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Simple holistic solution to Archie’s-law puzzle in porous media
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In this paper, we account for the many critical exponents derived from the studies of the electrical conductivity
in porous media by applying analysis of the well-known relation known as Archie’s law. In spite of its seeming
simplicity this law is considered to be “poorly understood,” and the question that was and still is debated in
the literature is whether there is some “hidden physics” in this law, or if it is “strictly a parametrization use for
curve fitting with a priori no physical meaning.” Our solution to the corresponding long-debated 78 years old
puzzle is based on the classical percolation theory, but it also involves a principle that is based on continuum
percolation. This principle is that the electrical properties of a percolation system are determined by the interplay
between the connectivity of the conducting objects in that system, and the connectivity of the intersections
between pairs of them. We thus propose a general concept that we call an electrically affected connectivity, and
we predict the corresponding evolvement of the conductivity critical exponent with the increase of the content
of the electrically conducting phase. Then, we show that the zerolike threshold that characterizes Archie’s law
is what enables the observation of this evolution. Combining the above principle and the latter feature, we
provide a holistic, yet simple, solution to the longstanding controversy surrounding this law and its practical
applications. In contrast with many previous claims that Archie’s law lacks a physical basis, and the commonly
suggested experiential explanations for it, we provide a solution that is physically based and thus elucidates
Archie’s law by showing clearly that it represents a bona fide phase transition phenomenon. This conclusion and
its generality are strongly supported by the fact that it also explains the behavior of the electrical conductivity
exponents in nonporous systems such as composite materials. The predicted ability to extract the long sought
microgeometrical information from Archie’s-law data, within the framework of the percolation phase transition,
is expected to open a new direction in the understanding and the applications of this law.
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I. INTRODUCTION

Since Archie’s seminal realization [1] regarding the de-
pendence of electrical conductivity in porous media on the
porosity φ (the fractional macroscopic volume of the pores),
78 years ago, this dependence has been a subject of great
interest due to its relevance for many science and engineering
fields. The dependence, known as Archie’s law states that
in many porous media, when saturated with an electrically
conducting liquid (typically water or brine), the electrical
conductivity σ is simply given by σ ∝ φm, where m is an
empirical parameter. Though Archie proposed this depen-
dence for sedimentary rocks, such as sandstones (for which
he found an m ≈ 2.0 value) and unconsolidated sand (for
which he found an m = 1.3 value), it was later widely applied
to other fields [2–8], including physics [3,9,10], statistical
physics [11,12], material science [13–17] and engineering
[18], as well as mathematics, statistics, and computer sci-
ence. In particular, to this very day, Archie’s law is used
extensively for understanding, system-characterization [19],
and the extraction of valuable information [5] in earth
sciences, including geophysics [20,21], geology [6,22], hy-
drology [23,24], agriculture [20,25], petrophysics [5,26,27],
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mineralogy [28,29], seismology [30–32], and many environ-
mental sciences [33–35]. In fact, due to the abundance of its
observation “this empirical relation has been accorded the sta-
tus of a law in the geophysical literature” [2] and a distinction
was made between Archie’s [36] and non-Archie’s [37] rocks.

The two conspicuous features of Archie’s “law” [1], when
it is written as

σ ∝ (φ − φc)m, (1)

are that φc, the threshold porosity for electrical conductivity,
is practically 0 [1,3], and that the exponent m, as determined
in numerous observations, is confined to well-defined ranges;
these are the 2.0 � m � 4.0 range [4,38,39], the 1.3 � m �
2.6 range [40–42], the 1.0 � m � 1.3 range [43], and the
1.0 � m � 2.0 [6] range. Archie attributed the m values that
he found to the cementation in sedimentary rocks, and thus m
is also known as the cementation factor [44]. In spite of its
simplicity the interpretation of this law has created a lively
ongoing controversy [2,19,40,45,46] that continues until to-
day [39,47–52]. Correspondingly, the law is still described
as “poorly understood” [36] or “inadequately understood”
[48]. While numerous various approaches and ad hoc models
for the explanation of the various m values in the above m
ranges were suggested [5,37,41,42], some very significant
characteristics of these values have not been accounted for.
These include the sharp statistical drop in the number of
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observations beyond m = 4.0 [38,53], the frequent observa-
tions of a series of m values in a given reservoir in the
1.3 � m � 2.6 range for very different types of reservoirs
[40,41,54], and the observed increase [22,40,44,53] or de-
crease [19,22,40,41,53] of the m(φ) dependencies. More
significantly, none of the previously proposed models [39,55]
was able to give a general and holistic account that correlates
Archie’s m confinements with Archie’s φc → 0 feature. For
more of the observed m values see the Supplemental Material
SM(1) in Ref. [56].

The many trials to interpret this law in terms of perco-
lation theory have faced two major difficulties. First, it is
counterintuitive to have an electrical conductivity threshold,
φc, that is zero [41,70], and second, no previous percolation
model could explain the general confinement of the m values
to the 1.0 � m � 4.0 range [2,38,39,43,44,53]. Moreover,
the significant similarity of the above observations to those
found in (the physically very different, but topologically very
similar) composite materials [71–73] has not been noticed.
On the other hand, the frequent experimental observations
[1,2,38] of 1.3 and 2.0 values of m in porous media, and the
corresponding conductivity exponent in composite materials,
indicate the relevance of percolation theory since these values
are the two dimensional, μ(2D), and the three-dimensional,
μ(3D), percolation universal-critical exponents of the per-
colation conductivity [74–76]. Below, we denote these two
exponents generically by μ (see SM(2) in Ref. [56]). In con-
trast with the latter μ values, m values larger than m = 2.5 in
various porous media [70,77] cannot be explained even by the
well-known possible deviations from percolation universality
[2,78] (see SM(3) in Ref. [56]), or by uncommon percolation
theories [9]. In particular, no previous percolation approach
could account for the above-mentioned sharp statistical drop
in the observations of the m values for m > 4.0. Correspond-
ingly, the above variety of m values [2,19,38,54] and the a
priori unphysical [41,54,70] finding [1,3] of φc → 0, have
motivated many [2,19,36] to interpret the observations of
Archie’s law outside the common framework of percolation
theory [39,41,42,54]. In fact, the observation of m values in
the 1.5 � m � 2.2 range, on a particular type of microstruc-
ture, has been interpreted as evidence that such observations
“mediate against percolation models as suitable models of
rock pore-space geometry” [41]. Still, following the over-
whelming finding of m = μ values in a variety of the studied
porous media [2,19], many others tried to interpret Archie’s
law [2,3,79] in light of the first principles of percolation theory
[74–76,78] (see SM(2) in Ref. [56]).

In this paper, we add to our previous percolation expla-
nation of Archie’s φc → 0 feature [3], a simple percolation-
based analysis that accounts for the various observations con-
cerning the m value confinements and the m(φ) dependencies
in porous media. This is done by showing that those confine-
ments result when the electrical resistance at the intersection
between two pores, that are saturated with a conducting liq-
uid, is larger than that of the corresponding individual pores,
and by showing that the observation of these confinements is
enabled by the φc → 0 feature. Such conditions commonly
exist in systems of slender (i.e., high aspect ratio) pores, where
the pores have the form of channels [4,5], fractures [3,6], and
cracks [80,81], or narrow throats that connect spherical-like

pores [2,36,54]. In particular, we show that the smaller the φc,
the larger the probability for observing m values in the interval
1.3 � m � 2.6 in two-dimensional systems, and in the inter-
val 2.0 � m � 4.0 in three-dimensional systems. Proving the
relation between the observed confinement of the m values
and the φc → 0 threshold provides then a holistic solution
to the puzzle that accompanies the numerous observations of
Archie’s law. Our study presents then a significant advance in
the field, the state of which is clearly reflected in recent state-
ments such as “there is no universal model that simultaneously
captures the physical characteristic of all porous media” [39],
or that “the physical basis of Archie’s law has not been fully
understood yet” [11]. The fact that our model can explain sim-
ilar confinements in composite materials [71] further shows
that, in contrast with suggestions that “there is no physics
to be found in Archie’s m” [36] and that it lacks “support
from first principles” [7], our present interpretation rests on
the firmly based theory of continuum percolation as a phase
transition [78]. Moreover, in contrast to the attribution of the
m values to a nonspecific “variety of factors” [38,54], and the
conclusion that while m “must contain” information on brine
geometry it is not in a “readily interpretable form” [36], we
are able to show that there are global-system parameters that
determine the m(φ) values and connect them to that geometry.
The present work then finally enables us to overturn the claims
that the “physical basis for Archie’s law still remains a debated
question” [8] and that “at present there is no consensus on the
physical meaning of m” [11].

This paper is organized as follows. In Sec. II we briefly
review the solution that we provided in Ref. [3] to the first con-
spicuous feature of Archie’s law, i.e., the φc → 0 threshold.
However, in order to show that our conclusions in the present
work are universal, we also prove that our arguments there
apply not only to porous media but also to the topologically
similar group of composite materials. Then, in Sec. III, we
turn to the main subject of our present work, which is the solu-
tion to the second conspicuous feature of Archie’s law, i.e., the
basic physics explanation of the numerous m(φ) values and
the reason for their confinements as observed in various types
of porous media. In Sec. IV, we show that our predictions
are well supported by experimental and computational obser-
vations and we discuss the significant progress that we have
made here beyond the previous understanding of Archie’s law.
Finally, in Sec. V we summarize our main conclusions and the
research and application directions that they suggest.

II. THE SOLUTION TO ARCHIE’S NEAR-ZERO
THRESHOLD PROBLEM

Our account of the near-zero porosity threshold of Archie’s
law (presented in Ref. [3]) is based on the concept of the
excluded volume [82], and is as follows. The average excluded
volume Vex of a convex permeable (or “soft core” [73,78])
object that has a volume V , is the volume in which the center
of another similar convex object must be in order for them to
intersect. The objects that intersect, and thus partially overlap,
are defined as connected. For the simple 2D line-segment
systems that are illustrated in Fig. 1, the excluded area of a
line segment Aex is given by 〈L2〉〈sin θ〉. Here, L is a length
of a segment (〈L2〉 is the proper average of L2) and θ is
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FIG. 1. Small portions of 2D line-segment systems that represent
ensembles of channels in porous media. The line segments here
have an average length L and an average width δ (such that L � δ).
The system on the left is known as having the 2D “face-face” con-
figuration and the system on the right is known as having the 2D
“vertex-face” configuration [88,89]. In particular, these line-segment
systems can represent an aerial image of a ranch of fractures or a fault
zone [80] as well as the intersections of the fracture planes with the
ground surface [90]. If these planes are perpendicular to the ground
surface, their corresponding ensembles are 2D percolation systems,
while otherwise, the systems in the figure reflect 3D percolation
systems [3,91]. Similarly, these line segments represent a 2D pro-
jection of conducting nanotubes that are embedded in their polymer
composite [71,73,92]. For systems that contain permeable objects,
such as pores, if they are slender as in the figure, the volume of an
intersection is very small compared to the object’s volume V and
thus φ ≈ nf V [93], where nf is the concentration of the conducting
objects. In all those systems, each conducting object may have an
average resistance rf and each intersection between two objects may
have an average resistance ri. Once nf is higher than the percolation
threshold nfc, if r f � ri, the global conductivity σ is proportional to
1/rf [87], while if ri � r f , σ is proportional to 1/ri [86]. A translation
of the geometrical system, that is shown on the left of the figure, to
an electrical resistors network, is described in Ref. [86].

the angle between two intersecting segments. For example,
in the corresponding isotropic case (i.e., when −π/2 � θ �
π/2), 〈sin θ〉 = 2/π [82]. As shown previously, similar Aex

expressions can describe porous media that contain permeable
slender pores, such as ensembles of channels [4,5], cracks
[80,81,83], or fractures [3,6,84,85]. Correspondingly, the line-
segment models of Fig. 1 are used throughout this paper
as simple representations of those systems. When the pores
in porous media are saturated with a conducting fluid, they
provide electrical networks in which the conducting elements,
i.e., the filled pores, have an average electrical resistance rf

and their intersections have an average electrical resistance
ri. In all the above systems, when the concentration of the
conducting elements, nf , reaches a critical value nfc, there
will be an onset of a macroscopic geometrical and electri-
cal connectivity. For permeable line-segment systems, such
as in Fig. 1, we have previously demonstrated a percolation
universal-critical [i.e., an m = μ(2D)] behavior, by a simu-
lation for the ri � rf case [86], and by a computer-driven
experiment, for the r f � ri case [87].

To make our 2D “face-face” model of Fig. 1 tangible
for systems of fractures and their intersections in 3D porous
media, we illustrate in Fig. 2 two polygons that represent
two conducting liquid-saturated fractures and their subsequent
intersection. Here we note that there are quite a few scenarios
of fracture intersections [88].

FIG. 2. A 3D illustration of an intersection of two polygons that
represent two brine-saturated fractures in the “face-face” configu-
ration [88]. The electrical current that passes from one fracture to
another (each of resistance rf ) must cross through their intersection
junction which has a resistance ri.

In general, the average number of permeable objects that
intersect a given object (here a line segment or a polygon),
i.e., the number of objects’ centers within the excluded area
or excluded volume of an adjacent object, is B = nf Aex or
B = nfVex. Thus, a global geometrical connectivity will result
when B (i.e., nf ) reaches the corresponding topologically re-
quired threshold value B = Bc [94]. The percolation threshold
in continuum systems nfc is given then, simply, by nfc =
Bc/Aex or nfc = Bc/Vex [82].

Now let us consider the 2D and 3D percolation thresholds
in systems of permeable slender objects, i.e., objects with an
extreme, L � δ, aspect ratio. In the 2D line-segment models
of Fig. 1 the average area of the intersections per slender
object is on the order of B〈δ2〉, which is much smaller than
the average area of the line segment itself A (here 〈Lδ〉),
and thus one can approximate the corresponding 2D porosity
φ by nf A. Considering the above Aex = 〈L2〉〈sin θ〉 relation,
the fractional covered area of these slender objects at the
percolation threshold is closely approximated then by [82]
φc ≈ nfcA = BcA/Aex i.e., φc ∝ 〈Lδ〉)/〈L2〉. We have previ-
ously generalized this argument to various 2D and 3D systems
[3,94] concluding that it applies to any system of slender
pores where L represents the large geometrical feature and
δ represents the small geometrical feature of the pores. In
particular, we can consider a fracture or a crack [85,88,95] in
3D as a 2D polygon of L-long edges and aperture δ, or a disk
of radius L and a thickness δ(�L). This yields that, for the
isotropic distribution of the orientations of the slender objects,
φc = c〈Lδ〉)/〈L2〉 with c ≈ 6 in 2D, and φc = c〈L2δ〉/〈L3〉
with c ≈ 2 in 3D [3]. The important point to notice here is
that in most of the corresponding natural porous media, the
2D, 〈Lδ〉)/〈L2〉, ratio, and the 3D, 〈L2δ〉/〈L3〉, ratio are on
the order of 10−2. Hence, within the limited accuracy of the
available measurements on porous media [47], one cannot
clearly establish that the derived φc values are actually differ-
ent from zero. We thus concluded [3] that the reason for the
“observed” φc = 0-like threshold in Archie’s law is simply a
matter of experimental limitation. In passing, we remark that
this feature was considered by some [9] to be a genuine φc = 0
result in spite of the apparent counterintuitive nature of such a
suggestion [54,70].
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The similarity that we have noticed above between the
electrical conductivity behavior of porous media and com-
posite materials (see SM(1) in Ref. [56]) calls for a brief
comparison of the percolation thresholds in those systems
when the conducting objects in them are slender. We start
by noting that the objects in composites are nonpermeable
particles with volume V each, and their concentration is nf .
Then we note that in all systems of nonpermeable particles,
the fractional volume of the conducting phase in the system x
is simply given by x = nfV [38,96], and thus, the percolation
conductivity dependence on it is given by [71,93]

σ ∝ (x − xc)t, (2)

where xc is the threshold value for the onset of conductiv-
ity and t is the experimentally or computationally derived
exponent. For composite materials in which the conducting
particles are slender (such as in composites of metallic wires
embedded in a polymer [72]), we have shown [73] that the
above Vex � V property yields the same relations that we
found for porous media with permeable slender pores. In par-
ticular, we found that, as in the above-described porous media,
the percolation threshold is very small (xc � 1). Indeed, those
xc → 0 results were found [97,98] in many composites with
slender conducting particles (in particular when such particles
are somewhat elastically bendable [73]). These include, for
example, polymer composites with disklike graphene particles
[73] (as in fracturelike pores) or carbon nanotubes (CNTs) and
metal nanowires [72,73,93] (as in channel-like pores). Hence,
systems such as in Fig. 1 have been used by us [73] and by
many others [92,99,100] as representative models of those
composites. Here we note, however, that unlike the limited
experimental resolution in the determination of very small
φ values in porous media (in particular in natural samples
[47,81]), extremely small x values, as small as x ≈ 10−5,
have been controlled and/or monitored in composite mate-
rials [97,98]. This can explain well why, in contrast with
the evaluation of the finite xc values in composite materials,
the evaluation of φc values, as small as φ � 10−2 in porous
media, were taken by Archie [1] and some later researchers
[9] as implying that φc = 0. Following the above, we apply
throughout this work the conclusion that very small perco-
lation thresholds will be induced in systems of conducting
slender objects, whether they are permeable or not.

