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Mass flux of dispersed particles in turbulence: Representations and the influence of correlation
structure in gravitational settling
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Different integral representations for the mass flux of inertial particles transported by turbulent gas flows
have been proposed. These are discussed and analyzed. Each formulation provides its own insights into the
underlying physical processes governing the resulting flux. However, none of the representations, as it stands,
provides an explicit closed-form expression in terms of known statistical properties of the flow and parameters
governing particle dynamics. We consider the representations in terms of their potential for reduction to closed-
form models. To enable an analysis uncomplicated by the presence of many coupled interactions, we confine
our attention to the classic test case of monodisperse particles in homogeneous, isotropic turbulent flows, and
subject to a uniform gravitational field. The modification of the mean particle settling velocity resulting from their
preferential sampling of fluid velocities is captured by the flux representations. A distribution-based symmetry
analysis coupled with a correlation splitting technique is used to reduce and simplify the terms appearing in the
flux integrals. This prompts a strategy for closure modeling of the resulting expressions in terms of correlations
between the sampled fluid velocity and fluid strain-rate fields. Results from particle-trajectory-based simulations
are presented to assess the potential of this closure strategy.
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I. INTRODUCTION

Particle-number and particle-velocity distributions, com-
bined with statistical characterisations of turbulence, play an
important role in the study of particle transport in turbulent
flow. Equations governing the behavior of such distributions,
or statistical moments derived from these, provide a basis for
exploring the physical behavior of disperse multiphase flows.
In this context, the notion of particle mass flux is fundamen-
tal; it is central to the formulation of mass and momentum
conservation equations.

To elaborate, consider inertial particles transported in a
turbulent flow with velocity field u(x, t ). The current work
assumes that the particle density is much higher (>103 times)
than that of the fluid, as is typical of gas-solid flows. Further-
more, the focus is on dilute systems in which hydrodynamic
interactions and interparticle collisions are considered negli-
gible, as is applicable in the regime of a low particle volume
fraction. Denote the position and velocity of an individual
particle in the flow at time t by x(t ) and v(t ). Within the
framework of a statistical description of turbulence, the veloc-
ity field u is treated as stochastic, and the particle mass flux,
and other properties, are defined in terms of ensemble aver-
ages 〈·〉 over realizations of this field and the initial state z0 =
(x(0), v(0)): In particular, the particle mass flux (strictly, the
particle number density flux) is 〈�(x, t ) v(t )〉, where �(x, t ) =
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δ(x(t ) − x) is the fine-grain (single realization) probability
density function (PDF) for the particle position. This flux
can be expressed in terms of the ensemble-averaged number
density ρ(x, t ) = 〈�(x, t )〉 and the mean particle velocity field
v(x, t ),

〈�(x, t ) v(t )〉 = ρ(x, t ) 〈v(t )〉x = ρ(x, t ) v(x, t ).

Here 〈v〉x = v denotes a conditional average, based on the
subensemble of realizations such that x(t ) = x. The conti-
nuity (number conservation) equation for the particle phase
follows as

∂tρ = 〈�̇〉 = 〈−v · ∂�〉 = −∂ · ρv, (1)

where ∂t = ∂/∂t and, in a Cartesian coordinate frame, ∂ =
(∂1, ∂2, ∂3), ∂ j = ∂/∂x j .

The aim is to derive representations for the mass flux ρv
appearing in (1) in the form

ρv = ρ d − D · ∂ρ, (2)

where the convective (drift) velocity d and the gradient diffu-
sion tensor D are given explicitly in terms of known statistical
properties of u. This challenge has been addressed by a
number of authors who, using quite distinct methods, have
developed alternative representations for these convective and
diffusive contributions to the mass flux. While the representa-
tions that emerge from these different approaches are distinct,
they do share common features. Most notably, all require
closure modeling to obtain explicit expressions. We compare
and contrast these different flux representations, both in terms
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of the limits of their applicability as well as the potential for
closure analysis that they afford.

To permit precise and detailed analysis, and following
the seminal work by Maxey [1], we consider the test case
of monodisperse particles settling under gravity in a sta-
tistically stationary, homogeneous, and isotropic flow. This
allows for a uniform particle concentration, ρ, generating
a purely convective mass flux; Eq. (2) reduces to v = d,
so that any model for d can be assessed directly via
the evaluation of v obtained from particle-trajectory-based
simulations.

Maxey’s work showed that the average settling rate of
particles in turbulence can be greater than that in stationary
fluid. The physical mechanism for this enhanced settling is
attributable to the preferential sweeping of particles, which
originates due to a bias in the sampling of downward regions
of fluid flow. For small particles, this manifestation notably
occurs through the preferential concentration phenomenology,
in which the turbulent structures play a key role in the settling
enhancement due to the associated bias in sampling of high-
strain, low-vorticity regions in the flow field by particles. Flux
representations that are amenable to closure models based on
these physical features of the system are therefore crucial, and
are the subject of this paper.

Particle drift has also previously been investigated in
detail in the context of particle pair clustering [2,3], in
which theories for the different mechanisms leading to a
spatial accumulation of particles were contrasted. Addition-
ally, consideration of particle drift from a PDF perspective
has previously been used to analyze gravitational settling,
but only in the case of dense suspensions where the ma-
jority of the increase in settling velocity is attributed to the
higher particle volume fraction [4]. Modeling of the increase
in settling velocity, which occurs due to the preferential
sweeping by turbulence, has not been attempted using PDF
methods before, and it is this that the present study aims to
address.

Investigation into the dependence of particle clustering
on mechanisms that act outside of the dissipation range of
turbulence has identified path history effects as being a key
factor across all scales [2,5]. The effect of trajectory history
on clustering has also been studied via the use of the de-
formation tensor which represents the Eulerian-Lagrangian
transformation along a trajectory, both to evaluate the mo-
ments of the particle number density [6–8] and further through
the use of dynamical systems approaches in which the Lya-
punov exponents of particles are used to quantify the rate
of contraction and compressibility of the particle velocity
field [9,10].

Section II summarizes the various approaches, and result-
ing flux representations, that have been developed. Section III
presents a distribution-based symmetry analysis; this not only
reduces the complexity of derived flux expressions, but it
also highlights important features of statistical correlations
that appear within these. An approach to developing closure
models is proposed in Sec. IV. We make use of stochastic,
particle-tracking simulations to assess the efficacy of both
the underlying flux representations and the associated closure
strategy. Results from these simulation-based assessments are
presented in Sec. V.

II. FLUX REPRESENTATIONS

A number of methodologies have been introduced for con-
structing representations to ρv. These can be divided into
two categories, depending on whether a particle momentum
equation or a particle velocity field is introduced. The first
approach considers momentum transport [11],

∂t 〈�v〉 = 〈�̇v + �v̇〉 = −∂ · ρvv + 〈�F〉, (3)

where F governs particle dynamics through the equation of
motion,

ẍ(t ) = v̇(t ) = F(x, v; u). (4)

The majority of works focus on the classic linear drag model

F(x, v; u) = τ−1[u(x, t ) − v] + g, (5)

where τ−1 is the particle response rate, and g denotes grav-
itational acceleration. In this work, we are concerned solely
with systems that exhibit statistically stationary and spatially
uniform states in homogeneous turbulence, 〈u〉 = 0. In such
cases, Eqs. (3) and (5) give

ρv = ρvg + 〈�u〉, (6)

where vg = τg denotes the gravitational settling velocity. Any
deviation of the mean particle settling velocity v from vg is
therefore a result of the preferential sampling of the fluid
velocity 〈�u〉. The challenge is to formulate closures for this
quantity, and to gain insight into the physical mechanisms un-
derlying the mass flux contribution emerging from this term.
In passing, we note that this term is also central to the study
of inhomogeneous systems [12].

