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We study ionization and transport processes in partially ionized multicomponent plasmas. The plasma compo-
sition is calculated via a system of coupled mass-action laws. The electronic transport properties are determined
by the electron-ion and electron-neutral transport cross sections. The influence of electron-electron scattering
is considered via a correction factor to the electron-ion contribution. Based on these data, the electrical and
thermal conductivities as well as the Lorenz number are calculated. For the thermal conductivity, we consider
also the contributions of the translational motion of neutral particles and of the dissociation, ionization, and
recombination reactions. We apply our approach to a partially ionized plasma composed of hydrogen, helium,
and a small fraction of metals (Li, Na, Ca, Fe, K, Rb, and Cs) as typical for atmospheres of hot Jupiters. We
present results for the plasma composition and the transport properties as a function of density and temperature
and then along typical P-T profiles for the outer part of the hot Jupiter HD 209458b. The electrical conductivity
profile allows revising the Ohmic heating power related to the fierce winds in the planet’s atmosphere. We show
that the higher temperatures suggested by recent interior models could boost the conductivity and thus the Ohmic
heating power to values large enough to explain the observed inflation of HD 209458b.
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I. INTRODUCTION

Partially ionized multicomponent plasmas are composed
of molecules, atoms, and ions of various species as well as
of free electrons. The plasma parameters of density and tem-
perature determine their ionization degree and thus also their
equation of state and transport properties such as electrical
and thermal conductivity [1–8]. Profound knowledge of the
thermophysical properties of such plasmas is important for
applications in astrophysics, atmospheric science, and plasma
technology. For instance, Earth’s ionosphere [9,10] and the
atmospheres of hot Jupiters [11,12] can be treated as low-
density partially ionized multicomponent plasmas. Another
example is the formation of stars out of initially cold and
dilute clouds which consist mostly of molecular hydrogen,
helium, and a small fraction of heavier elements and collapse
due to gravitational instability [13,14]. The evolution to a
protostar, which is much hotter and denser, runs through the
plasma regime, where dissociation and ionization processes
determine the heating and contraction dynamics essentially.
The quenching gas in high-power circuit breakers [15] or arc
plasmas [16] are examples of important technical applications
of multicomponent partially ionized plasmas (PIPs).

The transport properties of partially ionized plasmas are
determined by the ionization degree and the charge state
distribution of its constituents. This defines the number of
free electrons and the strength of the collisional interactions
between the plasma species and determines their mobility. At

*sandeep.kumar@uni-rostock.de

low temperatures, the ionization degree is very low and the
transport properties are dominated by neutral particles (atoms
and molecules), while charged particles become more and
more important with increasing temperature due to thermal
ionization. Such thermal ionization conditions are typical for
the outer atmospheres of planets in close proximity to their
star, like hot Jupiters and hot mini-Neptunes [17]. The electri-
cal conductivity, in particular due to the ionization of alkali
metals, can rise to values where magnetic effects become
important for the evolution and dynamics of the planetary
interior.

Hot Jupiters orbit their parent stars in close proximity and
are locked in synchronous rotation, which means that they
always face the same side to the star. Several physical mecha-
nisms are discussed to explain why the radii of hot Jupiters are
significantly larger than expected [12,18,19]. One possibility
is Ohmic dissipation that directly scales with the electrical
conductivity.

The differential stellar irradiation drives fierce winds in
the outer atmosphere that tend to equilibrate the difference in
dayside and nightside temperatures. Interaction of the winds
with a planetary magnetic field induces electric currents that
can flow deeper into the planet. When efficient enough, the
related Ohmic heating transports a sufficient fraction of the
stellar irradiation received by the planet to deeper interiors
where it could explain the inflation.

Accurate data on the composition and the transport coef-
ficients along realistic pressure-temperature (P-T ) profiles of
hot Jupiters are also critical input in corresponding magne-
tohydrodynamics simulations [20]. Using the corresponding
plasma composition, i.e., the molar fractions of the various
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species, and the absorption coefficient of the plasma, the opac-
ity of the planet’s atmosphere can be calculated, which in turn
determines the P-T profile [21].

In this paper we calculate the ionization degree, the elec-
trical and thermal conductivity, and the Lorenz number for
a PIP as a function of temperature and mass density. Mass-
action laws (MALs) are used to calculate the composition
of the PIP [22–26]. We assume that the plasma is in ther-
mal and chemical equilibrium so that Saha-like equations for
each dissociation and ionization reaction can be derived, from
which the partial densities of all species are calculated, i.e.,
the plasma composition. Furthermore, the electron-ion and
electron-neutral transport cross sections have to be determined
[27]. The effect of electron-electron scattering is considered
by introducing a correction factor to the electron-ion con-
tribution according to the Spitzer theory [28]. Note that the
influence of the electron-electron interaction on the transport
coefficients is currently of interest also for dense nonideal
plasmas [29,30]. The contributions of the translational motion
of neutrals and of the heat of dissociation, ionization, and
recombination reactions to the thermal conductivity of PIP
were also studied. For a benchmark we have compared the
thermal conductivity of hydrogen plasma obtained from our
model to the experimental arc-discharge results of Behringer
and van Cung [31]. In the next step we study the general trends
of the ionization degree and of the transport coefficients with
respect to the plasma density and temperature. Finally, we
calculate the ionization degree as well as the electrical and the
thermal conductivity along typical P-T profiles through the
atmosphere of the inflated hot Jupiter HD 209458b. These re-
sults are then used to assess the Ohmic heating in the planet’s
atmosphere and to infer whether this effect is efficient enough
to explain the inflation. Batygin and Stevenson [11] (BS) have
used simplified expressions for the calculation of the plasma
composition (ionization scaled with the density scale height)
and the electrical conductivity (weakly ionized gas) and con-
cluded that Ohmic heating is indeed sufficient to explain the
inflation of this hot Jupiter. We use our refined conductivity
values to calculate updated estimates for the Ohmic heating in
HD 209458b.