III. THE SOLUTION TO ARCHIE’S-EXPONENT PROBLEM

A. Conductivity exponent values as observed in systems of
conducting slender objects

Turning to the present, more difficult, issue of the m values
that were derived in numerous studies by fitting experimental
data [2,19,38,39] to Archie’s law, as given by Eq. (1) with
φc = 0, we consider first the similarity between those m val-
ues and the results that have been obtained on the physically
quite different composite materials [71,72,98]. Thus far, this
similarity has gone unnoticed. As mentioned in Sec. II, for
many of the latter types of composites that contain slender
nonpermeable conducting particles, we have already shown
[73] that the percolation threshold of conductivity can be
fully accounted for by considering those particles as slender

permeablelike conducting objects. Thus, topologically, such
composites resemble porous media where the conducting ob-
jects are pore channels [4,87] or pore fractures [3,6] embedded
in a rock. During the present work, we have further noticed
that just as for the m values in porous media [38–40], the t
values of Eq. (2) in those composites have also been found
to be confined to the 1.3–4.0 interval [71] and/or the 1.3–2.6
subinterval [71,72]. In particular, we have recognized that
many simulations of 2D systems of conducting fibers, where
one is certain that no nonuniversal effects (see SM(3) in Ref.
[56]) are present, have shown, as do the m(φ) values in porous
media, an increasing t (x) (>1.3) dependence with the depar-
ture of x from xc [72,92,99,100]. Those exact same behaviors
of the m and t values suggested to us that there must be
some underlying common basic physical-universal principle
that has to do with a so far unraveled connectivity-conductivity
relation in continuum percolation. Further below we suggest
such a relationship and apply it for a holistic solution to the
puzzle [54] associated with the φc → 0 and the m values that
characterize Archie’s law.

For simplicity and transparency of our determination of
the m and t values in systems of conducting slender objects,
we consider the very simple model of the 2D line-segment
systems that are illustrated in Fig. 1. As mentioned above,
such a model [87] is widely used to represent an aerial view
of a “fracture farm” [8,80] or a network of channels [4,84] in
porous media, as well as ensembles of CNTs [73,92,99,100]
or metallic nanowires [72] in composites. In fact, it is impor-
tant to emphasize that the models illustrated in Fig. 1 are not
just illustrative-abstract ones, but they can be actual presen-
tations of 2D and 3D real systems. For example, an aerial
photograph of the Yosemite creek basin north of Yosemite
valley [90] resembles the systems shown in Fig. 1, not only
geometrically, but also “physically.” This is in the sense that
the segments in that photograph are the marks of the vegeta-
tion growth that results from water filling the fractures in the
rock. Hence, the line-segment model provides an appropriate
representation of water-saturated geological cracks or fracture
plains and their mutual intersections. Correspondingly, our
following conclusions that are based on the line-segment model
can be generalized to other types of porous media where
the conducting pore elements are slender. In particular, these
include the intersections in systems of channels [4,5], disklike
fractures [3,4,6,84], and geological cracks [80,81]. Such are
“face-face” (X-like) plain intersections [84,88] and “vertex-
face” (T-like) plain intersections [88,89].

In our adoption of the model of Fig. 1 to describe the
electrical properties of slender pores and their intersections
in porous media, we assume that each line segment (or part
of it between subsequent intersections) represents a brine-
filled pore that has (on the average of all participating pores)
a resistance rf . Similarly, we assume that each intersection
of two pores represents a resistor with an ensemble-average
resistance ri. The global conductivity of the system may be
determined then by the resistance of the pores, the resis-
tance of their intersections, or by a combination of both.
As our solution to Archie’s puzzle is largely associated
with the frequently observed ri � r f scenario, we briefly
describe now porous media in which such a scenario can
come about.
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FIG. 3. An illustration of two of the possible 3D configurations
of fracture intersections: a “vertex-face” (or a T-like) type [88,89]
(left), and a “face-face” (or an X-like) type [84,88] (right). In the
corresponding series of resistors, the resistance associated with the
intersection junction is r f + ri + r f . When ri � r f , this yields a
bottleneck effect due to ri. Apart from geometrical considerations,
other factors can further enhance the resistance of the intersections.
For example, the X-like and T-like intersections are well known to
be narrowed by various clogging effects in them [5,84].

B. Porous media configurations in which ri � r f

Considering the richness of geological-hydraulic systems
in general, and the abundance of media with high-resistance
bottlenecks in particular, it is not too surprising that many
types of porous media exist in which ri � r f . This abundance
can be the result of a variety of geometrical and/or physical
factors. To introduce such systems, we turn from our 2D line-
segment models of Fig. 1 to their 3D equivalents in porous
media. In Fig. 3 we illustrate, then, two configurations of plain
triangles that represent slender pores that are saturated with
a stationary electrically conducting liquid and their intersec-
tions. We note of course that when modeling such systems, the
values of rf and ri are statistical averages of the correspond-
ing pores’ resistances and the pore-intersections’ resistances,
respectively. Hence, in continuum systems in general and in
porous media in particular, the ri/rf ratio is the culminated
resultant of these two averages.

For brevity, we narrow our discussion to just a few repre-
sentative examples of the many relevant pore configurations
[45,46,70,77,88,91,101,102] that arise in porous media for-
mations. A simple way to appreciate a geometrically induced
ri � r f scenario is to consider two fractures of size L2 and
aperture W , and the intersection between them [88]. Of the
corresponding intersections’ configurations, the simplest and
most abundant ones are the “vertex-face” (left) and the “face-
face” (right) types that are illustrated in Fig. 3. The electrical
properties of the first configuration can be understood by
applying the analysis of the “point contact” between a sharp
metallic tip and a semiconductor surface that causes an electri-
cal junction of high resistance (which is inversely proportional
to the radius of the contact [103,104]). In that configuration,
if the vertex is assumed to be a tip of radius ε � W , the
resistance of this intersection penetration is proportional then
to 1/ε, and thus, for these configurations, for ε � W , we have
that ri/r f ≈ W/ε � 1. A related configuration that can yield
an ri � r f relation in the intersection of two fractures is their
“edge-edge” configuration in which the lines of the edges are
at a finite angle with each other [88]. In this configuration, the
fractures can be represented by parallelepipeds of size L2 and
aperture W , and the edges of the fractures can be assumed,
for simplicity, to be half cylinders with a radius W/2. The cor-
responding (sphere-sphere like) intersection can be described
then by half-cylinder overlap with a depth ε. In this case, the

resistance of this intersection, for W � ε and brine resistivity
ρ, is ri ≈ (2/π )ρ/(εW )1/2 [91] while r f ≈ ρ/W . Thus, the
ri/r f ≈ (W/ε)1/2 ratio can yield an ri/r f � 1 scenario.

The other “face-face” [88] (or X-like [84]) configuration
[88], which is probably more abundant, is that of two con-
ducting (liquid-filled) planelike fractures that, as illustrated
in Fig. 3, have a penetrating intersection with each other.
In that, as well as in other configurations, one finds various
intersection-damage zones that can cause a significant narrow-
ing of the effective electrical contact cross section between the
intersecting fractures [105]. Another well-known narrowing
effect of the intersection is due to a “mass accumulation”
[102], such as solute deposition [84] and/or bioclogging [2].
These reductions of the cross section at the intersections (as in
the case of T [89] or X [88] connections of pipes) are due to
the slowing of the fluid flow at the intersections during the
rock formation diagenesis [106]. Similarly, the compaction
of the system due to external pressures can cause further
narrowing of the cross sections for electrical current at the
intersections [11]. Another reason for high resistance at the
intersections may be of chemical origin, e.g., various mineral
drainage products [84,106] that cause differences in saliniza-
tion in the fracture and the intersection which can yield a
further enhancement of the ri/rf ratio. We must emphasize,
however, that throughout this work we are concerned with
electrical conductivity observations in the porous medium
after the completion of its geological-hydraulic formation
processes. The implicit assumption here is that, as in the
commonly discussed Archie’s-law systems [39], the pores are
saturated with a stationary liquid, i.e., the liquid does not
flow in the system during the measurement of the electrical
conductivity.

It is quite important here to recall the analogy between
the above described high ri/rf ratios in porous media and the
high ri/rf ratio in composite materials. In the latter systems,
the “intersection” [73] between adjacent nonpermeable par-
ticles (with a resistance rf each) is usually associated with
the tunneling resistance ri between them [78,107]. Indeed, as
mentioned in Sec. III A, in those materials the statistically
determined upper bounds that were found for the critical con-
ductivity exponent, t , are also 2.6 in 2D and 4.0 in 3D [71,72],
showing a striking similarity to the above porous media in
which the conducting objects are slender [73].

As Archie’s study and most works that followed it were
concerned with sedimentary rocks [2,12,108], we turn now
to show that in those systems the 〈ri〉 � 〈r f 〉 relation is to
be expected. The simplest introductory model to such rocks
is provided by the “random void” model [77]. This model
consists of densely packed, nonpermeable, nonconducting
spherical grains, between which there are pores that contain
the electrically conducting liquid. The basic structure of this
model, when one assumes equally sized spherical grains, is
illustrated in Fig. 4. As seen in the figure, the void (or cavity)
pores in the system are connected by very narrow throat (or
neck) pores. Hence, if nv is the concentration of the voids
and V is the average volume of a void, the porosity of the
whole system is closely approximated by φ ≈ nvV . If the
voids are considered as the sites in the system and the throats
as the bonds (as in lattices [109] and in closely packed spheres
[38]) the concentration of the throats nt fulfills the relationship

063005-5



ISAAC BALBERG PHYSICAL REVIEW E 103, 063005 (2021)

FIG. 4. An illustration of a volume element of the three-
dimensional random void model. The spheres represent the non-
permeable nonconducting grains in the medium and the blue
background represents the conducting liquid that fills the pores. One
recognizes that there are two types of pores, the large volume voids
and the small volume “throats,” that connect neighboring voids. The
important point to notice is that the total volume of the voids is much
larger than the total volume of the throats, so that, practically, the
macroscopic porosity of the system is much larger than the volume
of the throats.

nt ≈ n2
v . Using this basic relationship let us estimate the elec-

trical resistance of the two types of pores. Starting with the
voids, and assuming that the diameter of the spherical grains is
w, the volume of the voids can be geometrically approximated
by considering corresponding closely packed polyhedra [77]
or by a sphere with an effective radius av ∝ w. If the resis-
tivity of the conducting liquid is ρ, the electrical resistance
of such a liquid-saturated spherical void is rv = ρ/πav. On
the other hand, if the throat diameter is ε, its resistance rt ,
when ε � w, can be approximated by rt = 4

√
2ρw1/2/ε3/2

[77]. Hence, in the present system of random voids connected
by throats we have that 〈rt 〉/〈rv〉 ≈ (〈w〉/〈ε〉)3/2, which means
that 〈rt 〉 � 〈rv〉.

However, while the above random void model serves well
as a simple introduction to sedimentary rocks, this model is
associated with a relatively high porosity, which is on the
order of 36%. Correspondingly, as such it does not provide
a realistic model for sedimentary rocks of low porosity [12],
i.e., when the total volume of the pores is considerably smaller
than the total volume of the insulating grains in the system.
Indeed, in general the porosity in sedimentary rocks varies
between 0.5% and above 36% [110]. To examine the electri-
cal conductivity in sedimentary rocks of low porosity, let us
consider their structure as manifested by the abundant species
of sandstones and limestones [54], in which the grains are not
spherical in addition to having a distribution of sizes [36]. A
useful illustration of such systems, as given here in Fig. 5, rep-
resents well ensembles of closely packed sedimentary rocks of
variable size grains. As can be clearly noted, the porosity (the
total volume of the pores between the stones) is very small
in comparison with that of the above random void model of
Fig. 4. Similarly, for porous media of very low porosities the
high-porosity sedimentary rocks, even for very low porosities
the pores belong to two distinguishable groups, those of rel-

FIG. 5. An ensemble of stones that illustrates the basics of the
dense solid-grain packing that is abundant in sedimentary rocks. As
can be seen in the figure, the total porosity is lower than that of the
random void model of Fig. 4, but as in that model, one can recognize
that there are two groups of pores, those of the relatively wide
aperture (the voids) and those of the narrow aperture (the throats).
Note also that the pore spaces are connected [54,110], thus providing
continuous conducting paths.

atively large volumes to which we also refer as voids, and
the slimmer ones to which we also refer as throats. Indeed, a
corresponding bimodal distribution of pores was observed in
many sedimentary systems where the effective average size of
the voids 〈bv〉 is at least an order of magnitude larger than that
of the average width of the throats 〈ε〉 [108]. Hence, as for the
slender pore systems that were described above, the three re-
lations φ ≈ nvV , nt ≈ n2

v , and 〈r〉t/〈rv〉 ≈ (〈bv〉/〈ε〉)3/2 � 1
are also expected in sedimentary rocks of low porosities. The
first of these relations for very small φ values is that, while
the voids remain interconnected [54], the φc → 0 relation that
we discussed in Sec. II is maintained. The second relation
follows the fact that, independent of the porosity, the pore
system consists of series of void-throat connections [110], as
was the case illustrated in Fig. 4 for the random void model
with the relatively high porosity. The third relation reflects the
fact that the pore size distribution in sedimentary rocks of low
porosity is also found to be bimodal with 〈bv〉 � 〈ε〉 peaks
[108,110].

