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Mode-coupling approach to near-cuspidal patterns in planar fluid flows
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We investigate the evolution of the interface separating two Newtonian fluids of different viscosities in
two-dimensional Stokes flow driven by suction or injection. A second-order, mode-coupling theory is used to
explore key morphological aspects of the emerging interfacial patterns in the stage of the flow that bridges
the purely linear and fully nonlinear regimes. In the linear regime, our analysis reveals that an injection-driven
expanding interface is stable, while a contracting motion driven by suction is unstable. Moreover, we find that
the linear growth rate associated with this suction-driven instability is independent of the viscosity contrast
between the fluids. However, second-order results tell a different story, and show that the viscosity contrast is
crucial in determining the morphology of the interface. Our theoretical description is applicable to the entire
range of viscosity contrasts, and provides insights on the formation of near-cusp pattern-forming structures.
Reproduction of fully nonlinear, n-fold symmetric near-cuspidal shapes previously obtained through conformal
mapping techniques substantiates the validity of our mode-coupling approach.
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I. INTRODUCTION

Complex pattern formation flourishes in nature and has
been vigorously investigated in a number of physical, chem-
ical, and biological systems [1–3]. In this broad field of
scientific research, one chief point of interest is to try to
understand the morphology of the patterns that emerge at
the interface separating two different phases. In particular,
the development of interfacial instabilities and patterns is an
appealing problem in fluid dynamics. The study of pattern-
forming structures arising in systems such as Taylor-Couette
flow [4], Rayleigh-Bénard convection [5], and Rayleigh-
Taylor instability [6] has motivated numerous experimental
and theoretical works.

An important example of interfacial pattern formation in
fluid systems is the Saffman-Taylor (or viscous fingering)
problem [7], which occurs when a fluid displaces another
of higher viscosity between the narrowly spaced plates of a
Hele-Shaw cell [8]. Typical experimental demonstrations of
this instability [9–17] involve the injection or suction of a
fluid at the center of a Hele-Shaw. In those experiments, the
fluid-fluid interface expands (or shrinks) radially and finger-
like deformations begin to develop. The dynamic evolution
of the viscous fingers is described by an effectively two-
dimensional (2D), gap-averaged Darcy’s law, which connects
the fluid velocity to the pressure gradient. A linear stability
analysis of the interface evolution equations reveals that the
occurrence of Saffman-Taylor instability is highly dependent
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on the viscosity contrast

A = η2 − η1

η2 + η1
, (1)

where η2 (η1) denotes the viscosity of the outer (inner)
fluid, and −1 � A � 1. In particular, it is found that for the
Saffman-Taylor problem under injection (suction), the inter-
face is unstable only for A > 0 (A < 0).

Curiously, the equivalent injection and suction pattern-
forming problems for 2D Stokes flow have received less
attention [18–24]. A possible reason for this is the practical
difficulty to implement a legitimate 2D Stokes flow exper-
imentally. However, there are some interesting theoretical
findings on the development of interfacial instabilities in 2D
Stokes flow. Analytical and numerical solutions of the time-
evolving 2D Stokes flow problem based on complex variable
methods [18–24] show that an injection-driven expanding
bubble (bubble of negligible viscosity displacing a viscous
outer fluid) is stable. It has been found that a growing bubble
will approach an expanding circle for later times. On the other
hand, it has been shown that a suction-driven, contracting
circular bubble is unstable to disturbances. These observations
are true both in the presence, or (even) in the absence of sur-
face tension. In the absence of surface tension, the solutions
for the interface under suction will in general break down in a
finite time, owing to the formation of cusp singularities on the
bubble surface. In contrast, suction of a bubble under finite
surface tension sets a timescale for which narrow structures
(known as “almost-cups” or “near-cusps”) can develop. The
greater the surface tension, the later the near-cusp will ap-
pear. Analogous results have been observed in Refs. [21,22]
for the suction of a blob of viscous fluid surrounded by
an outer fluid of negligible viscosity under 2D Stokes flow
circumstances. The analytical and numerical results obtained
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in Refs. [18–24] for the suction flow cases in which A = 1
(bubble) and A = −1 (blob) reveal the development of fully
nonlinear, very orderly interface shapes consisting of perfectly
symmetric n-fold patterns, where the edges meet in sharp,
near-cusp fingered protrusions having equal lengths.

The most striking results achieved in Refs. [18–24] for
2D Stokes flow are not those related to the surface tension,
but the ones pertaining the effects of the viscosity contrast.
Although the complex variable calculations carried out in
Refs. [18–22] are limited to extreme values of the viscosity
contrast (i.e., A = 1 for the bubble problem, and A = −1
for the blob situation), their results demonstrate that, as op-
posed to the Saffman-Taylor case, the 2D Stokes instability
for suction occurs independently of the sign of the viscosity
contrast A between the fluids. Similar findings have also been
obtained in the linear stability analyses of the 2D Stokes flow
for suction performed in Refs. [22–24]. As a matter of fact,
the analytical linear stability theory developed in Refs. [23,24]
considers a whole range of values for the viscosity contrast
(i.e., −1 � A � 1) but found that the linear dispersion relation
(linear growth rate) is independent of the sign and magnitude
of A. This is in stark contrast to what happens in the usual
viscous fingering problem with suction [9] where the viscos-
ity contrast plays a very important role already in the linear
regime. As explained in Ref. [23] the destabilizing mechanism
for suction in 2D Stokes flow has a purely kinematic origin: it
is simply due to the radial variation of the inward base flow,
which amplifies any inward bump.

In recent years, the rapid development of microfluidics
[25], superhydrophobic surfaces [26], and interesting dynam-
ical experiments in inhomogeneous lipid membranes [24]
brought renewed interest in the theory and experiments of
2D Stokes flows [27,28]. In fact, it has been shown that the
study of interfacial phenomena in 2D Stokes flow could shed
light on the modeling of some practical applications involv-
ing the interplay of hydrodynamic and elastic forces in 2D
systems, used to study the shape evolution of 2D capsules
and vesicles in Stokes flow [29–32], and the growth of tu-
mors [33,34]. One particularly interesting set of works on 2D
Stokes flow has been recently published [35–37], wherein the
authors designed an apparatus allowing a thin and uniform
layer of viscous fluid to propagate between two tractionless
surfaces. Owing to the absence of wall friction, the flow is
vertically uniform and satisfies a radial planar Stokes flow.
By conducting advanced time experiments [35] and linear
stability theory [36] in this geometry, the authors showed that
the interface between a (non-Newtonian) shear-thinning fluid
displacing a lower-viscosity fluid can become unstable, re-
vealing the formation of fingers exhibiting rectangular-shaped
tips. The planar problem studied in Refs. [35,36] has been ex-
tended to a curved geometry environment in Ref. [37] where
a similar 2D Stokes flow has been examined on the surface
of a sphere. Moreover, as stated in Refs. [35–37], the 2D
Stokes flow configuration they study is similar to flow in a
Hele-Shaw apparatus, but with no-stress instead of no-slip
boundary conditions along the plates of the cell. In addition, it
was suggested in Ref. [37] that another way to experimentally
realize a 2D Stokes flow with injection and suction is by
using a Hele-Shaw setup formed by two superhydrophobic
surfaces. This opens up the possibility to perform realistic

FIG. 1. A schematic of the 2D Stokes flow problem with (a) in-
jection (Q > 0) and (b) suction (Q < 0), where Q is the areal rate.
The outer (inner) fluid has viscosity η2 (η1). The time-dependent un-
perturbed fluid-fluid interface radius is represented by R(t ), and the
interface perturbation is denoted by ζ (θ, t ), where θ is the azimuthal
angle.

2D Stokes flow experiments using the well-known and vastly
utilized Hele-Shaw cells, which certainly could help with the
resurgence of practical interest in 2D Stokes flow.