One approach to closing this drift flux term is that of
functional correlation splitting [13]. In the present context,
this leads to the approximation 〈�u〉 ≈ ρκ, with [14–17]

κ i =
∫ t

0
〈Hk j (t ; t ′) ∂kR ji(r, t ′ − t )〉x dt ′. (7)

In Eq. (7), r = x(t ′) − x; R is the two-point, two-time corre-
lation tensor for the homogeneous field u,

R(x′ − x, t ′ − t ) = 〈u(x′, t ′)u(x, t )〉,
and H(t ; t ′) is the particle response tensor. From Eqs. (4) and
(5), the differential system for H is

Ḧ = −τ−1(Ḣ − � · H), (8)

with initial (t = t ′) conditions, H = O, Ḣ = I. The particle
response tensor has the physical interpretation of describing
the effect of a perturbation in the fluid velocity field on the
particle trajectory at subsequent times. In Eq. (8), �im(t ) =
∂mui(x(t ), t ). The dependence of H on these fluid velocity
gradients sampled along particle trajectories is a crucial fea-
ture of this representation, and it is through � that the effect
of gravity is implicit in Eq. (8). This is in accordance with the
interpretation of enhanced drift being attributable to inhomo-
geneities in the instantaneous distribution of particles, with
preferential sampling of regions of high strain over those of
high vorticity. We return to this aspect of the representation,
and its implication for closure, in Sec. IV.

The fact that κ provides a description for the settling
enhancement of inertial particles that is consistent with the
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mechanism of preferential sweeping can be seen in the ex-
pression 〈�u〉 which is being modeled; a bias in the sampling
of downward regions of flow will be captured within this
average, and therefore also in Eq. (7). The average 〈H� : ∂R〉
appearing in κ can be interpreted as the force per unit mass
that particles experience at a given point in time as a result
of fluid turbulence, with the accumulation of these accelera-
tion contributions over the trajectory history resulting in the
drift velocity described by κ. This can be further elucidated
by considering the definition of the response tensor H as a
functional derivative [15,18]; it is then possible to express the
average 〈H� : ∂R〉 in the form〈

δ

δu(x(t ′), t ′) δt ′ · R(r, t ′ − t )

〉
.

This representation provides the interpretation of 〈H� : ∂R〉
as the average response in the fluid correlation tensor R as
sampled by particles that results from a perturbation in the
flow field u at an earlier time. This makes it clear that it is
the flow correlations experienced by particles as a result of
turbulence at all scales within the flow that are responsible
for the settling velocity increase, and therefore the description
(7) provided by κ offers a generalization of the centrifuging
mechanism [1].

Another important feature of this correlation splitting ap-
proach is that it provides exact representations when the
underlying flow field u is Gaussian. This allows for rigor-
ous testing of closure models; the influence of non-Gaussian
features can either be assessed or eliminated. It is, however,
possible to extend the approach to account for the non-
Gaussian aspects of the flow; this is discussed further in
Sec. V A. The inclusion of higher-order non-Gaussian correla-
tions within the particle phase is also illustrated in the closure
analysis presented in Sec. IV.

The second approach to constructing representations for
the flux ρv invokes the concept of a particle velocity field.
This is a subsidiary, stochastic field V(x, t ) associated with
each realization of u, such that the corresponding particle
density ϕ(x, t ) = 〈�〉z0

u , the ensemble over initial states for a
given realization of u, satisfies

∂tϕ + ∂ · ϕV = 0. (9)

It follows that

ϕ(x, t ) = ρ0(y0) exp

[
−

∫ t

0
∂ · V(y′, t ′) dt ′

]
. (10)

Here ρ0 defines the distribution of the initial particle positions,
and y′ = y(t ′; x, t ) is the solution to

dy′

dt ′ = V(y′, t ′)

satisfying y(t ; x, t ) = x. In Eq. (10), y0 = y(0; x, t ). From this
the mass flux ρv = 〈ϕV〉u can be written as

ρv =
〈
ρ0(y0)V(x, t ) exp

[
−

∫ t

0
∂ · V(y′, t ′) dt ′

]〉
. (11)

Here the ensemble average is over all realizations of u, with
y′ defined accordingly in each.

A number of approaches for specifying V have been de-
veloped: Maxey [1] constructed V based on expansion of the
particle equation of motion (4) and (5) in terms of τ . For small
Stokes number St = τ/τ f , where τ f is a characteristic fluid
timescale, this leads to

V = u + vg − τ [∂t u + (u + vg) · ∂u] + O(St2). (12)

Expanding the exponential in (11) then provides the following
expression for the drift d (with ρ = ρ0 uniform):

d = vg −
∫ t

0
〈u(x, t ) ∂ · V(y′, t ′)〉 dt ′ + O(St2). (13)

Reeks adopted a different approach, relating the velocity
field to the Jacobian J (t ) = |det[∂y(t ; y0, 0)/∂y0]| such that
J̇ = (∂ · V)J , and treating ϕ as a functional of the process
q(t ′) = (V, ∂ · V). This permits a functional expansion for
〈ϕV〉 leading to the representation [19]

d ≈ 〈V〉 −
∫ t

0
〈V∗(x, t ) (∂ · V)∗(y′, t ′)〉 dt ′, (14)

where the superscript ∗ denotes zero-mean fluctuating vari-
ables.

A third formulation was developed by Chun et al. [20]
with a particle velocity field defined in terms of conditionally
averaged particle velocities; V(x, t ) = 〈v(t )〉z0

x,u, an ensemble,
for a given realization of u, over initial states z0 such that
x(t ) = x. This leads to the representation

d ≈ −
∫ t

0
〈V(x, t ) ∂ · V(y′, t ′)〉 dt ′. (15)

While there are clear similarities between the representa-
tions for d given by formulas (13)–(15), there are important
differences: Maxey’s model is, by construction, only appro-
priate in the small Stokes regime (St � 1). However, it does
benefit from a particle velocity field that is defined a priori by
Eq. (12). Conversely, although the Reeks formulation given
by Eq. (14) is valid for all St (and is exact if the under-
lying process q is Gaussian), the particle velocity field and
its divergence must be inferred from the Jacobian determi-
nant J . Moreover, the deformation tensor ∂y/∂y0 defining J
can exhibit temporal singularities. At such time-points, J = 0
and ∂ · V is undefined (unbounded). This phenomenon, often
interpreted in terms of caustics associated with crossing tra-
jectories [6–8], poses a serious problem when attempting to
evaluate the drift given by formula (14). The velocity field in
the Chun et al. formulation is also problematic; it is precisely
defined, but the conditioned average is not a closed quantity.
In principle, this field and its divergence could be computed
numerically from trajectory simulations, but in the absence of
this it is difficult to evaluate the drift given by formula (15).

In contrast to all of the flux representations based on the
notion of a particle velocity field, the formula given by Eq. (7)
is based directly on the average fluid velocity sampled by
particles, 〈�u〉. As such, it perhaps provides a more useful
starting point for attempting to construct closed-form expres-
sions for the mass flux. We return to this aspect of the work
in Sec. IV. In preparation for that, we first consider the role of
symmetry reductions in helping to simplify the integrands in
all the flux representations discussed so far.
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III. SYMMETRY REDUCTIONS

All of the above models for the drift velocity d must re-
spect basic symmetry properties inherent in the gravitational
settling of particles in homogeneous flow. In particular, with
coordinate axes Ox1x2x3 such that gi = −gδ1i, it is evident that
d2 = d3 = 0. The aim here is to show that this condition is
satisfied by each of the models defined by (7) and (13)–(15).
In this respect, the most challenging case is that of Eq. (7):
From this definition of κ, it is not obvious that κ2 = κ3 = 0.
Moreover, the representation of κ1 involves a summation of
nine terms. The symmetry analysis below addresses these
points. The method also prompts reductions in closure expres-
sions developed later, and it translates naturally to analysis of
other representations for d.

