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Hydrodynamic-dissipation relation for characterizing flow stagnation
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Hydrodynamic stagnation converts flow energy into internal energy. Here we develop a technique to directly
analyze this hydrodynamic-dissipation process, which also yields a lengthscale associated with the conversion
of flow energy to internal energy. We demonstrate the usefulness of this analysis for finding and comparing the
hydrodynamic-stagnation dynamics of implosions theoretically, and in a test application to Z-pinch implosion
data.
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I. INTRODUCTION

An essential element of the implosion of a fluid or plasma
is the process of stagnation, whereby the hydrodynamic en-
ergy of the implosion is converted into thermal energy. When
an implosion is modeled or simulated in one dimension (the
radial direction), this stagnation process proceeds ideally; at
each instant in time, the momentum of the flows converging
to the stagnation point is exactly balanced by an oppositely
directed flow mirrored over the stagnation point (or the stag-
nation line in the cylindrical case). Taking the stagnation point
(or line) as the origin, we have perfect rotational symmetry for
the imploding flow, V (r, θ, φ, t ) = V (r, t ), or for the cylindri-
cal case, V (r, θ, z, t ) = V (r, t ), with no z variation as well.

When it proceeds ideally, the process of implosion and
stagnation is highly effective at creating hot, high-density
matter, such as in the formation of stars [1–4], or during lab-
oratory experiments to generate fusion energy, or an intense
burst of x-rays or neutrons [5–8]. In practice, implosion and
stagnation rarely proceed in an ideal [one-dimensional (1D)]
manner, due to a variety of possible causes, e.g., asymmetry
of the implosion drive or of the initial conditions, or instabili-
ties such as Richtmeyer-Meshkov or Rayleigh-Taylor [9–21].
When the implosion process is not ideal, the perfect balance of
hydrodynamic momentum at stagnation is no longer guaran-
teed, and residual (nonradial) momentum may be left in flows
during and after the stagnation process. This momentum may
still dissipate into thermal energy, but the effect of nonideal
stagnation is generally a reduction in the peak density and
temperature. While such a reduction is often an undesirable
effect, imbalanced or unstable flow stagnation is sometimes
purposefully employed to generate turbulence for study (see,
e.g., Refs. [22–24]).

In plasma compression experiments, the consequences of
this reduction in the achieved peak density and temperature,
such as less-than-ideal (fusion) neutron or x-ray production,
are often used as an implied measure of the nonideality of

the implosion. That is, comparing experimental results to
1D simulation results, and noting the difference, allows for
an indirect inference of the degree to which the implosion
proceeded ideally. Because of the importance of achieving an
ideal implosion, a variety of diagnostics have been used to
elucidate implosion symmetry (see, e.g., Refs. [15,25–28]),
which, however, inform only indirectly on the hydrodynamics
(flows) of stagnation.

Here, we propose a complementary technique for assessing
flow stagnation that directly infers certain properties of the
hydrodynamic flow at stagnation and its conversion to ther-
mal energy. It can be applied both to assess the ideality of
implosions, and also to turbulent flows, for example to infer
a turbulent forcing lengthscale. Additionally, this technique
uses a general starting point, which may enable it to be usable
and comparable across differing stagnations. It requires only
spatially integrated hydrodynamic information, which is often
the kind of data obtainable in measurements.

Hydrodynamic stagnation is the process of dissipation of
the implosion flow energy into internal and thermal energy
of the compressing material. A key point of the present work
is that we can compute a characteristic lengthscale for this
conversion process, and this characteristic scale behaves very
differently for ideal versus highly nonideal stagnations. If we
consider a region of flow with total mass m, a characteristic
velocity v, and a characteristic lengthscale l , then, on dimen-
sional grounds, the dissipation of the flow kinetic energy in
this region can be written

−ĖK = ηmv3/l, (1)

where the overdot is a time derivative, and η is a pro-
portionality factor that we will explain shortly. For the
characteristic velocity, take v2 = 2EK/m, that is, an average
velocity that yields the total kinetic energy of the flow. As
the flow evolves, all the quantities may be functions of time,
ĖK (t ), m(t ), v(t ), l (t ).
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The present work has two pieces. First, in Sec. II, we show
theoretically the utility of the hydrodynamic-dissipation rela-
tion, Eq. (1), for distinguishing ideal and nonideal stagnation.
Second, in Sec. III, we develop a method to test this idea on
data, and we apply it to a comparison of experimental data
with synthetic data from a 2D simulation. Notably, this 2D
simulation was carefully matched to the experimental con-
ditions, and it gives quite similar radiation yield (the figure
of merit for the experiment), but this new analysis shows
distinguishable hydrodynamic behavior at stagnation.