Motivated by the new possibilities regarding experimental
realizations of the 2D Stokes flow, and by the prospects of
using it as a theoretical tool to examine a diverse spectrum
of systems, in this work, we develop the weakly nonlinear
analysis of the 2D Stokes flow with injection and suction. As
we have already pointed out, existing analytical and numerical
treatments of the problem describe the early and late time
stages of the fluid-fluid interface, in the zero and small surface
tension limits, mostly using conformal mapping techniques,
or by employing boundary integral formulations. In addition,
the majority of these studies focus on the cases in which
the viscosity contrast is either A = −1 or A = 1, and just a
few works address the effect of A (with −1 � A � 1) but
are limited to the purely linear regime. Conversely, our work
studies the intermediate stage between the linear and the fully
nonlinear ones, focusing especially on the onset of nonlinear
effects. Our approach applies to any value of surface tension
and A, and gives insight into the mechanisms of cuspidal pat-
tern formation in 2D Stokes flow. The linear stability analyses
performed in Refs. [23,24,36] apply only to very early stages
of the flow and do not offer ways to predict the morpholog-
ical aspects of the essential cusp and near-cusp phenomena
detected in later stages of the 2D Stokes flow. Here we show
that a perturbative, second-order mode-coupling theory is able
to address some of these issues and to investigate the role of A
on the cusp-like shapes, an analysis which was not performed
in previous studies. Comparison of our weakly nonlinear find-
ings with fully nonlinear, highly symmetric pattern-forming
structures previously obtained in Refs. [18,19,21,22] via con-
formal mapping techniques substantiates the validity of our
perturbative mode-coupling approach.

II. BASIC EQUATIONS AND THE
MODE-COUPLING APPROACH

Consider the 2D flow of a two-fluid system where an inner
fluid 1 is surrounded by an outer fluid 2 (see Fig. 1). These
fluids are viscous, Newtonian, immiscible, and incompress-
ible. Note that the domain of fluid 2 is unbounded, extending
to infinity in all directions, and the initial domain of fluid 1 is
a circle of radius R0 centered at the origin of the coordinate
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system. Fluid 1 can be injected or sucked at the origin with
a constant areal rate Q (area covered per unit time), which
induces a radial flow. The cases of a single point source
(Q > 0) and sink (Q < 0) correspond to injecting or sucking,
respectively. In this framing, fluid flow is governed by the
incompressible Stokes equations [38,39]

∇p j = η j∇2u j (2)

and

∇ · u j = 0, (3)

wherein η j , p j and u j denote the viscosity, pressure, and
velocity fields of fluid j, with j = 1(2) labels the inner (outer)
fluid. Equation (2) is derived from the Navier-Stokes equation
if one omits inertial terms (low Reynolds number limit), while
Eq. (3) expresses the incompressibility of the fluids. Addi-
tionally, we assume that the interface between the fluids has
a constant surface tension σ .

We parametrize the fluid-fluid interface by r = R(θ, t ),
where (r, θ ) are the usual polar coordinates centered at the
injection (or suction) point, and define the unit normal and
tangent vectors to the interface as

n̂ = Rr̂ − ∂R
∂θ

θ̂[
R2 + (

∂R
∂θ

)2
]1/2 , t̂ =

∂R
∂θ

r̂ + Rθ̂[
R2 + (

∂R
∂θ

)2
]1/2 , (4)

where r̂ (θ̂) is the unit vector along the radial (azimuthal)
direction. At the interface, we adopt the usual boundary con-
ditions for 2D Stokes flow [18,23,38,39], for which velocity
is continuous

u1 = u2, (5)

where u j = ur, j r̂ + uθ, j θ̂. The dynamic condition on the inter-
face is obtained by considering the stress balance between the
two fluids in both the normal and tangential directions. The
balance equation of tangential stress is given by

n̂ · (π1 − π2)|R · t̂ = 0, (6)

establishing the continuity of the shear stress. In addition, the
normal stress balance equation gives

n̂ · (π1 − π2)|R · n̂ = −σκ, (7)

ensuring that the jump in the normal stress across the interface
equals the product of the surface tension σ and the curva-
ture of the interface κ . Since both fluids are assumed to be
Newtonian, the stresses are related to pressure and velocity as
[38,39]

π j = −p jI + η j
[∇u j + (∇u j )

T
]
, (8)

where I is the identity matrix, and the superscript T denotes
a matrix transpose. Moreover, since the interface is free, we
impose a kinematic velocity condition relating the normal
velocity on the interface to the interfacial deformation [12,18]

∂R
∂t

=
(

ur, j − 1

r

∂R
∂θ

uθ, j

)
r=R

. (9)

Equation (9) expresses the fact that the normal velocity of a
point on the interface is equal to the normal component of
fluid velocity at that point. It is based on the assumption that

the fluid-fluid boundary moves along with the fluid particles,
coupling the motion of the interface to the motion of the bulk
fluids.

During the injection or suction process, the initially unper-
turbed, circular interface can become unstable, and deform,
due to the interplay of viscous and capillary forces. Within the
scope of our perturbative mode-coupling scheme, we write the
perturbed interface as R(θ, t ) = R(t ) + ζ (θ, t ), where

R(t ) =
√

R2
0 + Q

π
t (10)

is the time-dependent radius of the unperturbed interface,
where R(t = 0) = R0. In addition, the net interface perturba-
tion is Fourier expanded as

ζ (θ, t ) =
∞∑

n=−∞
ζn(t ) exp (inθ ), (11)

where ζn(t ) stands for the complex Fourier perturbation
amplitudes, with integer wave numbers n. Note that our per-
turbative weakly nonlinear approach requires that |ζ (θ, t )| �
R(t ). To ensure global mass conservation, the zeroth term of
Eq. (11) is written in terms of the other modes as

ζ0(t ) = − 1

R

∑
n �=0

|ζn(t )|2. (12)

Note that the mode n = 0 corresponds to a dilation of a circu-
lar interface. It is also worth noting that in our 2D Stokes flow
problem, there are some subtleties related to the Stokes para-
dox [40,41] for modes n = ±1. However, the modes n = ±1
correspond only to a translation (or, global off-center shift) of
a circular interface, and since we focus on pattern formation
of perturbed n-fold symmetric (noncircular) interfaces, this
fact does not affect the generality of our problem. We stress
that throughout this work our analysis is valid only for modes
n �= 0,±1. Notice that this very same restriction on these
mode numbers (i.e., |n| � 2) has been adopted in previous
theoretical studies of the 2D Stokes flow problem [23,24].

Keep in mind that in this work we focus on the weakly
nonlinear dynamic regime, and include terms up to second
order in ζ . Existing linear stability analyses of the 2D Stokes
flow problem [23,24,36] included only linear terms in ζ .
Therefore, within such a linear approximation the Fourier
modes decouple, so in the end the perturbation is restricted
to a single mode. In contrast, our second-order weakly non-
linear approach considers the coupling of a full spectrum of
Fourier modes. Although we are only at second order, mode
interaction makes a big difference, allowing one to get useful
information about the pattern’s morphologies already at the
lowest nonlinear level. In fact, the inclusion of the second-
order perturbative terms is essential to properly capture and
describe the underlying fingering process, in particular the
emergence of the near-cusp structures [18–22]. Therefore,
in this section, our primary aim is to derive a system of
mode-coupling differential equations that describe the time
evolution of the interfacial amplitudes ζn(t ).

In our 2D Stokes flow problem, the base state corresponds
to an expanding or retracting circular interface of radius given
by Eq. (10), such that the associated velocity fields are just a
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source or sink

u(0)
j = Q

2πr
r̂, (13)

where the superscript (0) denotes a base state solution. From
Eqs. (2) and (3) we obtain that the base state pressures in the
fluids are uniform and given by

p(0)
1 = σ

1

R
+ (η2 − η1)Q

πR2
, p(0)

2 = 0. (14)

To obtain the velocities and pressures related to the per-
turbed interface evolution, as we did in Eq. (11) for the
interface perturbation amplitudes, we need to write Fourier
expansions for the pressure and velocity fields. In this way,
we expand the pressure fields as

p j = p(0)
j +

∑
n �=0,±1

p̃n, j (r, t ) exp (inθ ), (15)

the radial velocity fields as

ur, j = Q

2πr
+

∑
n �=0,±1

b̃n, j (r, t ) exp (inθ ), (16)

and the azimuthal velocity fields as

uθ, j =
∑

n �=0,±1

c̃n, j (r, t ) exp (inθ ). (17)

In the search for the mode-coupling equations for ζn(t ),
we proceed by taking the divergence of Eq. (2) and applying
Eq. (3), to find that the pressure is harmonic

∇2 p j = 0. (18)

Substituting the pressure expansion (15) into Laplace’s equa-
tion (18), and Fourier transforming, yields

p̃n, j = pn, j

( r

R

)(−1) j+1|n|
, (19)

where pn, j are yet undetermined coefficients.
To determine the radial velocity Fourier amplitudes appear-

ing in Eq. (16), we substitute Eq. (15) and Eq. (19) back
into the radial component of Eq. (2), and take the Fourier
transform, arriving at

d2b̃n, j

dr2
+ 3

r

db̃n, j

dr
+ (1 − n2)

r2
b̃n, j = (−1) j+1 |n|

R

pj,n

η j

( r

R

)(−1) j+1|n|−1
. (20)

The solution of the above equation is

b̃n, j = |n|
|n| + (−1) j+1

pn, jR

4η j

( r

R

)(−1) j+1|n|+1
+ bn, j

( r

R

)(−1) j+1|n|−1
. (21)

Note that Eq. (21) is constituted by an inhomogeneous part, proportional to the pressure coefficients, and by a homogeneous part
which depends on additional, yet undetermined, coefficients bn, j .

