new equation of state Eq. (10) (superscript N), the Kryuchkov
and collaborators equation of state Eq. (7) (superscript K), the Feng and coworkers equation of state Eq. (9) (superscript F), and the results of
the MD simulations discussed in Sec. II C. The average thermodynamic quantity deviation for each screening parameter was computed over all
the corresponding coupling parameters, see the summary of Fig. 1. Deviations for the reduced excess internal energy are reported in columns 2
to 4 (εu), deviations for the reduced excess pressure are reported in columns 5 to 7 (εp), and deviations for the reduced excess inverse isothermal
compressibility are provided in columns 8 to 10 (εμ).

κ εN
u (%) εK

u (%) εF
u (%) εN

p (%) εK
p (%) εF

p (%) εN
μ (%) εK

μ (%) εF
μ(%)

0.5 0.035 0.049 0.531 0.013 0.122 4.563 0.009 0.087 11.545
1.0 0.130 0.051 1.850 0.132 0.124 1.205 0.019 0.185 3.485
1.5 0.276 0.067 3.018 0.288 0.279 4.866 0.054 0.094 2.673
2.0 0.197 0.531 3.949 0.321 0.063 5.929 0.242 0.846 7.706
2.5 1.008 0.365 19.619 0.524 2.337 0.170 0.322 0.589 7.272
3.0 1.026 0.707 44.510 0.489 4.658 12.484 0.240 19.472 0.717

and that the leading contribution to the thermal inverse
isothermal compressibility could be parameterized with

μth,l (�, κ ) = aμ(κ )� + bμ(κ )�2/5. (15)

The four κ-dependent coefficients in Eqs. (14) and (15) are
connected to the a(κ ), b(κ ) coefficients in Eq. (10) via

ap(κ ) = 1

2

[
a(κ ) − κ

da(κ )

dκ

]
, (16)

bp(κ ) = 1

2

[
b(κ ) − 5

2
κ

db(κ )

dκ

]
, (17)

aμ(κ ) = 3

4

[
a(κ ) − κ

da(κ )

dκ
+ 1

3
κ2 d2a(κ )

dκ2

]
, (18)

bμ(κ ) = 3

5

[
b(κ ) − 15

8
κ

db(κ )

dκ
+ 25

24
κ2 d2b(κ )

dκ2

]
. (19)

Therefore, pMD
th,l and μMD

th,l were fitted with Eqs. (14) and (15)
for six κi belonging to κ = {0.5, 1.0, 1.5, 2.0, 2.5, 3.0} pro-
ducing 24 values for ap(κi ), bp(κi ), aμ(κi ), and bμ(κi), six
for each type of coefficient. Finally, the sets of coefficients
{an

1, an
2, an

3, an
4} and {ad

1, ad
2, ad

3, ad
4}, were determined by si-

multaneously fitting the six values for a(κi ) with Eq. (11), the
six values for ap(κi ) with Eq. (16) and the six values for aμ(κi)
with Eq. (18). An analogous procedure was adopted to de-
fine the sets of coefficients {bn

1, bn
2, bn

3, bn
4} and {bd

1, bd
2, bd

3, bd
4}

which were found by simultaneously fitting the 18 values for
b(κi ), bp(κi ), and bμ(κi ) with Eqs. (12), (17), and (19). The
coefficients are summarized in Table I.

C. Level of accuracy of different equations of state

The predictions of the new equation of state, see Eq. (10),
and the two recent literature equations of state, see Eqs. (7)
and (9), were extensively compared against the MD thermo-
dynamic property results presented in Sec. II C and tabulated
in the Supplementary Material [37]. The summary of this
comparison is reported in Table II.

Concerning the reduced excess internal energy, our new
equation of state and the Kryuchkov equation of state are
visibly more accurate than the Feng equation of state. In par-
ticular, the Feng equation leads to exceptionally large errors
for κ > 2.0, while the other two equations are both able to

predict uex within 1% over the entire κ � 3.0 range, with the
Kryuchkov equation of state having a slight edge. Concerning
the reduced excess pressure, the situation is somewhat similar
with the important difference that the present equation of
state is accurate within 0.5% for any value of κ , whereas
the performance of the Kryuchkov equation of state abruptly
degrades when κ � 2.5. Concerning the reduced excess in-
verse isothermal compressibility, the new equation of state
remains superior being accurate within 0.3% for any value of
κ , while the Kryuchkov equation of state has a high accuracy
up to κ = 2.5, but it becomes accurate only within ∼20% at
κ = 3.0.

