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Weakened energy cascade in elastoinertial turbulence
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Newtonian turbulence is characterized by interscale transport of energy from the forcing scales to the
dissipation scales. In elastoinertial turbulence, this interscale energy flux is weakened. Here, we explain this
phenomenon by numerically showing that elastoinertial energy is predominantly dissipated through polymer
chain relaxation. As opposed to Newtonian dissipation, chain relaxation is neither restricted to small nor to large
scales but instead it is effective on all the scales. Chain relaxation does not therefore require interscale transport
of elastoinertial energy from the forcing scales to the dissipation scales.
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I. INTRODUCTION

In three-dimensional (3D) fluid turbulence, the interscale
(i.e., spectral) inertial energy (i.e., kinetic energy) transfer is
downscale, i.e., from large to small scales [1], while in two
dimensions this transfer is from small to large scales [2].
It is well known that adding polymers modifies this spec-
tral energy transfer. In 3D, polymers weaken the downscale
energy transfer [3], which increases the energy at the large
scales and reduces the energy at the small scales [4–6]. In
two-dimensional (2D) experiments and simulations, polymers
have also been observed to weaken the turbulent energy
transfer [7,8]. Since in two dimensions, however, the energy
transfer is upscale, polymers act to reduce the energy at the
large scales and increase the energy at the small scales [9–11].

In this work we conduct 2D and 3D simulations of ho-
mogeneous, forced turbulence to further analyze the effects
of polymers on the spectral energy transfer. Homogeneous,
forced turbulence does not involve walls and the results of
this study can therefore not directly be applied to explain
the well-known drag reduction effect of polymers on wall
bounded flows [12–15].

II. NUMERICAL MODEL

We numerically solve the finitely extensible nonlinear elas-
tic spring model with Peterlin’s approximation (FENE-P)
[16]:

∇ · u = 0, (1a)

∂t u + u · ∇u + 1

ρ
∇p = νs∇8u + νl∇−2u + f + ∇ · σ,

(1b)

σ = νpλ
−1s(c − δ), (1c)

∂t c + u ·∇c − ∇uT · c − c ·∇u = λ−1(δ − sc) + κ
√

E : E∇4c.

(1d)
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Here u is the fluid velocity, p is the fluid pressure, and
f = Cf

∑
k Re{a(k) exp[−(k − k f )2/�k2

f + i(k · x)2π/L]} is
the forcing, where k = |k| is the wave number and k is the
wave vector. In order to be able to observe both upscale
and downscale energy transfer, we force the simulations at
intermediate wave numbers, i.e., at length scales that are small
compared to the computational domain and large compared
to the smallest turbulent structure in the flow. The forcing
is spread around the forcing wave number k f over a wave
number interval ∼�k f . The complex forcing amplitude reads
a(k) = r(k) exp[iφ(k)2π ] where r(k) and φ(k) are random
vectors and numbers (for each k) in the interval [0,1]. At each
computational time step �t , a random number ξ ∈ [0, 1] is
drawn. If ξ < �t/t f , then r(k) and φ(k) are redrawn. This
process results in f having a correlation time of t f . The
prefactor Cf is chosen such that 〈 f · f 〉x = f0, where f0 is the
forcing amplitude and 〈·〉x is the space average.

Equation (1b) contains a high order viscous term (the
Laplacian is raised to the fourth power) with νs the corre-
sponding solvent hyperviscosity. This hyperviscous term is
used instead of the usual viscous stress in order to confine the
effect of viscosity to smaller scales. Equation (1b) contains an
inverse Laplacian with νl the large-scale friction coefficient.
This term is added to dissipate energy at the large scales, i.e.,
to prevent the upscale energy transfer (in 2D simulations) to
form vortices that reach the domain size. The νl is chosen
such that the effect of the large-scale friction is confined to
the largest scales.

Equation (1c) defines the polymer stress tensor σ, where νp

is the polymer viscosity at zero shear rate, λ is the polymer
relaxation time, δ is the unit tensor, s = [1 − tr(c)/b]−1 is
the nonlinear spring constant, b is the polymer extensibility
parameter, and c is the polymer conformation tensor which is
governed by Eq. (1d).