II. HYDRODYNAMIC DISSIPATION RELATION IN IDEAL
AND NONIDEAL STAGNATION

For the case of flow stagnation (v → 0), we first exam-
ine the relation Eq. (1) in two opposite extremes. On the
one hand, we consider a flow region that is purely turbulent,
with no radial convergence at all; such a flow could develop
as a result of a severely asymmetric or unstable stagnation
(see, e.g., Refs. [22–24], where such stagnations are used to
generate turbulence for study). On the other hand, we con-
sider both spherical and cylindrical ideal, self-similar, radial
stagnations. A variety of analytic stagnation solutions of this
type exist; here we consider an isentropic (with adiabatic
γ = 5/3) spherical case [8] and an isothermal cylindrical case
[29]. Following consideration of these cases, we consider a
simple model for a flow containing a combination of ideal
(self-similar) radial flow and turbulent flow.

We focus on the behavior of l (t ), which shows dramatic
differences between ideal and turbulent stagnation (while
v → 0 in both cases). In the ideal cases examined, l (t ) → 0
as maximum compression is reached. In the turbulent case,
l (t ) has a tendency to grow in time (or remain a constant).
This hydrodynamic scale, which can be nondimensionalized
as a fraction of the plasma size, fl (t ) = l (t )/lplasma(t ), may
then represent a metric to determine the hydrodynamic ide-
ality of implosions and to compare different implosions (say,
cylindrical Z-pinch versus spherical implosion).

To understand l (t ) [and ĖK , v(t )] in an ideal stagnation,
we first consider a spherical, self-similar, isentropic stagnation
as described by, for example, Atzeni and Meyer-ter-Vehn [8].
With h(t ) = [1 + (t/t0)2]1/2 and ξ (r, t ) = r/(R0h), the pro-
files of radial flow and density are u(r, t ) = rḣ/h and ρ(r, t ) =
ρ0h−3[1 − ξ 2]3/2. The stagnation radius (radius at maximum
compression, t = 0) is R0, and the radial domain extends from
0 to R(t ), and R(t ) = R0h.

Calculating the mass, m(t ) = ∫
ρ(r, t )dV (constant here),

and the total kinetic energy, EK (t ) = ∫
ρ(r, t )u(r, t )2dV /2,

enables us to find v(t ) = [2EK (t )/m]1/2. Calculating ĖK , and
requiring it to equal the dimensional analysis expression,
Eq. (1), we find fl = l3D,isentropic(t )/2R(t ) = √

3/32η(t/t0)2,
where we have written l as a fraction of the diameter 2R(t ), fl .
Both l and fl go to 0 as maximum compression is approached
(t → 0− in this case).

A similar result occurs for l (t ) in the cylindrical, isother-
mal, stagnation solution utilized by Yu et al. [29]. Here, h(t )
is the solution to the differential equation, ḣ = −√

2 ln h/t0,
for times during the compression phase (t < 0). Here, t0 =√

ρ0/p0R0, with p0 the final (peak) pressure. We again have
h(t = 0) = 1. With this h(t ), u(r, t ) and ξ (r, t ) are unchanged

from the spherical case, while the density profile is ρ(r, t ) =
ρ0h−2 exp[−ξ 2/2]. The domain in r now extends to r → ∞.
Carrying out the same procedure for finding l (t ) as in the
spherical case, we find

fl = l2D,isothermal(t )/2R(t ) =
√

2η ln h, (2)

which also goes to 0 as maximum compression is approached
(t → 0− or h → 1+).