To establish that κ2, κ3, as defined by Eq. (7), are iden-
tically zero, we first note that, intuitively, the PDF φ(r)
of r = x(t ′) − x, satisfying x(t ) = x, is an even function
of (r2, r3). That is, φ(r1,−r2,−r3) = φ(r1, r2, r3), and hence
〈r2〉 = 〈r3〉 = 0. We wish to formalize and extend this to
the distribution of Z(t ′; x, t ) = (r,H). Here we have the in-
terpretation that H(t ; t ′), like r(t ′), is to be considered for
realizations such that x(t ) = x. From Eqs. (4), (5), and (8),
r and H will satisfy

r(t ′) = h(t ′, t )v − 1

τ

∫ t

t ′
h(t ′, s)[u(s) + vg] ds, (16)

H(t ; t ′) = h(t, t ′)I + 1

τ

∫ t

t ′
h(t, s)�(s) · H(s; t ′) ds, (17)

with h(t, s) = τ (1 − exp ( − (t − s)/τ )), v = ẋ(t ), and
u(s) = u(r(s) + x, s). Now consider orthonormal coordinate
transforms x̃ = P · x, such that the coordinate axis in the
gravitational direction is unchanged, i.e., x̃1 = x1. Thus
ṽg = P · vg = vg. Define the process

Z̃(t ′; x̃, t ) = (̃r, H̃) = (P · r, P · H · P�) = P (Z).

Then r̃, H̃ will satisfy the transformed versions of (16) and
(17), involving x̃ = P · x, ṽ = P · v, ũ(̃x, t ) = P · u(x, t ), and
�̃ = P · � · P�. Since ṽg = vg, it follows that Z̃ constitutes
a valid realization of the system associated with the corre-
sponding realization ũ. Moreover, since the averaged particle
concentration field remains spatially uniform, the distribution
of r, and therefore of H, will be independent of x. It follows
that the random variables Z̃ and Z have the same distribution,
that is, φZ̃(ζ) = φZ(ζ). From this it follows that, for any func-
tion F (ζ),

〈F (Z)〉 = 〈F (Z̃)〉 = 〈F (P (Z))〉.

To apply this to the integrand of κ in (7), we shall need
to consider sets of functions Fn(ζ) indexed by n ∈ S3, S =
{1, 2, 3}. There are two cases of interest. The first is when
Fn(P (ζ)) = −Fn(ζ), in which case it follows that 〈Fn(Z)〉 =
−〈Fn(Z)〉 = 0. The second case is Fn(P (ζ)) = Fm(ζ) giving
〈Fn(Z)〉 = 〈Fm(Z)〉.

To establish simplifications for κ, a number of sym-
metry transforms P need to be considered. Specifically,

TABLE I. Components of Z̃ in terms of Z for Pm.

m r̃ H̃

1

⎛⎝+r1

−r2

−r3

⎞⎠ ⎛⎝+H11 −H12 −H13

−H21 +H22 +H23

−H31 +H32 +H33

⎞⎠
2

⎛⎝+r1

−r2

+r3

⎞⎠ ⎛⎝+H11 −H12 +H13

−H21 +H22 −H23

+H31 −H32 +H33

⎞⎠
3

⎛⎝+r1

+r3

+r2

⎞⎠ ⎛⎝+H11 +H13 +H12

+H31 +H33 +H32

+H21 +H23 +H22

⎞⎠
4

⎛⎝+r1

−r3

+r2

⎞⎠ ⎛⎝+H11 −H13 +H12

−H31 +H33 −H32

+H21 −H23 +H22

⎞⎠

P1 = diag(1,−1,−1), P2 = diag(1,−1, 1), and

P3 =
⎛⎝1 0 0

0 0 1
0 1 0

⎞⎠, P4 =
⎛⎝1 0 0

0 0 −1
0 1 0

⎞⎠.

Table I gives the relationship between the components of Z̃
and those of Z for each of these four transforms.

Now consider the integrand 〈Hk j∂kR ji〉x of κ i. Write

Hk j (t ; t ′) ∂kR ji(r, t ′ − t ) = Fk ji(Z; t ′, t ).

Then, in the transformed frame (omitting explicit reference to
the time dependencies), Fk ji(Z̃) = H̃k j ∂̃kR̃ ji, where ˜∂ = P · ∂,
and the relationship between the components of R̃ = P · R ·
P� and those of R follows the same pattern as H̃, H set out
in Table I. With P = P1, ˜∂ = (∂1,−∂2,−∂3), and from Table I,

F222(Z̃) = H̃22∂̃2R̃22 = H22(−∂2)R22 = −F222(Z),

indicating 〈H22∂2R22〉 = 0. Likewise, using both P1 and P2, it
follows that 〈Hk j∂kR ji〉 = 0, i = 2, 3, all k and j, and hence,
as required, κ2 = κ3 = 0.

To simplify κ1, use P3: Then ∂̃ = (∂1, ∂3, ∂2) and, for
example,

F221(Z̃) = H̃22∂̃2R̃21 = H33∂3R31 = F331(Z).

Therefore, 〈H22∂2R21〉 = 〈H33∂3R31〉. Similarly,

〈H12∂1R21〉 = 〈H13∂1R31〉, 〈H21∂2R11〉 = 〈H31∂3R11〉,
〈H23∂2R31〉 = 〈H32∂3R21〉.

These results are seen to reflect the invariance of the system
with respect to the interchange of the coordinate axes Ox2 ↔
Ox3. Using these results, and the incompressibility condition
∂ · R = 0, we obtain the following reduced expression for the
integrand in (7):

〈Hk j∂kR j1〉 = 〈(H11 − H22)∂1R11〉
+ 2(〈H12∂1R21〉 + 〈H21∂2R11〉 + 〈H23∂2R31〉).

(18)

The remaining, nonzero contributions in (18) still require clo-
sure of course. This is considered in the next section, where
further symmetry-based reductions are introduced. Here we
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note that, based on the relationship between the components
of �, the fluid velocity gradient tensor sampled along particle
trajectories, and those of �̃ = P · � · P�, we can deduce that
all nondiagonal components of 〈�(t )〉 are identically zero.
Therefore, the fluid rotation rates experienced by particles
all have zero mean values. That is, 〈�〉 = 1

2 〈� − ��〉 = 0.
Again, this is in accord with the expectation that particles ex-
perience no biasing in the x2 and x3 directions, and it indicates
that the nonzero contribution to 〈�〉 is solely a consequence
of the averaged straining 〈�〉 = 1

2 〈� + ��〉 experienced by
particles. This highlights that, regardless of the physical origin
of the mechanism responsible for modifying the gravitational
settling velocity, this effect is associated with the preferential
sampling of � rather than �. Nonetheless, this observation
is not central to the causal mechanisms which underlie the
enhancement in settling velocity, and so it is not considered
further in the present work. Such symmetry-based deductions
should also be applicable to configurations with a higher par-
ticle loading [21,22] since effects such as three-way coupling,
originating from particle motion, are manifest through wakes
in the velocity field that serve to locally amplify strain rates in
the flow.