In Eq. (1d) κ is the polymer mass hyperdiffusivity and E =
1
2 (∇u + ∇uT ) is the rate of strain tensor. By fixing the mag-
nitude of κ ∼ �x4, the polymer diffusion term κ

√
E : E∇4c

suppresses the c modes with wavelengths that are comparable
or smaller than the grid spacing �x = L/N , with L the domain
size and N the number of grid points per dimension.
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Polymer mass diffusivity κ ensures that the numerical
scheme produces a smooth solution on the �x length scale.
Although, we show below that, polymer mass diffusivity con-
tributes to 15% of the energy dissipation at very large polymer
concentration, the method produces similar physical trends for
different grid resolutions and κ [8].

In Eqs. (1a), Newtonian turbulence (NT) is retrieved for
zero polymer concentration νp → 0 but also for polymers that
behave as passive material lines, i.e., λ → ∞ and b → ∞.

We numerically solve Eqs. (1) using Fourier transforms to
compute spatial derivatives [8]. Incompressibility [Eq. (1a)] is
satisfied by projecting the velocity field on a divergence-free
space. Time integration of Eq. (1b) is performed using the ex-
plicit, second order Runge-Kutta (RK) scheme with adaptive
time stepping. Time integration of Eq. (1d) is performed using
RK for the advection, rotation, and stretching terms while the
second-order, implicit Crank-Nicolson scheme is used for the
relaxation term λ−1(δ − sc) [17].

III. 2D SIMULATIONS

For the 2D simulations, we use a domain size L = 2π ,
number of grid points N2 = 2562, solvent hyperviscosity νs =
0.1�x8, large-scale friction coefficient νl = 0.1, polymer re-
laxation time λ = 20, polymer extensibility parameter b =
10, polymer mass hyperdiffusivity κ = �x4 for νp > 10−2

and κ = 10�x4 for νp < 10−2, forcing amplitude f0 = 10,
forcing wave number k f = 16, forcing wave number range
�k f = 4, forcing correlation time t f = 0.01, and we use dif-
ferent values of the polymer viscosity νp. In these simulations,
the Weissenberg number (based on the rms of the fluctuating
rate of strain tensor E) We = λ

√〈E : E〉x,t is between 102

and 103, with 〈·〉x,t the space-time average. To accumulate
accurate statistics, the 2D simulations were integrated to at
least 500 simulation time units.

In Fig. 1 we plot, at the latest time of the simulations, the
instantaneous fields of the inertial energy density 1

2 |u|2 and of
the elastic energy density − 1

2νpbλ−1 ln[1 − tr(c)/b] for two
different values of νp = 10−5 and νp = 1. For νp = 10−5 the
polymers are passively advected and have negligible effect on
the velocity field which is close to NT. In this case, most of the
inertial energy is contained at the large scales, as evidenced
by the large structures in Fig. 1(a). For νp = 1, on the other
hand, the behavior is referred to as elastoinertial turbulence
(EIT). In this case the inertial energy accumulates at the
forcing scale k ∼ k f . This is evidenced in Fig. 1(b), by the
spatial, inertial structures having length scales around L/k f ,
which is indicated by the red square. EIT is dominated by
elastoinertial shock waves, which were analyzed in detail in
Ref. [8]. Movies of these flow structures are provided in the
Supplemental Material [18].

Under statistically steady conditions, the governing equa-
tions of the inertial energy K = 1

2 〈|u|2〉x,t and the elastic
energy P = − 1

2νpbλ−1〈ln[1 − tr(c)/b]〉x,t are given by

0 = F + A − T − Ds − Dl , (2a)

0 = T + C − R − Dκ , (2b)

where F = 〈u · f 〉x,t is the injection rate of inertial en-
ergy, A = 1

2 〈∇ · u|u|2〉x,t is the advection of kinetic energy,

FIG. 1. Visualizations (white is large and black is small) of the
inertial energy density (a),(b) and elastic energy density (c),(d) for
nearly Newtonian turbulence (NT) with νp = 10−5 (a),(c) and elas-
toinertial turbulence (b),(d) with νp = 1 (right). The red square in
(b) corresponds to the forcing length scale L/k f .