Our paper is organized as follows. In Sec. II we outline the
theoretical basics for the calculation of the equation of state
and the composition of the PIP. Section III provides the basic
formulas used for the calculation of the electronic transport
coefficients in the PIP. In Sec. IV we report the results for
the ionization degree and the electronic transport coefficients
in dependence on the plasma temperature and mass density.
Section V gives details of the calculation of the translational
motion of neutral particles and of the contribution of the heat
of dissociation, ionization, and recombination reactions to the
thermal conductivity. In Sec. VI, results for the ionization de-
gree and the transport coefficients along typical P-T profiles
through the atmosphere of the hot Jupiter HD 209458b are
presented. A summary and conclusions are given in Sec. VII.

II. EQUATION OF STATE AND COMPOSITION

We consider an ideal-gaslike model for the partially ion-
ized plasma and calculate its chemical composition using a
canonical partition function Z ({Ni},V, T ), which depends on

TABLE I. Abundances of constituents considered in this work,
with the molar and mass fractions according to Refs. [32,33].

Element Molar fraction (%) Mass fraction (%)

H 92.23 74.84
He 7.76 25.02
Li 1.75 × 10−7 9.82 × 10−7

Na 1.79 × 10−4 3.3 × 10−3

K 1.18 × 10−5 3.74 × 10−4

Ca 1.88 × 10−4 6.1 × 10−3

Fe 2.7 × 10−3 0.119
Rb 2.21 × 10−8 1.52 × 10−6

Cs 1.16 × 10−9 1.23 × 10−7

the number of particles Ni of species i as well as on the
volume V and temperature T of the plasma. We assume the
constituent elements H, He, Li, K, Na, Rb, Ca, Fe, and Cs to
be the relevant drivers of ionization in hot Jupiter atmospheric
plasmas. The abundances of these constituents are given in
Table I, which is adopted from Refs. [32,33].

In a mixture of c noninteracting chemical species, the par-
tition function Z ({Ni},V, T ) can be written as a product

Z ({Ni},V, T ) =
c∏

i=1

zi(Ni,V, T ), (1)

with

zi(Ni,V, T ) = ztrans
i (Ni,V, T )

[
zint

i (T )
]Ni

, (2)

where ztrans
i (Ni,V, T ) is the translational partition function

of species i and zint
i (T ) is its one-particle internal partition

function (IPF). The translational partition function is given by

ztrans
i (Ni,V, T ) = V Ni

Ni!λ
3Ni
th,i

, (3)

in which λth,i = h/
√

2πmikBT is the thermal wavelength with
the Planck constant h, the mass mi of species i, and the Boltz-
mann constant kB. The internal partition function modes are
considered to be independent of each other, which gives the
formula [34]

zint
i = znuc

i zel
i zvib

i zrot
i , (4)

where znuc
i , zel

i , zvib
i , and zrot

i are the nuclear, electronic, vi-
brational, and rotational partition functions of the species i,
respectively.

The nuclear IPF is considered as

znuc
i = 2Ins

i + 1, (5)

which depends on the spin quantum number Ins
i of the nucleus.

The electronic partition function is approximated as follows:

zel
i = (2J + 1) exp

( − E0
i /kBT

)
. (6)

Here E0
i is the energy and J the electronic angular momentum

quantum number of the atom, ion, or molecule in the ground
state. We do not consider excited states in this study because
their population is small for the plasma parameters considered
here so that their effect on ionization and transport is negligi-
ble. Note that each excited state introduces a new species for
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which all related atomic, ionic, or molecular parameters need
to be known for the calculation of the plasma composition
and the transport cross sections which would unnecessarily
complicate the PIP model as long as their effect is small.
For the calculation of the vibrational and rotational partition
functions of the H2 molecule we use the high-temperature
approximation

zvib
H2

= 1

1 − exp(−θv/T )
, (7)

zrot
H2

= T

2θr
, (8)

where θv = hν/kB and θr = h2/8π2IkB are the vibrational and
rotational temperatures, respectively. The latter depends on
the moment of inertia I = μHHr2 of the H2 molecule; μHH

= mH/2 is its reduced mass and r its bond length.
The plasma considered here is in thermal and chemical

equilibrium, so the particle densities follow from MALs as
follows [26]:

∏
i

nνi,a

i =
∏

i

(
zint

i

)νi,a

(
λ3

th,i

)νi,a
≡ Ka(T ). (9)