Following the existence of the above three relations in
many types of low-porosity media, we turn to their conse-
quences for understanding the m value confinements in those
media. For clarity, we do so by using the simplest and the
most widely used representative model that exhibits these
relations. i.e., the line segment (or the 2D stick) system that
we introduced in Sec. II. Correspondingly the mapping of the
above sedimentary rock model (with 〈rt 〉 � 〈rv〉, nt ≈ n2

v , and
φc → 0) on the line-segments model (with 〈ri〉 � 〈r f 〉 [86])
will enable now the explanation of the two features of Archie’s
law within the framework of percolation theory.
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C. Analysis of percolation conductivity in the line-segment
model

For simplicity, let us study the percolation behavior of
systems of slender; permeable objects by considering the line-
segment model that was introduced in Fig. 1. This follows
our above conclusion that systems of slender pores can pro-
vide the 〈ri〉 � 〈r f 〉 relation. The simplicity associated with
slender objects follows the fact that, while generally φ is not
proportional to nf , in the case of slender pores represented
by the line-segment model, these are practically proportional.
This property can be appreciated by considering a system with
a concentration nf of randomly and isotopically distributed
slender-permeable objects. In 2D for a system of rectangles
of length L and width δ, such as in Fig. 1, the porosity of
the system for the dominating isotropic orientation distribu-
tion of the rectangles (which yields a factor of 2/π [82]) is
given by φ = nf (Lδ–Bδ2/π ). Similarly, in 3D, the porosity
of the corresponding system is given by φ = nf (aLδ2–bBδ3)
for channels and φ = nf (aL2δ–bBLδ2) for fractures, where a
and b are constants between π and 1, and B is the average
number of intersections per given object. Since, for typical
slender pores in porous media [3,4] L/δ > 102, and since
for typical n f > n f c values, L/δ � B (the corresponding Bc

values at the onset of percolation are only Bc = 3.7 in 2D and
2.8 in 3D [72,91]), one can neglect the second, small, term in
φ. Consequently, in the following we simply use the linear ap-
proximation of φ ∝ n f [87,93]. Starting now with the simpler
r f � ri case we note that the electrical network of that model
is, topologically, just the same as that of the classical lattice-
percolation model [74–76] (see SM(2) in Ref. [56]) where the
line segments (or the sections between adjacent intersections
[87]) are considered to be the bonds in the system. Hence,
by the latticelike percolation universality in the continuum
[78], and as proven by our computer-controlled experiment
for 2D line segments [87] and by recent simulations of others
[92,99,100], we know that σ ∝ (n f − n f c)μ, where μ is the
universal-critical exponent of the conductivity [74]. Following
Eqs. (1) and (2) when n f → n f c, we can replace the values
of m or t [93] (see SM(1) and SM(2) in Ref. [56]) by the
universal μ, finding then that

σ ∝ (1/rf )(nf − nfc)μ ∝ (1/r f )(φ − φc)μ. (3)

Turning from that rather standard case to the other ex-
treme ri � r f case, one would expect (on the basis of the
universality of percolation as a phase transition [74,76,78])
that the system’s global conductivity will be determined by the
higher-value resistors that are necessary for the onset of per-
colation (see SM(3) in Ref. [56]). Hence, in that ri � r f case
we expect, following the universality that extends also to the
lattice-site percolation [74,109], that σ ∝ (1/ri )(ni − nic)μ,
where ni is the concentration of the resistors associated with
the intersections and nic is the corresponding threshold for
the conductivity in their network. Indeed, this dependence is
confirmed in simulations by us [86] and by others [92], on
line-segment 2D systems as well as on line-segments like 3D
systems [91]. However, while a priori the value of ni (unlike
the value of nf ) in such systems is not known (or controllable),
it is clearly proportional to the probability Pi that a slender ob-
ject, such as a line segment, will be intersected by another one.

Since Pi ∝ n f (as expressed, e.g., by B = Vexn f ) and since the
number of slender objects in the system is nf , the total number
of intersections in the system is given by Pin f ∝ n2

f . This
is easy to appreciate intuitively by noting [38,100,109] that
the doubling of nf s will quadruple the nis, so that ni ∝ n2

f .
Indeed, this simple ni ∝ n2

f expectation has been confirmed
by simulations [92] of the 2D system of line-segment–like
“sticks.” The generalization of the above results to a 3D sys-
tem of intersecting fractures is straightforward, noting that (as
in Fig. 2) each intersection requires the presence of two frac-
tures, so that again ni ∝ n2

f . Since, as mentioned above, the
intersection volume is negligible compared with the volume
of the individual slender objects, we have that ni ∝ n2

f ∝ φ2,
and this yields that

σ ∝ (1/ri )(ni − nic )μ ∝ (1/ri )
(
n2

f
−n2

fc

)μ ∝ (1/ri )
(
φ2−φ2

c

)μ
.

(4)

Comparing this result for ri � r f with the result of Eq. (3)
for r f � ri, we note that in the limit of n f → n f c (i.e., for
φ → φc) one gets [86,92,99,100], as expected from the phase
transition-like universality of percolation [74,76], the same
σ ∝ (φ − φc)μ dependence. This is regardless of the ri/rf

ratio. On the other hand, in the ri � r f scenario of Eq. (4)
we also get that for n f � n f c

σ ∝ (1/ri )nf
2μ ∝ (1/ri )φ

2μ. (5)

The important finding here is that unlike the r f � ri sce-
nario of Eq. (3), we have that for the latter ri � r f scenario
the further increase of φ above φc in Eq. (4) yields an increase
of the conductivity exponent from μ to 2μ. This indicates
a behavior that we associate later with a more general phe-
nomenon that we call an electrically affected connectivity.
Now we recall, as noticed in the Introduction and in Sec. III A,
that groups of m values derived from data analysis by applying
Archie’s law as given by Eq. (1), were found to be limited
by 2.6 or by 4.0 [38,40] in many porous media. The fact that
these values are the same as those of the universal percolation
2μ(2D) and 2μ(3D) exponents that we predict in Eq. (5),
suggested to us that the m results that are determined from
the observations by their analysis according to Archie’s law,
are simply due to the m values confinement to the μ−2μ in-
terval. The fact that the universal-critical exponents determine
the bounds of this interval further suggested to us that they
represent an extension of the critical behavior of the percola-
tion phase transition to higher φ values in the corresponding
porous media. This is in spite of the large φ/φc � 1 relation.

However, such a conclusion as manifested by Eq. (5), is a
priori counterintuitive and hard to grasp within the common
framework of the theory of percolation as a phase transition
[74,76]. This is because in second-order phase transitions in
general, and in the percolation transition in particular, the
critical behavior (manifested here by the universal exponent
μ) is associated with the n f → n f c limit, while for Eq. (5)
to be effective one must have that n f � n f c (or φ � φc).
To consider these seemingly contradictory requirements, let
us dwell a bit on the φ (or nf ) range in which Eq. (5), that
involves the universal-critical μ value, is expected to be valid.
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D. The percolation to effective medium transition in porous
media

Generally, as φ (i.e., nf ) increases between φc and φ = 1,
there are two distinguishable asymptotic regimes: the dilute,
percolation critical regime that we have discussed thus far
(Eqs. (3)–(5) and SM(2) in Ref. [56]) and a denser regime
that is known as the effective-medium (EM) regime. Since
Refs. [38] and [96] provide excellent reviews of the latter
regime, we describe it here only in the simplest terms that
are necessary for the present work. We do so by comparing
the effect induced on the σ (φ) dependence, by the adding of
a bond resistor to the system in each of these regimes. The
dominant effect of such an addition in the above-threshold
dilute-percolation regime is to increase the geometrical, and
thus the electrical, connectivity of the system by creating
an additional connecting path (see SM(2) in Ref. [56]). In
contrast, in the denser EM regime the connected network is
already well established, and the dominant effect of the added
bond resistor is to connect in parallel to an existing bond, i.e.,
to increase the average local conductance and thus to increase
the global conductivity of the network [109]. The effects of the
above additions can be appreciated visually by adding a line
segment to the systems that are illustrated in Fig. 1. There, an
added line segment can either connect two segments that have
not been connected before, or add a connection between two
segments that are already connected. The first type of con-
nection is the dominant one in the dilute percolation regime,
while the second type of connection is the dominant one in the
denser EM regime.

To consider the above two regimes in porous media, let us
return to Fig. 5. In sedimentary rocks of low-φ systems, the
main effect of the increase of φ is to increase the concentration
of throats, which in turn increases the number of possible
current paths (i.e., the connectivity) in the system. In contrast,
in the denser EM regime, the main effect of the increase of φ

can be to enlarge the volume of the individual voids [108,110]
and/or to cause their clustering [111]. (In composite materials,
the latter effect is known as the bundling of the conducting
elements [97] in the already geometrically connected system.)
Now we note that having a system that is still conducting
at a very low φ means also that its φc → 0. On the other
hand, if φc is large, there will be a relatively small φ range
(between φc and 1) in which the EM conditions determine
the conductivity, and thus the extrapolated threshold of the
corresponding EM regime, φec, will be somewhere within this
range, as determined in many experimental and computational
works [96,109] (see Appendix A). Since the values of φc and
φec result from very different reasons one does not expect
a dependence of φec on φc (except of course that φec > φc).
Indeed, it has been concluded previously that there is no cor-
relation between these two parameters in porous media [79].
As will be discussed below, for the present work the important
point is that in conducting porous media of low porosity, such
as that of sandstones, the typical corresponding φec/φc value
is on the order of 30–40 [79]. Obviously then, the outcome of
the different effects of the bond-resistor additions in the above
two regimes will cause different σ (φ) dependencies in those
regimes. Correspondingly, while the asymptotic σ (φ) depen-
dence of Eq. (3) accounts for the dilute-percolation regime,

the σ (φ) behavior in the asymptotic EM regime is given by
[38,96]

σ (φ) ∝ (φ − φec)u, (6)

where φec (or xec) is the corresponding calculated [38],
simulated [109], or experimentally derived [96,111], by ex-
trapolation of the conductivity data in that regime, and u � 1 is
the universal EM exponent for all dimensions. In passing, we
remark here that both m < 1 [39,79] or t < 1 [93] values (see
SM(3) in Ref. [56]) were previously shown to be associated
with correlation effects in the structure and thus, these rather
rare effects are not considered in the present work.

As is to be expected from the above discussion, and as was
well demonstrated in Ref. [109] and many other works, there
is a smooth transition from the dilute-percolation regime of
Eq. (3) to the dense-EM regime of Eq. (6). Following that,
we further conclude that with the increase of φ, the transition
between the two regimes will be manifested by a continuous
decrease of m from m = μ to m = u ≡ 1. It is also obvious
(see Appendix A) that the smaller the φc, the larger the φ

regime in which the φc � φ < φec < 1 condition can be ful-
filled. Correspondingly, the larger will be the φ regime where
the critical μ exponent (rather than the EM, u exponent) will
be observed. An experimental justification for this argument is
provided by the findings that in some porous media, 1 � m �
μ values have been observed [43], while for others, where the
pores were slender (i.e., where φc → 0, see Sec. II), only m =
μ values have been found in the studied φ range. In particular,
such m = μ values have been found for φ/φc ratios, as large
as φ/φc = 20 [2,19,54,79]. Similarly, for composite materials
with slender conducting particles and xc → 0, the universal
t = μ value has been observed up to x/xc values that are as
high as 100 [97]. These observations are in sharp contrast
with those of systems of, say, spherical [112] or spherical-like
[113,114] objects where xc > 0.16, and thus (since x � 1) the
value of x/xc cannot be larger than 6. In other words, for slen-
der objects for which φec (or xec) are much larger than φc (or
xc) there will be a wide enough φ/φc (or an x/xc) interval where
the critical behavior of Eq. (3) will be observed, before (i.e.,
for x < xec) the domination of the EM effect. Simulations that
were reported for the above-considered line-segment systems
[92] fulfill that expectation. In those simulations, a t = μ to a
t = 1 transition was found to take place with the increase of
nf , over a large nf /nfc regime. Following the above, we suggest
that the aforementioned experimental and simulation results
provide convincing evidence that for slender objects, a wide
observable critical-percolation regime can be obtained before
the EM effect dominates the σ (φ) [or the σ (x)] dependence.
The general “practical” point to be noticed here is that except
for the onset of the EM conditions, there is, in principle, no
limit to the width of the critical regime in which m values
that are confined by the percolation universal exponents of the
electrical conductivity can be observed. For the line-segment
system studied here, this implies that there is a wide φ � φc

(or x � xc) range in which the system is still dilute and thus
its electrical properties, as reflected by the exponent μ, are
controlled by the percolation Nodes Links Blobs (NLB) con-
nectivity (see SM(2) in Ref. [56]) connectivity. As discussed
in Appendix A, the latter suggestion and conclusion are well
supported by the fact that the proximity to the percolation
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threshold is more amenably represented by the (φ − φc)/φc

[or the (x − xc)/xc] parameter [72,100], than by the more
commonly used (φ − φc) [or the (x − xc)] parameter [74].

E. The solution to Archie’s m-values puzzle

In Sec. II we have shown that φc (or xc) decreases with the
increase of the slenderness (i.e., the aspect ratio) of permeable
[3] and nonpermeable [73] objects. Considering the fact that
in porous media there are numerous systems in which ri � r f

or rt � rv (see Sec III B), we have shown in Sec. III C on the
basis of Eqs. (3)–(5) that in the percolation critical regime a
high ri/rf , or a high rt /rv ratio can yield conductivity exponents
between μ and 2μ. In Sec. III D and Appendix A we have
shown that a system that still conducts at very low porosity
can have a relatively wide (φ − φc)/φc range in which the
critical behavior may be observed. Moreover, for systems with
a high ri/rf or a high rt /rv ratio, an increase of m with φ,
from m = μ to m = 2μ (or part of it, due to the onset of the
EM conditions) is expected to take place [see Eqs. (3)–(6)].
Consequently, since both the φc → 0 condition (see Sec. II)
and the very high ri/rf or rt/rv conditions do exist in numerous
porous media (see Sec. III B) the confinement of the m values
between m = μ and m = 2μ is expected to be a dominant
characteristic of those media. This conclusion is confirmed
by the observations (see Sec. I and SM(1) in Ref. [56]) on
both porous media and composite materials, for which the
experimentally derived m [38] or t [71] values were found to
be between 1.3 and 2.6 [i.e., between μ(2D) and 2μ(2D)], or
between 2.0 and 4.0 [i.e., between μ(3D) and 2μ(3D)]. This
exact agreement between our expectations, which are based
on well-founded percolation theory [[74], [78]], and the ex-
perimental statistical conclusions regarding the confinements
of the m and t values [[38], [71]], provides then a solution to
the m-exponent puzzle of Archie’s law. In passing, we remark
that in the case of composite materials these confinements take
place when the conducting particles are slender [73] and the
ri � r f condition is provided by the much higher tunneling
resistance of the intersection junctions between the particles,
in comparison with that of their own resistance [107].

To summarize the above predictions, in Fig. 6 we present
an illustration of them by our expected dependence of the ex-
ponent m on log10[(φ − φc)/φc] in three-dimensional porous
media. Accompanying this, we show that our predictions are
confirmed by numerous results on porous media, in which
the analysis of the data was carried out according to Archie’s
law, as given by Eq. (1). In particular, Fig. 6 presents our
main prediction for the designated area between the solid-red
curve and the dashed-blue curves, into which all the numerous
experimental m values that were derived by applying Archie’s
law in porous media can be fitted. Below, we call that area the
“m-φ phase space.”