Turning now to l (t ) in a turbulent flow, we discuss two
studied limits. First, the simplest case is steady forced turbu-
lence, where flow dissipation is balanced by the input flow
energy, and EK is a constant. Then v(t ) and l (t ) are also con-
stants, assuming forcing at a fixed spatial scale. Furthermore,
l (t ) = l f corresponds to this constant spatial forcing scale
[30].

Second, we consider freely decaying turbulence (with no
flow energy input). At high Reynolds numbers, v(t ) and l (t )
exhibit power-law behavior in time. For supersonic turbu-
lent flows (the flows in the Z-pinch experiments considered
later are supersonic or nearly so), the velocity decays as
v(t ) = v0(1 + t/t0)−α/2, while the lengthscale increases in
time as l (t ) = l0(1 + t/t0)α/2, where t0 ≈ l0/v0 and α ≈ 1,
albeit with some uncertainty in α [30,31]. Here, t � 0. When
the turbulence is subsonic, these power-law forms of v(t ) and
l (t ) generally still hold at high Reynolds numbers, with the
velocity decreasing and the lengthscale increasing, but with
possibly somewhat different powers (see, e.g., Refs. [32–34]).
One may also consider decaying turbulence with a saturated
lengthscale (such as may occur in decaying wall-bounded
turbulence). In this case, the v(t ) decay is still a power law,
but with higher α ≈ 2 [34,35].

Simulation results in the supersonic decay case are well fit
with a single value of η [30], motivating the assumption here
that this proportionality factor is a constant; to the extent it
varies in time in the general case, this time dependence will
be rolled into l (t ). In this case, we have η = 2πηv = 0.42
[30], and we use this value of η. Strictly speaking, in the
turbulent case, the velocity entering Eq. (1) is the root-mean-
square turbulent velocity, vrms, and the relation v2 = 2EK/m
only holds approximately when v = vrms because there can be
modest correlations between velocity and mass fluctuations
[30].

If we use the substitution l = fl2R and define y =
ηmv3/2R, Eq. (1) can be written y = fl × (−ĖK ). The top
panel of Fig. 1 shows the behavior of y versus x = −ĖK for
both the cylindrical ideal solution (ki = 0) and a turbulent
decay case (ki = 10). In the cylindrical stagnation case, the
plot covers times just preceding peak dissipation through to
stagnation; the horizontal approach of the ki = 0 curve to the
origin coincides with fl → 0 in Eq. (2) as t → 0 (and v → 0).
In the turbulent case, peak dissipation occurs starting from
the initial state. The lower panel of Fig. 1 shows fl versus
−ĖK for these same cases; we can see fl → 0 as stagnation
is approached in the ideal cylindrical stagnation, while fl

remains a significant fraction of the plasma diameter in the
turbulent case.

We now discuss further the physical meaning of the length-
scale l associated, through Eq. (1), with the dissipation of
hydrodynamic motion. As discussed above, for turbulence,
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FIG. 1. (a) Inferred kinetic energy dissipation rate (y =
ηmv3/2R) at the flow scale (2R) vs kinetic energy dissipation rate
(x = −ĖK ) for a region containing different initial proportions of
kinetic energy in self-similar cylindrical stagnation flow and non-
stagnating (turbulent) flow. When ki = 0 (blue, thicker solid line), the
region contains only the self-similar stagnation flow. When ki = 10
(purple, thinner solid line), the nonstagnating (turbulent) flow has ten
times the energy of self-similar flow and dominates the dynamics;
intermediate cases are also shown. Time (implicit) progresses clock-
wise along each curve; in the ki = 10 case, it progresses from right
to left. For each case, both dissipation values are normalized to the
peak −ĖK . (b) The fractional hydrodynamic (dissipation) lengthscale
fl vs the kinetic energy dissipation rate for the cases from (a); time is
implicit as above. Plotted model parameters hi = 2.5, λ̄ = 0.35, and
η = 0.42; see Sec. II A.

this lengthscale corresponds in the simplest case (homoge-
neous, isotropic, steady forcing) with the forcing scale (spatial
wavelength). Then, for turbulence forced in a narrow range of
scales (wavelengths, or Fourier wave numbers), l is associated
with the peak of the energy spectrum in wavelength space, i.e.,
roughly, the dominant wavelength of spatial variation of the
flow.