In this expression, ni = Ni/V are number densities of species
i, Ka(T ) is the reaction constant, and νi,a are the stoichiometric
coefficients of the reaction a. The νi,a for the reaction products
and reactants are chosen to be positive or negative, respec-
tively. The MALs and particle conservation equations of the
PIP are solved numerically to calculate the number density
of each species for a given temperature and mass density. We
allow the constituents to be doubly ionized at maximum. This
sets a maximum temperature of about 30 000 K for our appli-
cations, which corresponds to about 10% of the lowest third
ionization energy (30.651 eV for Fe [35]) of all constituents
considered. The MALs for dissociation and ionization read

n2
H

nH2

= KH, (10)

n+
ion,ine

natom,i
= K+

ion,i, (11)

n2+
ion,ine

n+
ion,i

= K2+
ion,i, (12)

in which n+
ion and n2+

ion denote the number densities of a singly
or doubly charged ion, respectively. The charge neutrality
condition in the PIP leads to the equation

ne =
∑

i

n+
ion,i +

∑
i

2n2+
ion,i, (13)

where ne represents the free electron number density in the
PIP. Mass conservation in the plasma provides the relation

ρ =
c∑

i=1

mini, (14)

where ρ is mass density of the plasma. The relative abundance
χr of each constituent with respect to the H abundance is set
as follows:

χr,i = natom,i + n+
ion,i + n2+

ion,i

2nH2 + nH + nH+
. (15)

Most of the parameters such as ground-state energies E0
i ,

ionization energies, total angular momentum quantum num-
bers J , and atomic weights mi of the species are taken from
the NIST database [35]. The nuclear partition function and
ground-state energy of the H2 molecule are taken as znuc

H2
=

4 and E0
i = −31.738 eV [26], respectively. The ground-state

energy of the H2 molecule already includes the vibrational
ground-state energy. Therefore, the vibrational partition func-
tion (7) includes only excited states. We have taken θv =
6321.3 K and θr = 88.16 K for the vibrational and rotational
temperatures of the H2 molecule [36], respectively. The num-
ber densities ni of each species (molecules, atoms, and ions)
for a given plasma temperature and mass density are calcu-
lated by solving the coupled equations (10)–(15) using the
Newton-Raphson method. The resulting ionization degree α

of the plasma is defined as

α = ne

ntotal
, (16)

with ntotal = natoms + 2nH2 + ne and the density of all atoms
natoms = ∑

i ni,atom.
The numerical calculations were benchmarked against the

analytical solution of Eqs. (17)–(19) for a pure hydrogen
plasma composed of H2, H, H+, and electrons:

mH2

KH2

n2
H + mHnH + mH+

√
nHK+

H − ρ = 0. (17)

In the analytical model, the density of H atoms nH is obtained
from the solution of Eq. (17). Furthermore, using nH, we can
calculate nH2 and nH+ via the following equations:

nH2 = n2
H

KH
, (18)

nH+ =
√

nHK+
H . (19)

FIG. 1. Composition of hydrogen plasma as a function of tem-
perature for a mass density of ρ = 10−5 g/cm3. Solid lines show
analytical results via Eqs. (17)–(19) and dashed lines numerical
results. The normalization n0 = nH2 + nH + nH+ refers here to the
total number density of hydrogenic species in the plasma.
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For benchmarking, the mass density ρ of the plasma is kept
constant at 10−5 g/cm3 and the composition is calculated as
a function of the temperature (see Fig. 1). The analytical and
numerical results are virtually identical. At low temperatures,
hydrogen is a molecular gas; the molecules dissociate into
atoms with increasing temperature. At even higher tempera-
ture, the ionization processes lead to a hydrogen plasma. For
further validation, we compare our results for the ionization
degree with those of Schlanges et al. [37] and find good
agreement.

III. ELECTRONIC TRANSPORT COEFFICIENTS

The electronic contribution to the electrical conductivity
σe, the thermal conductivity λe, and the Lorenz number L are
defined as [27,38]

σe = e2K0, (20)

λe = 1

T

(
K2 − K2

1

K0

)
, (21)

L =
( e

kB

)2 λe

σeT
, (22)

where e is the elementary charge and Kn are Onsager coef-
ficients (n = 0, 1, 2) that are composed of individual specific
Onsager coefficients Kn,es via

K−1
n =

∑
s

K−1
n,es. (23)

The expressions for Kn,eN and Kn,eI are taken from French
and Redmer [27] and describe the contribution of electron
scattering from neutral (index N) and ionic (index I) species,
respectively. We have considered electron-neutral scattering
only for H, H2, and He atoms or molecules because of the
very small overall abundance of the heavier elements. The
analytical expression of the specific Onsager coefficients for
electron-neutral scattering for Eq. (23) is

Kn,eN = 211/2π1/2(n + 3)!ε2
0 (kBT )n+3/2ne

3Z2
N e4m1/2

e nN ln AN (xN )
. (24)

The specific Onsager coefficients for electron-ion scattering
for Eq. (23) read

Kn,eI = 211/2π1/2(n + 3)!ε2
0 (kBT )n+3/2ne

3Z2
I e4m1/2

e nI ln �(Bn)
. (25)

The logarithmic functions ln AN (xN ) and ln �(Bn) are de-
fined in Ref. [27]. Electron-electron scattering is accounted
for by correction factors according to Spitzer and Härm [28]
in the Onsager coefficients for electron-ion scattering Kn,eI .
The respective formula and parameters are taken from French
and Redmer [27]. The effect of electron-electron scattering
on the electrical and thermal conductivity of dense plas-
mas in the warm dense matter regime has been studied by
Reinholz et al. [29] using the linear response theory and by
Dejarlais et al. [30] using the Kohn-Sham density functional
theory. The expressions for the Onsager coefficients including

FIG. 2. Ionization degree of the PIP as a function of temperature
for different mass densities.

electron-electron scattering are

K0,eI+ee = fe

fI
K0,eI , (26)

K1,eI+ee = ae fe

aI fI
K1,eI

+5

2
kBT

(
fe

fI
− ae fe

aI fI

)
K0,eI , (27)

K2,eI+ee = Le fe

LI fI

(
K2,eI − K2

1,eI

K0,eI

)
+ K2

1,eI+ee

K0,eI+ee
, (28)

where the factors fI , fe, aI , ae, LI , and Le are defined in
Ref. [27].