Overall, it is concluded that the new equation of state
proposed in Sec. III B leads to improvements over all the other
dense 2D-YOCP liquid equations of state currently available
in the literature, especially when it comes to predictions of
thermodynamic properties for κ > 2.0. Nevertheless, it must
be noted that the equation of state proposed by Kryuchkov
and collaborators exhibits an excellent agreement with MD
simulations, despite possessing a simple κ dependence for
the thermal component. In light of such good agreement, it
would seem reasonable to replace Eq. (10) with uth(�, κ ) =
ã(κ ) ln[1 + b̃(κ )s̃(κ )]. This possibility was tested but eventu-
ally discarded because the coefficients ã(κ ), b̃(κ ), and s̃(κ )
showed un unfavorable dependence over κ characterized by
changes of sign and stationary points.

IV. INTEGRAL EQUATION THEORY

A. Method

For an isotropic pair-interacting one-component system,
the integral equation theory of liquids enables the computation
of two-particle equilibrium correlation functions by combin-
ing the Ornstein-Zernike integral equation [38]

h(r) = c(r) + n
∫

c(r′)h(|r − r′|)d2r′, (20)

with the formally exact nonlinear closure equation [38]

g(r) = exp [−βu(r) + h(r) − c(r) + B(r)]. (21)

In the above, h(r) = g(r) − 1 is the total correlation function
and c(r) is the direct correlation function. An expression
for the bridge function B(r) is necessary to complete the
theory. It is generally prescribed by approximations that are
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constructed on theoretical grounds [38,59] or that are aided
by computer simulations [60,61]. Popular approximations in-
clude the hypernetted-chain (HNC) approach which assumes
that B(r) = 0 and has proven to be successful for systems
with soft interaction potentials [18,19,62,63] or the Percus
Yevick approach which assumes that B(r) = ln[1 + γ (r)] −
γ (r) and has proven to be successful for hard-sphere-like
systems [64,65]. Here γ (r) = h(r) − c(r) is the indirect cor-
relation function.

When combined with a B(r) assumption, Eqs. (20) and
(21) form a system of equations to be solved for g(r). For its
numerical solution, a validated algorithm was followed that
was previously applied to three-dimensional systems [33,61].
It is based on Picard iterations in Fourier space combined
with a standard mixing technique [62] and a long-range de-
composition method [66] in the OCP limit. The convergence
criterion was formulated in terms of the Fourier transform
of the indirect correlation function γ (k) and chosen to be
||γm(k) − γm−1(k)|| < 10−5 ∀k. The two-dimensional Fourier
transforms were first expressed as one-dimensional Hankel
transforms and were then computed with the quasi-fast Han-
kel transform algorithm [67] over a discrete grid of Np points.
The chosen algorithm allowed to circumvent the unfavorable
O(N2

p ) scaling of direct Hankel transform calculations and
did not feature the long-wavelength deficiencies which were
observed for similar algorithms that were adopted in earlier
works [68–70]. Nevertheless, it required the introduction of a
computational grid with a constant logarithmic spacing both
in real and Fourier space. We employed a grid of Np = 32768
points that extended from 3.5 × 10−6d up to 50d in real
space and from 3.5 × 10−6/d up to 50/d in Fourier space,
with both grids featuring the same logarithmic spacing, i.e.,
log(ri/ri−1) = log(ki/ki−1) = 5 × 10−4. The algorithm was
successfully benchmarked against HNC results for the 2D-
YOCP that are available in the literature [19,66].

B. Scaled HNC approach

The HNC approach possesses a reasonable accuracy for
the 3D-YOCP, being able to reproduce the main features of
the radial distribution function with an accuracy of ∼20%
and the thermodynamic properties within 5% [61]. However,
the 2D-YOCP is known to be richer in structure than its
three-dimensional counterpart, which translates to a decline
in the accuracy of the HNC predictions. This is demonstrated
in Fig. 4, where the MD-extracted and HNC-generated radial
distribution functions are illustrated for constant (κ, �/�m )
pairs in the 3D and 2D cases. It is evident that the maxima and
minima of the radial distribution function become more pro-
nounced and that the deviations between MD results and HNC
predictions become larger as the dimensionality decreases.