To obtain the azimuthal velocity Fourier amplitudes in Eq. (17), we substitute Eq. (16) and Eq. (21) into the incompressibility
condition [Eq. (3)], to get

c̃n, j = i
(−1) j+1|n| + 2

n

|n|
|n| + (−1) j+1

pn, jR

4η j

( r

R

)(−1) j+1|n|+1
+ i

(−1) j+1|n|
n

bn, j

( r

R

)(−1) j+1|n|−1
. (22)

For each Fourier mode n (n �= 0,±1), we must obtain four coefficients pn,1, pn,2, bn,1 and bn,2. To do that, we expand the
boundary conditions given by Eqs. (5)–(7), the normal and tangent unit vectors in Eq. (4), retaining terms up to order ζ 2,

n̂ ≈
(

1 − 1

2

ζ 2
θ

R2

)
r̂ − ζθ

R

(
1 − ζ

R

)
θ̂ t̂ ≈ ζθ

R

(
1 − ζ

R

)
r̂ +

(
1 − 1

2

ζ 2
θ

R2

)
θ̂, (23)

and do the same for the curvature appearing in (7),

κ = ∇ · n̂ ≈ 1

R
− 1

R2
(ζ + ζθθ ) + 1

R3

(
ζ 2 + 1

2
ζ 2
θ + 2ζ ζθθ

)
. (24)

Plugging Eqs. (15), (16), (17), (19), (21), and (22) into the boundary conditions, consistently expanding the equations up to
the second order in ζ using Eqs. (23) and (24), and Fourier transforming, we arrive at an algebraic problem for the unknown
coefficients. The considerably long expressions for the coefficients pn,1, pn,2, bn,1, and bn,2 are presented in the Appendix. By
substituting these resulting expressions for the coefficients into the kinematic boundary condition [Eq. (9)], we finally obtain the
equation of motion for the perturbation amplitudes (for n �= 0,±1)

ζ̇n = λ(n)ζn +
∑

n′ �=0,±1

T (n, n′)ζn′ζn−n′ , (25)

where the overdot represents a total time derivative, and

λ(n) = −
[

Q

2πR2
+ σ

2(η1 + η2)R
|n|

]
(26)
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denotes the linear growth rate. We note that the expression λ(n) agrees with the linear dispersion relation in Refs. [23,24,36]
within their respective regimes of validity. In addition, the second-order mode-coupling term is given by

T (n, n′) = −1

2

(
Q

πR3
{A|n|sgn[n′(n − n′)] − 1} − σ

2(η1 + η2)R2
{|n′| + |n − n′| − |n|sgn[n′(n − n′)]}

)
, (27)

with the sign function sgn being equal to ±1 according to the
sign of its argument. We note that the expression λ(n) agrees
with the linear dispersion relation in Refs. [23,24], when the
latter is restricted to compressible fluids. Moreover, it also
agrees with the results presented in Refs. [36] for Newtonian
fluids in the absence of surface tension.

Equation (25), which is a central result of this work, is
the mode-coupling equation of the 2D Stokes problem for
injection and suction. This theoretical result contrasts with
most findings obtained by previous analytical studies of the
2D Stokes flow with suction and injection which focused
on investigating the problem via linear stability analysis
[23,24,36]. The advantage of our weakly nonlinear approach
over these previously reported linear studies is the possibility
to assess intrinsically nonlinear interfacial behaviors related
to the formation of the important near-cusp fingering struc-
tures, already at the lowest nonlinear order. Ordinarily, the
study of such cusplike fingers has been performed at fully
nonlinear dynamical stages of the evolution via conformal
mapping and numerical simulations [18–22]. Another benefit
of our weakly nonlinear approach is that, as opposed to these
complex-variable-based numerical studies, our results are not
restricted to the cases in which A = ±1, but can actually
explore the whole range of allowed values of the viscosity
contrast, i.e., −1 � A � 1. As a result, we can examine how A
influences the overall shape of the cuspidal interfacial patterns
in 2D Stokes flow. All these relevant issues will be discussed
in Sec. III.

III. DISCUSSION

Prior to addressing the nonlinear aspects of the 2D Stokes
problem under injection and suction which are related to the
morphology of the pattern-forming structures, for the sake of
clarity in Sec. III A we succinctly analyze certain fundamental
features of the linear theory. This analysis is informative, and
also useful for our subsequent weakly nonlinear investigation
which is the main focus of our work, and will be performed in
Secs. III B and III C.

A. Linear regime

We begin by discussing the linear growth rate expression
given by Eq. (26). By inspecting the second term on the
right-hand side of Eq. (26), one can readily see that, as usual,
surface tension tends to stabilize interface disturbances. On
the other hand, the first term on the right-hand side of Eq. (26)
is somewhat peculiar. Notice that this term assumes positive
values only in suction-driven flows, i.e., if Q < 0. Conse-
quently, the interface is linearly unstable for suction, but stable
for injection. Observe that this linear behavior for 2D Stokes
flows is independent of the viscosity contrast A. As previously
pointed out in Refs. [23,24,36], this last feature is in contrast

to what happens in the traditional viscous fingering (VF)
problem in radial Hele-Shaw cells, where the linear dispersion
relation is written as [9,12]

λVF(n) = Q

2πR2
(A|n| − 1) − σb2

12(η1 + η2)R3
|n|(n2 − 1),

(28)

where b denotes the thickness of the Hele-Shaw cell. From the
first term on the right-hand side of Eq. (28) it is evident that
the viscosity contrast A has a key role in determining the linear
stability of the interface. In the Darcy’s law regulated, radial
viscous fingering problem, interfacial instability can occur for
injection (suction) if A > 0 (A < 0). Therefore, irrespective of
the sign of Q, the interface can deform only if the displacing
fluid has smaller viscosity.

The linear growth rate for the 2D Stokes flow [Eq. (26)] is
also unusual in another aspect: it decreases linearly with mode
n, in such a way that the mode of maximum growth rate is

nmax = ±2, (29)

corresponding to the smallest mode leading to interface de-
formation. Thus, assuming all modes to be initially present,
and with comparable amplitudes, the resulting interface shape
should exhibit only two lobes. However, an experimental re-
alization of a 2D Stokes flow with suction in a biological
system does not corroborate such an exotic linear prediction
[24]. As a matter of fact, the establishment of a selection
mechanism which determines the ultimate number of fingers
formed in a 2D Stokes flows is still an open, and challenging,
problem. There are some suggestions for such mode selection
in the literature, but they are not consensual [23,24]. Never-
theless, in previous theoretical studies of the 2D Stokes flow
problem, the symmetry of the interface was imposed through
the initial conditions [18,19]. We note that experimentally
“preparing” the initial conditions to have a certain symme-
try is possible [42]. Note that the linear prediction for 2D
Stokes flow expressed by Eq. (29) is also in contrast with the
equivalent result for the radial viscous fingering case, in which
the mode of maximum growth rate is obtained by setting
[dλVF(n)/dn]n=nVF

max
= 0, yielding

nVF
max = ±

√
1

3

[
1 + 6QAR(η1 + η2)

πσb2

]
, (30)

which is a time-dependent quantity since R = R(t ).
As indicated in some previous works [23,24,36,37], it is

clear that the mechanism leading to interface destabilization
in 2D Stokes flow is substantially different from the one
responsible for triggering the Saffman-Taylor instability. As
mentioned in Sec. I, it turns out that the instability mechanism
in 2D Stokes flow is purely kinematic, and can be trivially
understood [23]. For suction, the base flow (unperturbed)
velocity is directed toward the origin, and its magnitude
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FIG. 2. Representative weakly nonlinear time evolution of the
fluid-fluid interface for 2D Stokes flow with suction. The patterns
are obtained by considering the coupling of two (N = 2) Fourier
modes n, and 2n. The values of the viscosity contrast are (a) A = −1,
(b) A = −0.5, (c) A = 0.5, and (d) A = 1. The interfaces are plotted
for times 48.8 s � t � 49.7 s in intervals of 0.1 s. The innermost
interfacial pattern (taken at final time t = t f = 49.7 s) is highlighted,
being represented by a thicker and darker curve. The horizontal bar
in (a) indicates 1 cm.

increases as the interface radius decreases (ur ∼ 1/r). When
the interface is perturbed away from a circle, points located
closer to the origin are drawn radially inward more strongly
than points farther from the origin. As a consequence, the
interface tends to become more deformed. For injection, the
opposite process takes place, and the interface tends to be-
come more stable as it evolves outward.