Ds = νs〈∇u : ∇7u〉x,t is the viscous dissipation rate of K
at small scales, Dl = νl〈∇u : ∇−3u〉x,t is the dissipation
rate of K at large scales, T = 〈∇u : σ〉x,t is the elastoin-
ertial transformation between inertial and elastic energy,
C = − 1

2νpbλ−1〈∇ · u ln[1 − tr(c)/b]〉x,t is the advection of
elastic energy, R = 1

2λ−1〈tr(σ)[1 − tr(c)/b]−1〉x,t is the dis-
sipation rate of P through conformational diffusion, referred
to as polymer relaxation, and Dκ = 1

2νpλ
−1κ〈√E : E[1 −

tr(c)/b]−1∇4trc〉x,t is the dissipation rate of P through poly-
mer mass (hyper)diffusion. Note that A and C are zero but
their transfer spectra [shown in Figs. 3(c) and 3(d) and 5(c)
and 5(d) below] are not.

As opposed to Newtonian turbulence, K in polymer so-
lution turbulence is not conserved in the limit of νs → 0,
νl → 0, and f0 → 0. This is due to the elastoinertial trans-
formation T between K and P which can either go from K to
P when T > 0 or from P to K when T < 0. The local sign of
T depends on the alignment between the local polymer stress
and velocity gradient tensors. The total energy K + P is not
conserved either since the polymers dissipate energy through
polymer relaxation R.

In Fig. 2(a) we plot the inertial energy K and the elastic en-
ergy P normalized by the energy injection rate F , as functions
of νp. The figure shows a decrease and saturation of K/F with
νp and an expected linear increase of P/F with νp. It is noted
that F varies less than 10% with νp (not shown).

In Fig. 2(b) we plot the various terms in Eqs. (2) as func-
tions of νp. For NT (νp → 0), the energy injection F is mostly
transferred towards the large scales and is dissipated by Dl . As
νp increases, there is a suppression of dissipation at the large
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FIG. 2. (a) Inertial and elastic energy. (b) Energy budgets in
Eqs. (2).

scales Dl , which implies the suppression of the Newtonian
upscale inertial energy transfer.

For EIT (νp → 1), the suppression is complete, i.e., Dl →
0. In this case, the inertial energy K provided by F is
transformed into elastic energy P through elastoinertial trans-
formation T and P is subsequently dissipated, mainly through
polymer relaxation R. In addition, some portions of K and
P are dissipated at the small scales through (hyper)viscosity
Ds and through polymer mass (hyper)diffusivity Dκ . These
contributions indicate the downscale transfer of K and P,
respectively. For νp = 1, the dissipation through Ds and
Dκ contribute ∼10% and ∼20% to the overall dissipation,
respectively.

In Fig. 3 we compare several quantities in wave-number
space between nearly NT with νp = 10−5 and EIT with νp =
1. All variables in Fig. 3 are normalized by F .

In Fig. 3(a) we plot the spectrum EK (k) of the inertial
energy K and the spectrum EP(k) of the elastic energy P.

(a)

(c) (d)

(b)

FIG. 3. Comparison of several quantities in wave number k
(spectral) space between nearly Newtonian turbulence (NT) with
νp = 10−5 and elastoinertial turbulence (EIT) with νp = 1. All quan-
tities are normalized by F . The gray areas denote the range of wave
numbers that are forced, i.e., k f − �k f � k � k f + �k f . (a) Inertial
and elastic energy. (b) Elastoinertial transformation and polymer
relaxation. (c) Advective inertial and elastic energy transfer. (d) Ad-
vective total energy transfer. Quantities in (c) and (d) are divided by
k.

The exponents for the spectral slopes are only approximate
due to the relatively low resolution of the simulations. For
νp = 10−5, the elastic energy spectrum roughly scales like
EP(k) ∼ k for k � k f and EP(k) is somewhat steeper than k−3

for k � k f . For νp = 1, EP(k) ∼ k0 for k � k f and EP(k) ∼
k−3 for k � k f .