The first and most significant prediction of our theory [see
Eqs. (3)–(6)] is that Archie’s m values for 3D porous systems
will be between μ(3D) = 2 and 2μ(3D) = 4, and/or between
m values in that interval and m = u = 1. This is in contrast
with other theories that predicted specific [54] or non-confined
[115] larger than μ values for the conductivity critical expo-
nent in the continuum (see SM (3) in Ref. [56]). The curves
shown in Fig. 6 represent the predicted dependencies of said

FIG. 6. An illustration summarizing the results obtained in this
work for the dependence of Archie’s conductivity exponent m on
the normalized proximity to the percolation threshold log10[(φ −
φc )/φc]. This particular scale for the proximity parameter encom-
passes the range of the great majority of the many m(φ) data available
in the literature. The dashed-blue curve represents the common
percolation to effective medium transition, i.e., from m = μ = 2 to
m = u ≡ 1. The dotted-green curve and the solid-red curve represent
the m(φ) dependencies when the threshold porosity φc → 0. The
solid-red curve is for the ri � r f case and the dotted-green curve is
for the r f � ri case. The φec1 value indicates the onset of the effective
medium conditions when (φec1 − φc )/φc � 1, while the φec2 value
indicates this onset when (φec2 − φc )/φc � 1. As shown below, the
predictions presented in the figure are confirmed by the numerous
experimental results that were found on both fractured rocks and
sedimentary rocks.

m values on log10[(φ − φc)/φc]. These are the dotted-green
curve, the solid-red curve, and the dashed-blue curve, re-
spectively. The fact that numerous statistical and particular
m values that were reported in the literature [2,4,6,19,38–43]
“fall” within our m-φ phase space provides solid confirmation
for the most important prediction of our work above, i.e., the
confinement of the m values to our m-φ phase space.

The span of the log10[(φ − φc)/φc] range over which we
predict the m values to be observed is also confirmed by the
results in the literature [2,19,39,79]. Here we note that, while
many determinations of m from the σ (φ) data were carried
out taking φc = 0, we (see Sec. II) as others [2,6,54,79] have
shown that φc has always a finite value, and that the data fits
with φc = 0 simply reflect the limited accuracy of the deter-
mination of very small porosities in porous media [47,81]. On
the other hand, we note that the finite φc values have been de-
termined theoretically [3,76,77,82,91] to be between 0.29 and
0.03, and empirically to be between 0.36 and 0.05 [6,79,110].
Correspondingly, considering the φ ranges used in the vari-
ous studies (see, e.g., Refs. [6,19,39,79]) we have established
that the log10[(φ − φc)/φc] range that we present in Fig. 6
encompasses the numerous available experimental results
[2,6,38,39] from which Archie’s m values were extracted. In
particular, the extreme ends of the log10[(φ − φc)/φc] scale
shown in Fig. 6 were as follows. The small (φ − φc)/φc ex-
treme is at (φ − φc)/φc = 0.1 [91] and the large (φ − φc)/φc
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extreme is at (φ − φc)/φc ≈ 100 [19,79]. We have to add here
that, in principle, these scales can be extended by improv-
ing the accuracy of the experimental results, and/or the data
analysis for the small (φ − φc)/φc values, and by the ability
to determine very small φc values for the large (φ − φc)/φc

values. Moreover, the relative position of φec2 at the end of the
latter (φ − φc)/φc range in the figure is also consistent with
previous evaluations of data that were analyzed by Archie’s
law [79]. Hence, our basic prediction of the confinements
of the m values to the designated m-φ phase space that is
shown in Fig. 6, is confirmed by the numerous experimental
results that were obtained by the application of Archie’s law
for the analysis of the data. The other important confirmations
of our predictions concern the m(φ) dependencies within the
m-values confinement and the log10[(φ − φc)/φc] range that
are shown in Fig. 6. Indeed, there are many experimental
observations for the increase [7,40,53,116,117], the decrease
[19,53,106,118], or a peak in the m(φ) dependence [44] over
intervals within the log10[(φ − φc)/φc] range in the figure.

Turning to the physics involved in Fig. 6 we recall that the
lower dashed-blue curve in the figure represents the classical-
lattice m(φ) transition from the percolation regime (see SM(2)
in Ref. [56]) to the EM regime [109] (see Sec. III D). Con-
sidering this curve, we remark that in ensembles of spherical
pores [2,91] or in granular metals of nearly spherical particles
[113,114], where the percolation threshold is not small, the
onset of the EM conditions at φec1 that must be between φ =
φc and φ = 1 is not far from φc, and thus (φec1 − φc)/φc < 0.3
(see Appendix A). The upper two curves in Fig. 6 repre-
sent the m(φ) dependencies in the cases of slender pores
or small-volume voids, throughout the 0 ← φc � φ < φec2

range. The higher (solid-red) curve illustrates the possible
m(φ) [or t (x)] depenence when ri � r f , or rt � rv , and
the lower (dotted-green) curve represents this behavior when
these two inequalities are reversed. In general, for the less
extreme ri/rf or rt/rv ratios, the salient qualitative features of
the upper solid-red curve will be maintained, but the highest m
value observed may be smaller than 2μ(3D) (m = 4.0 here).
This is due to the onset of the EM conditions at a smaller φ

value than the one required for reaching the 2μ(3D) peak [see
Eq. (4)]. Our prediction as manifested by that curve accounts
for all the intermediate μ < m < 2μ values that were found in
related simulations [22,92] and in many experimental studies
[2,38] (see Sec. I and SM(1) in Ref. [56]). The very general
prediction that we make here is that for all cases, the m (or
t) values will always be confined to the area between the
upper (solid-red) curve and the lower (dashed-blue) curve.
The overall feature exhibited in Fig. 6 is the rise of m towards
its maximum value that is �2μ(3D) = 4.0, and the subse-
quent decrease of m towards m = 1. The other implied feature
is that according to the percolation or the EM regime that
applies to the corresponding φ, the plateau in the m values
can be obtained only for the m = 2.0, m = 4.0, or m = 1
values. These features are based on our predictions that the
m(φ) dependence is determined by two global parameters, the
φec/φc ratio and the ri/rf , or the rt/rv, ratio. In other words,
according to our analysis, the existence of both a large φec/φc

value and a large ri/rf value, or a large rt /rv value, ensures the
observation of μ < m < 2μ values over a large (φec − φc)/φc

range.

Establishing that the agreement between the experimental
results and the features exhibited in Fig. 6 is indeed due to
the mechanisms that we suggested above, let us recall now
that the high values of the above φec/φc and ri/rf (or the rt /rv)
parameters are simultaneously fulfilled by the porous media
of concern in the present work. In particular, we note that the
original results of Archie [1] and the many observations that
followed [38] were on various sedimentary rocks for which
high φec/φc [79] and high rt /rv, (via the high (〈bv〉/〈ε〉)3/2

[110]) ratios have been determined (see Sec. III B). Moreover,
the increase of m with the increase of 〈bv〉/〈ε〉, and with the
increase of φ in simulations of tight sandstones [22], leaves no
doubt concerning the applicability of our percolation model to
porous media for which features such as illustrated in Fig. 6
are observed. In fact, we can further expect from the richness
of pore sizes and their configurations in porous media that
there will be numerous systems where the above two ratios
are simultaneously large, and that this is the reason for the
wealth of m confinement data that are summarized in Refs.
[2,38,39,44]. For completeness, let us mention now porous
media where only one of the above ratios is high. Considering
a high φec/φc as in low-porosity sedimentary rocks [79] but
in which the pore distribution is quite homogeneous [54]
(say, 〈bv〉 ≈ 〈ε〉 and thus rt ≈ rv), we predicted the critical
behavior with only m = μ values over a large (φ − φc)/φc

range [see Eq. (3)]. Indeed, such behavior has been observed
in many sedimentary rocks [1,19,54]. The other extreme is the
case of a relatively small (φ − φc)/φc ratio (due to as large as
φc = 36%) but a large rt/rv ratio [due to a large (〈w〉/〈ε〉)3/2],
as in the random void model (see Sec. III B). In that case a
transition from the m = μ to the m = u ≡ 1 value may be
observed [43], while higher, m > μ, values are likely to be
observed due to other effects [53,77] (see also SM(3) in Ref.
[56]) than the one suggested in the present work. Regarding
the latter extreme case we point out, however, that none of
the previously proposed mechanisms for the interpretation of
the m values can account for the statistically proven sharp
decrease in the experimental observations at m = 4.0 [38],
as does our presently suggested mechanism with the m � 2μ

limitation.
An important prediction made in Fig. 6 is the depen-

dence of m on ri/rf , that can be appreciated by considering
the possible “vertical” increase (i.e., for the same φ) of m
within the μ � m � 2μ confinement range. The validity of
this prediction is strongly supported by the simulation results
of the line-segment model of Ref. [92], when adopted to
porous media of slender pores, and by the simulation results
of Ref. [22] for sedimentary rocks in which the m(φ) and the
m(〈bv〉/〈ε〉) dependencies have been determined. The impor-
tance of having these m(φ) and m(ri/r f ) dependencies is their
universality as well as their usefulness. As a demonstration of
the latter let us recall the simple model that we have suggested
in Sec. III B for sedimentary rocks of low porosity, and for
which we concluded that 〈rt 〉/〈rv〉 ≈ 〈bv〉/〈ε〉3/2. For such
rocks a large m value, within the possible μ < m < 2μ con-
finement interval, would indicate a relatively large 〈bv〉/〈ε〉
ratio. In other words, the variation of m with φ can provide
information on how the microstructure of the porous medium
changes with the variation of φ. In practice, one can apply
the relatively easy to perform 3D simulations of electrical
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conductivity as a function of nf (i.e., of φ) for reasonable
〈ri〉/〈r f 〉 or 〈rt 〉/〈rv〉 values, and then derive the W /ε or the
〈bv〉/〈ε〉 variations with φ by comparison to the experimen-
tally found m(φ) dependence. This may further enable the
derivation of information on variations of the distribution
functions of these structural parameters. The above analysis
responds then to the old well-known request of Ref. [54] to
correlate the value of m with the pore structure in the porous
medium, but unlike in previous attempts, here this is done
within the framework of the well-established phase transition
of percolation theory.

Another complementary effect that we found during this
work is that for exactly the same geometrical-topological
network of slender pores, a high 〈ri〉/〈r f 〉 ratio will not only
induce the confined μ < m < 2μ values but will also expand
the effective percolation critical regime of conductivity that is
geometrically determined by the φec/φc ratio. This effect and
its importance are considered in Appendix B. However, for
clarity, in Fig. 6 we used the same φec2 for both extremes of
the ri/rf ratios.

Finally, we must stress here, of course, that the m values
within, or outside, the confined regime, can also be obtained
due to other effects (see e.g., SM(3) in Ref. [56]). However,
unlike the predictions of the present work, we do not know of
any other explanation that can account for the sharp statistical
drop of the experimentally observed [38,71] m values at m =
2.6, or m = 4.0 . This leaves us with the conclusion that the
majority of the m values that were observed within the above
m-confined intervals are due to the reasons that we proposed
in the present work.

F. Geometrically and electrically affected connectivities

In the course of this work, we noted a percolation-related
property that we call an electrically affected connectivity.
To introduce the physical basis of this property, we start by
reexamining Eqs. (3) and (4). Comparing these two equations,
one notes that, while the system’s information in Eq. (3) is
given by the two parameters that characterize the initially
introduced conducting objects, nf and rf , the information in
Eq. (4) is given by nf , and ri, where the latter is an entity that
is, a priori, not related to the system of nf s. The question that
arises then is whether the topology of the resulting dominant
electrical network will change when the ri/rf ratio is varied.
To answer that question consider an electrical network of r1

and r2 resistors. Commonly, such a network is presented by
an NLB network (see SM(2) in Ref. [56]) except that all the
r1 and r2 resistors are replaced by some effective-average
resistance r [96,109,115]. Now let us consider two cases.
First, we assume a system in which there is a mixture of n1 of
the r1s and n2 of the r2s such that the concentration of each
kind of resistor is enough to induce percolation (i.e., n1 is
larger than its critical concentration n1c, and n2 > n2c). Cor-
respondingly, each of the two independent electrical networks
is above its threshold, and thus a corresponding NLB model
can describe its network. In that case, for a given geometrical
network of n1s and n2s, the increase of the r2/r1 ratio will
be manifested not only by a change of the prefactor of the
global conductivity σ [see Eqs. (3) and (4)], but also by a
change from the σ ∝ (1/r2)(n2 − n2c)μ dependence to the

σ ∝ (1/r1)(n1 − n1c)μ dependence. In other words, while the
increase of r2/r1 did not change any details of the geometrical
topology of the entire system, it did change the dominating
network that determines the overall conductivity, favoring the
network of lower-value resistors. Let us turn now to the second
alternative, where n1 and n2 are such that both, some r1 and
some r2, resistors are necessary for the onset of percolation.
In this case, in contrast to the former case, the increase of
r2/r1 will yield a network in which the higher-value resistors
will dominate the global conductivity of the system. Such
is the scenario we described in Fig. 1, where both the rf

resistors of the line segments [87] and the ri resistors of their
intersections [86] are inherently necessary for the formation
of a conducting network. As concluded in Sec. III C in that
scenario, the increase of the ri/rf ratio drives the system from
the behavior of Eq. (3) to the behavior of Eq. (4). This shows
that the change of the power-law parts of the corresponding
dependencies represents the transition from the rf -dominated
topology to the ri-dominated topology. In other words, the
corresponding electrically induced change in the connectivity
is reflected by the change in the value of m, which is the
critical exponent of the global electrical conductivity of the
system. We see then that the change of m with the “vertical”
(i.e., for the same φ) increase of ri/rf in Fig. 6 is due to a
variation of the connectivity of the electrical network. This
reveals that the μ � m � 2μ confined values represent a phe-
nomenon of an “electrically affected connectivity.” As we see
here, this concept is useful for describing scenarios like those
in the systems that are examined in the present work, where
the necessary information of the system that is available is
mixed. In such systems we know a priori only nf (or φ) and
the domination of ri, rather than the rf -nf pair, or the ri-ni pair.
To find then the σ (nf ) dependence of the global conductivity
one must have a “bridging relation” between the two ns, which
may not be known. In the systems considered in this article
(see Secs. III B and III C), this “bridge” is the ni ∝ n2

f relation
that enables the derivation of Eq. (4). In particular, obtaining
that relation leads us to understanding the m values and their
μ � m � 2μ confinements in porous media where the con-
nections between the pores are much more resistive than their
own resistance (see Sec. III B). Hence, the observed m-values
confinement and their variation with φ, when the experimental
data are analyzed according to Archie’s law, is a manifestation
of the transition in the corresponding electrically affected
connectivity.