A similar type of process is also present in the Saffman-
Taylor instability problem. However, it constitutes only a
secondary mechanism. The dominant mechanism for the on-
set of the Saffman-Taylor instability is the different viscous
resistance of the two fluids at the walls of the Hele-Shaw cell.
Thus, since the resistance depends on the fluids’ viscosities,
the usual viscous fingering instability is primarily dependent
on the viscosity contrast. As commented in Sec. I, wall resis-
tance is negligible in the 2D Stokes flow situation considered
in this work. Thus, the viscosity contrast does not interfere
in the linear stability of the interface. Nonetheless, as we
will see in Secs. III B and III C the viscosity contrast A still
substantially affects the interface morphology. To tackle these
important morphological effects, one needs to go beyond the
linear regime examined in Refs. [23,24,36] and explore the in-
terface dynamics at the onset of the nonlinear stage of the
evolution. Our lowest-order weakly nonlinear, mode-coupling
approach is capable of capturing the most relevant aspects of
the interface morphology in the 2D Stokes flow problem with
suction.

FIG. 3. (a) Time evolution of the rescaled cosine amplitudes
an(t )/R(t ) for modes n = 8 (dashed curves) and 2n = 16 (solid
curves), corresponding to the interface evolutions depicted in Fig. 2,
for four values of A (−1, −0.5, 0.5, and 1). Note that hidden in
each dashed curve in (a) there are in fact two curves. The curves
for A = ±1 are indistinguishable. The same is true for the dashed
curves for A = ±0.5. (b) Variation of the function T (2n, n) with
time, related to the growth of the first harmonic mode 2n as given
in Eqs. (32) and (33). As in Fig. 2, in both (a) and (b) we have that
48.8 s � t � 49.7 s.

B. Weakly nonlinear stage

We initiate our discussion about the weakly nonlinear
regime of the 2D Stokes by calling the readers’ attention to
a very important point. If on one hand, it is true that the
linear growth rate λ(n) [Eq. (26)] does not depend on the
viscosity contrast A, on the other hand, it is also a fact that
the second-order mode-coupling function T (n, n′) [Eq. (27)]
does depend on A. The verification that such an important
dependence on A arises already at the lowest nonlinear level is
promising. It opens up the possibility of investigating the role
played by A in determining the shape of the interfacial patterns
already at second order. As discussed in Sec. III A, in the 2D
Stokes flow problem the interface is linearly stable for the case
of injection (Q > 0). As a matter of fact, we have verified that
under injection the interface remains stable against perturba-
tions for all modes |n| � 2 during the weakly nonlinear stage
of the flow. In these circumstances, the nonlinear behavior of
the expanding interface is not exactly interesting, as it grows
axisymmetrically as a stable circular front. For this reason,
throughout the rest of this work our major purpose is to use
the mode-coupling equations (25)–(27) to obtain perturbative
solutions for the 2D Stokes flow interfacial patterns in the case
of suction (Q < 0).

By considering the coupling of a finite number of partici-
pating Fourier modes, we aim to extract the most important
morphological features of the emerging patterns, and pos-
sibly get perturbative pattern-forming structures resembling
the highly symmetric, n-fold near-cusp fingering shapes ob-
tained in Refs. [18–22]. Recall that in previous works such
symmetrical almost-cusp shapes have been accessed via ex-
act solutions, or numerical simulations based on conformal
mapping techniques. In addition, contrary to studies based
on conformal mappings, whose results are restricted to cases
in which A = −1 or A = 1, our mode-coupling theory can
address a whole range of allowed values for the viscosity
contrast, i.e., −1 � A � 1. Another advantage of our scheme
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FIG. 4. Weakly nonlinear evolution of the 2D Stokes flow pat-
terns for viscosity contrast A = 1. These patterns are generated by
using a increasingly larger number of participating modes N : (a) 3,
(b) 4, (c) 5, and (d) 10. The innermost interfacial pattern (taken at
final time t = t f = 49.7 s) is highlighted, being represented by a
thicker and darker curve. The horizontal bar in (a) indicates 1 cm.

is the fact that it is perturbative on the interface deformation
ζ , but nonperturbative on the surface tension σ .

With the second-order mode-coupling equation for the
complex amplitudes (25) at hand, it is relatively simple to
obtain the time evolution of the fluid-fluid interfaces. To gen-
erate the perturbative 2D Stokes flow patterns, we consider
the nonlinear coupling of a finite number N of Fourier modes.
Based on the symmetry properties of the fully nonlinear n-fold
structures having near-cusp fingers of equal sizes obtained in
Refs. [18–22] via conformal mapping techniques, we consider
the coupling of a fundamental mode n and its harmonics 2n,
3n, . . ., Nn, and rewrite Eq. (25) in terms of the real-valued
cosine amplitudes an(t ) = ζn(t ) + ζ−n(t ) to obtain

ȧn = λ(n)an + 1

2

∑
n′>2

[T (n,−n′)an′an+n′ + T (n, n′)an′an−n′ ].

(31)

Equations (31) are the mode-coupling ordinary differential
equations for the time evolution of the cosine mode ampli-
tudes, accurate to second order. Then the growing patterns
are generated by numerically solving the corresponding cou-
pled nonlinear differential equations for the mode amplitudes
an(t ). Once this is done, the shape of the interface is found
by utilizing Eq. (11). In addition, to make sure that the inter-
facial behaviors we detect are spontaneously induced by the
weakly nonlinear dynamics, and not by artificially imposing
large initial amplitudes for the harmonic modes, we always
set the initial (t = 0) harmonic mode amplitudes to zero, i.e.,
a2n(0) = a3n(0) = · · · = aNn(0) = 0. Therefore, at t = 0 only

FIG. 5. Rescaled cosine mode amplitudes |an(t )|/R(t ) taken at
the final time t = t f , as a function of the azimuthal mode number
n, when (a) N = 3, (b) N = 4, (c) N = 5, and (d) N = 10. The data
represented by the vertical bars are extracted from the corresponding
patterns that appear in Fig. 4. Note that for the largest amplitude
(mode n = 8) we have that a8(t f ) ≈ 9% of R(t f ).

the fundamental mode n has a nonzero, but small amplitude
an(0). This is done to avoid artificial growth of the harmonic
modes, imposed solely by the initial conditions.

In order to strengthen the practical and academic relevance
of our weakly nonlinear results, throughout this work we use
typical parameter values for all physical quantities that are
in line with the ones utilized in existing experimental and
theoretical studies for the equivalent problem in radial Hele-
Shaw cells [9–16]. Therefore, it should be clear that the set
of physical parameters we use here is quite representative of
other values commonly utilized in many other radial Hele-
Shaw cell experiments. In this way, in the various situations
analyzed in this work we consider that the viscosities of the
fluids may vary within the range 0 � η j � 10 g/cm s. The
suction rate is taken as Q = −9 cm2/s, and the surface tension
between the fluids is σ = 0.6 dyne/cm. In addition, we evolve
from the initial radius R0 = 12 cm, and consider the initial
amplitude of the fundamental mode as an(0) = R0/150 cm. In
Figs. 2–7 we take, without loss of generality, the fundamental
mode as n = 8. The effect of considering a different value for
the fundamental n on the resulting patterns will be discussed
at the end of this section, in the analysis of Fig. 8. Finally,
we point out that in all calculations and plots presented in this
work, we paid close attention to the limit of validity of our
perturbative theory, in such a way that we always make sure
that |ζn(t )| � R(t ). The reliability of our second-order mode-
coupling approach will be discussed in Sec. III C. There we
perform a quantitative comparison between our weakly non-
linear patterns with the corresponding fully nonlinear shapes
computed in Refs. [18,19,22] through complex variable meth-
ods.
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FIG. 6. Representative weakly nonlinear time evolution of the
fluid-fluid interface for 2D Stokes flow with suction. The patterns
are obtained by considering the coupling of 60 participating modes
(N = 60). The values of the viscosity contrast are (a) A = −1,
(b) A = −0.5, (c) A = 0.5, and (d) A = 1. As customary, the in-
nermost interfacial pattern (taken at final time t = t f = 49.7 s) is
highlighted, being represented by a thicker and darker curve. The
horizontal bar in (a) indicates 1 cm.