For νp = 10−5 the inertial energy spectrum roughly
follows the Kraichnan-Batchelor scaling laws [2,19], i.e.,
EK (k) ∼ k−5/3 for k � k f and EK (k) ∼ k−3 for k � k f . For
νp = 1, the upscale inertial energy transfer is suppressed
[Dl → 0 in Fig. 2(b)] and EK (k) has a peak at k ∼ k f .
This entails that the length scales of the dominant inertial
structures are set by the forcing which is also observed in
Fig. 1(b). Moreover, for νp = 1, EK (k) for k � k f changes
from EK (k) ∼ k−5/3 to EK (k) ∼ k, which is related to the
polymer induced suppression of the upscale inertial energy
transfer [Dl → 0 in Fig. 2(b)].

In Fig. 3(b) we plot the spectra ET (k) of the elastoinertial
transformation T and the spectra ER(k) of the polymer relax-
ation R. For νp = 10−5, ET (k) is predominantly positive, i.e.,
polymers extract energy from K . For νp = 1, large positive
values of ET (k) are concentrated around k ∼ k f while ET (k)
takes small negative values for wave numbers away from k ∼
k f . For k � k f , ET (k) is of the order of 10−4. This suggests
that the large scales of the velocity field are not affected by
elastoinertial transformation T .

For both νp = 10−5 and νp = 1, ER(k) follows the shape
of EP(k) [Fig. 3(a)], which has a (mild) peak at k ∼ k f .
The similarity between chain relaxation ER(k) and elastic
energy EP(k) follows from the b → ∞ limit of the definitions
of P ∼ trc and R ∼ trσ ∼ trc, given above. This similarity
ER(k) ∼ EP(k) suggests that the EIT energy dissipation is ef-
fective on all the scales of the energy spectrum. This explains
that 2D EIT does not cascade energy to the large dissipative
scales. The situation is in stark contrast to the 2D Newtonian
turbulence simulation where the dissipation due to the inverse
viscous stress scales inversely with the wave number EDl (k) ∼
k−2EK (k) and the energy is transferred from the forcing scale
to the large dissipative scales.

To further study the nature of interscale energy transfer, we
plot in Fig. 3(c) the spectral advective flux of inertial energy
�A(k) and that of elastic energy �C (k):

�A = 1
2 Re〈ik · ûû · u∗〉t,k, (3a)

�C = − 1
2νpbλ−1Re〈ik · û ̂ln [1 − tr(c)/b]

∗〉t,k . (3b)

Here i = √−1 is the imaginary unit, ·̂ is the spatial Fourier
transform, ·∗ is the complex conjugate, Re is the real part, and
〈v〉t,k = ∫

|k′|�k〈v(k′)〉t d2k′ is an integral in wave-vector space
of the time average 〈v〉t of a variable v. Positive and negative
values correspond to downscale and upscale energy fluxes,
respectively. Downscale transport is predominantly confined
to k � k f , while upscale transport is predominantly confined
to k � k f .

Figure 3(c) shows that the elastic energy is transferred
downscale, i.e., �C (k) > 0 predominantly for k � k f and the
transfer rate increases with νp. Inertial energy, on the other
hand, is transferred upscale for νp = 10−5, i.e., �A(k) < 0
predominantly for k � k f .
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The magnitude of �A(k) decreases with νp and eventually
�A(k) changes from upscale to downscale, i.e., �A(k) > 0
for k � k f . For νp = 1, there is negligible �A(k) in the large
scales k � k f , which is consistent with Dl → 0 in Fig. 2(b).
Negligible Dl [Fig. 2(b)], negligible ET (k) [Fig. 3(b)], and
negligible �K [Fig. 3(c)] suggest that EK is in absolute
equilibrium for k � k f and follows the 2D Euler spectrum
EK ∼ k which is approximately observed in Fig. 3(a); see also
Refs. [20,21].

In Fig. 3(d), we plot the spectral transfer of the total en-
ergy due to advection �A(k) + �C (k). For νp = 10−5, the
advective transfer �A(k) + �C (k) is dominated by the up-
scale transfer of inertial energy �A(k) < 0 for k � k f . For
νp = 1 the advective transfer �A(k) + �C (k) is dominated
by the downscale transfer of elastic energy �C (k) > 0 for
k � k f .