In spite of these deficiencies of the HNC approach, no
advanced integral equation theory approximations have been
developed that would lead to more accurate structural pre-
dictions for 2D-YOCP liquids. This is in stark contrast to
3D-YOCP liquids, for which two very accurate approxima-
tions are available: namely, the isomorph-based empirically
modified hypernetted chain (IEMHNC) approach based on
the isomorph invariance property of the bridge functions of
R-simple systems [61,71] and the variational modified hy-

FIG. 4. Radial distribution functions for the (a) 3D-YOCP and
(b) the 2D-YOCP as obtained from MD simulations (discrete points)
and the HNC approach (solid lines). Results for two state points
characterized by κ = 3.0 and two values of the normalized coupling
parameter �/�m, namely �/�m = 0.6 (green) and �/�m = 0.9 (ma-
genta). For the 3D-YOCP, �m is given in Eq. (4) of Ref. [47] and
d = (4πn/3)−1/3. For the 2D-YOCP, �m is given by Eq. (1) and
d = (πn)−1/2.

pernetted chain (VMHNC) approach based on the notion of
bridge function quasi-universality [72,73]. Such advanced ap-
proaches are characterized by an accuracy of <2% within the
first coordination cell of the radial distribution function [33].
Unfortunately, the IEMHNC and VMHNC approaches are
not directly applicable to the 2D-YOCP: the IEMHNC ap-
proach because of the lack of a parameterized 2D-OCP bridge
function to be used for the construction of the 2D-YOCP
bridge function with the aid of the isomorph mapping [61]
and the VMHNC approach because of the lack of a reference
system with a known analytical solution to be used for the
construction of the VMHNC free energy functional [73]. It
is worth mentioning the crossover approach of the authors of
Ref. [74], which constituted a notable attempt to improve the
HNC accuracy for the 2D-OCP.

In light of the above, we opted to take advantage of the
vast corpus of MD results presented in Sec. II C to construct
an empirical correction to the HNC approach which improves
its predictions without requiring any additional input other
than that already available. The sought-for correction was
constructed by considering that (i) the main shortcoming of
the HNC approach within the first coordination cell refers
to the large underestimation of the magnitude of the global
g(r) maximum, see the lower panel of Fig. 4; (ii) our earlier
3D-YOCP work has demonstrated that the HNC approach
produces highly accurate structural properties provided that
the state point is rescaled towards the stronger coupling re-
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gion [33]. Given the above, our scaled hypernetted-chain
approach (SHNC) was based on retaining the assumption
of a vanishing bridge function provided that the interaction
strength is up-scaled in a manner that reproduces the exact
first peak of g(r). In other words, a mapping is employed
from the actual state point (�, κ ) to another state point
(�SHNC � �, κ ) with the unknown �SHNC determined by the
condition that the HNC approach at (�SHNC, κ ) leads to the
MD-extracted first peak of g(r) at (�, κ ). The idea of interac-
tion strength rescaling within the HNC approach dates back
to the seminal work of Ng for the 3D-OCP [62], whereas an
oversimplified version of this idea is encountered in the recent
T/2-HNC approach proposed for supercooled dipolar binary
mixtures [75].

The SHNC approach is based on the implicit assumption
that tempering with the HNC interaction strength to ensure an
exact global maximum magnitude does not have a detrimental
effect on other features of the radial distribution function,
especially within the first coordination cell. Since there is no
rigorous way of justifying such assumption, the discussion on
its validity is postponed to Sec. IV C, where the predictions of
the SHNC approach are compared with “exact” MD results.