IV. DISCUSSION

Before discussing our solution to the puzzling success of
Archie’s law in describing the σ (φ) dependence in porous
media, let us turn to an evaluation of the current state of un-
derstanding of this law prior to the present work. Considering
such an evaluation, it was apparent to us that in view of the
numerous attempts that have been made to account for its suc-
cess, it would be impossible, within the scope of the present
paper, to discuss those attempts beyond the short review that
was given in Sec. I. On the other hand, we found that the out-
come of these attempts in the 78 years that followed Archie’s
findings can be summarized by some typical quotes from the
more recent literature, as follows. In 2000, it was concluded
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that Archie’s law is “strictly a parametrization used for curve
fitting with a priori no physical meaning” [8]. Later, in 2009, it
was proposed to give up trying to understand Archie’s law by
stating that “porous media is too complex and variable to be
actually described by single models: e.g., empirical equation
a la Archie” [45]. In 2013, it was concluded that “Despite
the popularity of Archie’s law, parametrizing bulk electrical
conductivity as a power-law function of porosity seems to lack
support from first principles” [7]. Our suggestion in Sec. I that
Archie’s law is a puzzle that calls for a solution is echoed in
the 2015 evaluation that “Despite extensive use of Archie’s
law and significant research, the question of the numerical
value of m and its dependence on the rock morphology has re-
mained unresolved” [40]. Such evaluations have not changed
in more recent years. In 2017 it was suggested that “a clear
understanding of Archie’s equation is lacking” [39] and the
law was characterized as “inadequately understood” [48]. In
2018 it was concluded that “the physical basis of Archie’s law
has not been fully understood yet” and that “At present there
is no consensus on the physical meaning of m in geological
materials and further studies are still necessary to reconcile
the existing findings” [11]. Hence, as such evaluations of
Archie’s law continue even today, the understanding of it
has been limited to the conclusion that the m values are due
to an unspecified “variety of factors” [38]. From the above
short review, one must conclude that until now, Archie’s law
remained an unsolved puzzle.

In a contrast to the many past and present trials to account
for Archie’s law [39], as reflected by the above quotes, our
present work provides not only a well-based physical under-
standing of the two features of Archie’s law, i.e., the φc → 0
and the confinements of the m values, but also the relation
between them. To substantiate this claim, let us return to
the introduction of this paper, where we briefly reviewed the
main common observations that were found for Archie’s m
exponent in porous media, and the corresponding t exponent
in composite materials. This is done in order to show that all
those observations are well accounted for by our analysis that
rests only on the simple and firm foundations of the theory
of continuum percolation [78] as a phase transition. In the
introduction and in SM(1) of Ref. [56], we actually noticed
that there are six typical behaviors that were experimentally
observed for the values of m. Let us consider them now in light
of our present predictions that are summarized in Fig. 6. First,
the observed m values between 1 and 1.3 [43] and between 1
and 2.0 [6] confirm our conclusion concerning the existence
of a transition from the percolation conductivity exponents
μ(2D) and μ(3D) to the effective medium exponent (u = 1) in
porous media. That this transition is expected to be observed
in systems such as the ones considered in the present work
is exhibited by the simulation results, such as those of the
2D line-segment systems that were reported in Ref. [92].
Second, the finding of the m-value confinement in the interval
of μ(2D) = 1.3 � m � 2.6 = 2μ(2D), in the same reservoir
[40–42,54], is in accord with our Eqs. (4) and (5). In partic-
ular, this finding is applicable to porous media in which an
aerial view of a fracture farm [80,90] shows the same features
as the line-segment ensembles of Fig. 1. Third, the general
confinement of m values between μ(3D) = 2.0 � m � 4.0 =
2μ(3D) values in numerous porous media [4,38,39] confirms

the predictions that we presented in Fig. 6 for 3D systems
with a bimodal but correlated distribution of the conducting
pore elements. Fourth, our prediction of the increase of m
with the increase of φ within the confined μ < m � 2μ in-
tervals [see Eq. (4)] has been found in many porous systems
[7,40,44,53,116,117]. Fifth, the widely observed decrease of
m(φ), from a high value in the μ < m � 2μ interval towards
the m = u ≡ 1 value [19,44,53,106,118], further confirms our
prediction for the final transition from the extended percola-
tion regime to the effective medium regime at relatively high
values of φ. In fact, a confirmation of our prediction of the
increase, that is followed by a decrease of m with the in-
crease of φ, as illustrated in Fig. 6, was found in controlled
experiments in which m increased (from 1.3 to 1.5) and then
decreased (from 1.65 to 1.40) with the increase of φ [44].
Moreover, very convincing support for this conclusion is pro-
vided by the simulation results of the increase of m with φ

in void-throat systems [22] and for 2D system of permeable
sticks [92] (as in Fig. 1). Here we note that in the latter
simulations, unlike available experiments, the study of a wide
range of nf (or φ) values is possible, which enables us to
establish firmly that the increase of m, from μ to an m > μ

value with the increase of nf , is followed by its decrease with
the further increase of nf . Sixth, we have shown that our pre-
diction for an Eq. (3)→Eq. (5)→Eq. (6) transition is fulfilled
by the observations on systems of slender conducting pores
(such as cracks, fractures, and channels [3–6,67,68,71,74]) or
low-porosity sedimentary rocks [108,110], i.e., for systems in
which Archie’s φc → 0 feature applies (see Sec. II).

Let us turn now to the steps that enabled us to establish the
above agreements between our predictions and the aforemen-
tioned experimental and computational data. In Sec. III B we
have shown that the slenderness of the pores can provide large
ri/rf ratios in porous media, and in Sec. III C we have shown,
by Eq. (4), that this large ratio is the necessary condition for
the confinement of the m values in the μ � m � 2μ interval.
On the other hand, as shown in Sec. II, the slenderness of
the pores yields the φc → 0 feature which we have shown in
Sec. III E to be the necessary condition for observing the criti-
cal behavior before the (higher φ values) onset of the effective
medium conditions. Similarly, in Sec. III B we have shown
that the basic geometrical and electrical consequences that
apply to slender pores apply also to the original [1], and very
widely studied, sedimentary rocks of low porosity [2,12,110].
In particular, in those rocks the high ratio of the void-pore size
to the throat-pore size (i.e., 〈bv〉/〈ε〉 � 1) ensures the ri � r f

relation. This bimodal distribution of two types of resistors
and their sequential connections [i.e., the ni ∝ n2

f relation; see
Eq. (4)] ensures not only the μ < m � 2μ confinement fea-
ture of Archie’s law but also the increase of m with φ in those
rock systems [22]. On the other hand, the φc → 0 feature in
sedimentary rocks that conduct at very low porosities enables
the observation of m values in that confinement range.

Considering the above comprehensive agreement be-
tween our predictions and the experimental manifestations of
Archie’s law [2,38] we recall that none of the previous models
[39] could account simultaneously for the six behaviors that
were mentioned above. In particular, none of those models
could explain the statistically sharp drop in the m exponents
at the m = 2μ values that were experimentally observed in
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both the 2D-like and the 3D-like pore systems that were
described in Secs. II and III B. In short, in contrast to all
previous models, we found here that the 〈ri〉/〈r f 〉 � 1 fea-
ture is a necessary condition for the confinements of the m
values, and that the φc → 0 feature is a necessary condition
for the observation of those confinements. We have further
shown (in Secs. II and III B) that these two necessary con-
ditions are fulfilled in fracture formations and sedimentary
rocks.

Not less important is the fact that none of the many previ-
ous models that accounted for some particular m values, was
based on a simple statistical physics model that recognizes the
fact that Archie’s law represents a bona fide phase transition.
This recognition here is based on the fact that only such a
percolation phase transition that yields universal exponents
can provide a general framework for the understanding of
the φc → 0 and the m-confinement features of Archie’s law
in numerous porous media. This is in spite of the possible
richness of, and the differences [54] between, their structural
and physical details. Hence, in contrast to all the previous
suggestions, our present interpretation and conclusions rely
exclusively on statistical physics, via the application of the
theory of continuum percolation and its extension by our con-
cept of electrically affected connectivity. Indeed, the fact that
the m-values confinement that is found in the above numerous
porous media is also found for the electrical conductivity
exponent in composite materials [71,119,120] provides con-
vincing evidence that our approach is well justified physically.
This follows our observation that, while the electrical conduc-
tion mechanism is very different in the two types of systems,
the topology of their electrical network is much the same.
The above considerations lead us then to provide here the
basics for understanding the 78 years old puzzle of Archie’s
law. These basics are as follows. First, for the systems dis-
cussed in the present work the coupling of the ri � r f and
the necessary φc → 0 conditions accounts for the σ (φ) de-
pendence of Archie’s law and the μ < m � 2μ confinement.
This confirms that our solution to Archie’s puzzle is holistic.
Second, the fact that the only requirement for the observa-
tion of Archie’s law is the simultaneous fulfillment of these
two global conditions explains the abundance of observations
in which the Archie’s-law behavior has been found. Third,
while our holistic solution is a result of the well-based phase
transition nature of percolation theory, it also responds to the
fundamental request of the pioneering work of Sen et al. [54]
that “different geometric models must be used for different
classes.” It is important to note, however, that this is done here
within the framework of percolation theory rather than rely-
ing on the commonly suggested empirical or ad hoc models.
Fourth, in contrast to the doubts [77] regarding the relation of
the findings in numerous porous media and the percolation
critical behavior, we were able to show (in Sec. III D and
Appendix A) that the fact that these findings were derived on a
large (φ − φc)/φc range is the reason, rather than the obstacle,
to consider them reliable. In this work, we finally meet the
previously unsolved challenge of connecting the m values
with the global ri/rf and φec parameters of the studied systems.
In particular, we have shown, as confirmed by related simula-
tion studies [22,92], that the “vertical” m(ri/rf ) transition that
was described in relation to Fig. 6 can provide microstructure

information on the W /ε ratio in fracture formations and on the
〈bv〉/〈ε〉 ratio in sedimentary rocks.

Following the above we can conclude that while, indeed,
the value of m may be a result of a “variety of factors” [38],
what Archie’s law actually tells us is that in systems where
φc → 0, the effect of all those factors culminates in two global
and well-defined statistical averages of physical parameters.
These are the value of φec and the average 〈ri〉/〈r f 〉 ratio. We
thus suggest that recognition of these two global statistical
properties of a system within the framework of percolation
theory, rather than the applications of empirical, partial, or
weakly founded models, is the key to the understanding of
Archie’s law and its applications. As a potentially important
application of this observation, we mention that it was pre-
viously suggested that accurate m values are of economic
importance to the petroleum industry [37,51], and thus our
suggested understanding of the m values can be very benefi-
cial to hydrology and petroleum engineers [46]. In particular,
drawing m(φ) maps for a series of 〈ri〉/〈r f 〉 values can help in
deriving information on the structure parameters of the pores
and their relevant distribution functions. For example, for
sedimentary rocks one can start by considering the 〈ri〉/〈r f 〉 ≈
(〈bv〉/〈ε〉)3/2 relation that we presented in Sec. III B and
discussed in Sec. III E. Following then the experimentally
derived m(φ) dependence one can follow the variation of the
microstructure in a system with the variation of φ. Hence, in
contrast to previous suggestions [36], the m values can provide
such information in a “readily interpretable form.” Another
possible application can be based on the connection found
between the drop in the value of Archie’s exponent when an
earthquake is approaching, while the global porosity of the
corresponding earth region is hardly changed [32]. Following
the above, we can now interpret this behavior as due to the
decrease of the 〈ri〉/〈r f 〉 ratio for a constant φ (see Fig. 6)
due to the widening of the participating microfractures in the
corresponding porous media.

Considering the above, we have to point out however that
a variety of m values inside or outside the Archie’s confine-
ments predicted in Eqs. (3)–(6) can be due to effects such as
those described in SM(3) of Ref. [56]. On the other hand, we
note that none of these effects can explain the well-established
confinement of the m and t exponents that is bound by the
domain between the upper two curves in Fig. 6. In particular,
the sharp statistical drops at 2μ (2.6 in 2D and 4.0 in 3D), that
were found by the fitting of σ (φ) data to Archie’s law [38,54],
clearly prove that the presently suggested electrically affected
connectivity in porous media (where φc → 0) and in compos-
ite materials (where xc → 0), accounts for the majority of the
observed m values. An interesting case, where a clear dis-
tinction can be made between our Archie’s universal regime
and other m-values regimes, is presented by the data given in
Ref. [53]. In that study, a clear and sharp transition between
the confined μ(3D) < m < 2μ(3D) values at the lower poros-
ity regime, and the very high m(> 2μ) values at the higher
porosity regime, was found. According to our interpretation,
this variation of the m values between the two regimes is due
to the change of the pores’ structure, from being dominated by
narrow throats to being dominated by nonslender pores, upon
a large increase of the porosity. Indeed, this interpretation is
confirmed by the findings in Ref. [53] that the pores’ structure
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at the higher porosities “is not similar to sedimentary rocks.”
This sharp transition is then an illustrative confirmation of our
holistic statistical phase transition explanation of Archie’s law.

V. CONCLUSIONS

The first realization of the present work is that two fea-
tures characterize Archie’s law: the very small percolation
threshold φc, and the statistically determined confinement of
the conductivity exponent m within the μ � m � 2μ interval,
where μ is its percolation universal value. The second real-
ization is that in principle, two types of electrical conductivity
behaviors can take place in the critical regime of percolation
in general, and in porous media with a low-porosity φ in
particular. If the resistance rf of the conducting elements,
such as brine-filled pores, is larger than the resistance of their
connections, such as intersections or throat pores, ri, Archie’s
m exponent is determined only by the classical percolation
connectivity which is manifested by m = μ. In the opposite,
ri � r f , case, the m(φ) values are confined to the μ < m �
2μ interval. The third realization of the present work is that
the necessary condition for the ability to observe such m � μ

values is a relatively wide critical φ regime, prior to the
domination of the effective medium behavior. The fourth real-
ization is that this condition can be met by the φc → 0 feature,
and that the effect of this feature can be further enhanced, for
slender (high aspect ratio) pores, if ri � r f . In particular, we
have shown that these two φc → 0 and ri � r f conditions,
necessary for the observation of the confined m values, are
fulfilled by geological fracture formations and channel farms,
as well as by sedimentary rocks. Our conclusion that the
observation of the second feature of Archie’s law, i.e., the m
confinement, depends on the presence of the first feature of
this law, i.e., the very small φc value, couples the two features.
This makes our solution to the puzzle of Archie’s law a holistic
one.

The “conceptual” importance of the present work is that it
is not based on an empirical, limited, ad hoc, or experiential
model, but rather that all its conclusions are derived within the
well-established framework of the classical percolation theory
as a phase transition. This is in sharp contrast to many past and
present evaluations that suggested a lack of a physical and/or
first-principles basis for Archie’s law. In fact, we have added
here a general concept to continuum percolation theory by
noting that the critical behavior associated with a particular
dynamic property (here, the electrical conductivity) is deter-
mined not only by the global geometry of the system (as in
the classical percolation theory), but also by the connectivity
induced due to that particular property. Being concerned in
the present work with electrical conductivity, we called the
corresponding phenomenon an electrically affected connec-
tivity. Another general physical conclusion that emerges from
the analysis of this work is that a confinement of the critical
electrical conductivity exponent as such requires not just a
bimodal distribution of the resistors, but that these will be
correlated (as ni ∝ n2

f in the present study). Throughout this
work we noted that the same conclusion applies to composite
materials of slender conducting particles, thus establishing
that all our conclusions stand on a general and firm theoretical
basis.

The practical importance of this work is its suggestion that
there are two general, statistically culminated parameters on
which the evaluation of the observed m values should fo-
cus. These parameters are the extrapolated effective medium
threshold, φec, and the global 〈ri〉/〈r f 〉 ratio. We thus recom-
mend that when an Archie’s law-like behavior is observed,
the understanding of the m values that are found should be
derived by the calculation or simulation of these two parame-
ters in the corresponding system. In particular, we suggest that
this approach can provide information about the microscopic
structural and/or physical details of a system by using the
〈ri〉/〈r f 〉 values from the experimentally derived m(φ) values.