IV. RESULTS FOR ELECTRONIC TRANSPORT IN PIP

The plasma composition, i.e., the partial number densities
ni of each species obtained from solving the coupled equa-
tions (10)–(15), is a necessary input for the calculation of the
electronic transport coefficients. Therefore, we first show the
behavior of the ionization degree as a function of the tempera-
ture at different mass densities in Fig. 2. The ionization degree
α is increasing with the temperature due to thermal ionization
of the constituents and decreasing with the mass density of the
plasma.

The variation of σe and λe with the temperature at different
mass densities is displayed in Figs. 3 and 4, respectively.
The curves for σe and λe show a systematic increase with
temperature, caused by thermal ionization of the constituents
in the order of their ionization energies, which leads to an en-
hancement of the free electron density in the PIP. On the other
hand, σe and λe are decreasing with mass density due to more
frequent scattering processes with neutral species. At high
temperatures (above 20 000 K), σe and λe are increasing with
mass density, oppositely to their low-temperature characteris-
tics. This reversal is emerging because the ionization degree
is still increasing with temperature for the higher densities but
it is already saturated for the lower densities. The quantities
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FIG. 3. Electrical conductivity of the PIP as a function of tem-
perature for different mass densities.

α, σe, and λe show plateaulike structures. When the plateau
is reached, all metals (see Table I) are ionized but H and He
require still higher temperatures to contribute to the ionization
degree significantly and thus to the electrical and thermal
conductivities, which lead to the increase after the plateau.
The Lorenz number shown in Fig. 5 first increases with the
temperature and, after passing through a maximum, decreases
for still higher temperatures. This behavior is shifted system-
atically towards higher temperatures with increasing density.
The high- and low-temperature limiting values of L are deter-
mined by the known Spitzer limit in the fully ionized plasma
and electron-neutral cross sections in the weakly ionized gas,
respectively. The occurrence of the pronounced maximum in
L is caused by different energetic weightings of the cross
sections in the specific Onsager coefficients [see Eqs. (24) and
(25)]. It should be noted that the correction due to electron-

FIG. 4. Thermal conductivity of the PIP as a function of temper-
ature for different mass densities.

FIG. 5. Lorenz number of the PIP as a function of temperature
for different mass densities.

electron scattering is only important when the majority of
constituent elements are at least singly ionized.

V. THERMAL CONDUCTIVITY FROM NEUTRALS
AND CHEMICAL REACTIONS

At low temperatures, the ionization degree is small and
therefore the neutral particles contribute significantly to the
heat transport. In addition to their translational contribution
λtr , the occurrence of dissociation and ionization reactions
also enhances the thermal conductivity in the corresponding
temperature region, described by a term λr . These contribu-
tions have to be added to the electronic heat conductivity λe

so that the total thermal conductivity λ of the PIP is given by

λ = λe + λtr + λr . (29)

We have neglected the translational contribution of ions to the
thermal conductivity because it is very small in comparison
to that of the electrons λe [39,40]. For the neutrals, we have
adopted the Chapman-Enskog model for the calculation of the
translational heat transport. The first-order expression for λtr

for a single-component gas is given by [41]

λtr
i = 25

32

(
kBT π

mi

)1/2 Cv,i

�
(2,2)
ii (T )

, (30)

where �
(2,2)
ii (T ) is a collision integral and Cv,i = 3kB/2 is the

heat capacity for atoms of species i at constant volume. The
collision integral depends upon the energy-dependent trans-
port cross section. We have simplified the collisional integral
by assuming the atoms or molecules to be rigid spheres of di-
ameter dii so that �

(2,2)
ii (T ) becomes temperature independent

and is reduced to πd2
ii . The simplified formula of λtr

i is then

063203-5



SANDEEP KUMAR et al. PHYSICAL REVIEW E 103, 063203 (2021)

given by

λtr
i = 25

32

(
kBT π

mi

)1/2 Cv,i

πd2
ii

. (31)

The vibrational heat capacity Cvib
v,H2

of hydrogen molecules is
calculated using the harmonic approximation [34]

Cvib
v,H2

= kB

(
θv

T

)2 exp( θv

T )[
exp

(
θv

T

) − 1
]2 . (32)

The rotational heat capacity Crot
v,H2

of hydrogen molecules is
calculated by considering T � θr so that

Crot
v,H2

= kB. (33)

For a multicomponent plasma as considered here, we use
a generalized formula for the calculation of the translational
thermal conductivity of mixtures, which reads [42–44]

λtr =
∑

i

xiλ
tr
i

1 + ∑
j �=i

x j

xi
φi j

. (34)