Note that the (spectral) energy balances are dominated by
large-scale friction for νp = 10−5 and by polymer relaxation
for νp = 1, while the advective terms only contribute to about
1% of the (spectral) energy balances, in both cases. This is
reflected by the relatively small values for �A(k) + �C (k) in
Fig. 3(d).

IV. 3D SIMULATIONS

Next we study the spectral energy transfer in three dimen-
sions. To this end, we have conducted one simulation of NT
with polymer viscosity νp = 10−5 and one simulation of EIT
with νp = 1. Parameters are the same as for the 2D simula-
tions, except for the number of grid points N3 = 1283, the
forcing wave number k f = 12, and the forcing wave-number
range �k f = 2. The 3D simulations are run for 60 time units
to reach a statistically steady state and statistics are collected
between 60 < t < 70.

As shown in Table I, we find that NT dissipates all its
energy through small-scale viscosity Ds/F = 1, and to a neg-
ligible extent through large-scale viscosity Dl/F = 1 × 10−3,
polymer chain relaxation R/F = 6 × 10−4, and polymer mass
diffusion Dκ/F = 1 × 10−4. This confirms that, in 3D NT,
energy is transferred to small scales where it is dissipated.
EIT, on the other hand, dissipates its energy mainly through
polymer chain relaxation R/F = 0.83 and to a lesser extent
through polymer mass diffusion Dκ/F = 0.15 and small-scale
viscosity Ds/F = 5 × 10−2, and to a negligible extent through
large-scale viscosity Dl/F = 3 × 10−4. This suggests that

TABLE I. Statistics of the 3D simulations. Quantities are defined
below Eq. (2).

RUN NT EIT

νp 10−5 1
K/F 1.4 0.44
P/F 9.5 × 10−6 0.51
Dl/F 1.0 × 10−3 3.4 × 10−4

Ds/F 1.0 5.4 × 10−2

Dκ/F 1.0 × 10−4 0.15
R/F 5.5 × 10−4 0.83
T/F 6.5 × 10−4 0.94

FIG. 4. Visualization of the vorticity component normal to the
visualization plane at t = 70 for NT (a) and EIT (b). The red square
in (b) corresponds to the forcing length scale L/k f .

in 3D EIT energy is mainly dissipated at the forcing scale
through R, while a small fraction of energy is transported to
small scales and dissipated through Dκ + Ds while an even
smaller fraction is transported to large scales and dissipated
through Dl .

Figure 4 shows contour plots of the vorticity component
normal to the visualization plane at t = 70. Figure 4(a) shows
that in 3D NT the vorticity is concentrated at the small scales,
which is in accordance with the notion that in 3D NT, energy
is transported from the forcing scale to the small scales, where
it is dissipated. In 3D EIT, on the other hand, the dominant
vorticity length scale coincides with the forcing scale L/k f ,
which is indicated by the red square in Fig. 4(b). This sug-
gests that the spectral energy transfer is weakened, which is
consistent with the finding in Table I that small-scale energy
dissipation by viscosity is weakened in 3D EIT.

Figure 5(a) shows the spectrum of the inertial energy EK

and that of the elastic energy EP. Compared to NT the inertial
energy is smaller in EIT. In addition, the peak of EK at k f

is more pronounced in EIT than in NT, which supports a
weakened energy transport to small scales. This is further
supported by the more negative slope of EK for k > k f .

Figure 5(b) shows the spectrum of the dissipation due to
polymer relaxation ER and that of elastoinertial transformation
ET . In NT inertial energy is transformed into elastic energy
ET > 0 over the entire wave-number range. For EIT this
transformation only occurs at k ∼ k f while the transformation
is in the opposite direction ET < 0 away from k f . For both
NT and EIT, the spectra of polymer relaxation ER follow that
of the elastic energy EP [Fig. 5(a)], i.e., they are evenly dis-
tributed over the entire wave-number range, with a mild peak
at k ∼ k f . This spectral dissipation behavior is fundamentally
different to that by mass or momentum diffusion, which are
concentrated at large wave numbers (not shown).