Following the above, we can finally conclude that Archie’s
law should be taken for what it is, a result of a percolation
phase transition with an electrically affected connectivity. The
percolation transition is manifested by the fact that Archie’s
m values are confined to the μ to 2μ interval, where μ is the
percolation universal-critical exponent, and the electrically
affected conductivity is manifested by the particular m value
that is observed within the above interval. Hence, the power-
law expression of Archie’s law is not accidental, and neither
is the fact that the statistically proven majority of the observed
m values is within the above confined m interval. This is not
due to effects that are out of the framework of the critical
universal behavior that is predicted by percolation theory. Last
but not least, we can conclude that for porous media with very
low φc values and high interpore connection resistances, the
m(φ) dependence of the electrical conductivity is determined
as follows. At very small φ values, m is dominated by the
geometrical connectivity of the network and thus m = μ. At
intermediate φ values, m is also determined by the physical
(here, the electrical) connectivity of the network, and thus the
m values are confined between μ and 2μ. At still higher φ

values, m is dominated by the effective medium nature of the
system, and thus m = u ≡ 1.
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APPENDIX A: OBSERVATION OF PERCOLATION
CRITICAL BEHAVIOR IN POROUS MEDIA OF SMALL

PERCOLATION THRESHOLDS

The observation of the m values in the μ < m < 2μ in-
terval in porous media, for the ri � r f case [see Eq. (4)], is
enabled by two effects. The main one is the abundant φc → 0
feature (see Secs. II and III B), and the other (that is described
in Appendix B) is the bypassing effect that is associated with
slender pores. In Sec. III D we suggested that, in general, the
relevant quantity that represents amenably the “width” of the
critical regime in percolation, i.e., the regime where the NLB
model applies and the μ values are observed, is not φ − φc,
but rather (φ − φc)/φc [72,100]. To illustrate intuitively the
justification for this suggestion let us consider a simple com-
parison of two systems, one in which φc = 0.01 and another
in which φc = 0.21. Now, let us assume a porosity φ = 0.22
in the first system and a porosity φ = 0.42 in the second. In
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both systems φ − φc = 0.21. However, it is obvious that the
change of the connectivity (i.e., the density of the network; see
the NLB in SM(2) of Ref. [56]) between said φc and φ is very
different in the two systems. This is because the connectivity
change, when φ is varied in the 0.01 � φ � 0.22 range in the
system of the lower φc, is much larger than the change when
φ is varied in the 0.21 � φ � 0.42 range in the system of the
higher φc. Recalling that critical behavior is associated with
the divergence of the connectivity [74], one would like to have
a scale that, when φ departs from φc, is more “representative”
than the common φ − φc scale. Considering then that the
only globally available parameter that is associated with the
topological connectivity is φc [82], the only possible amenable
measure of the relation between the connectivity and the prox-
imity of φ to φc is the normalized parameter (φ − φc)/φc.
This is demonstrated well in our above example where the
(φ − φc)/φc parameter yields 0.21/0.01 � 0.21/0.21, in ac-
cordance with the expected much larger connectivity change
in the case of the lower φc. The corresponding general conclu-
sion has been rigorously derived in Ref. [121].

Following the above, let us define the critical regime as
the regime where the effect of the connectivity variation
on the global conductivity, with the increase of φ, is much
larger than the EM effect of the variation of the average
local conductance (see Sec. III D). Correspondingly, we define
the φ value at which the transition between the connectiv-
ity (percolation)-dominated regime and the regime where the
EM effect becomes significant as φpec. This φpec is obvi-
ously somewhere in the φc < φ < φec range, where φec is the
extrapolated threshold of the EM-dominated regime. Empiri-
cally, this intermediate φpec (or xpec) can be defined as follows.
As already mentioned in Sec. III D the transition from the
percolation to the EM regime is accompanied by the reduction
of the conductivity critical exponent m (or t) from μ to u ≡ 1.
Hence, for illustration, an appropriate width of critical range
can be defined by φpec − φc (or xpec − xc) where the φpec (or
xpec, or the corresponding npec) that we use is the φ (or x, or
nf ) value at which m (or t) becomes (μ + u)/2. We expect
then that for a given φec value, the smaller the φc the larger
the (φec − φc)/φc value, i.e., the larger the connectivity effect,
in comparison to the constant-independent EM effect. In other
words, the φpec (xpec) value will shift towards a higher φ (or x).
The important conclusion is then that this will be manifested
by an extended (φ − φc)/φc [or (x − xc)/xc] regime, in which
the μ > (μ + u)/2 values will be observed. Effectively, this
also means an extended critical regime. Here we remark that
the deeper physical reason for this extension of the critical
regime when φc → 0 (or xc → 0) becomes apparent from the
known [74,75] NLB picture that is described in SM(2) of Ref.
[56]. The smaller the φc (or xc) the more dilute the “initial”
system, and thus the NLB picture will be maintained for larger
φ (or x) values as φ departs from φc.

Following the above, and recalling the common φc → 0
feature of Archie’s porous media [3], and the xc → 0 feature
in many composite materials of slender particles (such as
of CNTs, nanowires, or graphene polymer composites [73]),
we would expect relatively large (φ − φc)/φc or (x − xc)/xc

ranges in which the conductivity exponent will have the uni-
versal value of μ. Indeed, there are numerous examples of
systems with low percolation thresholds where the percolation

critical behavior is manifested by m = μ or t = μ obser-
vations over very large (φ − φc)/φc ranges (as high as 20
[2,19,54]) or (x − xc)/xc ranges (as high as 100 [98,107,122–
124]). We remark here in passing that, as noted at the end
of Sec. III C, our present conclusions and the cited exper-
imental confirmations are contrary to the a priori intuitive
conclusions, such as that of Feng et al. in Ref. [77]. They
suggested that: “Experiments on rocks, however, are typically
made in the regime (φ − φc)/φc > 1, so we have no right,
a priori, to expect that asymptotic critical exponents will ap-
ply.” Our present analysis shows that for φc → 0 there is an
extension of the critical regime, and thus that we are right
in considering the μ � m � 2μ values that were derived on
numerous porous media, as reflecting the critical behavior
of percolation. Of particular importance to our argument in
Sec. III D are the systematic findings of Ref. [79] that in
conducting porous media of low porosity, such as sandstones,
the typical corresponding φec/φc ratio is within the 30–40
range, and that there is no apparent dependence of φec on φc.
Hence, the basic condition for the ability to observe the m
values in the confined μ � m � 2μ interval is fulfilled in both
types of porous media that are considered in the present work.

Finally, in accordance with the above conclusion that is
also manifested in Fig. 6, one finds that in all the works
where the m(φ) or the t(x) values were studied over wide (φ −
φc)/φc or (x − xc)/xc ranges [38,119,124–127], these values
were found to be confined to the μ-2μ interval. Moreover,
the finding of the same m and t dependencies in simulations
of 2D line segments [86,92] and small void-pore [22] sys-
tems, suggests that the corresponding ability to observe the
m-values confinement is due to the common low-percolation
threshold [3,73] in all those systems. The fact that the results
of these simulations are representative of both types of porous
media that are of interest in the present work, as well as
for composites of slender particles, indicates that indeed it is
the low-percolation threshold that enables the observation of
the 〈ri〉 � 〈r f 〉 induced m > μ and t > μ values in all those
systems.

APPENDIX B: EXPANSION OF THE CONDUCTIVITY
CRITICAL REGIME DUE TO SLENDER PORES WITH A

LARGE ri/rf RATIO

To understand this effect let us reconsider the percolation
and EM regimes (see Sec. III D), but with a special emphasis
on the vicinity of the transition between them, by following
the effect of an additional conducting element on the m(nf )
dependence. In the percolation regime (see SM(2) in Ref.
[56]), the main role of such an addition is to initiate a local or
nonlocal conducting path, while in the EM regime it is to be
attached in parallel to an element, such as a singly connected
bond (SCB) or a blob of the existing dense conducting net-
work [109]. The resulting effect in the EM regime will be then
to increase slightly the average local conductance of a link
without changing the topology of the network. For the vicinity
of the transition between the two regimes, we can assume
that the basic structure of the backbone is still maintained,
except that the links are somewhat shorter and the blobs are
somewhat larger and denser than in the percolation regime
(see SM(2) in Ref. [56]). In the classical-lattice theories the
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FIG. 7. An illustration of the geometrical (left) and the cor-
responding electrical part of a link (right) where a (red) slender
low-resistance stick bypasses an existing high-resistance blob at the
vicinity of the percolation to EM transition. The corresponding single
added (black) resistor “shortens” the (blue) parallel resistance of the
blob and effectively turns the resistance of their combination to that
of the added stick.

percolation to EM transition [38,96,109] is manifested by the
decrease of m from m = μ to m = u ≡ 1 (see Appendix A).

Turning to the continuum, let us assume that the conduct-
ing objects are permeable circles. In that case, the network
will be similar to that of a lattice [112] and an added circle
can only be connected in parallel to a single, or at most to
two neighboring circles. The size of the added conducting
object (or bond) is then practically the same as that of a single
circle component of an existing blob. Correspondingly, the
geometrical and electrical outcomes of the added circle will be
the same as in the case of an added bond in a lattice, where the
lattice is above the percolation threshold. Now let us consider
the resulting behavior when the conducting objects are the
slender line-segment sticks of length L, such as in Fig. 1. At
the percolation end of the percolation to EM transition, the
blobs will be generally somewhat shorter (and denser) than
in the percolation regime, but they will generally be longer
than at the EM end of that transition regime. As illustrated in
Fig. 7, under these conditions there are blobs that are shorter
than L. In that illustration, the added (red) stick is connected in
parallel to the blob of line-segment sticks between the SCB (1)
and the SCB (2). From the electrical point of view the system
is equivalent then to a series connection of three resistors,
where the central one is a parallel combination of the added
(black) resistor and the resultant (blue) resistor of the blob
prior to this addition. This yields, of course, a lower resistance
than that of the original blob. Suppose now that the resistance
of the added slender object rf , is “somehow” much smaller
than that of the original blob, the added resistor can then
(closely) replace the combined parallel combination yielding
an equivalent series system of the resulting three SCBs. Here,
in contrast with the case of the classical NLB model (see
SM(2) in Ref. [56]), the much higher resistance of the blob
in comparison with rf , is possible, if the resistance ri of the
intersections between two sticks in the blob is much larger
than the resistance of the sticks themselves. The blob, in the

left of Fig. 7, illustrates such a situation where prior to the
addition of the new stick, the blob connecting the SCBs (1)
and (2) involves some necessary ris. Of course, due to the (red
dot) interconnection between the blobs and SCBs, or between
SCBs, the overall conductivity will still be proportional to
1/ri but it will be higher than the one prior to the addition
of the parallel ri. Such an addition of the conducting sticks in
the EM vicinity of the transition will be then to increase the
conductivity of the electrical network, as well as to make the
links to consist of more low-resistance SCBs, at the “expense”
of the original high-resistance blobs. The higher the ri/rf ratio,
the more pronounced those effects.

Turning to the implications of the above SCB-like geomet-
rical bypassing of the ri-dominated blobs in a link, by the
added low-resistance sticks, let us recall the well-established
statistics of the backbone in percolation theory. In particular,
the probability of a given bond in the system (say, a resistor rf )
to belong to the backbone is given by PB(nf ) ∝ (nf − nfc)βB,
where βB(2D) ≈ 0.5 and βB(3D) ≈ 1.0 [76,128–130]. We
also recall that the probability of being a singly connected
bond within the backbone diverges when n f → n f c, as ex-
pressed by the L1 ∝ (n f − n f c)−1 relation that is given in
SM(2) of Ref. [56]. This means that when nf decreases to-
wards nfc, there is a relatively strong increase in the number of
the SCBs in comparison with all other bonds in the backbone
[76]. This is also expected intuitively since the decrease of nf

towards nfc causes the links of the backbone to become longer
and the blobs in them to become “slimmer,” due to the loss of
“superfluous” blob’s related bonds.

Returning to the above bypassing of parts of the link by
single slender objects, we note now the topological similarity
between the above increase of the SCB nature of the links
by the addition of slender objects, and the general relative
increase of the relative SCBs concentration when the per-
colation threshold is approached. Hence, for the very same
geometrical network of resistors, the one with the larger ri/rf

ratio will yield a network that, from the electrical conductivity
point of view, is effectively “deeper” in the critical regime
due to the resulting increase of the number of SCBs in a link.
Consequently, the result of the parallel connection of an added
slender low-resistance stick is not only to increase the local
conductivity of some parts of the system [99], but no less im-
portantly to electrically take the system from being at the edge
of the onset of the EM regime to behave as if it belongs to the
critical regime

To check the validity of the above argument, let us examine
first the expected manifestation of our latter conclusion within
the framework of the behavior that we predicted in Fig. 6. In
the analysis given in Sec. III E, we predicted that for the ri �
r f case the increase of nf (or φ) will be accompanied by the
increase of m from μ, up to 2μ. Then, with a further increase
of nf (or φ) due to the approach to the EM regime, there will be
a decrease of m from its peak value towards the u ≡ 1 value.
Correspondingly, we predicted that the m(nf ) dependence will
have a maximum value within the μ � m � 2μ interval, and
that this maximum will be obtained at some n f = n f m. We
also predicted that the larger the ri/rf ratio, the higher the value
of m would be at this nfm. Here we add a new prediction, i.e.,
that with the increase of this ratio the larger will be the effect
of the parallel additions, i.e., there will be an expansion of the
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critical percolation regime at the “expense” of the EM regime.
The effect of this is expected to be manifested by a shift of nfm

towards larger nf value. Combining the latter two conclusions,
we finally predict that the increase of ri/rf will simultaneously
cause an increase in the value of m and the shift of nfm to
larger nf values. This prediction is well exhibited by the nfm

shift that was observed in the simulation results of Zezelj and
Stankovic [92], but has not been discussed by them.

We can summarize now that in systems of slender con-
ducting objects, both the φe → 0 feature (see Sec. II and

Appendix A) and the ri/rf ratio determine the width of the
effective percolation critical regime of the electrical conduc-
tivity. As far as we know, neither of these predictions, and
clearly not their combination, has been reported previously.
Finally, we remark that there is a general physical importance
to the above conclusion. This is the finding that the effective
critical regime for a given dynamical property depends not
only on the geometrical structure of the system, but also
on the particular characteristics of this (here the electrical)
property.

[1] G. E. Archie, The electrical resistivity log as an aid in deter-
mining some reservoir characteristics, Trans. AIME (Am. Inst.
Min. Metallurgy) Pet. Eng. 46, 54 (1942).

[2] A. Hunt, R. Ewing, and B. Ghanbarian, Percolation Theory for
Flow in Porous Media (Springer, Cham, 2014).

[3] I. Balberg, Excluded-volume explanation of Archie’s law,
Phys. Rev. B 33, 3618 (1986).

[4] M. S. Paterson, The equivalent channel model for permeability
and resistivity in fluid-saturated rock—a re-appraisal, Mech.
Mater. 2, 345 (1983).

[5] B. Kozlov, M. H. Schneider, B. Montaron, M. Lagues, and
P. Tabeling, Archie’s law in microstructures, Transp. Porous
Media 95, 1 (2012).

[6] D. Roubinet, J. Irving, and P. A. Pezard, Relating topological
and electrical properties of fractured porous media: Insights
into the characterization of rock fracturing, Minerals 8, 14
(2018).

[7] Y. Liu and P. K. Kitasides, in Tortuosity and Archie’s Law,
Advances in Hydrology, edited by M. K. Phoolendra and K. L.
Kristopher (Springer, New York, 2013), Chap. 6.

[8] M. Kuntz, J. C. Mareschal, and P. Lavall’ee, Numerical es-
timation of electrical conductivity in saturated porous media
with 2-D lattice gas, Geophysics 65, 766 (2000).