We initiate our analysis by examining the simplest second-
order scenario, and consider the interplay of only two Fourier
modes (N = 2): the fundamental n = 8, and its first har-
monic 2n = 16. The choice of using precisely these modes
(the fundamental n, and its first harmonic 2n) to begin our
investigation can be justified as follows. Remember that an
emblematic feature of the bubble (A = 1) and blob (A = −1)
shape solutions obtained via complex variable techniques in
Refs. [18–22] is the formation of regular, n-fold polygonal-

FIG. 7. Behavior of the interface curvatures κ as the viscosity
contrast A is varied from −1 to 1, for two specific angular locations:
(a) θ = 0, and (b) θ = π/8. To guide the eye, the dashed lines in
the insets locate these angles for the pattern depicted in Fig. 6(c) for
A = 0.5. Here κ is computed at the final time t = t f = 49.7 s as in
Fig. 6.

like interfaces having sharp, cusplike fingers. It turns out that
a two-mode mode-coupling approach is quite appropriate to
examine pattern-forming mechanisms involving the growth of
sharp fingering structures. It has been shown that finger-tip
sharpening, widening, and splitting are behaviors related to
the influence of a fundamental mode n on the growth of its
harmonic mode 2n [12]. In fact, within the scope of mode
coupling, these basic pattern formation phenomena can be
predicted, captured and properly described already at second
order in the perturbation amplitudes.

The occurrence of these types of finger tip phenomena in
2D Stokes flow with suction can be examined by considering
the mode-coupling equation (31) for cosine mode amplitudes,
and analyzing the influence of a fundamental mode n on the
growth of its harmonic 2n. In this situation, the equation of
motion for the growth of the harmonic mode amplitude can
be written as

ȧ2n = λ(2n)a2n + 1
2T (2n, n)a2

n, (32)

where

T (2n, n) = −
[

Q

πR3

(
A|n| − 1

2

)]
. (33)

Likewise, the equation of motion for the growth of the funda-
mental mode amplitude is

ȧn = λ(n)an + 1
2 [T (n,−n) + T (n, 2n)]ana2n, (34)

where the functions T (n,−n) and T (n, 2n) can be readily
obtained from Eq. (27).

It turns out that [12] that the most relevant information
about the finger tip morphology (tip sharpening or tip widen-
ing) can be extracted from Eqs. (32), (33), and (34). Note that
the mode-coupling function T (2n, n) in Eq. (33) assumes a
very simple form that depends on the viscosity contrast A. The
interesting point about the function T (2n, n) is that it controls
the finger shape behavior, and ultimately the morphology of
the resulting pattern. The sign of T (2n, n) dictates whether
finger tip-sharpening or finger tip widening is favored by the
dynamics. From Eq. (32) we see that if T (2n, n) > 0, the
result is a driving term of order a2

n forcing growth of a2n > 0,
the sign that is required to cause inward-pointing fingers to
become wide, favoring finger tip-broadening. In contrast, if
T (2n, n) < 0 growth of a2n < 0 would be favored, leading to
inward-pointing finger tip sharpening.

To further investigate the analytic predictions for the finger
tip shape behavior provided by Eqs. (32) and (33), in Fig. 2 we
plot representative 2D flow patterns generated by considering
the coupling of modes n = 8 and 2n = 16. This is done for
four values of the viscosity contrast: (a) A = −1 (η1 = 10
g/cm s and η2 = 0); (b) A = −0.5 (η1 = 7.5 g/cm s and
η2 = 2.5 g/cm s);(c) A = 0.5 (η1 = 2.5 g/cm s and η2 = 7.5
g/cm s); and (d) A = 1 (η1 = 0 and η2 = 10 g/cm s). The in-
terfaces are plotted for times 48.8 s � t � 49.7 s in intervals
of 0.1 s. Note that while varying the values of the viscosity
contrast A, we keep the sum η1 + η2 fixed in order to maintain
the linear growth rate (25) unchanged as A is modified. These
very same values of A, and times will be used to plot Figs. 4
and 6. By inspecting Fig. 2 it is clear that the inward-moving
interface becomes increasingly unstable as time progresses.
One interesting point is that, despite the fact that the linear
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FIG. 8. Representative weakly nonlinear time evolution of the interface for 2D Stokes flow with suction, with viscosity contrast A = −1.
The patterns are obtained by considering that the fundamental mode, and its initial amplitude are taken as (a) n = 2, and an(0) = R0/450 cm;
(b) n = 3, and an(0) = R0/350 cm; (c) n = 4, and an(0) = R0/280 cm; (d) n = 5, and an(0) = R0/210 cm; (e) n = 6, and an(0) = R0/210
cm; and (f) n = 7, and an(0) = R0/180 cm. All the other parameters are identical to those used in Figs. 2–7. In (a)–(f) the innermost interfacial
pattern is highlighted, being represented by a thicker and darker curve. The horizontal bar in (a) indicates 1 cm. In (a)–(f) the largest mode
amplitudes at t = t f , an(t f ), vary from ≈9.5% of R(t f ) to ≈13% of R(t f ).

growth rate λ(n) does not depend on A, the morphology of the
final weakly nonlinear patterns (represented by the innermost
interfaces in Fig. 2) do depend on the value A. Note that if A <

0 (or, if T (2n, n) < 0) [Figs. 2(a) and 2(b)] one observes the
formation of inward-moving fingers that are sharp, while the
structures separating these sharp fingers look blunt [Fig. 2(b)]
or split into two small protuberances [Fig. 2(a)]. The opposite
behavior is observed if A > 0 [or, if T (2n, n) > 0] [Figs. 2(c)
and 2(d)] where the inward-moving finger looks wider (or
even split at their tips), while the structures separating con-
secutive wide fingers look sharp. Of course, these pictorial
observations are in agreement with the analytical predictions
provided by our discussion of Eqs. (32) and (33), as further
clarified in Fig. 3.

Figure 3(a) shows the time evolution of the rescaled co-
sine amplitudes an(t )/R(t ) for the fundamental mode n = 8
(dashed curves) and its first harmonic 2n = 16 (solid curves),
corresponding to the interface evolutions portrayed in Fig. 2,
for four representative values of the viscosity contrast A:
−1, −0.5, 0.5, and 1. As in Fig. 2, in Fig. 3 one has that
48.8 s � t � 49.7 s. By observing Fig. 3(a), it is evident that
while the evolution of the mode amplitudes a8(t )/R(t ) (that
set the overall eightfold symmetry of the pattern) are not
very sensitive to changes in A, the growth of a16(t )/R(t ) (that
determine finger tip narrowing and widening behaviors) are
significantly affected as A is varied. Figure 3(b) shows how
the function T (2n, n) [connected to the growth of the first har-
monic mode as given in Eqs. (32) and (33)] varies with time,
for A = −1, −0.5, 0.5, and 1. It demonstrates very vividly
that the growth of the first harmonic amplitudes a16(t )/R(t )

(their magnitudes and signs) in Fig. 3(a) is determined by the
function T (2n, n), and consequently by A.

By examining Fig. 2 we also note that as the viscos-
ity contrast varies from A = −1 to A = 1, the tips of the
inward-moving fingers located at polar angle θ = π/8 tend
to become wider, while the interface point located at angle
θ = 0 tends to get locally sharper. In this sense, our two
mode second-order mimic of the pattern formation dynamics
indicates that sharp fingers pointing inward should arise at
θ = π/8 in the blob case (A = −1), while sharp structures
pointing outward should appear at θ = 0 in the bubble case
(A = 1). These last observations are reassuring in the sense
that they are in qualitative agreement with what has been ob-
served in Refs. [18–22] regarding the formation of near-cusps.
However, the weakly nonlinear patterns depicted in Fig. 2 are
still very different from the cusped interfaces generated in
Refs. [18–22].