IV. CLOSURE MODELS

While the drift velocity representations provided by
Eqs. (7) and (13)–(15) offer various insights into the origin
and nature of enhanced settling, these expressions do not, as
they stand, constitute closed-form models. The expressions
can, in principle, be computed and assessed from particle
simulation studies, but without closure of the underlying en-
semble averages, they do not offer explicit formulas for the
drift.

With regard to closures for κ, previous studies have in-
variably made use of Green’s-function approximations to the
response tensor H. The influence of �, the sampled fluc-
tuating fluid velocity gradient tensor, is neglected in (17),
thus reducing H to a deterministic form, namely Hk j (t ; t ′) =
h(t, t ′)δk j . This has proved successful in cases in which
〈u〉 �= 0; see, for example, Refs. [12,23–25]. Here, however,
in the zero-mean regime of homogeneous isotropic flow,
this level of modeling fails. The integrand in (7) reduces to
h(t, t ′)〈∂ · R(r, t ′ − t )〉, which is identically zero for incom-
pressible flows. This essential dependence of H on ∂u again
emphasizes the crucial role of fluid straining and vorticity
on generating enhanced gravitational settling, and it demands
more sophisticated approaches to closure. To this end, we
make further use of the correlation splitting technique: Given
a random variable X and a deterministic function G(x),
then [13]

〈XG(X )〉 = 〈〈X〉〉〈G(X )〉 + 〈〈XX〉〉 · 〈∂G(X )〉 + · · · , (19)

where 〈〈·〉〉 denotes cumulants of X . In particular, 〈〈X〉〉 = 〈X〉,
and 〈〈XX〉〉 = 〈X ′X ′〉, where X ′ = X − 〈X〉. Further, if X is
Gaussian, then all higher-order cumulants are zero. Applying
(19) to the integrand of κ1 gives [the conditionality x(t ) = x
in the ensembles being implicit]

〈Hk j∂kR j1〉 =
∞∑

n=1

Tn, (20)

in which the first four terms are given by the expressions

T1 = 〈〈Hk j〉〉〈∂kR j1〉, T2 = −〈〈Hk jrn〉〉〈∂n∂kR j1〉,
T3 = 〈〈Hk jrnrp〉〉〈∂p∂n∂kR j1〉,
T4 = −〈〈Hk jrnrprq〉〉〈∂q∂p∂n∂kR j1〉.

We can again make use of symmetries to simplify the sum-
mations in each term of this expansion. First, since φH̃ = φH,
it follows from Table I that, for all k �= j, Hk j has an even
distribution and therefore zero mean. Further, H22 and H33

have the same distribution. These, and the incompressibility
condition ∂ · R = 0, reduce the first term T1 to

T1 = 〈H11 − H22〉〈∂1R11〉. (21)

To establish reductions in the second term T2, define Fnk j (r) =
∂n∂kR j1(r, t ′ − t ). Then, with P = P1,

F222(Z̃) = ∂̃2∂̃2R̃21 = (−∂2)(−∂2)(−R21) = −F222(Z),

implying that 〈∂2∂2R21〉 = 0. Similar consideration of all the
Fnk j under P1 and P2 establishes that the only nonzero compo-
nents of 〈∂n∂kR j1〉 are

〈∂1∂1R11〉
〈∂2∂2R11〉
〈∂3∂3R11〉

〈∂2∂1R21〉 = 〈∂1∂2R21〉,
〈∂3∂1R31〉 = 〈∂1∂3R31〉. (22)

Transform P4 establishes 〈∂2∂2R11〉 = 〈∂3∂3R11〉 and
〈∂2∂1R21〉 = 〈∂3∂1R31〉. Combining these, and using ∂ · R=0,
reduces the 27 terms in T2 to

T2 = 2〈〈H21r2〉〉〈∂2∂2R11〉 + (〈〈(H11 − H22)r1〉〉
− 〈〈H12r2〉〉)〈∂1∂1R11〉. (23)

The cumulant expansion given by Eq. (20), when intro-
duced into the flux representation given by Eq. (7), offers both
a mechanism to formulate closures for this enhanced flux,
as well as a means to identify the dominant contributions to
it. These two avenues of investigation form the cornerstone
of this work, and the assessment of each against numerical
data is covered in Secs. V B and V C. The expansion given
by Eq. (20) reduces the closure problem to that of finding a
strategy for constructing models for the cumulant correlations,
K1 = 〈〈H〉〉, K2 = 〈〈Hr〉〉, K3 = 〈〈Hrr〉〉, etc., and for the av-
erages of gradients in the fluid velocity correlation tensor R
sampled along trajectories. To these ends, we make use of
the representations of r and H given by Eqs. (16) and (17).
Equation (16) can be rewritten as

r(t ′) = (t ′ − t )vg + h(t ′, t )(v − vg) − 1

τ

∫ t

t ′
h(t ′, s)u(s) ds,

(24)
while substituting representation Eq. (17) for H recursively
into the right-hand side of the same equation leads to the
approximation

H(t ; t ′) ≈ h(t, t ′)I + 1

τ

∫ t

t ′
h(t, s)h(s, t ′)�(s) ds. (25)

Equation (25) is a leading-order approximation, which is
found to capture virtually all of the particle response behavior
that is important in the context of gravitational settling. The
effect of including more detail from Eq. (17) in an explicit
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description of H is negligible, and higher-order contributions
from Eq. (17) have therefore been omitted in the present work.

Equation (24) is a starting point for formulating closures
to the means of sampled gradients in R: Averaging over
trajectories such that x(t ) = x, and noting that, since the
system under consideration is statistically homogeneous and
stationary, 〈u(s)〉x = κ = 〈v〉 − vg gives the exact relationship
〈r(t ′)〉 = (t ′ − t )〈v〉. This prompts the simple approximation
〈r〉 ≈ r0 = (t ′ − t )vg, and then the closure

〈∂kR j1(r(t ′), t ′ − t )〉 ≈ ∂kQ j1(r0)E
(
t ′ − t ; τLp

)
, (26)

where Q(r) = R(r, 0), and E(s; τLp) is a modified temporal
decorrelation function that accounts for the influence of parti-
cle sampling by replacing the fluid Eulerian integral timescale,
τE , with a Lagrangian timescale, τLp. A specific model for τLp

is given in Sec. V, where results show that this closure strategy
is very effective, not only for 〈∂R〉 but also for higher-order
derivatives.

With regard to forming closures for the correlations be-
tween H and r embedded in the cumulants Kn, we note that
Eqs. (24) and (25) provide expressions for r and H in terms
of, respectively, sampled fluid velocities u and fluid velocity
gradients �. As a consequence, the cumulants Kn can be re-
duced to correlations between u and �, and these are amenable
to further closure modeling.