[9] S. A. Trugman and A. Weinrib, Percolation with a threshold at
zero: A new universality class, Phys. Rev. B 31, 2974 (1985).

[10] Z. Liu, J. E. McClure, and T. Armstrong, Influence of wettabil-
ity on phase connectivity and electrical resistivity, Phys. Rev.
E 98, 043102 (2018).

[11] Q. Niu and C. Zhang, Physical Explanation of Archie’s
Porosity Exponent in Granular Materials: A Process-Based
Pore-Scale Numerical Study, Geophys. Res. Lett. 45, 1870
(2018)).

[12] P-Z. Wong, The statistical physics of sedimentary rocks, Phys.
Today 41(12), 24 (1988).

[13] R. He, H. Ma, R. B. Hafiz, C. Fu, X. Jin, and J. He, Determin-
ing porosity and pore network connectivity of cement-based
materials by a modified non-contact electrical resistivity mea-
surements: Experiment and theory, Mater. Des. 156, 82 (2019).

[14] X. Zhu, Z. Zhang, K. Yang, B. Magee, Y. Wang, L. Yu, S.
Nanukuttan, Q. Li, S. Mu, C. Yang, and M. Basheer, Char-
acterization of pore structure development of alkali-activating
slag cement during early hydration using electrical responses,
Cem. Concr. Compos. 89, 139 (2018).

[15] A. Cordier, H. El Khal, E. Siebert, and M. C. Stell, On the role
of pore morphology on the electrical conductivity of porous
yttria-stabilized zirconia, J. Eur. Ceram. Soc. 39, 2518 (2019).

[16] K. Li, M. Qin, and Q. Gui, Durability properties of structural
concretes containing secondary cementitious materials, Green
Mater. 7, 40 (2019).

[17] M. Rangelov and S. Nssiri, Empirical time-dependent tortuos-
ity relations for hydrating mortar mixtures based on modified
Archie’s law, Constr. Build. Mater. 171, 825 (2018).

[18] M.-C. Bay, M. V. F. Heinz, R. Figi, C. Schreiner, D. Basso,
N. Zanon, U. F. Vogt, and C. Battaglia, Impact of liquid phase
formation on microstructure and conductivity of Li-stabilized
Na-β"–alumina ceramics, ACS Appl. Energy Mater. 2, 687
(2019).

[19] S. P. Friedman, Soil properties influencing apparent electri-
cal conductivity: A review, Comput. Electron. Agric. 46, 45
(2005).

[20] Q. Sun and C. Lu, Semi-empirical correlation between thermal
conductivity and electrical resistivity for silt and silty clay
soils, Geophysics 84, MR99 (2019).

[21] T. Herring, E. Cey, and A. Pidlisecky, Electrical resistivity
of partially saturated porous media at subzero temperatures,
Vadose Zone J. 18, 190019 (2019).

[22] W. Feng, W. Zhu, Y. Cong, W. Xianhu, X. Yaping, and
C. Linlin, Numerical simulation of the influence of pore
structure on resistivity, formation factor and cementation in-
dex in tight sandstone, Acta Geol. Sin. (Engl. Ed.) 94, 290
(2020).

[23] M. J. Stephens, D. H. Shimabukuro, J. M. Gillespie, and
W. Chang, Groundwater salinity mapping using geophysical
log analysis within the Fruitvale and Rosedale Ranch oil
fields, Kern County, California, USA, Hydrology J. 27, 731
(2019).

[24] N. Brindt, M. Rahav, and R. Wallach, ERT and salinity-
a method to determine whether ERT-detected preferen-
tial pathways in brackish water-irrigated soils are water-
induced or an artifact of salinity, J. Hydrol. 574, 35
(2019).

[25] J. Dick, D. Tetzlaff, J. Bradford, and C. Soulsby, Using re-
peat electrical resistivity surveys to assess heterogeneity in
soil moisture dynamics under contrasting vegetation types, J.
Hydrol. 559, 684 (2018).

[26] Y. Han, C. Zhou, J. Yu, and C. Li, Experimental investigation
on the effect of wettability on rock-electricity responses in
sandstone reservoirs, Fuel 239, 1246 (2019).

[27] W. Zairani, W. Bakar, I. M. Saaid, M. R Ahmad, Z. Amir, and
S. Q. Mahat, Derivation of formation factor in shaly sandstone
with geometry and clay conductivity effects, J. Pet. Sci. Eng.
182, 106359 (2019).

063005-17

https://doi.org/10.1103/PhysRevB.33.3618
https://doi.org/10.1016/0167-6636(83)90025-X
https://doi.org/10.1007/s11242-012-0029-6
https://doi.org/10.3390/min8010014
https://doi.org/10.1190/1.1444775
https://doi.org/10.1103/PhysRevB.31.2974
https://doi.org/10.1103/PhysRevE.98.043102
https://doi.org/10.1002/2017GL076751
https://doi.org/10.1063/1.881138
https://doi.org/10.1016/j.matdes.2018.06.045
https://doi.org/10.1016/j.cemconcomp.2018.02.016
https://doi.org/10.1016/j.jeurceramsoc.2019.02.027
https://doi.org/10.1680/jgrma.18.00010
https://doi.org/10.1016/j.conbuildmat.2018.03.173
https://doi.org/10.1021/acsaem.8b01715
https://doi.org/10.1016/j.compag.2004.11.001
https://doi.org/10.1190/geo2018-0549.1
https://doi.org/10.2136/vzj2019.02.0019
https://doi.org/10.1111/1755-6724.14306
https://doi.org/10.1007/s10040-018-1872-5
https://doi.org/10.1016/j.jhydrol.2019.04.029
https://doi.org/10.1016/j.jhydrol.2018.02.062
https://doi.org/10.1016/j.fuel.2018.11.072
https://doi.org/10.1016/j.petrol.2019.106359


ISAAC BALBERG PHYSICAL REVIEW E 103, 063005 (2021)

[28] G. Spagnoli, B. A. Weymer, M. Jegen, E. Spangenberg, and
S. Petersen, P-wave velocity measurements for preliminary
assessments, of the mineralization in seafloor massive sulfide
mini-cores during drilling operations, Eng. Geol. 226, 316
(2017).

[29] R. Monroy and M. W. John, Monitoring the electrical proper-
ties of metal ore mine tailings during sedimentation, Environ.
Geotech. 6, 146 (2019).

[30] A. Revil, M. Le Breton, Q. Niu, E. Wallin, E. Haskins, and
D. M. Thomas, Induced polarization of volcanic rocks-1.
Surface versus quadrature conductivity, Geophys. J. Int. 208,
826 (2017).

[31] KH. Imomnazarov, Archie’s law for a mathematical model of
movement of a conducting liquid through a conducting porous
medium, Appl. Math. Lett. 11, 135 (1998).

[32] M. Merzer and S. L. Klemperer, Modeling low-frequency
magnetic-field precursors to the Loma Prieta earthquake with
a precursory increase in fault-zone conductivity, Pure Appl.
Geol. 150, 217 (1998).

[33] J. Hu, X. W. Wu, H. Ke, X. B. Xu, J. W. Lan, and L-t. Zhan,
Application of electrical resistivity tomography to monitor the
dewatering of vertical and horizontal wells in municipal solid
waste landfills, Eng. Geol. 254, 1 (2019).

[34] A. C. Knight, A. D. Werner, and D. J. Irvine, Combined
geophysical and analytical methods to estimate offshore fresh-
water extent, J. Hydrol. 576, 529 (2019).

[35] L-t. Zhan, H. Xu, X-m. Jiang, J-w. Lan, Y-m. Chen, and Z-y.
Zhang, Use of electrical resistivity tomography for detecting
the distribution of leachate and gas in large scale MSW landfill
cell, Environ. Sci. Pollut. Res. 26, 20325 (2019).

[36] D. W. Kennedy and D. C. Herrick, Conductivity models for
Archie’s rocks, Geophysics 77, WA109 (2012).

[37] B. Montaron, Connectivity theory-a new approach to modeling
non-Archie rocks, Petrophysics 50, 102 (2009).

[38] M. Sahimi, Heterogeneous Materials, I. Linear Transport and
Optical Properties (Springer, New York, 2003).

[39] J. Cai, W. Wei, X. Hu, and D. A. Wood, Electrical conductivity
models in saturated porous media: A review, Earth Sci. Rev.
171, 419 (2017).

[40] H. Dashtian, Y. Yang, and M. Sahimi, Nonuniversality of the
Archie exponent due to multifractality of resistivity well logs,
Geophys. Res. Lett. 42, 10655 (2015).

[41] A. J. Katz and A. H. Thomson, Fractal Sandstone Pores: Impli-
cations for Conductivity and Pore Formation, Phys. Rev. Lett.
54, 1325 (1985).

[42] M. Jonas, J. R. Schopper, and J. H. Schon, Mathematical-
physical reappraisal of Archie’s first equation on the basis of
a statistical network model, Transp. Porous Media 40, 243
(2000).

[43] O. A. L. de Lima and M. M. Sharma, A grain conductivity
approach to shaly sandstones, Geophysics 55, 1347 (1990).

[44] A. De Kuijper, A. Sandor, J. P. Hofman, and J. A. De Wall,
Conductivity of two-component systems, Geophysics 61, 162
(1996).

[45] R. Freedman, Moving beyond Archie’s legacy in the 21st
century, Petrophysics 51, 468 (2009).

[46] R. C. Ransom, Moving beyond Archie’s legacy in the 21st
century: Reply, Petrophysics 51, 12 (2010).

[47] W. Yue, Pore-scale explanation of the Archie’s cemen-
tation exponent: Microstructure, electrical anisotropy, and

numerical experiments, Geophys. Res. Lett. 46, 5799
(2019).

[48] H. Wang and T. Liu, Derivation of Archie’s law based on a
fractal pore volume, Geophys. J. Int. 209, 1403 (2017).

[49] H. Meng, Study of the rock-electric and the relative perme-
ability characteristics in porous rocks based on the curved
cylinder-spherical model, J. Pet. Sci. Eng. 166, 891 (2018).

[50] Z. Tariq, M. Mahmoud, H. Al-Youssef, and M. R. Kahn,
Carbonate rocks resistivity determination using dual and triple
porosity conductivity models, Petroleum 6, 35 (2019).

[51] P. W. Glover, A new theoretical interpretation of Archie’s
saturation exponent, Solid Earth 8, 805 (2017).

[52] L. D. Thanh, D. Jougnot, P. Van Do, and N. Van Nghia,
A physically based model for the electrical conductivity
of water-saturated porous media, Geophys. J. Int. 219, 866
(2019).

[53] H. M. N. Wright, K. V. Cashman, E. H. Gottesfeld, and J.
R. Roberts, Pore structure of volcanic clasts: Measurements
of permeability and electrical conductivity, Earth Planet. Sci.
Lett. 280, 93 (2009).

[54] P. N. Sen, C. Scala, and M. H Cohen, A self-similar model for
sedimentary rocks with application to the dielectric constant
of fused glass-beads, Geophysics 46, 781 (1981).

[55] P. D. Chinh, Electrical properties of sedimentary rocks having
interconnected water-saturated pore spaces, Geophysics 65,
1093 (2000).

[56] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.103.063005 for various data on the con-
ductivity critical exponents in porous media and composite
materials, and a brief review of the classical theory of these
exponents within the framework of universal and nonuniversal
percolation [57–69].

[57] L. Wang, Z. Mao, Y. Shi, Q. Tao, Y. Cheng, and Y. Song, A
novel model for predicting Archie’s cementation factor from
nuclear magnetic resonance (NMR) logs in low permeability
reservoirs, J. Earth Sci. 25, 183 (2014).

[58] N. Neithalath, J. Weiss, and J. Olek, Characterizing enhanced
porosity concrete using electrical impedance to predict acous-
tic and hydraulic performance, Cem. Concr. Resour. 36, 2074
(2006).

[59] P. D. Jackson, D. Taylor Smith, and P.N. Stanford,
Resistivity-porosity-particle shape relationship for marine
sands, Geophysics 43, 1250 (1978).

[60] M. R. J. Wyllie and A. R. Gregory, Fluid flow through un-
consolidated porous aggregates: Effect of porosity and particle
shape on Kozeny-Carmen constants, Ind. Eng. Chem. 47, 1379
(1955).

[61] R. Zallen, The Physics of Amorphous Solids (John Wiley &
Sons, New York, 1983).

[62] M. B. Bryning, M. F. Islam, J. M. Kikkawa, and A. G. Yodh,
Very low conductivity Threshold in bulk isotropic single-
walled carbon nanotube-epoxy composites, Adv. Mater. 17,
1186 (2005).

[63] K. Ahmad, W. Pan, and S. L. Shi, Electrical conductivity
and dielectric properties of multiwalled carbon nanotube and
alumina composites, J. Appl. Phys. 89, 133122 (2006).

[64] P. D. Chinh, Modeling the conductivity of highly consolidated,
bi-consolidated porous rocks, J. Appl. Phys. 84, 796 (1998).

[65] I. Balberg, The tunneling percolation problem, J. Phys. D:
Appl. Phys. 42, 064003 (2009).

063005-18

https://doi.org/10.1016/j.enggeo.2017.07.003
https://doi.org/10.1680/jenge.17.00021
https://doi.org/10.1093/gji/ggw444
https://doi.org/10.1016/S0893-9659(98)00115-3
https://doi.org/10.1007/s000240050074
https://doi.org/10.1016/j.enggeo.2019.03.021
https://doi.org/10.1016/j.jhydrol.2019.06.059
https://doi.org/10.1007/s11356-019-05308-6
https://doi.org/10.1190/geo2011-0297.1
https://doi.org/10.1016/j.earscirev.2017.06.013
https://doi.org/10.1002/2015GL066400
https://doi.org/10.1103/PhysRevLett.54.1325
https://doi.org/10.1023/A:1006628431683
https://doi.org/10.1190/1.1442782
https://doi.org/10.1190/1.1443936
https://doi.org/10.1029/2019GL082585
https://doi.org/10.1093/gji/ggx095
https://doi.org/10.1016/j.petrol.2018.03.085
https://doi.org/10.1016/j.petlm.2019.04.005
https://doi.org/10.5194/se-8-805-2017
https://doi.org/10.1093/gji/ggz328
https://doi.org/10.1016/j.epsl.2009.01.023
https://doi.org/10.1190/1.1441215
https://doi.org/10.1190/1.1444802
http://link.aps.org/supplemental/10.1103/PhysRevE.103.063005
https://doi.org/10.1007/s12583-014-0411-0
https://doi.org/10.1016/j.cemconres.2006.09.001
https://doi.org/10.1190/1.1440891
https://doi.org/10.1021/ie50547a037
https://doi.org/10.1002/adma.200401649
https://doi.org/10.1063/1.2357920
https://doi.org/10.1063/1.368139
https://doi.org/10.1088/0022-3727/42/6/064003


SIMPLE HOLISTIC SOLUTION TO ARCHIE’S-LAW … PHYSICAL REVIEW E 103, 063005 (2021)

[66] C. J. Lobb, D. J. Frank, and M. Tinkham, Percolative
conduction in anisotropic media: A Renormalization-Group
approach, Phys. Rev. B 23, 2262 (1981).

[67] J. F. McCarthy, Continuum Percolation of Disks and the Ran-
dom Lattice, Phys. Rev. Lett. 58, 2242 (1987).

[68] O. Stenwell and H-K. Janssen, Conductivity of continuum
percolation systems, Phys. Rev. E 64, 056105 (2001).