In the pursuit of getting a closer morphological similarity
between our weakly nonlinear patterns, and the fully nonlinear
cusplike shapes obtained in Refs. [18–22], we pass to consider
the coupling of an increasingly larger number N of participat-
ing Fourier modes. This is done in Fig. 4, where we investigate
the influence of the number of participating Fourier modes in
determining the shape of the 2D Stokes flow patterns at second
order. In Fig. 4 we focus on the case in which A = 1, and
produce patterns using the coupling of modes n, 2n, . . . , Nn,
where n = 8 is the fundamental mode: (a) N = 3, (b) N = 4,
(c) N = 5, and (d) N = 10. It should be noted that all other
physical quantities and initial conditions are exactly the same
as those used in Fig. 2.
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By going through Fig. 4, it is apparent that the considera-
tion of a larger number of interacting Fourier modes leads to
promising results. The weakly nonlinear patterns portrayed in
Fig. 4 reveal the formation of symmetric, eightfold polygonal-
like morphologies (set by the fundamental mode) having
concave-shaped edges. These edges present small undulations
determined by the number of participating modes N . Since
the fluid-fluid interface is not discontinuous, no Gibbs phe-
nomenon [43] is present, and the Fourier series converges.
Therefore, as N is increased, the amplitude of the oscilla-
tions decreases, and the edges of the polygonal patterns look
increasingly smoother. This is clearly illustrated by Figs. 4(a)–
4(d). Eventually, for a sufficiently large N these oscillations
are no longer observed. It is also noticeable that the vertices
of the patterns become sharper as N is augmented. Finally, it is
worthwhile to note that the weakly nonlinear pattern depicted
in Fig. 4(d) for N = 10 bears a close resemblance to the typi-
cal fully nonlinear, near-cusp shapes obtained by Tanveer and
Vasconcelos for the case A = 1 via complex variable methods
in Refs. [18,19]. Although the discussion of Fig. 4 focuses on
the case in which A = 1, similar types of results related to the
role of increasingly larger N’s are also found for all allowed
values of A.

Complementary information about the pattern-forming
structures illustrated in Fig. 4 is provided by Fig. 5, which
plots the absolute value of the cosine Fourier amplitudes
|an(t )|, rescaled by the unperturbed radius of the interface R(t )
(given by the vertical bars), at the final time t = t f = 49.7 s,
for various participating modes n. From the Fourier spectra
shown in Fig. 5 it is evident that the cosine mode amplitudes
drop very quickly as n is increased. Despite this quick drop,
the Fourier series does not converge as rapidly, and the consid-
eration of a greater number of modes is necessary to make the
edges of the polygonal patterns to become sufficiently smooth.

Inspired by the findings of Fig. 4 and Fig. 5, in Fig. 6 we
display a representative set weakly nonlinear 2D Stokes flow
patterns with suction, now using a sufficiently large number of
participating modes (N = 60) in such a way that the edges of
the polygonal-like patterns are quite smooth. Similar to what
we did in Fig. 2, the patterns displayed in Fig. 6 are obtained
for four representative values of the viscosity contrast: (a) A =
−1, (b) A = −0.5, (c) A = 0.5, and (d) A = 1. All the rest of
the physical parameters and initial conditions are equal to the
ones used in Fig. 2. Figure 6 is quite elucidating since it allows
one to visualize the impact of the viscosity contrast A on the
shape of the emerging patterns, already at the lowest nonlinear
level. For example, the weakly nonlinear pattern shown in
Fig. 6(a) for A = −1 reveals the most salient features en-
countered in the complex-variable-generated shapes obtained
for the sucking of a blob of fluid (see, for instance, Fig. 3
in Ref. [22]). In Fig. 6(a) we have an eightfold polygonal-
like morphology, now having convex-shaped edges that meet
at near-cusp, inward-pointing indentations (see, for example,
the near-cusp formed at θ = π/8). On the other hand, when
A = −0.5 [Fig. 6(b)] no near-cusp indentations are found, and
the inward-pointing fingers are not that sharp.

In addition, when A = 0.5 [Fig. 6(c)] yet another type of
pattern arises: it has a starfishlike shape, and also does not
show any signs of near-cusp formation. By contrasting the
finger shapes in illustrated in Figs. 6(b) and 6(c), one sees

that while the fingering structures formed at θ = π/8 become
more rounded and wider, the ones produced at θ = 0 tend
to become sharper and narrower. This trend persists when
we look at the pattern portrayed in Fig. 6(d) for A = 1: in
θ = π/8 the fingering structure has a near-circular shape,
whereas in θ = 0 a near-cusp, outward-pointing finger is un-
veiled. As anticipated by the structure obtained in Fig. 4(d)
for N = 10, the pattern displayed in Fig. 6(d) for N = 60
is indeed an eightfold polygonal-like interface, but now it
has smooth, concave-shaped edges. Incidentally, the weakly
nonlinear structure represented in Fig. 6(d) does have all
essential morphological elements of the typical symmetric
shapes obtained for the sucking of a bubble in Refs. [18,19]
(see, for instance, Fig. 4 in Ref. [18], and Fig. 1 in Ref. [19]).
In Sec. III C we make a more quantitative comparison of our
weakly nonlinear cusped interfaces depicted in Fig. 6 for A =
±1 with the equivalent fully nonlinear structures obtained via
complex variable techniques in Refs. [18,19,21,22].

By analyzing Fig. 6(a) for A = −1, and Fig. 6(d) for A = 1,
it is interesting to note that regardless of whether the near-
cusps point inward (A = −1) or outward A = 1, they always
occur in the direction pointing from the less viscous fluid
to the more viscous one. This indicates that the near-cusp
phenomenon is determined by a viscosity difference mecha-
nism present in the nonlinear terms of the dynamics [note the
presence of A in Eq. (27)] which clearly manifests itself for
extreme values of the viscosity contrast (A = ±1).

To better substantiate the impact of the viscosity contrast
A on the morphologies of the 2D Stokes flow patterns for a
whole range of values of A, in Fig. 7 we plot the value of
the interface curvatures κ at the final time t = t f = 49.7 s,
as A is varied from A = −1 to A = 1, for points positioned
at two important angular locations along the interface: (a)
at θ = 0, and (b) θ = π/8. The interface curvature can be
readily calculated from Eq. (24). Note that the rest of the
parameters and initial conditions used in Fig. 7 are equal to
those utilized in Fig. 2. By observing Fig. 7(a) we see that the
interface curvature at θ = 0 is relatively small for negative
values of A, and then starts to grow very significantly as A
varies from 0 to 1, reaching a maximum value at A = 1, where
a near-cusp fingered structure is formed. Note that in (a) κ > 0
meaning the fingers at θ = 0 point outward. On the other
hand, in Fig. 7(b) we verify that at θ = π/8, the curvature is
very high and negative for A = −1 where an inward-pointing
near-cusp finger arises, and then becomes much less intense
as the viscosity contrast changes from A = −1 to A = 0,
until assuming considerably small negative values as A → 1.
Observe that these quantitative remarks about the behavior of
κ with A in Fig. 7 are in accordance with the more visual
verifications one can make at angles θ = 0 and θ = π/8 in
the patterns depicted in Fig. 6. The dramatic variation of κ

with A illustrated in Fig. 7 reinforces the importance of the
viscosity contrast in determining the overall morphology of
the pattern-forming structures in our problem.

We close this section by discussing the effect of consid-
ering a different value for the fundamental mode n on the
generated 2D Stokes flow, weakly nonlinear patterns with
suction. In Figs. 2–7, we took n = 8. As mentioned earlier in
this work, the choice of n = 8 as the fundamental mode was
made without loss of generality. It turns out that n = 8 is a
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linearly unstable mode for the time interval used in Figs. 2–7.
If one chooses another linearly unstable Fourier mode as being
the fundamental mode, the basic physical results are similar
to the ones obtained for n = 8. This is illustrated in Fig. 8
which shows suction patterns produced for viscosity contrast
A = −1, by taking different values for the fundamental mode
and its initial amplitude, namely, for (a) n = 2, and an(0) =
R0/450 cm; (b) n = 3, and an(0) = R0/350 cm; (c) n = 4, and
an(0) = R0/280 cm; (d) n = 5, and an(0) = R0/210 cm; (e)
n = 6, and an(0) = R0/210 cm; and (f) n = 7, and an(0) =
R0/180 cm. Other than that, these patterns are generated by
utilizing all the physical parameters used in Figs. 2–7. By
scrutinizing Fig. 8 one readily observes that the types of
pattern-forming structures obtained when A = −1 for these
modes of lower wave number than n = 8 are morphologically
similar to the corresponding structure shown in Fig. 6(a) when
n = 8 and A = −1. In other words, all these structures for
A = −1 and different n have a characteristic polygonal-like
morphology, having convex-shaped edges that can meet at
near-cusps, inward-pointing dents. We have verified that the
behavior exemplified in Fig. 8 for the case A = −1 as n is
changed, also occurs for all other values of A.