First, averaging Eq. (25) introduces the unclosed term
〈�(s)〉x into the approximation for 〈〈H〉〉. A representation
for this unclosed term can be derived using the same ap-
proach used to represent 〈u〉x in terms of κ. This gives (see
Appendix C)

〈�im(t )〉x ≈
∫ t

0
〈Hk j (t ; t ′)∂m∂kR ji(r, t ′ − t )〉x dt ′. (27)

We note that the integrand in Eq. (27) is zero if m �= i, indicat-
ing that this approximation respects the symmetry constraint
that requires 〈�〉 and 〈H〉 to be diagonal. A cumulant expan-
sion in Eq. (27) gives

〈Hk j∂m∂kR ji〉 = 〈〈Hk j〉〉〈∂m∂kR ji〉
+ 〈〈Hk jrn〉〉〈∂n∂m∂kR ji〉 + · · · . (28)

Symmetry considerations reduce the first term in this expan-
sion to

〈〈Hk j〉〉〈∂m∂kR ji〉 = δim〈H11 − H22〉〈∂m∂1R1i〉. (29)

Of course this introduces the mean value 〈H〉 again. However,
results show that this contribution is small compared to the
second term in Eq. (28). Indeed, the dominant contributions in
both Eqs. (20) and (28) are those associated with the second-
order cumulants. These can be approximated by combining
Eqs. (24) and (25) to get

〈〈Hk jrn〉〉 ≈ 1

τ
h(t ′, t )

∫ t

t ′
h(t, s)h(s, t ′)〈�′

k j (s)v′
n〉 ds

− 1

τ 2

∫ t

t ′
h(t, s1)h(s1, t ′)

×
∫ t

t ′
h(t ′, s2)〈�′

k j (s1)u′
n(s2)〉 ds2 ds1, (30)

where v′, u′, and �′ denote fluctuations about mean values.
A natural closure for 〈�′(s1)u′(s2)〉 is obtained by taking
〈�(s1)〉〈u(s2)〉 ≈ 0 and then

〈�′
k ju

′
n〉 ≈ 〈∂ juk (x(s1), s1) un(x(s2), s2)〉

≈ 〈∂ jRkn(r(s1) − r(s2), s1 − s2)〉. (31)

The closure strategy given by Eq. (26) can then be used.
For the correlation 〈�′(s) v′〉, we relate particle velocities to
sampled fluid velocities via a particle-fluid stochastic model
[26], further details of which are outlined in Appendix D. This
provides expressions for correlations between these velocities,
and to conform with these we take

v ≈ u′
√

StE
1 + StE

z + 1

1 + StE
u(t ′) + vg. (32)

Here u′ is the root-mean-square velocity for the fluid, StE =
τ/τE , and z is the standard normal deviate. The correlation
〈�′(s) v′〉 is therefore modeled as

〈�′(s) v′〉 ≈ 1

1 + StE
〈�′(s) u′(t ′)〉, (33)

and Eq. (31) can then be used again. Thus the same strategy is
used to model both 〈�′(s1) u′(s2)〉 and 〈�′(s) v′〉.

The effectiveness of these closures is discussed in the next
section. A similar approach could be considered for terms
T3 and T4 in expansion (20). This is not pursued here since
the results in Sec. V demonstrate that, in the present context,
the contribution of these terms to the enhanced settling is
secondary.

V. RESULTS AND DISCUSSION

Various representations for the particle mass flux ρv were
set out in Sec. II. These all purport to capture (subject to
associated provisos) the increase in settling velocity experi-
enced by inertial particles in a gravitational field. However,
that this is the case is not immediately obvious, and there-
fore it is instructive to assess such models making use of
particle-trajectory simulations. Results from such simulations
also provide a benchmark against which the closure model-
ing strategy developed in Sec. IV can be assessed. As noted
in Sec. II, two of the formulations, Eqs. (14) and (15), are
problematic in that they do not lend themselves easily to a
simulation study. We therefore confine our attention to the flux
representations given by Eqs. (7) and (13).

In the case of the representation given by Eq. (7), the
claim is that this provides an exact description of enhanced
settling subject only to the underlying fluid velocity field u
conforming to a Gaussian distribution. With this in mind,
we have adopted a kinematic simulation (KS) approach for
generating stochastic fields. This allows for the construc-
tion of velocity fields that are not only strictly Gaussian,
but that also reproduce prescribed forms for fluid velocity
correlations and turbulent kinetic energy spectra consistent
with the general theory of homogeneous, isotropic turbu-
lence. In this way, with a closed-form expression for R, we
ensure that no confounding factors have to be taken into
account when assessing our closure modeling. We have cho-
sen to simulate the velocity field u such that this reproduces
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FIG. 1. Enhanced settling velocity. Comparison of |κ1|/u′ with
|v1 − Vg|/u′ and |〈�u1〉|/ρu′.

the Batchelor-Townsend energy spectrum. Details of the sim-
ulation method are given in Appendix A.

By computing particle trajectories in these simulated flows,
we can investigate the validity and accuracy of the flux repre-
sentations. Further, in the case of that given by Eq. (7), we
can assess both the relative contributions to this flux from the
terms Tn in the expansion (20), and the performance of the
proposed closure models for these terms. These investigations
are presented next.

A. Assessment of flux representations

The representations for enhanced settling given by Eqs. (7)
and (13) can be assessed from two measures obtainable
from simulation data: First, they can be assessed by direct
evaluation of the mean particle velocity v. This, of course, pro-
vides the reference value, v − vg. Alternatively, from Eq. (6),
the preferentially sampled fluid velocity 〈�u〉 should be
equivalent.

Simulations were performed with a range of parameter
values, 0.05 < StE < 5 and 0.05 < Vg = |vg| < 2, in a two-
dimensional KS flow field. All simulations used 106 particles
and were run in parallel on 44 processors for a period of
3τ + 3τE to achieve equilibrated statistical measures, and a
further 4τLp for the sampling of statistics. Figure 1 shows cor-
responding results for the three measures of enhanced settling:
v − vg, 〈�u〉, and κ. The last of these is computed using the
simulated particle trajectories to perform a direct numerical
evaluation of the expression given by Eq. (7). All results are
normalized with respect to the fluid root-mean-square velocity
u′, and error bars represent the standard deviation from time-
averaging. From the figure it is seen that the modification in
settling velocity is always positive, which is consistent with
the use of the linear drag model (5) [27,28], and furthermore
the peak increase of around 7% is in line with previous find-
ings using synthetic velocity fields [1].

The results are seen to substantiate the validity of the en-
hanced flux representation provided by κ across the full range
of values of StE and Vg. This demonstrates that, for a Gaussian
flow field, the functional correlation splitting approach in (7)
is able to capture all the physical mechanisms that act to cause
the increase in settling velocity that is observed, and it is
therefore a suitable framework for model development of this

FIG. 2. Enhanced settling velocity. Comparison of (34) with
|〈�u1〉|/ρu′, Vg/u′ = 1.0.

phenomenon. The capacity of this formulation to capture the
enhanced settling stems from the interaction between H and
∂R as seen by particles that is intrinsic to Eq. (7). This implies
that it is the correlation between the path history of particles
and the sampling of spatiotemporal flow structures along tra-
jectories that is responsible for the increase in settling velocity,
and this is in accordance with the preferential concentration
phenomenology [1,29].

It is worth noting that in principle the functional correlation
splitting approach can be extended to include higher-order
cumulants which account for the non-Gaussian aspects of the
flow [15], meaning that this approach is capable of captur-
ing the range of various physical mechanisms observed for
particles settling in true turbulence [21,22,28]. The additional
contributions are generalizations of the history integral given
by κ in Eq. (7) and they are infinite in number, however the
expression for κ remains the leading-order contribution. Con-
sequently, κ would still be expected to capture the dominant
contribution to the drift velocity in true turbulence across a
range of Reynolds numbers. The methodology can also be
extended to nonlinear drag models for describing the particle
trajectories, in which case the functional correlation splitting
approach would be expected to account for the phenomenon
of loitering observed at large St [27,28].