[69] I. Balberg and N. Binenbaum, Cluster structure and conduc-
tivity of three-dimensional continuum systems, Phys. Rev. A
31, 1222 (1985).

[70] J. N. Roberts and L. M. Schwartz, Grain consolidation and
electrical conductivity in porous media, Phys. Rev. B 31, 5990
(1985).

[71] W. Bauhofer and J. Z. Kovacs, A review and analysis of
electrical percolation in carbon nanotube polymer composites,
Compos. Sci. Technol. 69, 1486 (2009).

[72] R. M. Mutiso and K. I. Winey, Electrical percolation in
quasi-two-dimensional metal nanowire networks for transpar-
ent conductors, Phys. Rev. E 88, 032134 (2013).

[73] I. Balberg, The importance of bendability in the percolation
behavior of carbon nanotube and graphene-polymer compos-
ites, J. Appl. Phys. 112, 066104 (2012).

[74] D. Stauffer and A. Aharony, Introduction to Percolation The-
ory (Taylor & Francis, London, 1994).

[75] B. I. Shklovskii and A. L. Efros, Electronic Properties of
Doped Semiconductors (Springer, Heidelberg, 1984).

[76] A. Bunde and S. Havlin, Fractals and Disordered Systems
(Springer, New York, 1991).

[77] S. Feng, B. I. Halperin, and P. N. Sen, Transport-properties of
continuum systems near the percolation-threshold, Phys. Rev.
B 35, 197 (1987).

[78] I. Balberg, Principles of the theory of continuum percolation,
in Encyclopedia of Complexity and Systems Science, edited
by R. A. Meyers, A. Hunt, and M. Sahimi (Springer, Berlin,
2020).

[79] B. Ghanbarian, A. G. Hunt, R. P. Ewing, and T. E. Skinner,
Universal scaling of the formation factor in porous media de-
rived by combining percolation and effective medium theories,
Geophys. Res. Lett. 41, 3884 (2014).

[80] A. Aydin and Z. Reches, Number and orientation of fault sets
in the field and the experiments, Geology 10, 107 (1982).

[81] W. F. Brace, A. S. Orange, and T. R. Madden, The effect of
pressure on the electrical resistivity of water-saturated crys-
talline rocks, J. Geophys. Res. 70, 5669 (1965).

[82] I. Balberg, C. H. Anderson, S. Alexander, and N. Wagner,
Excluded volume and its relation to the onset of percolation,
Phys. Rev. B 30, 3933 (1984).

[83] J. Zhao, X-Y. Dai, Y-F. Lu, and S-H. Tang, Shale reservoir
conductive simulation based on percolation networks, Chin. J.
Geophys.-Chin. Ed. 60, 275 (2017).

[84] Y-J. Park, K-K. Lee, and B. Berkowitz, Effects of junc-
tion transfer characteristics on transport in fracture networks,
Water Resour. Research 37, 909 (2001).

[85] J. Zaba, Z. Malolepszy, K. Gaidzik, J. Ciesielczuk, and A.
Paulo, Fault network in Rio Cola valley between Maca and
Pinchollo, Central Andes, Southern Peru, Ann. Soc. Geol. Pol.
82, 279 (2012).

[86] I. Balberg, N. Binenbaum, and C. H. Anderson, Critical Be-
havior of the Two-Dimensional Sticks System, Phys. Rev. Lett.
51, 1605 (1983).

[87] I. Balberg, B. Berkowitz, and G. E. Drachsler, Application of a
percolation model to flow in fractured hard rocks, J. Geophys.
Res.: Solid Earth Planets 96, 10015 (1991).

[88] Y. F. Alghalandis, C. Xu, and P. A. Dowd, A general
framework for fracture intersection analysis: Algorithms and
practical applications, in Proceeding of the Australian Geother-
mal Energy Conference, Vol. 15 (2011).

[89] A. Saieed, W. Pao, and F. M. Hashim, Effect of T-junction
diameter ratio on stratified-wavy flow separation, J. Nat. Gas
Sci. Eng. 51, 223 (2018).

[90] N. King Huber, The geologic story of Yosemite National Park,
USGS Numbered Series, Bulletin No. 1595 (U.S. Government
Printing Office, California, 1987).

[91] I. Balberg, N. Wagner, D. W. Hearn, and J. A. Ventura, Critical
Behavior of the Electrical Resistance and Its Noise in Inverted
Random-Void Systems, Phys. Rev. Lett. 60, 1887 (1988).

[92] M. Zezelj and I. Stankovic, From percolation to dense random
stick networks: Model investigation, Phys. Rev. B 86, 134202
(2012).

[93] I. Balberg, D. Azulay, Y. Goldstein, and J. Jedrzejewski,
Possible origin of the smaller than universal percolation con-
ductivity exponent in the continuum, Phys. Rev. E 93, 062132
(2016).

[94] I. Balberg, Universal percolation-Threshold limits in the con-
tinuum, Phys. Rev. B 31, 4053 (1985).

[95] D. Di Naccio, P. Boncio, S. Cirill, F. Casaglia, E. Morettini,
G. Lavecchia, and F. Brozzetti, Role of mechanical stratigra-
phy on fracture development in carbonates reservoir: Insights
from outcropping shallow water carbonates in the Umbria-
Marche Apennines, Italy, J. Volcanol. Geotherm. Res. 148, 98
(2012).

[96] C. W. Nan, Physics of inhomogeneous inorganic materials,
Prog. Mater. Sci. 37, 1 (1993).

[97] R. Murphy, V. Nicolosi, Y. Hernandez, D. McCarthy, D.
Rickard, D. Vrbanic, A. Merzel, D. Mihailovic, W. J. Blau,
and J. N. Coleman, Observation of extremely low percolation
threshold in Mo6S4.5I4.5 nanowire/polymer composites, Scr.
Mater. 54, 417 (2006).

[98] M. Foygel, R. D. Morris, D. Anez, S. French, and V. L.
Sobolev, Theoretical and computational studies of carbon
nanotube composites and suspensions: Electrical and thermal
conductivities, Phys. Rev. B. 71, 104201 (2005).

[99] J. Li and S-L. Zhang, Conductivity exponents in sticks perco-
lation, Phys. Rev. E 81, 021120 (2010).

[100] P. Keblinski and F. Cleri, Contact resistance in percolating
networks, Phys. Rev. B 69, 184201 (2004).

[101] S. I. Ozkaya and J. Mattner, Fracture connectivity from frac-
ture intersections in borehole image logs, Comput. Geophys.
29, 143 (2003).

[102] D. Or and T. A. Ghezzehel, Traveling liquid bridges in unsat-
urated fractured porous media, Transp. Porous. Media 68, 129
(2007).

[103] W. Shockley, Electrons and Holes in Semiconductors (Van
Nostrand, Princeton, 1953).

[104] I. Braun and H. K. Henish, Characteristics of injecting
point contacts on semiconductors-I In darkness, Solid State
Electron. 9, 981 (1966).

[105] D. C. P. Peacock, V. Dimmen, A. Rotevatn, and D. J.
Sanderson, A broader classification of damage zones, J. Struct.
Geol. 102, 179 (2017).

063005-19

https://doi.org/10.1103/PhysRevB.23.2262
https://doi.org/10.1103/PhysRevLett.58.2242
https://doi.org/10.1103/PhysRevE.64.056105
https://doi.org/10.1103/PhysRevA.31.1222
https://doi.org/10.1103/PhysRevB.31.5990
https://doi.org/10.1016/j.compscitech.2008.06.018
https://doi.org/10.1103/PhysRevE.88.032134
https://doi.org/10.1063/1.4752714
https://doi.org/10.1103/PhysRevB.35.197
https://doi.org/10.1002/2014GL060180
https://doi.org/10.1130/0091-7613(1982)10<107:NAOOFS>2.0.CO;2
https://doi.org/10.1029/JZ070i022p05669
https://doi.org/10.1103/PhysRevB.30.3933
https://doi.org/10.1002/cjg2.30045
https://doi.org/10.1029/2000WR900365
https://doi.org/10.1103/PhysRevLett.51.1605
https://doi.org/10.1029/91JB00681
https://doi.org/10.1016/j.jngse.2018.01.015
https://doi.org/10.1103/PhysRevLett.60.1887
https://doi.org/10.1103/PhysRevB.86.134202
https://doi.org/10.1103/PhysRevE.93.062132
https://doi.org/10.1103/PhysRevB.31.4053
https://doi.org/10.1016/j.jvolgeores.2005.03.016
https://doi.org/10.1016/0079-6425(93)90004-5
https://doi.org/10.1016/j.scriptamat.2005.10.015
https://doi.org/10.1103/PhysRevB.71.104201
https://doi.org/10.1103/PhysRevE.81.021120
https://doi.org/10.1103/PhysRevB.69.184201
https://doi.org/10.1016/S0098-3004(02)00113-9
https://doi.org/10.1007/s11242-006-9060-9
https://doi.org/10.1016/0038-1101(66)90074-8
https://doi.org/10.1016/j.jsg.2017.08.004


ISAAC BALBERG PHYSICAL REVIEW E 103, 063005 (2021)

[106] A. N. Kravchenko, G. A. Bollero, R. A. Omonode, and D. G.
Bullock, Quantitative mapping of soil drainage classes using
topographical data and soil electrical conductivity, Soil Sci.
Soc. Am. J. 66, 235 (2002).

[107] Y. J. Kim, T. S. Shin, H. D. Choi. J.H. Kwon, Y. C. Chung, and
H. G. Yoon, Electrical conductivity of chemically modified
multiwalled carbon nanotube/epoxy composites, Carbon 43,
23 (2005).

[108] M. Kashif, Y. Cao, G. Yuan, M. Asif, K. Javed, J. N. Mendez,
D. Khan, and L. Miruo, Pore size distribution, their geometry,
and connectivity in deeply buried paleogene Es1 sandstone
reservoir, Nanpu Sag, East China, Pet. Sci. 16, 981 (2019).

[109] S. Kirkpatrick, Percolation and conduction, Rev. Mod. Phys.
45, 574 (1973).

[110] Y. Tang, J. Xu, and J. Zhou, Applicability of cavity-throat
connecting model for estimating the hydraulic conductivity of
fine-ground soils: A geometrical and mathematical approach,
J. Soils Sediments 19, 652 (2019).

[111] Y. Gueguen, T. Chelideze, and M. Le Ravalec, Microstruc-
tures, percolation thresholds and rock physical properties,
Tectonophysics 279, 23 (1997).

[112] H. Scher and R. Zallen, Critical density in percolation pro-
cesses, J. Chem. Phys. 53, 3759 (1970).

[113] B Abeles, P. Sheng, M. D. Coutts, and Y Arie, Structural and
electrical properties of granular metal films, Adv. Phys. 24,
407 (1975).

[114] L. Fonseca and I. Balberg, Resistivity and electrical noise in
granular metal composites, Phys. Rev. B 48, 14915 (1993).

[115] P. M. Kogut and J. Straley, Distribution-induced non-
universality exponents, J. Phys. C: Solid State Phys. 12, 2151
(1979).

[116] S. Rafiee, A. Hashemi, and M. Shahi, A new cementation
factor correlation in carbonate parts of oil-fields in South-West
Iran, Iran. J. Oil Gas Sci. Technol. 3, 1 (2014).

[117] M. Hassani-giv and M. Rahimi, New correlation for porosity
exponent in carbonate reservoirs of Iranian oil fields in Zagros
Basin, JSUT (Journal of Science/University of Tehran) 34, 1
(2008).

[118] A. M. Borai, A new correlation for cementation fac-
tor in low-porosity carbonates, SPE Form. Eval. 2, 495
(1987).

[119] A. Combessis, L. Bayon, and L. Flandin, Effect of filler
auto-assembly on percolation transition in carbon nan-
otube/polymer composites, Appl. Phys. Lett. 102, 011907
(2013).

[120] S. Rul, F. Lefevre-Schlick, E. Capria, Ch. Laurent, and A.
Peigney, Percolation of single-walled carbon nanotubes in ce-
ramic matrix nanocomposites, Acta Mater. 52, 1061 (2004).

[121] T. Kaliski and R. Cohen, Width of the percolation transition in
complex networks, Phys. Rev. E 73, 035101 (2006).

[122] M. O. Lisunova, Ye. P. Mamunya, N. I. Lebovka, and A. V.
Melezhyk, Percolation behavior of ultrahigh molecular weight
polyethylene/multi-walled carbon nanotubes composites, Eur.
Polym. J. 43, 949 (2007).

[123] J. M. Benoit, B. Corrazc, and O. Chauvet, Localization,
Coulomb interactions, and electrical heating in single-wall
carbon nanotubes/polymer composites, Phys. Rev. B 65,
241405(R) (2002).

[124] A. E. Eken, E. J. Tozzi, D. J. Klineberg, and W. Bauhofer, A
simulation study on the combined effects of nanotube shape
and shear flow on the electrical percolation Thresholds of car-
bon nanotube/polymer composites, J. Appl. Phys. 109, 084342
(2011).

[125] S. Abbasi, P. J. Carreau, and A. Derdouri, Flow induced
orientation of multiwalled carbon nanotubes in polycarbon-
ate nanocomposites: Rheology, conductivity and mechanical
properties, Polymer 51, 922 (2010).

[126] S. J. Chin, S. Vempaii, P. Dawson, M. Knite, A. Linarts, K.
Ozols, and T. McNally, Electrical conduction and rheological
behavior of composites of poly (ε-caprolactone) and MWC-
NTs, Polymer 58, 209 (2015).

[127] P. S. Kang and G. T. Kim, Effects of junctions on carbon
nanotube network-based devices, Phys. Status Solidi B 248,
2644 (2011).

[128] M. Sahimi, Scaling relation for the critical exponents of the
backbone of percolation clusters, J. Phys. A: Math. Gen. 17,
3073 (1984).

[129] H. J. Herrmann and H. E. Stanley, Building Blocks of Per-
colation Clusters: Volatile Fractals, Phys. Rev. Lett. 53, 1121
(1984).

[130] C. A. Moukarzei, A fast algorithm for backbones, Int. J. Mod.
Phys. C 09, 887 (1998).

063005-20

https://doi.org/10.2136/sssaj2002.2350
https://doi.org/10.1016/j.carbon.2004.08.015
https://doi.org/10.1007/s12182-019-00375-3
https://doi.org/10.1103/RevModPhys.45.574
https://doi.org/10.1007/s11368-018-2054-8
https://doi.org/10.1016/S0040-1951(97)00132-7
https://doi.org/10.1063/1.1674565
https://doi.org/10.1080/00018737500101431
https://doi.org/10.1103/PhysRevB.48.14915
https://doi.org/10.1088/0022-3719/12/11/023
https://doi.org/10.22050/IJOGST.2014.6030
https://doi.org/10.2118/14401-PA
https://doi.org/10.1063/1.4773994
https://doi.org/10.1016/j.actamat.2003.10.038
https://doi.org/10.1103/PhysRevE.73.035101
https://doi.org/10.1016/j.eurpolymj.2006.12.015
https://doi.org/10.1103/PhysRevB.65.241405
https://doi.org/10.1063/1.3573668
https://doi.org/10.1016/j.polymer.2009.12.041
https://doi.org/10.1016/j.polymer.2014.12.034
https://doi.org/10.1002/pssb.201100113
https://doi.org/10.1088/0305-4470/17/15/025
https://doi.org/10.1103/PhysRevLett.53.1121
https://doi.org/10.1142/S0129183198000844