In general, this characteristic wavelength of flow variation
need not be associated with a corresponding spatial variation
in the density. For example, in the incompressible flow limit,
the density is uniform for any flow field. In the more general
case, the turbulent density distribution depends on the Mach
number, among other factors (see, e.g., Ref. [36]). Consider-
ing the self-similar stagnation cases discussed above, we see

that here too, the lengthscale l need not correspond with scales
of density variation. At stagnation, for example, the profiles of
density (and temperature in the adiabatic spherical case) vary
over the stagnation radius, R0, while l → 0. This fact helps
illustrate the complementary nature of the current approach
to looking at stagnation dynamics when compared with ap-
proaches focused on the symmetry of density or temperature
(or some combination of the two).

Consider some mass, m, with flow energy EK (thereby
defining v). With these quantities fixed, a shrinking length-
scale l implies, through Eq. (1), a growing dissipation rate of
the hydrodynamic motion. Evidently the “ideal” self-similar
implosions considered above, with fl → 0 (l → 0) as stag-
nation is approached, have very high dissipation rates in this
metric during the period leading up to stagnation. We have al-
ready contrasted this lengthscale behavior with turbulent flow
dissipation, which does not show this strong increase in rel-
ative dissipation ( fl ). As a further contrasting case, also with
zero mean flow, consider a flow in solid body rotation. Since
(in an idealized case) this configuration has no dissipation of
the hydrodynamic energy, we have l → ∞. Considering the
spherical self-similar implosion solution discussed above at
times well before stagnation, as t → −∞, we similarly find
fl → ∞, corresponding again to vanishing dissipation of the
finite initial kinetic energy.

Here we work in terms of l (and l normalized to the
plasma size, fl ), but we could instead work with a dissipation
timescale τ = l/v ∼ −EK/ĖK . This slightly alternate view is
still an analysis based on the hydrodynamic-dissipation rela-
tion, Eq. (1). In this case, the self-similar stagnation solutions
have τ → 0 as stagnation is approached, i.e., an increasingly
short dissipation timescale. For the steadily forced or decay-
ing supersonic turbulence cases discussed above, τ will be,
respectively, constant or growing in time.

A. Basic model for mixed stagnation

Figure 1 also shows cases that are intermediate between
the pure cylindrical self-similar stagnation solution and a
turbulence-dominated case. All cases are labeled by ki =
ET,i/ES,i, which is the initial ratio of turbulent kinetic energy,
ET , to cylindrical stagnation solution kinetic energy, ES . Here,
the plasma starts with this initial energy mix at some radius
(taken as hi = 2.5, Ri = hiR0, in Fig. 1) and then evolves in
time in a manner we now describe.

To get a more general sense for fl and the hydrodynamic-
dissipation relation, Eq. (1), we consider an essentially
heuristic treatment for a mass of plasma containing a mix
of stagnating flow and some nonstagnating flow (statistically
uncorrelated with the radial stagnation flow). We treat this
nonstagnating flow as turbulent for the sake of calculating its
dissipation; this is discussed further at the end of the present
section. For this mixed-flow plasma, we treat the stagnating
flow identically to the self-similar cases discussed above, here
using the isothermal cylindrical solution. In other words, the
stagnating flow component is treated as unaffected by the
presence of the statistically uncorrelated nonstagnating flow.

Then this component’s flow quantities follow as above,
and in particular we have the stagnating flow kinetic
energy, ES = Mv2

S/2, with M the constant total mass,
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and vS = 2(R0/t0)
√

ln h is the average velocity charac-
terizing the total kinetic energy. We similarly write the
turbulent-component kinetic energy ET = Mv2

T /2. Thus
ki = (vT,i/vS,i )2.