C. Weakly nonlinear versus fully nonlinear results

To confirm the validity of our weakly nonlinear mode-
coupling scheme in a more quantitative fashion, in this section
we compare our perturbative solutions for the fluid-fluid in-
terface in the 2D Stokes flow problem with suction with
their fully nonlinear counterparts that have been investi-
gated previously in the literature. The studies performed in
Refs. [18,19,21,22] rely on complex function theory and map-
ping techniques to determine the dynamics of the interface,
and present a general class of exact solutions for a time-
evolving bubble (A = 1), or blob (A = −1). These elegant
conformal mapping, time-dependent solutions are able to de-
scribe the fully nonlinear dynamics of a contracting interface
in the extreme cases A = ±1, for which near-cusps structures
can be detected. Below, we briefly present how these confor-
mal mapping solutions for the situations A = ±1 are obtained,
and contrast them with the corresponding second-order pertur-
bative solutions we derived in this work.

Within the conformal mapping approach, for the case A =
−1, only the inner fluid needs to be considered. It was shown

in Ref. [21] that the flow in the inner fluid domain can be
conformally mapped into the flow inside the unit circle. In
detail, we parametrize the domain of the inner fluid by z =
reiθ with r � R(t ) and the interior of the unit circle by ξ =
ρeiϕ with ρ � 1 and 0 � ϕ < 2π . Note that r = R is mapped
to ρ = 1. For an interfacial pattern with mth-fold symmetry,
where m > 1, the mapping derived in Ref. [21] assumes the
form

z = u−(t )ξ + v−(t )ξm+1, (35)

where the time-dependent coefficients satisfy

u2
− + (m + 1)v2

− = A0 + Qt

π
(36)

and

v̇− = − v−
u2− − (m + 1)v2−

[
Q

2π
+ m

σ

η1
u2

−I−(u−, v−)

]
, (37)

with A0 being the initial area occupied by the inner fluid and

I−(u−, v−) = 1

2π

∫ π

0

dω

[u2− − (m + 1)2v2− cos ω]1/2 . (38)

On the other hand, for the situation in which A = 1, only
the outer fluid needs to be considered, and an analogous con-
formal mapping can be employed to analyze this case [18,19].
We parametrize the domain of the outer fluid by z = reiθ with
r � R(t ) and parametrization of the interior of the unit circle
is the same as before, with r = R corresponding to ρ = 1. For
a fluid-fluid interface with mth-fold symmetry, with m > 1,
the mapping derived in Refs. [18,19] assumes the form

z = u+(t )

ξ
+ v+(t )ξm−1, (39)

where

u2
+ − (m − 1)v2

+ = A0 + Qt

π
(40)

and

v̇+ = − v+
u2+ + (m − 1)v2+

[
Q

2π
+ m

σ

η2
u2

+I+(u+, v+)

]
, (41)

with

I+(u+, v+) = 1

2π

∫ π

0

dω

[u2+ + (m − 1)2v2+ − 2(m − 1)u+v+ cos mω]1/2 . (42)

We continue by examining Fig. 9, which compares our
second-order, weakly nonlinear (WNL) solutions for the cases
(a) A = 1, (b) A = −1, considering 60 participaring modes
(N = 60), with the corresponding eightfold symmetric (m =
8) fully nonlinear solutions of the problem, obtained by
solving Eqs. (35) and (39) numerically. The top panels in
Fig. 9 contrast the WNL interfaces [represented by the solid
curves, and obtained from the numerical solution of the mode-
coupling Eqs. (31)], with the corresponding fully nonlinear

solutions of the problem, [represented by dashed curves, and
obtained via solution of Eqs. (35) and (39)]. Note that the
eightfold WNL pattern portrayed in Fig. 9(a) [Fig. 9(b)] was
originally illustrated in Fig. 6(d) [Fig. 6(a)]. However, in order
to facilitate the visualization of the morphological details of
the resulting pattern-forming structures, in Fig. 9 instead of
plotting the entire patterns (for 0 � θ � 2π ) as in Fig. 6, the
top panels of Fig. 9 depict just a close-up views of part of the
patterns (for the angular sector 0 � θ � π/2). Note that all
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FIG. 9. Weakly and fully nonlinear behaviors for shrinking inter-
faces in the 2D Stokes flow with suction for (a) A = 1, and (b) A =
−1. Top panels: comparison between weakly nonlinear (WNL, solid
curves) and fully nonlinear time evolutions (dashed curves). Bottom
panels: corresponding plot of the rescaled cosine mode amplitudes
|an(t )|/R(t ), taken at the final time t = t f , as a function of the
azimuthal mode number n. The small open circles give the values of
the rescaled mode amplitudes as extracted directly from the patterns
produced by the fully nonlinear calculation. The vertical bars give
the corresponding mode amplitudes obtained by our second-order
mode-coupling theory. All the other parameters and initial conditions
are identical to those used in Fig. 6.

physical parameters and initial conditions used to plot both
WNL and fully nonlinear interfaces depicted in Fig. 9 are
exactly the same as those used in Fig. 6.

By analyzing the top panels of Fig. 9, we clearly see that
the weakly nonlinear theory works well in approaching the
fully nonlinear interface shapes, even though only second-
order terms are used in our perturbative mode-coupling
description. The evolving WNL and fully nonlinear interfaces
depart only a bit from each other for later times, and at the lo-
cation of the emerging near-cusp structures. In such locations,
one can verify that the WNL near-cups are a little sharper
than their fully nonlinear counterparts. One should not be
surprised with these small detected differences between the
WNL and fully nonlinear interfaces at later times. After all, in
principle, one should not expect that WNL interfacial patterns
would precisely reproduce the fully nonlinear morphological
features of the near-cusps produced in Refs. [18–22] for all
times. Rigorously speaking, our perturbative mode-coupling
results are not quantitatively correct at later times, and partic-
ularly in the vicinity of near-cusps, since in these locations the
interfacial slopes are too large, while perturbatively [Eq. (23)]
one should have that |Rθ |/R � 1. However, as exemplified
by the comparisons shown in top panels of Fig. 9, despite
its limitations, our second-order mode-coupling theory works

well, reinforcing the reliability of our quadratic truncation.
Our perturbative scheme is specially useful in illustrating how
the viscosity contrast A influences the shapes of the pattern-
forming structures, showing good agreement with previous
conforming mapping fully nonlinear calculations for the lim-
iting cases in which A = ±1. In addition, it is worthwhile to
point out once again that the near-cusp phenomena detected
in Figs. 6 and 9 for A = ±1 are inherently nonlinear, and
could not be either predicted or captured by a purely linear
description of the 2D Stokes problem as previously examined
in Refs. [23,24]. These remarks support the usefulness of our
present theoretical contribution which extends previous linear
analysis of Fourier modes to include key quadratic interac-
tions among the modes.

The bottom panels of Fig. 9 plot the rescaled cosine mode
amplitudes |an(t )|/R(t ) taken at the final time t = t f , as a
function of various azimuthal mode numbers n. The data
represented by the small open circles are extracted directly
from the patterns produced by the fully nonlinear calculation
[Eqs. (35) and (39)]. The Fourier spectrum of the fully non-
linear solutions demonstrates that the mode amplitudes drop
quickly as n is increased, in such a way that the fully nonlinear
shapes are indeed well described by our weakly nonlinear ap-
proach with considers 60 participating modes (N = 60). The
vertical bars express the approximate values of the mode am-
plitudes by using the second-order mode-coupling Eqs. (31).
Again, one can see that agreement between WNL and fully
nonlinear solutions is good. These findings reinforce the relia-
bility of the shape of the WNL Fourier spectra found in Fig. 5.
In summary, the results presented in Fig. 9 give quantitative
support to the fact that the weakly nonlinear solutions provide
a good representation of the fully nonlinear solutions of the
2D Stokes flow problem with suction. We call attention to
the fact that we have also compared the time evolution of the
WNL patterns illustrated in Fig. 8 for A = −1 and several
values of the fundamental mode n (2 � n � 7), with their
fully nonlinear analogues obtained via Eqs. (35) and (39) (see
Fig. 10), and also found good agreement between weakly and
fully nonlinear interfacial time evolutions.