Figure 2 shows a similar comparison between the reference
values 〈�u〉 and the representation given by Eq. (13), using
expression (12) for V to reduce this to the approximation

〈�u〉 ≈ τρ

∫ t

0
〈u(x, t ) ∂u : ∂u�(x′, t ′)〉 dt ′. (34)

The results shown were obtained using a normalized grav-
itational settling velocity Vg/u′ = 1, which, from Fig. 1,
maximizes the enhanced setting. As can be seen, the agree-
ment provided by approximation (34) is not strong. Of course,
by construction, we would not expect good agreement for
St ∼ O(1). However, even for St ∼ O(0.1) the agreement is
limited, and only the underlying, qualitative trend is recov-
ered. This demonstrates that the centrifuge process identified
by the small St analysis is not the only mechanism responsible
for enhanced settling, with other mechanisms predominant at
larger St. This is the case even in the simplified context of a
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FIG. 3. Contribution of terms Tn to the average 〈(H� : ∂R)1〉,
StE = 0.1, Vg/u′ = 1.0.

Gaussian flow field, and it highlights the importance of the
multiscale effects that underlie this phenomenon [29].

The contrast with Fig. 1 is striking, and it prompts
further assessment of the preceding analysis aimed at con-
structing closure models for the flux representation provided
by Eq. (7). Results from these investigations are presented
next.

B. Relative contributions of cumulants

In terms of modeling, it is instructive to first numerically
evaluate the terms in the cumulant expansion (20) for the
integrand of κ1, in order to ascertain the importance of their
relative contributions. Although the flow field u is Gaussian,
the resulting processes r and H are not, and this necessi-
tates the investigation of at least some higher-order terms.
We consider the first four terms, T1–T4. These have been
evaluated using simulated particle trajectories, and illustrative
results are shown in Fig. 3. These results were obtained using
StE = 0.1 and Vg/u′ = 1.0, corresponding to the maximum
enhanced settling (Fig. 1). Figure 3 shows the (normalized)
time evolution of the integrand 〈Hk j∂kR j1〉 together with the
contributions to this of the different expansion terms Tn. It is
immediately apparent that the dominant contribution arises
from T2, and is thus associated with the second cumulant
K2 = 〈〈Hr〉〉. The contributions from the other terms, T1, T3,
and T4, are all a full order of magnitude smaller, and conse-
quently play a substantially less significant role in determining
the overall particle settling velocity. Nonetheless, the presence
of nonzero T3 and T4 highlights non-Gaussian aspects in the
joint distribution of r and H, which arise from the biasing
that is inherent in particle trajectories.

Another way to illustrate the relative importance of terms
T1–T4 is by considering the cumulative contribution of these
to the overall behavior of the integrand 〈Hk j∂kR j1〉. This is
illustrated in Fig. 4. Clearly T1 cannot, by itself, be consid-
ered a meaningful descriptor of this average. However, the
partial sum T1 + T2 is seen to account for the majority of the
average, due to the dominant contribution of T2. The addition
of T3 provides only marginally greater accuracy, while inclu-
sion of T4 adds a slightly more substantial contribution. At
this level of description, the remaining deficiency is concen-
trated around the peak amplitude of the average 〈Hk j∂kR j1〉,

FIG. 4. Partial sums of Tn as approximations to 〈(H� : ∂R)1〉,
StE = 0.1, Vg/u′ = 1.0.

and also at large time separations of (t − t ′). This implies
that contributions from additional terms, T5, T6, etc., in the
expansion will make little discernible difference, and it jus-
tifies truncation of the expansion at T4. Furthermore, it is
seen in Fig. 4 that the information contained within T1 and
T2 constitutes the majority of the variation in 〈Hk j∂kR j1〉,
and is certainly sufficient to capture the characteristic be-
havior that is responsible for the increase in particle settling
velocity.

The relatively small contribution from T1 can be explained
by recalling that, as deduced based on symmetry arguments
in Sec. III, K1 = 〈〈H〉〉 is diagonal. The contraction with
〈∂R(r, t ′ − t )〉 then results in terms that approximately cancel,
in accord with the incompressibility condition ∂ · R = 0. In
contrast, K2 = 〈〈Hr〉〉 in T2 reflects the interaction between
r and H, which is associated with the nonlocal path history
effects that are sampled along individual trajectories [2,5], and
only this level of detail is sufficient to account for the majority
of the increase in particle settling velocity. This emphasizes
that the mechanisms that underlie this phenomenon are not
directly dependent on the average properties of either the flow
field or the particle phase, but rather the collective influence
of the flow field on individual particles, and specifically how
the trajectory-dependent response tensor H and separation
along trajectories r interact with each other. This also explains
why Green’s-function approximations to the response tensor
H are incapable of capturing any of the settling velocity
enhancement experienced by particles; these approximations
effectively model the average particle response 〈H〉 by omit-
ting the individual trajectory history dependence of particles,
and therefore they only have the capacity to include infor-
mation contained within T1. This highlights the necessity to
account for trajectory-dependent history effects and, in partic-
ular, the key role of the fluid velocity gradient tensor sampled
by particles. On this basis, a carefully constructed closure
model for T2 will be sufficient to capture essential features
modifying the particle settling velocity. This is in contrast
to previous modeling work using the functional correlation
splitting approach in cases in which 〈u〉 �= 0 [12,23–25]. In
these scenarios, the average particle phase behavior is more
important than the individual trajectory dependence on the
flow field. Consequently, in such flows, T1 rather than T2 gives
the dominant contribution to the mass flux.
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FIG. 5. Evaluation of closure approximations 〈∂R(r)〉 ≈ ∂R(r0),
StE = 0.1, Vg/u′ = 1.0.

C. Closure model assessment

The closure strategy outlined in Sec. IV was applied to
the first two terms, T1 and T2, of the expansion (20). The
application to terms T3 and T4 was not considered, partly
because of the added complexity involved, but also because,
as we have just seen, these terms contribute a relatively minor
component to the overall mass flux. In this section, therefore,
attention is confined to assessing the approach as applied to T1

and T2.
The model requires specification of a suitable Lagrangian

decorrelation function in Eq. (26). We take E(s; τLp) =
exp[− π

4τ 2
Lp

s2]. This is a natural variation of the decorrelation

function defined in Eq. (A2), with a modification that seeks to
account for the influence of particle trajectories by replacing
the fluid Eulerian integral timescale τE with τLp. The specific
model used for τLp is the empirical relation [30]

τLp = τE − τE − τL

(1 + StE )−0.4(1+0.01 StE )
, (35)

where τL is the Lagrangian fluid integral timescale as deter-
mined from the specific flow field under consideration. Use
of Eq. (35) ensures that model (31) is physically consistent
with the correlation being that of fluid quantities sampled by
particles, and that the associated decorrelation timescale is
then representative of particle settling.

The ability of the proposed closure strategy to accurately
capture the increase in settling velocity depends upon the
effectiveness of the models for the various expressions in
the expansion (20), specifically the spatial derivatives of R
evaluated along particle trajectories as modeled in Eq. (26),
and the cumulants 〈〈H〉〉 and 〈〈Hr〉〉 themselves, which are
modeled using Eqs. (25), (27), and (30). The former closure
completely neglects the effect of the covariance of r on the
behavior of the tensors 〈∂R(r, t ′ − t )〉 and 〈∂∂R(r, t ′ − t )〉,
and it only accounts for the influence of trajectories through
the average statistic r0. Despite this, the true behavior of these
terms is well approximated by the models in terms of both the
magnitude and timescale of the decorrelations. This is illus-
trated in Figs. 5 and 6, which compare closure approximations
with exact averages. Only the distinct, nonzero components
are plotted. These are consistent with predictions from the
symmetry analysis. In view of Eqs. (22) and (23), only the

FIG. 6. Evaluation of closure approximations 〈∂∂R(r)〉 ≈
∂∂R(r0 ), StE = 0.1, Vg/u′ = 1.0.

averages 〈∂1R11〉, 〈∂1∂1R11〉, and 〈∂2∂2R11〉 are required in the
closure. The figures show that the proposed closures provide
an acceptable level of accuracy.