The characteristic turbulent velocity, vT , evolves according
to

d
(
v2

T /2
)

dt
= −2

3

ḣ

h
v2

T − η

λ̄

v3
T

2R0h
. (3)

This model equation is based on existing models [37,38] of
turbulence undergoing compression in velocity fields that are
linear in radius [u(r, t ) ∼ r], as is the case here. The first
term on the right-hand side of Eq. (3) models energy injec-
tion into the turbulence by the compression (two-dimensional
compression in this case, with no compression along z). The
second term models the turbulent dissipation in the high-
Reynolds-number limit for a flow with a saturated lengthscale
[30,39].

This lengthscale is taken as a fraction of the (changing)
plasma diameter l = λ̄2R0h. By saturated lengthscale, we re-
fer to the use of a constant value of λ̄ (constant fraction of the
plasma size). Then, in the pure turbulent decay case ḣ = 0,
vS = 0, we will find fl = λ̄. We use this saturated lengthscale
form of the dissipation here partly for convenience in solving
the model, and also because there are existing computed val-
ues for λ̄ for compressing turbulence, with prior work finding
λ̄ ∼ 0.19 in a low-Mach case [38,40] (the forcing studied
in Ref. [40] mimics compression) and λ̄ ∼ 0.35 in a super-
sonic isothermal turbulence case [37]. The plots in Fig. 1 use
λ̄ = 0.35.

Equation (3) can be solved explicitly for vT , with an initial
condition vT,i = vT (h = hi ) that can be expressed in terms of
vS and ki. Defining the total kinetic energy E = ET + ES and
the (total) characteristic velocity v = √

2E/M, we can again
compute the components of the dissipation relation, Eq. (1),
and the (combined) hydrodynamic-dissipation lengthscale.
Defining v̄T = vT /(R0/t0) and explicitly writing fl = l/2R
and v̄T , we have

fl = η

4
√

2 ln h

(
4 ln h + v̄2

T

)3/2
(

1 − v̄2
T

3
+ ηv̄3

T

λ̄4
√

2 ln h

)−1

,

(4)

v̄T = 2

h2/3

{
1

h2/3
i

√
ki ln hi

+
√

3π

4

η

λ̄
[E(hi ) − E(h)]

}−1

. (5)

Here we use the shorthand E(h) ≡ Erf[
√

2 ln h/3].
In writing the model equation for vT , Eq. (3), we have

assumed that this turbulent component is isotropic. The as-
sumed value of λ̄ also comes from simulations in which
the compression (and turbulent energy) is isotropic. Since
the compressions at hand are cylindrical, this means there is
an assumption either that the turbulent energy is generated
isotropically or that nonlinear interactions are sufficient to
isotropize it (on the one hand, in turbulence driven by large
two-dimensional compression this need not be the case [41];
on the other hand, turbulence experiments often generate tur-
bulence by colliding flows in planar geometry [22–24]).

Practically, if we alter this isotropy assumption, we should
still expect distinguishable behavior between ki = 0 and ki �=

0 in Fig. 1. Further, since here we take hi = 2.5, the effects of
compression on the turbulent component in Fig. 1 are already
quite modest; most important is that for ki �= 0 we now have
two hydrodynamic components that dissipate differently.

Note that the stagnating flow completely converts (dissi-
pates) its kinetic energy in the time ti = t0

√
π/2 Erfi(

√
ln hi ),

which is on order of t0 for hi not too large. We may write
an initial turbulent dissipation timescale as τT,i = li/vT,i =
t0(λ̄hi )/(

√
ki ln hi ). This will again be on order of t0 for a range

of hi, ki, λ̄; however, this dissipation timescale is now in the
sense of a power-law decay rather than complete conversion.
Thus, in the finite time to stagnation (h = 1), there can be
incomplete dissipation of ET ; this leads to certain curves
in Fig. 1 ending far from 0,0 when plotted on the interval
h ∈ [hi, 1]. The ki = 10 curve, having a shorter dissipation
timescale, dissipates more substantially over the interval, but
its behavior is still distinct from the ideal stagnation be-
cause the lengthscale associated with this dissipation is very
different.