In integral equation theory, the bridge function and
dimensionless interaction potential appear only in the clo-
sure equation combined as βu(r) − B(r). Therefore, our
tempering of the interaction potential within the HNC
approach is equivalent to approximating the bridge func-
tion with B(x; �, κ ) = [� − �SHNC(�, κ )] exp(−κx)/x or
with B(x; �, κ ) = {[� − �SHNC(�, κ )]/�}βu(x). The un-
known function �SHNC(�, κ ) is obtained in the following
manner: (i) for each (�, κ ) state point, the coupling parameter
is gradually up-scaled and the HNC approach is numerically
solved until the first g(r) peak coincides with the respective
MD result; (ii) this procedure is repeated for all the (�, κ )
state points considered in the computer simulations reported
in Sec. II A as well as for all the OCP state points simulated
in Ref. [21] and a dataset for (�, κ, �SHNC) is generated;
(iii) a closed-form expression for �SHNC(�, κ ) is acquired by
sequential least-square fitting with respect to �, κ . The SHNC
mapping reads as

�SHNC(�, κ ) = � + p(κ )�3/2 + q(κ )�2, (22)

where

p(κ ) = 0.17013 − 0.03498κ + 0.00157κ2

1 − 0.25448κ + 0.36940κ2
, (23)

q(κ ) = −0.00572 + 0.003012κ − 0.00044κ2

1 − 0.63152κ + 0.57005κ2
. (24)

It is important to emphasize that, because the mapping
of Eq. (22) was obtained by fitting, the SHNC approach
should not be extrapolated beyond the original fitting region of
�/�m(κ ) ∈ [0.1, 1.0] and κ ∈ [0.0, 3.0]. However, since the
fit was constructed in such a way that the SHNC approach
reduces to the HNC approach for � → 0, weak coupling
extrapolations are permissible. Therefore, it can be concluded
that the 2D-YOCP phase diagram region of validity of the
SHNC approach is �/�m(κ ) � 1.0 and κ � 3.0. In other
words, provided that the screening parameter is not large, the

SHNC can be employed in the entire stable fluid region but
not for metastable states.

It is worth noting that we explored the possibility
to construct the SHNC mapping by taking advantage of
the effective coupling parameter introduced in Ref. [15],
�∗(�, κ ) = � f (κ ), with f (κ ) = 1 − 0.388κ2 + 0.138κ3 −
0.0138κ4. This effective coupling parameter is related to the
melting line parametrization of Eq. (1), which, in fact, can
be also expressed via �m(κ ) = �∗(�OCP

m , κ )/ f 2(κ ). Since the
magnitude of the first maximum of g(r) is approximately
constant for state points with the same �∗(�, κ ) [15], it should
have been possible to construct an SHNC approach where
�∗(�, κ ) is employed to map any YOCP state point to an
effective OCP state point (�∗, κ = 0) which is then rescaled
so that the HNC result for the first g(r) peak coincides with
the results of MD simulations. Such a mapping was tested,
but was eventually discarded because it showed pronounced
deviations from the simulation results in the region character-
ized by �/�m(κ ) � 0.2 and κ = 3.0 that were traced back to
inaccuracies in the parametrization of the effective coupling
parameter �∗(�, κ ) [15].

C. Structural properties

The HNC and SHNC approaches were numerically solved
for all the 2D-YOCP state points illustrated in Fig. 1 and all
the 2D-OCP state points simulated in Ref. [21]. The computed
radial distribution functions were compared to the ones ex-
tracted from computer simulations.

As illustrated in Fig. 5, multiple advantages are gained
by adopting the SHNC in place of the HNC approach. In
fact, modification of the HNC interaction strength to ensure
an exact first peak magnitude has a positive effect on all
features of the radial distribution function within the first and
second coordination cells. To be more specific, apart from the
expected enormous improvement concerning the magnitude
of the first peak, there is also a strong improvement in the
correlation void, the magnitude of the first trough, and the
magnitude of the second peak, as well as a slight improvement
in the positions of all peaks and troughs.

The superior performance of the SHNC approach com-
pared to the HNC approach is already evident at small
coupling, but it becomes much more pronounced in the vicin-
ity of the melting line. As demonstrated in Fig. 6, the SHNC
approach is capable of producing accurate predictions for the
radial distribution function throughout the whole dense fluid
region of the 2D-YOCP phase diagram.