Closure of the second cumulant, 〈〈Hr〉〉, is based upon
approximation (31) for 〈�′u′〉 coupled with the gradient ap-
proximation (26). The latter, as just discussed, performs well.
The performance of the former is illustrated in Fig. 7, where
again all the distinct, nonzero components are plotted. As can
be seen, reasonable agreement is obtained for all but one of
the component averages: The profiles for 〈�′

22u′
1〉 and 〈�′

12u′
2〉

are noticeably different, whereas the corresponding closure
approximations are identical, and they fit 〈�′

12u′
2〉 very well.

This discrepancy is a consequence of introducing the isotropic
correlation tensor R in (31). This means that, irrespective of
subsequent closure of this term, the observed anisotropy in the
correlations cannot be captured. The decorrelation timescale
associated with 〈�′

22u′
1〉 is also seen to differ significantly

from the other terms. The behavior of this component is more
characteristic O(t ) exponential decay, rather than the O(t2)
form in the model decorrelation function E(s; τLp), which
is seen to capture the other correlation profiles very well.
Again, this reflects the particle sampling bias in these La-
grangian correlations. The closure model for 〈�′v′〉, Eq. (33),
is derived from that for 〈�′u′〉. Not surprisingly, then, further
deviations are evident between the predicted model and the

FIG. 7. Evaluation of the closure model 〈�′(s1)u′(s2)〉 ≈ ∂R(r0 ),
StE = 0.1, Vg/u′ = 1.0.
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FIG. 8. Evaluation of the closure model 〈�′(s)v′〉≈ 1
1+StE

∂R(r0 ),
StE = 0.1, Vg/u′ = 1.0.

true decorrelation profiles, Fig. 8. Nevertheless, on balance,
the results shown in Figs. 5–8 illustrate that the underlying
closures do capture essential features of the profiles. In most
cases, they do so very well.

The acid test of the closures based on Eqs. (31) and (26)
is made by evaluating the integrand 〈H�:∂R〉 of κ1 using
these models. In principle, it is possible to derive analytical
expressions for the resulting model for this integrand. Here,
however, model verification is undertaken numerically since
the calculations are computationally trivial, consisting simply
of a double integral in time. This is in stark contrast with
the computational effort required to evaluate the unclosed
expression from particle trajectory data.

The performance of the models for the terms T1 and T2 of
the cumulant expansion (20) as evaluated using this procedure
is displayed in Fig. 9. While the contribution from T1 is small
in comparison to T2, the model for T1 is seen to accurately
account for this small component. The model for T2 is also
seen to give a reasonable representation of the true behavior,
although there are discrepancies in the predicted peak value
and the decorrelation timescale. The deficit in peak amplitude
can be attributed to the introduction of an isotropic approx-
imation in Eq. (31), sacrificing the true anisotropic behavior
shown in Fig. 8. The timescale discrepancy is manifest in the
introduction of a single timescale, Eq. (35), invoked to model

FIG. 9. Evaluation of the model for 〈(H�:∂R)1〉, StE = 0.1,
Vg/u′ = 1.0.

all decorrelations between fluid velocity and velocity gradient
components. Despite these variations, the overall model for
the combined contributions of T1 and T2 is seen to capture im-
portant features in the time history dependence of the average
〈H�: ∂R〉. Clearly there is scope for further refinements to the
detailed modeling, but these results demonstrate the potential
of the proposed methodology for constructing closures for
particle mass flux representations.

VI. CONCLUSIONS

The work presented in this paper has considered a number
of different representations for the particle mass flux ρv, and
the effectiveness of these at describing the modification in
settling velocity that is exhibited by inertial particles in a
uniform gravitational field. With a focus on the functional
correlation splitting approach in Eq. (7), an analysis of this
flow configuration has highlighted the symmetries that are
inherent in the quantities associated with this framework. A
cumulant expansion of the unclosed average in Eq. (7) has
further enabled investigation into the importance of interac-
tions involving the nonlocal path history effects, which are
sampled along particle trajectories, and a closure model has
been constructed that is able to capture the essential features
of this underlying behavior.

Importantly, the functional correlation splitting approach
has been shown to account for the complete effect of the
increase in settling velocity that is exhibited by particles in
a Gaussian flow field. Two key factors that play a role in this
have been highlighted in the work: The first of these is how
the fluid velocity gradient sampled along particle trajectories
influences the dynamics of the particle response tensor H.
The second is the statistical spatiotemporal structure of the
turbulence as represented by the fluid velocity correlation
tensor R. Crucially, it is the interaction between these two
quantities that is responsible for recovering an exact repre-
sentation of flux modification.

That the mass flux associated with small-scale effects such
as the increase in particle settling velocity can be accurately
represented by Eq. (7) is a consequence of this framework
being free of spurious drift [31]. This means that the model
description provided by the unclosed average in Eq. (7) does
not suffer from the introduction of any artificial effects in
the fluid-point limit St → 0. The phenomenon of preferential
concentration is dependent upon the correlation of particle
spatial distribution with the flow field structures, and the func-
tional correlation splitting approach is able to fully capture
this behavior. This work, therefore, serves to demonstrate
that such a framework offers a conceptually sound approach
for representing and modeling small-scale flux contribu-
tions which arise from preferential sampling of the flow by
particles.

The other main contribution of this work is to highlight the
ability of the cumulant expansion (20) to extract the necessary
behavior from the unclosed average 〈H�: ∂R〉. Previously
proposed closure approaches are unable to reproduce such
effects. In addition to delineating the contributions that indi-
vidual cumulants make to the overall behavior, this expansion
technique has the advantage of reducing unclosed expres-
sions to stochastic quantities directly related to the underlying
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particle equation of motion and fluid velocity field. This pro-
vides a means to construct closures that are able to account for
the characteristic physical behavior of even small-scale fluxes,
and thereby provides a fundamental representation of these
phenomena.
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APPENDIX A: KS FLOW FIELD

The simulation results in Sec. V were obtained using
the technique of kinematic simulation, in which realiza-
tions of a stochastic velocity field u(x, t ) are generated.
This zero-mean field is defined on a domain [−L,+L]d (in
d ∈ {2, 3} dimensions) with periodic boundary conditions,
and such that the constraints of incompressibility, homo-
geneity, isotropy, and statistical stationarity are all satisfied.
Then u(x, t ) can be expressed in terms of its Fourier series
representation as

u(x, t ) =
∑

k

ck(t ) exp[i k · x], (A1)

where k = π
L n = �k n, n ∈ Zd . The amplitude coefficients

ck(t ) ∈ C3 are defined via ck = zk × k exp[i ωkt], with zk =
1
2 αk(ζk − i ξk ) and normally distributed random variables
ζk, ξk ∼ N(0, σ 2

z I), and ωk ∼ N(0, σ 2
ω ), subject to the con-

straints (to give u ∈ R3), ζ−k = −ζk, ξ−k = ξk, ω−k = −ωk.
This method of construction results in a two-point, two-time
correlation tensor R(r, s) expressible as a product of inde-
pendent spatial and temporal correlation functions, R(r, s) =
Q(r)Eω(s), with the temporal correlations following a Gaus-
sian profile

Eω(s) = 〈exp[i ωks]〉 = exp
[− 1

2σ 2
ωs2]. (A2)

The parameters αk and σz may be chosen so that spatial corre-
lations of the resulting field u conform to a given form of Q.
Consistent with an isotropic system, this must take the form

Qi j (r) = u′2
[

rir j

r2
[ f (r) − g(r)] + δi jg(r)