This turbulent dissipation timescale is still fast in many
cases compared to other ways in which we may consider
that nonstagnating flow dissipates (e.g., the viscous decay
timescale is longer by on order of the Reynolds number).
Other dissipation mechanisms may have different lengthscale
behaviors. In general, we may expect that substantial changes
in the y versus −ĖK and fl curves can still occur for ET dissi-
pating in a manner other than turbulent dissipation, when the
dissipation mechanism is not matched in rate and lengthscale
to the stagnation energy conversion.

III. DEMONSTRATION APPLICATION

We seek to produce the curve y versus −ĖK during a
stagnation and to infer l (t ). To do so requires measurements of
ĖK , m, and v. Here we work with experimental measurements
from the stagnation period of gas-puff Z-pinches [10,19], and
synthetic data from 2D simulations designed to match the
experiments [42]. These data consist of a set of radiation
measurements of the stagnating plasma, which are discussed
in more detail elsewhere [10,19,43]; we treat synthetic and
experimental data the same. Both the experiments and the
matching simulations focused on analyzing only a subset
(Lpl = 2 mm) of the z extent of the stagnating plasma, which
was observed to have peak radiation emission at a similar time
(the exact stagnation time varies along the column). Then, we
expect that the 2D (r, z) simulations will stagnate approxi-
mately ideally, lacking any θ variation, while the experiments
may have such variation. First we describe the time-dependent
inference of m and v, then we discuss the estimation of −ĖK .

The Z-pinch experimental measurements (Table I of
Ref. [19]) give, at six times during stagnation, the plasma
radius rpl, electron density ne, and an inference of the plasma
kinetic energy through measurements of the total Doppler-
broadened ion energy and the electron temperature. Together
these permit us to calculate the radiating plasma volume and
m(t ) and v(t ) for the six measurement times.

We calculate lpl(t ) = 2rturb
pl , v(t ) = [3k(T eff

i − Ti )/mi]1/2,
and m(t ) = (nturb

e /Z̄ )miVpl, with the plasma volume Vpl(t ) =
π (rturb

pl )2Lpl and Z̄ ≈ 8. Here T eff
i is a total Doppler-broadened
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ion temperature, Ti is the thermal ion temperature, and nturb
e is

an electron density inferred through a combination of radi-
ation measurements. We use the radiating plasma diameter,
lpl(t ), which is measured through x-ray pinhole imaging at the
six times as the reference lengthscale, fl = l/lpl.

Possessing measurements of m(t ) and v(t ), we could
directly calculate ĖK ≈ �(mv2/2)/�t by taking the approx-
imate time derivative using our data. It is important to note
that we are looking for time variation of EK in Eq. (1) that has
to do with dissipation of hydrodynamic motion, rather than
changes in hydrodynamic motion, say, due to flows into or
out of the measurement region. Given the type of observations
available for the current experiments, we do not pursue this
direct derivative strategy to try to reduce the influence on our
measurements of unknown flows of hydrodynamic energy into
or out of the measurement region.

Instead, we proceed as follows. At present, we infer the
radiating mass and vrms at six times in the hottest, densest,
part of the stagnation using K-shell radiation measurements
[10,19]. When hydrodynamic motion is dissipated in this
region, it flows into ion and electron thermal energy, which
are equilibrated on a timescale that is very fast compared to
the stagnation time [10]. Some portion of this energy is then
radiated; if this radiation is considered to be time-local to the
hydrodynamic dissipation, then we write

−ĖK = PR + ĖO = PR(1 + ĖO/PR), (6)

with PR the radiated power, which is measured at each time.
Here ĖO is other changes in the plasma energy, at present
principally changes in plasma thermal and internal energies.
This approach is motivated by the observation that, over the
whole of the stagnation time period, the total radiation can
be accounted for by changes in the hydrodynamic motion
[10,43], a fact first noted in other Z-pinch experiments [44].