Figure 5(c) shows the spectral advective flux of inertial
energy �A(k) and that of elastic energy �C (k) [Eqs. (3)]. The
energy flux in NT is dominated by �A(k) while that in EIT
is dominated by �C (k). In NT, the inertial flux is downscale
�A > 0 for the entire wave-number range, while the elastic
flux is upscale �C < 0 for k > k f and downscale �C > 0 for
k < k f . In EIT, we remarkably find that the inertial flux is
upscale �A < 0 for k > k f and downscale �A > 0 for k < k f ,
while the elastic flux is upscale �C < 0 for the entire wave-
number range.
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FIG. 5. Comparison of several quantities in wave number k
(spectral) space between Newtonian turbulence (NT) with νp = 10−5

and elastoinertial turbulence (EIT) with νp = 1. All quantities are
normalized by F . The gray areas denote the range of wave numbers
that are forced, i.e., k f − �k f � k � k f + �k f . (a) Inertial energy
EK and elastic energy EP. (b) Elastoinertial transformation ET and
dissipation by polymer relaxation ER. (c) Advective inertial energy
transfer �A and advective elastic energy transfer �C . (d) Advective
total energy transfer �A + �C . Quantities in (c) and (d) are scaled
by k2.

Figure 5(d) shows the spectral transfer due to advection of
the total (inertial and elastic) energy �A(k) + �C (k). Com-

pared to NT, the energy flux in EIT is one order of magnitude
smaller for k ∼ k f , and the direction is reversed from down-
scale to upscale over the entire wave-number range.

It is therefore concluded that, similar as in 2D, the energy
in 3D EIT is predominantly dissipated by polymer chain relax-
ation which is broadly distributed spectrally, i.e., not confined
to the small dissipation scales. Furthermore, similar as in 2D,
the spectral energy transfer in 3D EIT is weakened. In contrast
to 2D however, the direction of the spectral transfer changes
from forward in 3D NT to weakly backward in 3D EIT.

V. CONCLUSION

We have simulated isotropically forced 2D and 3D turbu-
lent polymer solutions using the FENE-P model. For large
polymer concentrations, the energy is predominantly dissi-
pated by polymer chain relaxation. In contrast to Newtonian
dissipation which in 2D and in 3D acts at the large and small
scales, respectively, this polymer dissipation mechanism acts
on all scales and does not involve an energy cascade from the
forcing scale to these so-called dissipative scales. In accor-
dance to this, the interscale energy transfer is weakened.

ACKNOWLEDGMENTS

We acknowledge the Engineering and Physical Sciences
Research Council of the United Kingdom for financial support
through Grant No. EP/N024915/1 and Vassilios Dallas for
suggesting to simulate EIT with intermediate scale forcing.

[1] A. Kolmogorov, The local structure of turbulence in incom-
pressible viscous fluid for very large Reynolds’ numbers, Akad.
Nauk SSSR Dokl. 30, 301 (1941).

[2] R. H. Kraichnan, Inertial ranges in two-dimensional turbulence,
Phys. Fluids 10, 1417 (1967).

[3] P. C. Valente, C. B. da Silva, and F. T. Pinho, Energy spectra in
elasto-inertial turbulence, Phys. Fluids 28, 075108 (2016).

[4] J. M. J. Den Toonder, M. A. Hulsen, G. D. C. Kuiken, and
F. T. M. Nieuwstadt, Drag reduction by polymer additives in
a turbulent pipe flow: Numerical and laboratory experiments,
J. Fluid Mech. 337, 193 (1997).

[5] Eric van Doorn, Christopher M. White, and K. R. Sreenivasan,
The decay of grid turbulence in polymer and surfactant solu-
tions, Phys. Fluids 11, 2387 (1999).

[6] E. De Angelis, C. M. Casciola, R. Benzi, and R. Piva, Homo-
geneous isotropic turbulence in dilute polymers, J. Fluid Mech.
531, 1 (2005).