]
, (A3)

where r = |r|, and the longitudinal and lateral decorrelation
functions f (r), g(r) are related through incompressibility by

g(r) = f (r) + 1

(d − 1)
r f ′(r), (A4)

with f (0) = g(0) = 1. Consistent with the standard
Batchelor-Townsend energy spectrum [32,33], the form
of f (r) is taken to be

f (r) = exp
[− 1

2 σ 2
k r2

]
. (A5)

To reproduce this from the simulated velocity field, the
parameters αk and σz are given by

αk =
{

(2π )−
d
2 (�k)dσ

−(d+2)
k exp

[
−1

2

k2

σ 2
k

]} 1
2

, (A6)

1

2
σ 2

z = 1

d − 1
u′2, (A7)

subject to σkL � 1. This specification of f (r) and Eω(s) also
directly yields the longitudinal integral lengthscale L11 and
Eulerian integral timescale τE of the velocity field as

L11 =
∫ ∞

0
f (r) dr =

√
π

2
σ−1

k , (A8)

τE =
∫ ∞

0
Eω(s) ds =

√
π

2
σ−1

ω . (A9)

APPENDIX B: HIGHER-ORDER DERIVATIVES
OF THE TWO-POINT CORRELATION TENSOR

FOR ISOTROPIC FLOW

Consistent with Appendix A, and the decoupling of spatial
from temporal correlations in a kinematically simulated ve-
locity field, write R(r, s) = Q(r)Eω(s). Then, using Eq. (A5),
the homogeneous and isotropic spatial correlation tensor Q(r)
takes the form

Q ji = u′2

d − 1

{
σ 2

k r jri − [
σ 2

k r2 − (d − 1)
]
δ ji

}
f (r). (B1)

To simplify the presentation of the spatial derivatives of this
tensor, it is convenient to introduce a sum over permutations
notation. Let

∑
3 ak ji denote the sum over all permutations of

the three symbols in the triple (k, j, i). That is,∑
3

ak ji = ak ji + aki j + a jki + a jik + aik j + ai jk . (B2)

Sums over permutations of other n-tuples, e.g.,
∑

4 blk ji, are
defined similarly. Then, with the interpretation that the partial
derivative operator acts upon r in the following, we have

∂kQ ji = −u′2 σ 2
k

d − 1

{
σ 2

k rkr jri −
([

σ 2
k r2 − (d + 2)

]
rkδ ji + 1

2

∑
3

rkδ ji

)}
f (r), (B3)

∂l∂kQ ji = u′2 σ 2
k

d − 1

{
σ 4

k rl rkr jri − σ 2
k

([
σ 2

k r2 − (d + 4)
]
rl rkδ ji + 1

4

∑
4

rl rkδ ji

)

+
([

σ 2
k r2 − (d + 2)

]
δlkδ ji + 1

8

∑
4

δlkδ ji

)}
f (r), (B4)
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∂m∂l∂kQ ji = − u′2σ 4
k

d − 1

{
σ 4

k rmrl rkr jri − σ 2
k

([
σ 2

k r2 − (d + 6)
]
rmrl rkδ ji + 1

12

∑
5

rmrl rkδ ji

)

+
(

1

2

[
σ 2

k r2 − (d + 4)
]
δi j

∑
3

rmδlk + 1

8

∑
5

rmδlkδ ji

)}
f (r), (B5)

∂n∂m∂l∂kQ ji = u′2σ 4
k

d − 1

{
σ 6

k rnrmrl rkr jri − σ 4
k

([
σ 2

k r2 − (d + 8)
]
rnrmrl rkδ ji + 1

48

∑
6

rnrmrl rkδ ji

)

+σ 2
k

(
1

4

[
σ 2

k r2 − (d + 6)
]
δ ji

∑
4

rnrmδlk + 1

16

∑
6

rnrmδlkδ ji

)

−
(

1

8

[
σ 2

k r2 − (d + 4)
]
δ ji

∑
4

δnmδlk + 1

48

∑
6

δnmδlkδ ji

)}
f (r). (B6)

APPENDIX C: CORRELATION SPLITTING FOR VELOCITY GRADIENT FLUX CLOSURE

The expression for 〈�(t )〉x given by Eq. (27) is obtained using the same functional correlation splitting technique that
produced Eq. (7). The derivation, outlined here, makes use of the particle number density �(x, t ) = δ(x(t ) − x) and ensemble-
averaged number density ρ(x, t ) = 〈�(x, t )〉 introduced in Sec. I. Recalling that �im(t ) = ∂mui(x(t ), t ), the properties of � can
be used to write

ρ(x, t )〈�im(t )〉x = 〈�(x, t )∂mui(x, t )〉. (C1)

Manipulation of the spatial derivative then yields

〈� ∂mui〉 = ∂m〈�ui〉 − 〈ui∂m�〉. (C2)

The first term on the right-hand side of this expression introduces κ i again, Eq. (7). In the present context, this will be spatially
uniform, and therefore the gradient involved in the first term will be zero. For the second term, the same correlation splitting
approach can be utilized [13,15]. For a zero-mean Gaussian velocity field u, this results in

〈ui∂m�〉 =
∫ t

0

∫
x′

Ri j (x, t ; x′, t ′)
〈

δ(∂m�)

δu j (x′, t ′)dx′dt ′

〉
dx′dt ′. (C3)

The functional derivative in this expression can be rewritten using the chain rule as [15]

δ(∂m�)

δu j (x′, t ′)dx′dt ′ = −δ(x(t ′) − x′)Hk j (t ; t ′) ∂k∂m� (C4)

with the response tensor H(t ; t ′) defined, as before, by

Hk j (t ; t ′) = δxk (t )

δu j (x(t ′), t ′)dt ′ . (C5)

Using (C4) in (C3) produces the simplification

〈ui∂m�〉 = −
∫ t

0
〈Hk j (t ; t ′)R ji(x(t ′), t ′; x, t ) ∂k∂m�〉 dt ′. (C6)

Noting that H(t ; t ′) is independent of x, manipulation of the spatial derivatives acting on � yields, in homogeneous systems,

〈ui∂m�〉 = −
∫ t

0
〈Hk j (t ; t ′) ∂m∂kR ji(x(t ′), t ′; x, t )�〉 dt ′. (C7)

Hence, using the filtering property of �, we obtain from Eq. (C2)

〈∂mui(t )〉x =
∫ t

0
〈Hk j (t ; t ′) ∂m∂kR ji(x(t ′), t ′; x, t )〉x dt ′. (C8)

This enables a closure model for 〈�(t )〉x to be constructed that is consistent with the procedure used for 〈�u〉 in Sec. IV.
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APPENDIX D: MODEL FOR THE STEADY-STATE PARTICLE-FLUID CORRELATIONS

The expression in Eq. (32) emanates from a PDF model for the steady-state particle-fluid correlations [26]. Specifically, a
generalized Langevin model is introduced for u(x(t ), t ), and along with Eq. (5) for the evolution of v(t ), the statistics of the joint
particle-fluid distribution p(u, v) can be derived. In particular, the distribution of v(t ) conditional on u(x(t ), t ) can be obtained
by making use of the relationship p(v | u) = p(u, v)/p(u), and it yields a Gaussian with mean v̂(u) and covariance matrix �v|u
given by

v̂(u) = 1

1 + StE
u + vg, (D1)

	v|u = StE
(1 + StE )2

u′2I. (D2)

Specification of the particle velocity in accordance with the Gaussian distribution p(v | u) is achieved using the formula v =√
	v|u · z + v̂(u), where z is the standard normal deviate, from which it follows that using Eqs. (D1) and (D2) results in the

expression given by Eq. (32).
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