For a more quantitative assessment of the SHNC and HNC
accuracy, we report the relative deviations in key g(r) figures
of merit: the location of the edge of the correlation void
[assumed to be given by the first location where g(r/d ) = 0.5]
as well as the magnitudes and positions of the first maximum,
first nonzero minimum, and second maximum. The values
of these quantities for “exact” radial distribution functions
are available in Table I of Ref. [21] for κ = 0.0 and in the
Supplementary Material [37] for 0.5 � κ � 3.0. The most no-
ticeable SHNC improvements take place in the location of the
correlation void and in the magnitude of the first maximum.
The first is predicted within 1% from the SHNC approach
and only within 5% from the HNC approach. The second is
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FIG. 5. Radial distribution functions of 2D-YOCP liquids ac-
quired from MD simulations (discrete points), the HNC approach
(dashed lines), and the SHNC approach (solid lines). Results for two
state points at the opposite ends of the dense fluid region, namely
(a) (κ = 1.0, �/�m = 0.8) and (b) (κ = 1.0, �/�m = 0.2). Recall
that the analytical approximation for the melting line �m(κ ) is given
by Eq. (1).

predicted within 0.5% from the SHNC approach, whereas it
is consistently strongly underestimated in the HNC approach
with the relative deviations even exceeding 25% close to the
melting line. Concerning the locations of the first and the
second maximums as well as of the first nonzero minimum,
the SHNC slightly improves the HNC predictions which are
anyways well within 5%. Furthermore, both approaches pro-
duce rather poor estimates for the magnitude of the first
nonzero minimum, but the SHNC approach is much more
accurate than the HNC approach with 20% versus 40% mean
relative deviations from the MD results. Finally, concerning
the magnitude of the second maximum, the SHNC is accurate
within ∼2% and the HNC only within ∼10%.

D. Thermodynamic properties

The performance of the HNC and the SHNC integral equa-
tion theory approximations was also evaluated at the level of
the thermodynamic properties. For this purpose, Eqs. (2), (3),
and (6) were employed to compute the excess internal energy,
excess pressure and excess inverse isothermal compressibility
from the radial distribution functions obtained with the two
approaches. The results were then compared with the thermo-
dynamic properties that were extracted from MD simulations
and tabulated in the Supplementary Material [37].

Near the OCP limit, both approaches are able to reproduce
all the three thermodynamic properties within 1%, namely the
SHNC within ∼0.2% and the HNC within ∼0.6%. However,

FIG. 6. Radial distribution functions of 2D-YOCP liquids ac-
quired from MD simulations (discrete points) and the SHNC
approach (solid lines). Each panel focuses on a single screening
parameter [(a) κ = 0.5, (b) κ = 1.5, (c) κ = 2.5] and four coupling
parameters �/�m = 0.1, 0.3, 0.6, 0.9 color-coded by green, cyan,
magenta, and blue, respectively.

the accuracy of the SHNC approach remains almost constant
with the screening parameter, whereas the performance of
HNC approach promptly degrades as the screening parameter
increases. Concerning the excess internal energy, the mean
deviations reach 2% for the SHNC and 10% for the HNC for
κ = 3. Concerning the excess pressure, the mean deviations
reach 2% for the SHNC and 8% for the HNC for κ = 3.
Concerning the excess inverse isothermal compressibility, the
mean deviations remain <1% for the SHNC and reach 5%
for the HNC for κ = 3. To sum up, it can be concluded that
the SHNC approach reproduces the excess internal energy,
pressure, and isothermal compressibility within 2% over the
entire dense fluid region, while the HNC approach produces
estimates which are accurate within 10%.

It is important to point out that the virial route was followed
for the computation of the excess inverse isothermal com-
pressibility. The utilization of the so-called statistical route,

063205-9



F. LUCCO CASTELLO AND P. TOLIAS PHYSICAL REVIEW E 103, 063205 (2021)

i.e., μex = −n
∫

c(r)d2r [38], would result to large deviations
from the exact results for both approximations and especially
for the SHNC approach. The SHNC bridge function does
not obey the correct asymptotic limit B(r) → −h2(r)/2 but
decays as B(r) ∝ βu(r), which suggests that the exact asymp-
totic limit of the direct correlation function c(r) → −βu(r)
should also be violated. In fact, this can be rigorously proven
from the asymptotics of the nonlinear closure condition, see
Eq. (21). It is known that the asymptotic range provides large
contributions to the above μex expression, which explains
why the statistical route should be avoided. Naturally, this
brings forth an inherent problem of the SHNC approach: its
thermodynamic inconsistency.

E. Comments on the T/2-HNC approach
and the metastable states

The T/2-HNC approach utilizes the HNC approximation
at a reduced half temperature. For the YOCP, this approach
corresponds to a simplified version of the SHNC approach
for which �SHNC(�, κ ) = 2�. This empirical approach was
recently applied to determine the glass transition line of the
2D-YOCP with the aid of mode coupling theory [18]. This
was carried out without any discussion concerning the validity
of the T/2-HNC approximation for metastable or even for
stable 2D-YOCP liquids. Such an analysis will be performed
in what follows.