Here xi is the molar fraction of species i and φi j = (2μi j/mi )2

depends on the reduced mass μi j and mass of species i.
In the calculation of λr we assume that the chemical

reactions occur in different temperature regions, so their con-
tributions are additive, according to an expression given by
Butler and Brokaw [45,46],

λr =
∑

a

(�Ha)2

RT 2

1

Aa
, (35)

with

Aa =
β−1∑
k=1

β∑
l=k+1

(
RT

PDkl

)
xkxl

[(
νk,a

xk

)
−

(
νl,a

xl

)]2

, (36)

where �Ha is the heat of the reaction a, β is the number of
species involved in the reaction, k represents the kth species,
R is the universal gas constant, P = ∑

i nikBT is the ideal
pressure, and Dkl is the binary diffusion coefficient between
components k and l . The heat of the reaction �Ha is calculated
from the reaction constant by van’t Hoff’s equation [47,48]

�Ha

RT 2
= d ln Ka

dT
. (37)

We use the following expression for the neutral-neutral and
neutral-ion binary diffusion coefficients [49]:

PDkl = 3

16

√
2πk3

BT 3/μkl

πd2
kl

. (38)

For the electron-neutral and electron-ion diffusion coeffi-
cients, we have used the Darken relation and the adiabatic
approximation [50], which leads to

Dke = xkDe + xeDk ≈ xkDe. (39)

This expression depends only on the self-diffusion coefficient
De of the electrons that can be related to their electrical con-
ductivity using the Nernst-Einstein relation

PDke = xk

xe

(
kBT

e

)2

σe. (40)

FIG. 6. Thermal conductivity of partially ionized hydrogen
plasma as a function of temperature at a constant pressure of
1 bar. We compare our results with the arc-discharge experiment of
Behringer and van Cung [31], which was evaluated using the local
thermodynamic equilibrium assumption.

We consider the λtr and λr contributions to the thermal
conductivity only for species and reactions containing the ele-
ments H and He. The hard-sphere diameters of H2, H, and He
are taken from Table II in Ref. [51], specifically of H-H2 colli-
sion data at 3500 K. We have parametrized the effective H-H+

interaction diameter in our model by matching the height
of the second peak in the thermal conductivity profile with
that from hydrogen arc-discharge experiments at P = 1 bar
[31]; the comparison is shown in Fig. 6. The He-He+ and
He+-He2+ interaction diameters have been calculated from
Eq. (38) by using the diffusion coefficient value of Devoto
and Li at 24 000 K [52]. All hard-sphere diameter values used
for the calculation of the thermal conductivity are compiled in
Table II.

The variation of λ, λr , λtr , and λe with the temperature
is displayed in Fig. 7, again for a constant density of 10−5

g/cm3. The λtr contribution fully determines the total thermal
conductivity at the lowest temperatures considered here. Note
that the electronic contribution can be neglected there because
the ionization degree is virtually zero (see Fig. 1). The first
peak in λ at about 4000 K emerges due to the dissociation
reaction heat conductivity of H2 molecules in the PIP. This

TABLE II. Square of the hard-sphere diameters di j for the inter-
actions between the various species as used in the calculation of the
thermal conductivity.

Collision d2
i j (Å2)

H2-H2 2.634
H-H2 2.634
H-H 2.634
H-H+ 11.00
He-He 2.634
He-He+ 13.978
He+-He2+ 13.978

063203-6



IONIZATION AND TRANSPORT IN PARTIALLY IONIZED … PHYSICAL REVIEW E 103, 063203 (2021)

FIG. 7. Total thermal conductivity λ according to Eq. (29) as
a function of temperature at 10−5 g/cm3. The contributions of the
translational motion of neutrals λtr and of the heat of chemical
reactions λr and the electronic contribution are shown separately.

contribution becomes smaller at higher temperatures because
most of the H2 molecules are dissociated into H atoms. As
temperature increases further, the H atoms are ionized, which
leads to a second peak in the thermal conductivity at about
20 000 K due to the corresponding ionization reaction heat. A
shoulder in λr emerges at about 30 000 K due the ionization
of He. The free electron density ne is systematically increasing
with temperature so that λe dominates the thermal conductiv-
ity λ in the high-temperature limit above 25 000 K and both
λtr and λr can be neglected there.

VI. APPLICATION TO THE ATMOSPHERE
OF THE HOT JUPITER HD 209458b

HD 209458b was the first exoplanet observed transiting its
host star [53]. With an orbital period of 3.5 days, a semimajor
axis of only 0.047 AU, a radius of 1.36RJ , and a mass of
0.69MJ , HD 209458b is clearly an inflated hot Jupiter [54].
Here RJ and MJ denote Jupiter’s radius and mass, respectively.

In this section we apply the methods discussed above to
HD 209458b and discuss how the updated electrical con-
ductivity would affect Ohmic heating. The electrical currents
responsible for the Ohmic heating could penetrate down to
a pressure level of few kbar according to BS. We therefore
focus the application of our PIP model on this pressure range
and start by discussing the corresponding P-T profile.