While the timescale for collisional-radiative equilibrium
is shorter than the stagnation period, it is not necessarily a
well-separated timescale, so that time-locality of the radia-
tion to the hydrodynamic dissipation is only approximate.
Nonetheless, by pursuing this strategy for inferring ĖK , we
infer m, vrms, and PR (representing a portion of ĖK ) using the
same plasma and radiative state. Together with Eq. (1), Eq. (6)
gives a relation for fl = l/lpl,

ηmv3/lpl = flPR(1 + ĖO/PR). (7)

Panels (a) and (b) in Fig. 2 show a plot of y = ηmv3/lpl

against PR for the experimental and synthetic (simulation)
data, respectively. To estimate PR from the absolutely cali-
brated hard-x-ray measurements (PPCD in Table I of Ref. [19]),
we write PR = PPCD[1 + �(Te)], where � is a temperature-
dependent factor calculated using a collisional-radiative code,
which estimates the ratio of soft radiation to that picked up
in the hard-x-ray measurements. For all but the first and last
times, � � 30%; the analysis can also be carried out using the
raw PPCD without changing the essence.

When l is small in Eq. (1), a small change in ηmv3 (∼y)
leads to a large change in −ĖK . For the ki = 0 case in the
top plot of Fig. 1, this fact corresponds with the horizontal
approach of the curve y(t ),−ĖK (t ) to the origin as ideal stag-
nation is approached and fl → 0. Similar behavior (though

FIG. 2. (a),(b) Scatter plots of y vs PR for Z-pinch experiment
data and synthetic data from matched 2D simulations, respectively.
On the right, the continuous simulation data are shown (black, solid)
in addition to simulation points matched in time to the experimental
measurements (plus one “additional” data point because the last
matched time is PR ∼ 0 for the simulations). In both cases, time
progresses clockwise from the leftmost (green) triangle. (c),(d) In-
stantaneous values of the fractional hydrodynamic lengthscale, fl ,
inferred taking −ĖK ≈ PR for the experiments and simulations, re-
spectively, after peak emission as stagnation is approached.

using PR) appears to occur in the simulation curve in Fig. 2,
suggesting a small lengthscale during these times, but this
behavior is not observed in the experiment. We turn now to
a quantitative inference of fl , but we raise this observation
because ultimately, if we consider a larger class of stagnations
than the few cases examined here, we may find the shape of
the y versus −ĖK curve more easily interpreted than a specific
focus on fl [45].

The simplest approach to a quantitative estimate of fl is
to approximate −ĖK ≈ PR, allowing us to evaluate fl at each
time from measurements of m, v, and PR (and lpl), and this is
what we do here. We note that the quantities needed for the
hydrodynamic-dissipation relation technique that we outline
in the present work could be generally inferred in different
ways, depending on the observed system and available types
of measurements.

When inferring fl leading up to stagnation, we utilize
data points after peak radiation. In the ideal solutions, flow
stagnation occurs after peak dissipation (Rpeak = √

eR0 for the
cylindrical case). For experiments with large thermal energy
losses like the present ones, we may expect a shift in maxi-
mum radiation away from peak compression and toward peak
−ĖK . Indeed, examining the radial velocity profiles for the
simulations (Fig. 8 in Ref. [42]), we find the pinch is still
compressing well after peak radiation (at +2 ns).

Plots (c) and (d) in Fig. 2 show fl , inferred approximating
−ĖK ≈ PR, from peak emission onward for the experiments
and simulations. The accuracy of this inferred fl depends on
the degree to which ĖO/PR is a correction factor; estimating
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ĖO, directly from the data (which also include temperature in
this case), we estimate ĖO/PR ∼ 1/2–1/3 for the experimental
data at and after the peak emission. In both the experiment
and simulations, we expect that fl inferred this way is more
accurate nearer to peak radiation (e.g., for PR � 5 GW). While
the instantaneous fl , inferred using PR, will not be exact be-
cause PR represents only a portion of ĖK , it may be sufficient
for a relative measure of stagnation ideality between similar
experiments where the energy flow dynamics are in compa-
rable regimes. In principle, one could create models for the
apportionment of ĖK in Eq. (6).

The instantaneous fl for the experiment are generally in the
0.1–0.3 range (∼0.12 to ∼0.27), indicating a hydrodynamic
lengthscale that is 10–30 % of the radiation diameter, or a
lengthscale of roughly 80–240 μm. The available tempera-
ture measurements [19] suggest ĖO < 0, so that fl from the
instantaneous analysis may be an underestimate.