The T/2-HNC approach was initially proposed for two-
dimensional binary mixtures of point dipoles interacting via
a ∝ r−3 pair potential. For such systems it was observed
empirically that, if the state point temperature is rescaled from
T to T/2, then the HNC approach can be employed for fairly
accurate estimates of the structural properties [75]. Given
the dependence of bridge functions on the softness (see the
successes of the HNC and of the Percus-Yevick approaches)
and the empirical nature of the re-scaling, it is evident that
the T/2-HNC approach should not be applied to other sys-
tems without prior verification of its accuracy. Some work
in this direction was performed in Ref. [18], where some
qualitative agreement between Monte Carlo simulations and
the T/2-HNC approximation was reported for the 2D YOCP.
However, (i) these simulations were performed in the stable
fluid regime, thus the extension to the supercooled regime
involves an unjustified extrapolation; (ii) the documented ac-
curacy of the SHNC approach within the stable fluid region
and the strong deviations of the SHNC mapping from the T/2-
HNC mapping (see Fig. 7) prove that the T/2-HNC approach
does not lead to accurate 2D-YOCP structural properties even
in the stable fluid region.

Generally speaking, any approximate integral equation the-
ory closure that is derived from computer simulations should
only be used within its range of validity (determined by the
simulation input employed to construct it). Extrapolations out-
side the original range of validity are sometimes possible [76],
but should always be performed with great care. Hence, con-
sidering that the range of validity of the SHNC approach is
�/�m(κ ) < 1.0 (see the dashed gray line in Fig. 7), that the
T/2-HNC approach performs poorly even in the stable fluid
region and that the HNC approach is expected to perform
poorly in the supercooled regime [76], it can be concluded

FIG. 7. Graphical representation of the normalized mapping of
the SHNC approach, �̃SHNC(�, κ ) = �SHNC(�, κ )/�, as a function
of the coupling parameter �. Each color-coded curve corresponds to
a different value of the screening parameter κ within the range κ ∈
[0, 3]. The gray dashed line demarcates the upper limit of validity
of the SHNC approach obtained by evaluating �̃SHNC(�, κ ) at � =
�m(κ ), where �m(κ ) is given by Eq. (1). The black horizontal line
illustrates the simplified mapping �̃SHNC(�, κ ) = 2 that emerges by
applying the T/2-HNC approach to the 2D-YOCP.

that, at the moment, there is no integral equation theory ap-
proximation which can be employed to accurately predict the
structural properties of supercooled 2D-YOCP liquids.

V. SUMMARY AND FUTURE WORK

The structural and thermodynamic properties of dense two-
dimensional Yukawa liquids were extensively investigated
with molecular dynamics simulations. The “exact” thermody-
namic properties were employed to construct a new equation
of state for the excess internal energy valid in the parame-
ter regime most relevant for contemporary experiments. Our
equation of state exhibited excellent agreement with the sim-
ulation results, and, contrary to most 2D YOCP equations
of state available in the literature, proved to be robust with
respect to thermodynamic integration and differentiation. The
“exact” structural properties were employed to formulate the
scaled hypernetted-chain approach that is constructed by up-
scaling the interaction strength until the bare HNC recovers
the exact magnitude of the first peak of the radial distribu-
tion function. The SHNC was demonstrated to significantly
improve the HNC structural predictions and to achieve a 2%
accuracy in thermodynamic quantities.

For future improvement of the present results, it would
be important to confirm that the 2D-YOCP is R-simple,
to numerically trace out multiple isomorphic lines, and to
determine an accurate analytical parametrization of these
isomorphs. This would allow for the construction of more
accurate equations of state in the spirit of the Rosenfeld-
Tarazona scaling and would also allow for the development
of the isomorph-based empirically modified hypernetted chain
approach for the 2D-YOCP. The latter integral equation the-
ory approximation should lead to unprecedented levels of
accuracy superior to that of the scaled hypernetted chain ap-
proach, but it requires an analytical parametrization for the
2D-OCP bridge function whose extraction from simulations
is a formidable task.
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