A. The P-T profile of the atmosphere

We calculate the composition and the transport coefficients
of the planetary PIP for the four planetary models shown
in Fig. 8. The atmospheric models are obtained by fitting
semianalytical one-dimensional parametrizations to pressure-
temperature profiles suggested in the literature, following the
approach by Poser et al. [55]. The parametrization guarantees
a consistent description and allows us to extend all models to

FIG. 8. Pressure-temperature profiles of the atmosphere of HD
209458b. Shown are the four atmospheric models used in this work,
three without an inversion, namely, G (yellow), L (red), and S (or-
ange), and one with an inversion in the temperature, I (blue), located
at about 0.03 bar. Further features of the models are displayed: the
location of the radiative-convective boundary, the onset of the con-
vective interior, and the characteristic temperatures Tiso,1 and Tiso,2.

the same pressure range and to connect them to an adiabatic
interior.

Model G is based on the globally averaged theoretical P-T
curve by Guillot [56], while model L replicates the most
recent result by Line et al. [57], which is based on high-
resolution spectroscopy data of the Hubble Space Telescope
and data from the Spitzer Space Telescope for the planet’s
dayside. Both profiles turn out to be very similar. Profiles S
and I follow suggestions by Spiegel et al. [58]. While profile
S has a particularly high temperature between 0.3 and 100 bar,
model I, based on the variant with a solar abundance of TiO by
Spiegel et al. [58], shows a temperature inversion at pressures
smaller than 30 mbar. The reason is that the highly abundant
TiO serves as an additional absorber in the upper atmosphere
and leads to the rise in temperature.

Our parametrization of model I is broadly similar to the
original profile of Spiegel et al. [58] but assumes a shallower
transition to the convective interior and thus predicts higher
temperatures for pressures beyond 10 bar. In addition, our
temperatures are up to 100 K lower than the original in the
isothermal region between 1 and 10 mbar. Between 10−2

and 10−3 bar, the original shows a local maximum that is
not present in our model. The temperatures in profile I are
therefore up to 200 K colder than in the original paper.

We connect our atmosphere profiles to an adiabatic interior
model at the pressure level where the atmospheric temperature
gradient matches with the adiabatic gradient. The respective
transition points are marked with circles in Fig. 8. The interior
model is derived from the usual structure equations for nonro-
tating spherical gas planets (see, e.g., [59]). Like BS, we use a
solar helium mass fraction of Y = 0.24, assume no planetary
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core, and set the heavy-element mass fraction of both the
atmosphere and the interior to the solar reference metallicity
of Z� = 0.015 [33]. For H and He we use the equation of state
(EOS) of Saumon et al. [60]. Heavy elements are represented
by the ice EOS of Hubbard and Marley [61]. The upper
boundary of our interior model is set to Pout (RP ) = 10−2 bar.
The heat flux from below is determined by the interior model
(no core). The observed radius inflation is then obtained by
adding extra energy during the thermal evolution [55,62].

Batygin and Stevenson also used variants of the original
model I by Spiegel et al. [58] for their Ohmic dissipation
study. Like us, they assumed a transition to an adiabatic
interior model in a comparable pressure range. Their exact
profiles have not been published but are likely similar to our
model I.

Beyond the radiative-convective boundary (RCB), the at-
mosphere models span a large temperature range of up to
750 K around 1 bar. This may partly be owed to the large
local variation in brightness temperature with a dayside-to-
nightside difference of about 500 K [63] but mostly reflects
the different model assumptions and a lack of observa-
tional constraints [64]. Note, however, that the most recent
observation-based model by Line et al. [57] could not confirm
the inversion discussed by Spiegel et al. [58] and covers an
intermediate-temperature range.

All of our atmosphere models have two nearly isothermal
regions. The deeper region, labeled Tiso,1 in Fig. 8, is a typical
feature in strongly irradiated planets [12,65]. The shallower
isothermal region Tiso,2 from the 10 mbar level to the outer
boundary of our models is typical for analytical, semigray
atmosphere models (see, e.g., [66]). For profiles G, L, and S,
both regions are connected by a pronounced temperature drop
of several hundred degrees Kelvin. In the inversion profile, the
temperature first drops but then increases towards the outer
boundary.

B. Transport properties of the atmosphere

We have calculated the ionization degree α, the electrical
conductivity σe, and the thermal conductivity λ along our four
P-T models for HD 209458b (see Fig. 9). The ionization
degree [Fig. 9(b)] and the electrical conductivity [Fig. 9(d)]
are closely related and follow a very similar behavior (see
Sec. IV). The thermal conductivity profile [Fig. 9(c)] also
shows a similar form but with much smaller variations.

In the two isothermal regions of each profile, the decreas-
ing density causes α and σe to increase outward. However,
the drastic changes of temperature in the intermediate regions
between the isothermal layers influence α and σe in more
characteristic ways. This is especially the case in the inversion
region in profile I (blue), where we find pronounced minima
of α and σe near 30 mbar (see Fig. 9).

Due to the large differences between the models, the ion-
ization degree and electrical conductivity differ by up to three
orders of magnitude for the same pressure. The drop in elec-
trical conductivity between the two isothermal regions varies
from one order of magnitude in model G to more than three
orders of magnitude in model S. The increase from the inner
isothermal region to the RCB varies from a bit more than two
orders of magnitude in model S to four orders of magnitude in

FIG. 9. Temperature T , ionization degree α, thermal conductiv-
ity λ, and electrical conductivity σe for different planetary interior
models along the pressure axis of HD 209458b, specifically, for the
four atmospheric models used in this work: G (yellow), L (red), S (or-
ange), and one with an inversion, I (blue). Circles in the temperature
profile represent the location of the radiative-convective boundary.

model I. In contrast, the variation of the thermal conductivity
between the models is much smaller. The reason is that ther-
mal conductivity is determined mostly by collisions between
neutral particles in the relevant temperature range and is thus
not susceptible to the strongly changing ionization degree.