[7] Anupam Gupta, Prasad Perlekar, and Rahul Pandit, Two-
dimensional homogeneous isotropic fluid turbulence with
polymer additives, Phys. Rev. E 91, 033013 (2015).

[8] J. J. J. Gillissen, Two-Dimensional Decaying Elastoinertial Tur-
bulence, Phys. Rev. Lett. 123, 144502 (2019).

[9] G. Boffetta, A. Celani, and S. Musacchio, Two-Dimensional
Turbulence of Dilute Polymer Solutions, Phys. Rev. Lett. 91,
034501 (2003).

[10] H. Kellay, Polymers suppress the inverse transfers of energy and
the enstrophy flux fluctuations in two-dimensional turbulence,
Phys. Rev. E 70, 036310 (2004).

[11] Y. Jun, J. Zhang, and X.-L. Wu, Polymer Effects on Small- and
Large-Scale Two-Dimensional Turbulence, Phys. Rev. Lett. 96,
024502 (2006).

[12] P. S. Virk, Drag reduction fundamentals, AIChE J. 21, 625
(1975).

[13] D. Samanta, Y. Dubief, M. Holzner, C. Schäfer, A. N. Morozov,
C. Wagner, and B. Hof, Elasto-inertial turbulence, Proc. Natl.
Acad. Sci. USA 110, 10557 (2013).

[14] G. H Choueiri, J. M. Lopez, and B. Hof, Exceeding the Asymp-
totic Limit of Polymer Drag Reduction, Phys. Rev. Lett. 120,
124501 (2018).

[15] Jose M. Lopez, George H. Choueiri, and Björn Hof, Dy-
namics of viscoelastic pipe flow at low Reynolds numbers in
the maximum drag reduction limit, J. Fluid Mech. 874, 699
(2019).

[16] R. Byron Bird, Robert C. Armstrong, and Ole Hassager, Dy-
namics of Polymeric Liquids (Wiley, New York, 1987).

[17] P. K. Ptasinski, B. J. Boersma, F. T. M. Nieuwstadt, M. A.
Hulsen, B. H. A. A. Van den Brule, and J. C. R. Hunt,
Turbulent channel flow near maximum drag reduction: Simu-
lations, experiments and mechanisms, J. Fluid Mech. 490, 251
(2003).

063108-5

https://doi.org/10.1063/1.1762301
https://doi.org/10.1063/1.4955102
https://doi.org/10.1017/S0022112097004850
https://doi.org/10.1063/1.870100
https://doi.org/10.1017/S0022112005003666
https://doi.org/10.1103/PhysRevE.91.033013
https://doi.org/10.1103/PhysRevLett.123.144502
https://doi.org/10.1103/PhysRevLett.91.034501
https://doi.org/10.1103/PhysRevE.70.036310
https://doi.org/10.1103/PhysRevLett.96.024502
https://doi.org/10.1002/aic.690210402
https://doi.org/10.1073/pnas.1219666110
https://doi.org/10.1103/PhysRevLett.120.124501
https://doi.org/10.1017/jfm.2019.486
https://doi.org/10.1017/S0022112003005305


J. J. J. GILLISSEN PHYSICAL REVIEW E 103, 063108 (2021)

[18] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.103.063108 for a movie of the flow struc-
tures in Newtonian turbulence and in elastoinertial turbulence.

[19] George K. Batchelor, Computation of the energy spectrum in
homogeneous two-dimensional turbulence, Phys. Fluids 12, II–
233 (1969).

[20] Vassilios Dallas, Stephan Fauve, and Alexandros Alexakis,
Statistical Equilibria of Large Scales in Dissipative Hy-
drodynamic Turbulence, Phys. Rev. Lett. 115, 204501
(2015).

[21] Moritz Linkmann and Vassilios Dallas, Large-scale dynamics
of magnetic helicity, Phys. Rev. E 94, 053209 (2016).

063108-6

http://link.aps.org/supplemental/10.1103/PhysRevE.103.063108
https://doi.org/10.1063/1.1692443
https://doi.org/10.1103/PhysRevLett.115.204501
https://doi.org/10.1103/PhysRevE.94.053209