We conclude by pointing out that the weakly nonlinear,
mode-coupling scheme we use in this work to model the
formation of near-cusp patterns in 2D Stokes flows has also
been validated over the years by fully nonlinear numerical
results for other types of pattern formation problems [44–49].
All these fully nonlinear investigations show that the weakly
nonlinear theory is able to correctly capture the onset of
pattern formation, providing a reliable way to predict vari-
ous fundamentally important fully nonlinear, pattern-forming
effects.

IV. CONCLUDING REMARKS

Most of the studies of the fingering pattern formation in 2D
Stokes flow with suction focus either on the linear stability
analysis of the early time dynamics, or on the use of com-
plex variable techniques for the exploration of advanced time
stages of the flow. These investigations concentrate their at-
tention basically on two extreme situations: (1) extraction of a
bubble of negligible viscosity, for which the viscosity contrast
A = 1 and (2) contraction of a blob of viscous fluid, for which
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FIG. 10. Comparison between weakly nonlinear (solid curves) and fully nonlinear time evolutions (dashed curves) for shrinking interfaces
in the 2D Stokes flow with suction for A = −1. As in Fig. 8 the various patterns are obtained by considering that the fundamental mode, and
its initial amplitude are taken as (a) n = 2, and an(0) = R0/450 cm; (b) n = 3, and an(0) = R0/350 cm; (c) n = 4, and an(0) = R0/280 cm;
(d) n = 5, and an(0) = R0/210 cm; (e) n = 6, and an(0) = R0/210 cm; and (f) n = 7, and an(0) = R0/180 cm. All the other parameters are
identical to those utilized in Fig. 8. One can verify that the agreement between weakly and fully nonlinear solutions is good.

A = −1. In this work, we examined different aspects of the
problem: through the employment of a perturbative, second-
order mode-coupling theory, we aim attention at the weakly
nonlinear intermediate stages of the flow that bridge purely
linear and fully nonlinear regimes. Additionally, instead of
examining just the cases for A = −1 or A = 1, we explored
a whole range of permitted values of A (i.e., −1 � A � 1).
Our analytical approach provides useful insights into the basic
mechanisms of finger-tip sharpening and widening involved in
the pattern formation process, and into the role of the viscosity
contrast in determining the shape of the emerging fingering
structures.

As expressed by the equation of motion for the problem
[Eq. (25)], at the linear level, second-order mode-coupling
reproduces linear stability results. Accordingly, we derived
an expression for the linear growth rate of the 2D Stokes
flow problem. This linear dispersion relation reveals some
peculiarities if compared with its equivalent expression for the
classical Saffman-Taylor problem in radial Hele-Shaw cells.
The most salient difference is that, as opposed to what hap-
pens in the Saffman-Taylor case, the growth rate for 2D Stokes
flow is independent of the viscosity contrast A. Therefore,
linearly, A plays no role in the stability of the interface. Dif-
ferent aspects of the linear growth rate have been discussed,
a physical mechanism for explaining the Stokes flow insta-
bility has been provided, and some other useful information
about the linear stability of the system have been extracted.
It should be pointed out that the expression of our linear
growth rate [Eq. (26)] and our basic linear stability results
are in agreement with similar findings previously obtained in

Refs. [23,24,36]. This supports the validity and correctness of
our mode-coupling calculation at the linear level.

However, the main contribution of this work refers to our
findings at the early nonlinear regime of the dynamics. At the
weakly nonlinear level, by utilizing Eq. (25), we have shown
that our second-order perturbative interfacial solutions do a
decent job in reproducing the highly symmetric, typical fully
nonlinear near-cusp morphologies conventionally obtained by
analytical and numerical studies based on complex variable
methods when A = 1 and A = −1. This important verification
ratifies the validity of our second-order model, reinforcing the
fact that the near-cusp weakly nonlinear structures generated
in this work offer a good representation of the equivalent
fully nonlinear cuspidal patterns previously obtained in the
literature [18,19,21,22]. Moreover, we have found that for
−1 < A < 1, a whole series of unexplored interfacial patterns
arise, but at second-order these structures do not display the
occurrence of near-cups. Our nonlinear analysis also demon-
strates that A has a key role in determining the finger-tip
curvature behavior of both inward- and outward-pointing fin-
gers. Furthermore, our second-order findings show that the
near-cusps always point from the less to the more viscous
fluid, indicating that such interfacial phenomenon is regulated
by the viscosity contrast parameter A present in the nonlinear
terms of the dynamics [Eq. (27)]. In summary, our perturba-
tive mode-coupling results show that, despite its unimportant
value for the linear dynamics, the viscosity contrast is vital in
setting the dynamics and shape of interfacial patterns in 2D
Stokes flow with suction. It is fortunate, and a bit surprising,
that all these relevant aspects about the morphology of the 2D
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Stokes flow patterns can be caught and predicted already at
the lowest nonlinear level.

Finally, we believe that our analysis could be generalized to
the case where one or both fluids are non-Newtonian. As men-
tioned in the introduction, recent experiments have realized
planar viscous flows of shear-thinning fluids, observing the
emergence of fingering patterns when a shear-thinning fluid is
injected into a less viscous fluid [35,36]. The experimentally
found interfaces exhibit fingers with rectangular-shaped tips,
which are very different from those obtained here for the
suction-driven instability of Newtonian fluids. Note that our
perturbative approach is particularly useful in the analysis
of instabilities of non-Newtonian flows, since the pressure
distribution it not harmonic in those cases, and thus confor-

mal mapping techniques cannot be used to compute the fully
nonlinear interfaces.
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APPENDIX: EXPRESSIONS FOR pn,1, pn,2, un,1, un,2

This Appendix presents the expressions for the pressure and velocity Fourier amplitudes which appear in the text:

pn,1 = η1[n + sgn(n)]
[n − sgn(n)]πRσ + 2sgn(n)Q(η1 − η2)

πR3(η1 + η2)
ζn

− η1

∑
n′ �=0,±1

(
(1 + |n|)

{
[(n − n′)2 + n′2 + |n| − |(n − n′)n′| − 2]

σ

R3(η1 + η2)

+ 2η2(3 + 3|n| − 2|n − n′| − 2|n′|) (η1 − η2)Q

πR4(η1 + η2)2

+ 2η1(3 − |n| + 2|n − n′| + 2|n′|) (η1 − η2)Q

πR4(η1 + η2)2

})
ζn−n′ζn′ , (A1)

pn,2 = −η2[n − sgn(n)]
[n + sgn(n)]πRσ − 2sgn(n)Q(η1 − η2)

πR3(η1 + η2)
ζn

− η2

∑
n′ �=0,±1

(
(−1 + |n|)

{
[(n − n′)2 + n′2 − |n| − |(n − n′)n′| − 2]

σ

R3(η1 + η2)

+ 2η1(3 − 3|n| + 2|n − n′| + 2|n′|) (η1 − η2)Q

πR4(η1 + η2)2

+ 2η2(3 + |n| − 2|n − n′| − 2|n′|) (η1 − η2)Q

πR4(η1 + η2)2

})
ζn−n′ζn′ , (A2)

bn,1 = −n{[sgn(n) + n]πRσ + 2sgn(n)Q(η1 − η2)}
4πR2(η1 + η2)

ζn

+
∑

n′ �=0,±1

(
n

{
[(n − n′)2 + n′2 + |n| − |(n − n′)n′|] σ

4R2(η1 + η2)

+ 2η1(1 − |n| + 2|n − n′| + 2|n′|) (η1 − η2)Q

πR3(η1 + η2)2

+ 2η2(1 + 3|n| − 2|n − n′| − 2|n′|) (η1 − η2)Q

πR3(η1 + η2)2

})
ζn−n′ζn′ , (A3)

bn,2 = n{[−sgn(n) + n]πRσ − 2sgn(n)Q(η1 − η2)}
4πR2(η1 + η2)

ζn

+
∑

n′ �=0,±1

(
n

{
[(n − n′)2 + n′2 − |n| − |(n − n′)n′|] σ

4R2(η1 + η2)

+ 2η2(1 + |n| − 2|n − n′| − 2|n′|) (η1 − η2)Q

πR3(η1 + η2)2

+ 2η1(1 − 3|n| + 2|n − n′| + 2|n′|) (η1 − η2)Q

πR3(η1 + η2)2

})
ζn−n′ζn′ . (A4)
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