BS [11]

BS [11]

FIG. 10. Electrical conductivity σe for model I along the radius
axis of HD 209458b, compared to the results of Batygin and Steven-
son [11]. We show their original data (gray) as well as a shifted
version (cyan) to ease the comparison (see the text).
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Figure 10 compares the electrical conductivity for model
I with the results taken from Fig. 2 in [11]. The associated
pressure profile P(r) is obtained by solving the equation of
hydrostatic equilibrium. Each of the curves has a pronounced
minimum in the electrical conductivity. Note that these min-
ima are located at different radii in Fig. 10, which is likely
caused by a different planetary radius assumed by BS that
unfortunately was not stated in their paper. For better com-
parison, we also show a shifted Batygin-Stevenson profile in
Fig. 10 that aligns both minima.

The electrical conductivity minimum predicted by BS is
extraordinarily deep, with σe dropping by six orders of mag-
nitude. In contrast, the temperature dependence of our model
(see Fig. 3) yields a conductivity drop by only two orders of
magnitude at the 300 K temperature dip of our model I.

In the inner isothermal region, the electrical conductivity
is two orders of magnitude lower than suggested by BS.
Unfortunately, we do not know the exact atmosphere model
used by BS but, as discussed above, it seems conceivable that
the temperatures in this region are about 100 K lower than
assumed by BS for their Fig. 2. According to Fig. 3, however,
this would only explain a conductivity difference by about a
factor 5. At very low pressures and also toward the RCB, the
electrical conductivities become more similar, likely because
our model assumes higher temperatures. At the RCB, our
electrical conductivity is about one order of magnitude lower
than suggested by BS.

C. Ohmic dissipation

The electric currents �je in the outer atmosphere are induced
by the interaction of the fierce atmospheric winds with the
planetary magnetic field according to Ohm’s law

�je = σe( �U × �B0 − �∇�), (41)

where �U is the wind velocity, �B0 the internally produced
background field, and � the electric potential. Note that we
use a fluid approach where the velocity describes the mo-
tion of the neutral medium (neutrals, ions, and electrons).
Furthermore, we use a linear approximation, assuming that
the magnetic field locally produced by the currents is smaller
than the background field [67,68]. Using the fact that the cur-
rents are divergence-free, i.e., �∇ · �je = 0, allows calculating
the missing electric potential (BS). The global heating power
from Ohmic dissipation is then simply given by the following
volume integral:

Q̇ =
∫ �j2

e

σe
dV. (42)

Being driven by the differential irradiation, the depth of the
winds is limited [69]. Batygin and Stevenson assume that they
penetrate down to the 10 bar level. Because the minimum in
the electrical conductivity around 30 mbar provides a bound-
ary for the electric currents, only the layer from 10 bar up to
this minimum has to be considered for inducing the currents
that could potentially penetrate deeper into the planet. We
refer to this region as the induction layer. While the electric
currents in the induction layer already provide very powerful
heating, the deeper penetrating currents are more relevant for
explaining the inflation. We refer to the deeper layer where

these currents remain significant as the leakage layer, which
may extend from 10 bar to a few kbar (BS).

With no appreciable flows being present between 10 bar
and the RCB, the respective currents in the leakage layer obey
the simpler relation

�je = −σe �∇�. (43)

The electric potential differences �∇� are determined by the
action in the induction layer and the electrical conductivity
distribution. Batygin and Stevenson therefore call the leakage
layer the inert layer. The electrical conductivity profile con-
trols how deep the currents produced in the induction layer
flow into the leakage layer.

We can now roughly quantify the changes in Ohmic heat-
ing compared to those of BS by simply rescaling their results
with our electrical conductivity profiles. Batygin and Steven-
son assumed a simple flow structure with typical velocities of
U = 1 km/s and a background field strength of B0 = 10 G.
Because our electrical conductivity is about two orders of
magnitude lower in the induction layer, the induced electric
currents are two orders of magnitude weaker, according to
Eq. (41). Consequently, the Ohmic heating power (42) is also
two orders of magnitude lower.

In the leakage layer, the currents encounter a conductivity
that is more similar to the one assumed by BS. Assuming that
the conductivity is one order of magnitude lower (see Fig. 10),
the deeper Ohmic heating is about 10−3 times smaller than
in the work of BS. Explaining the inflation of HD 209458b
requires a power of about 4 × 1018 W to be deposited at or
below the RCB [19]. While the models considered by BS
deposit up to 1020 W in the convective interior, the lower
electrical conductivity of model I would render Ohmic heating
too inefficient.

However, as shown above, the Ohmic heating processes de-
pend strongly on the conductivity and thus on the atmosphere
model. Because of the higher temperatures, the electrical con-
ductivity in the induction layers of the most-up-to-date model
L is comparable to that assumed by BS; consequently, the
induced currents also have a similar magnitude. If assuming
once more a ten times lower conductivity in the leakage layer,
the leakage layer heating will be ten times stronger than in the
work of BS, which is more than enough to explain the infla-
tion. For model S, the heating will be even stronger because
of the particularly high temperatures in the induction region.