These fl are generally consistent with λ̄ ∼ 0.19, 0.35 from
the (homogeneous, isotropic) compressing turbulence simu-
lation cases mentioned in Sec. II A. We should be cautious
applying this intuition in isolation, since in principle fl could
take such values for other reasons as well. In the ideal self-
similar solution, fl ∼ 0.03 by the time −ĖK is half its peak
value in Fig. 1, but we can see that even modest amounts of
ki �= 0 give fl � 0.1 with the chosen set of model parameters.
It is important to note that the profiles of the hydrodynamic
quantities in the present experiments need not (and probably
do not) match the self-similar profiles of the basic model.

The firmer theoretical comparison is the result from the
detailed simulation, shown in panel (d) of Fig. 2. We see
that, at peak PR, fl is smaller in the simulation data than in
the experimental data; this behavior is consistent with the
behavior for smaller (or zero) ki in the model Fig. 1. Further,
the simulation generally shows smaller values of fl in the
region of high PR where this fl is likely a better estimate,
indicating hydrodynamic dissipation at a smaller scale, which
is therefore more consistent with ideal stagnation. We see fl ≈
0.04 at PR ∼ 6–8 GW, yielding l ≈ 35 μm for a minimum
hydrodynamic scale (lpl ≈ 880 μm), while the experimental
fl and l are nearly an order of magnitude larger at comparable
PR after peak emission.

Note that we may find that fl evaluated exactly from the
simulations underlying the simulated data presently used does
not decrease all the way to 0, both because there is still some
small averaging in z over plasma that may stagnate at slightly
different times, and because the radial flow solution is not
the self-similar one (perhaps in particular, the flow does not
momentarily go to 0 everywhere at stagnation as in the ideal
self similar case).

In calculating the experimental quantities in Fig. 2, we have
used a plasma radius and density inferred (in Ref. [19]) using
an analysis that accounts for the likely nonuniform density
in the radiating plasma and is therefore more complex than
an analysis assuming a uniform radiating plasma. However,
we note that the results in Fig. 2 are not so sensitive to these
assumptions, and in particular, the analysis repeated assuming
a uniform plasma yields nearly identical values for fl (the uni-
form plasma data are also summarized in Ref. [19]). Similarly,
the plasma kinetic energy in the present data is inferred, in

part, using energy balance arguments [10], but similar results
have been found in additional experiments using a completely
independent technique (see Ref. [20] and Fig. 8 and the sur-
rounding discussion in Ref. [46]).

In any event, we hope that the present demonstration appli-
cation is useful independent of the details of this particular
Z-pinch case. We have highlighted a number of practical
considerations in inferring the hydrodynamic-dissipation re-
lation quantities in a plasma, such as the distinction between
changes in EK due to dissipation versus flows into or out of
the observed plasma. Additionally, we raised and explored the
possibility of using PR as a surrogate for −ĖK , and, although
the quantity of data is limited, we found that fl inferred in this
way apparently distinguishes a closely matched 2D simulation
from its experiment counterparts.

IV. SUMMARY

In summary, here we have developed a technique for di-
rectly inferring properties of the conversion of flow energy to
internal energy in stagnation. We have demonstrated the utility
of this technique for assessing the turbulent dissipation scale
as well as the ideality (hydrodynamic symmetry) of implo-
sions through the use of a lengthscale fraction fl . We show that
fl → 0 with an approach to stagnation in two theoretical ideal
compression cases, one spherical and one cylindrical, while it
tends to grow or remain steady for turbulence. We also show
the behavior of fl and the hydrodynamic-dissipation curve
y = ηmv3/l versus −ĖK in a basic model for a flow region
containing a mix of stagnating and nonstagnating (turbulent)
flow.

A powerful aspect of the present technique is that it essen-
tially infers spatial information about flows, without requiring
any spatial resolution of them. This may make the technique
particularly useful for those experiments in which spatially re-
solving features of the flows is difficult or infeasible. Because
of the generality of the framework, we hope that the technique
shown here enables a variety of implosions or flow stagnations
to be assessed and generates new insights into this important
process.
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