Because the electrical currents depend linearly on the wind
velocity U and the background field strength B0, the heating
power (42) scales quadratically with both of these quantities.
Updating the value of U = 1 km/s assumed by BS with a
newer estimate of U = 2 km/s [70] thus increases Ohmic
heating by a factor of 4. On the contrary, an indirect reassess-
ment of the magnetic field strength of HD 209458b suggests
that it may as well be on the order of 1 G [71] rather than the
10 G assumed by BS. This would reduce the Ohmic heating
power by a factor of 100 and may once more render the
process too inefficient to explain the inflation.

All the estimates discussed above represent a linear ap-
proximation, assuming that the magnetic field produced by
the locally induced currents is smaller than the background
field in Eq. (41) [67,68,72]. The ratio of the locally induced
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field to the background field is roughly given by the magnetic
Reynolds number

Rm = Udσeμ0, (44)

where μ0 is the magnetic permeability of vacuum and d the
electrical conductivity scale height

d = σe

|∂σe/∂r| . (45)

The linear approximation therefore breaks down when Rm
exceeds one. When assuming U = 1 km/s and the value
d = 3 × 102 km as suggested by Fig. 10, this happens where
the electrical conductivity is larger than σe = 10−2 S/m in
the induction region. Model S, where Tiso,1 = 2200 K, is the
only model for which the linear approximation is certainly
questionable.

Observations suggest that dayside and nightside temper-
atures of HD 209458b differ by roughly 500 K [63]. The
fact that this difference is smaller than expected is, like the
pronounced hot-spot shift [63], likely the result of heat dis-
tribution by the fierce winds in the upper atmosphere. The
temperature dependence proposed here predicts that the elec-
trical conductivity in the nightside induction region is about
103 times lower than on the dayside. We thus expect that
dayside heating would dominate.

VII. CONCLUSION

We have presented a model for calculating the chemi-
cal composition and electrical and thermal conductivity of
low-density multicomponent plasmas suitable for applica-
tions in atmospheres of hot Jupiters. This model is based
on mass-action laws and cross sections for all binary par-
ticle interactions and generalizes an earlier model for the
thermoelectric properties of one-component plasmas [25] to
multicomponent plasmas. We have shown that the results
for the ionization degree and in particular for the electrical
conductivity can differ by several orders of magnitude from
simpler models applied to hot Jupiter [11,73] or hot Neptune
atmospheres [17].

Note that the plasma becomes nonideal with increasing
depth (i.e., density), so interaction contributions have to be
treated when evaluating MALs for deeper atmosphere regions.
Furthermore, simple expressions for the cross sections as used
here no longer apply and the different scattering processes
have to be treated on the T matrix level by calculating the
corresponding scattering phase shifts (see, e.g., [5,23–25,74]).
It would also be interesting to study the influence of the
magnetic field of the planet on the transport properties, in par-
ticular for the hot and dilute outer atmosphere (ionosphere).
This is a subject left for future work.

The plasma is strongly coupled and degenerate in the deep
interior of the planet, so first-principles approaches have to
be applied in order to calculate the corresponding equation

of state data, the ionization degree, and the transport proper-
ties. For instance, extensive molecular-dynamics simulations
have been performed for the ions in dense H-He plasmas
in combination with electronic structure calculations using
density functional theory (density functional theory–based
molecular-dynamics method). The corresponding results pro-
vide a reliable database to determine interior profiles for
density, temperature, and pressure [75] and to simulate the
dynamo process based on further material properties such as
electrical and thermal conductivities [76,77] for Jupiter [78]
and Jupiter-like planets. The deep interior, however, is not
important for the study of Ohmic dissipation in the outer
atmosphere, so the current results persist.

We have therefore used our results to predict the thermal
and electrical conductivities for four different models pro-
posed for the atmosphere of the hot Jupiter HD 209458b. The
estimates suggest that the electrical conductivity is between
one and two orders of magnitude lower than assumed by BS
[11] in their study of Ohmic heating. While BS concluded that
this additional heat source could explain the observed inflation
of HD 209458b, our updated conductivities reduce the effect
by up to three orders of magnitude and would make Ohmic
heating too inefficient.

However, newer internal models [57] suggest significantly
higher temperatures in the planet’s atmosphere than assumed
for these estimates. The resulting higher electrical conductiv-
ity would guarantee more than enough Ohmic heat to explain
the inflation, even for our lower electrical conductivity values.
The large uncertainties in the atmospheric temperature, but
also in the planet’s magnetic field strength [71], yet prevent
us from giving reliable estimates of Ohmic heating in the
atmosphere of HD 209458b.

Our estimates for the electric currents and thus for the
Ohmic heating power largely follow simple scaling arguments
based on previous attempts [11,72]. It would be interesting
to run refined numerical models that solve for electrical cur-
rents using the updated conductivities proposed here. Because
of the significant radial and dayside-to-nightside variation
in temperature, the electrical conductivity will also have a
three-dimensional field structure, making three-dimensional
simulations essential. Repeating the simplified calculations by
BS would be a first step. However, full magnetohydrodynamic
simulations are required should the locally induced magnetic
fields and associated Lorentz forces prove important.
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