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This paper describes an attempt to construct a first-principles theory of the fracture toughness of crystalline
solids. It is based on the thermodynamic dislocation theory (TDT), which starts with the assertion that dislo-
cations in solids must obey the second law of thermodynamics. A second starting assumption is that fracture
is initiated when the tip of a notch is driven to undergo a dynamic shape instability. The results of this
analysis are developed in comparison with measurements by Gumbsch and colleagues of the notch toughness
of both predeformed and non-predeformed tungsten crystals. The theory includes a simple ad hoc conjecture
regarding tip dynamics at small dislocation densities. Nevertheless, its predictions agree quantitatively with the
experimental data, including both brittle and ductile fracture, over a wide range of temperatures, loading rates,
and initial conditions.
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I. INTRODUCTION

The strength of crystalline solids is one of the most im-
portant problems in materials theory; yet it has largely been
ignored by theorists for about half a century because it has
been thought to be unsolvable. Of course, there is a large
literature on this subject, exploring the dynamics of dislo-
cations interacting with their environments. But almost all
of this literature is phenomenological; it is not based on the
fundamental physics of nonequilibrium processes. As a result,
there are central questions that remain unanswered.

For example, we know from observation that solids are
stronger when they are colder; their yield stresses grow with
decreasing temperature. We also know that they become more
brittle, i.e., they break more easily at lower temperatures
despite the fact that they are stronger [1]. We do have a par-
tial understanding of this apparent contradiction. The density
of dislocations generally grows with increasing temperature;
and this increased density somehow shields the crack tip,
thus toughening the system against fracture. A principal goal
of the analysis in this paper is to develop a predictive theory
of these phenomena.

It is only recently that we have begun to understand strain
hardening and yield stresses for spatially uniform crystalline
solids. Cottrell and others since the 1950s [2–4] have asserted
that this problem is impossibly difficult because the second
law of thermodynamics – according to them – did not apply to
dislocations. They were wrong. The second law says simply
that driven complex systems always move toward states of
higher probability, i.e., entropy must increase. By ignoring
this basic principle, and the fact that it had to be relevant to
large systems of driven dislocations, Cottrell et al. provoked
decades of curve-fitting and, in some cases, incorrect phe-
nomenologies.

The thermodynamic dislocation theory (TDT) [5–8] uses
the second law to define an effective disorder temperature

that captures the statistical features of crystalline systems in
nonequilibrium situations. With it, plus a simple model of
thermally activated depinning of entangled dislocations, we
now understand strain hardening and yield stresses in an over-
simplified but basically realistic and experimentally tested
[9,10] picture of crystalline solids. However, the TDT by itself
does not explain fracture toughness.

An explanation of brittle and ductile fracture requires a
different kind of analysis. Strain hardening and yielding can
be spatially uniform phenomena; but the onset of fracture, say,
at the tip of a notch that is opening under stress, is a localized,
two-dimensional instability. This is the lesson that we have
learned recently from observations and theoretical analyses of
brittle-ductile transitions in metallic glasses [11–13]. There,
the growing stress concentration at the tip of a notch generates
a localized density of flow defects – in that case shear trans-
formation zones (STZs) – that controls the way in which the
tip changes its shape and either launches a propagating brittle
crack or initiates large-scale ductile failure.

My purpose here is to use the TDT in a similar kind of
fracture analysis for crystalline materials. The two situations,
while different in major respects, have a great deal in com-
mon. In both cases, the externally applied stress is strongly
concentrated at a notch tip. If this driving stress is applied
rapidly enough, or if the plastic deformation is sufficiently
slow or weak, then the concentrated elastic stress near the tip
quickly reaches some critical value and a propagating crack is
launched. This is brittle behavior. On the other hand, if plastic
deformation is strong enough, the notch tip becomes shielded
by a plastic boundary layer that suppresses elasticity-induced
fracture. Then, when the far-field stress exceeds some critical
value, this boundary layer expands rapidly and the tip loses
its shielding. At this point, the tip stress grows suddenly,
thus initiating some kind of large-scale ductile failure whose
details – like the details of brittle crack propagation – vary
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from system to system and are beyond the scope of this
analysis.

In the absence of a predictive theory of crack initiation,
it is not surprising that there exists only little experimental
data relevant to the picture that I will develop here. Most of
the theoretical literature focuses on the behaviors of single
dislocations, or small groups of them, in the neighborhoods
of mathematically sharp crack tips or other kinds of hetero-
geneities, and thus does not probe the larger-scale dynamics
that I assert is more important. Notable examples of earlier
research of this kind include [14–16].

So far as I know, the most relevant experimental obser-
vations are those of Gumbsch and coworkers [17,18]. I find
their results to be very valuable because they confirm central
aspects of the physics-based TDT approach to fracture dy-
namics and also point to places where that theory is seriously
incomplete. Gumbsch et al. studied temperature-dependent
notch toughness in tungsten, in both undeformed single crys-
tals and predeformed (i.e., prehardened) samples. The crucial
difference between the two kinds of measurements was that
the predeformed systems had absorbed some energy of work
hardening and thus, initially, contained substantial densities
of dislocations. This is a simpler situation than that of the
undeformed crystals because we can start by assuming that
the dislocations are dense enough near the notch tip that the
TDT entanglement theory is valid.

By focusing first on this case, we can see how plastic
shielding at the notch tip is governed by the strongly stress
and temperature dependent TDT strain rate, which determines
a sharply defined yield stress and a plastic boundary layer. The
onset of ductile failure is enhanced by a nonlinear heating
instability analogous to that seen in adiabatic shear banding
[7,19]. This analysis also allows us to determine values of
some parameters that are needed for studying the undeformed
single-crystal experiments.

The second part of this paper is devoted to Gumbsch’s
non-predeformed crystals, where the initial density of dislo-
cations must be so small that the average spacing between
them is greater than the radius of the notch tip. In this case,
I propose that early-stage plasticity is determined by strongly
temperature dependent dislocation drag forces. As work is
done on this system by the notch-opening stress, dislocations
are created and move out independently according to the drag
dynamics. At low enough temperatures, where the drag force
is small, the resulting plastic deformation induces brittle frac-
ture. At higher temperatures, the drag forces become too large,
the dislocations move too slowly, and there is a transition from
independently moving to strongly entangled dislocations. This
is the theoretically most difficult and speculative part of my
analysis. But it is potentially the most important part because
it raises fundamental questions.

II. ELLIPTICAL APPROXIMATION

As in [13], I depart immediately from two features of
conventional fracture analysis. First, I assume that the initial
notch in a toughness measurement is not infinitely sharp but,
rather, has a finite radius of curvature at its tip. Second, I
do not accept the conventional assumption that plasticity is
always a blunting mechanism, and will show here that both

elastic and plastic deformations sharpen this tip. The growing,
concentrated stress in front of the notch pulls the tip forward,
and sharpening occurs because the stress concentration is
larger at the tip than behind it.

The starting point for this analysis is an elliptical approxi-
mation for the time dependent shape of the notch tip. Consider
an incompressible plate of elasto-plastic material lying in
the x, y plane and containing an elliptical hole. The ellipse
is elongated in the x direction; and a mode I stress σ∞ is
imposed in the y direction very far from the hole. Assume
hypo-elasto-plasticity (additive decomposition of elastic and
plastic rates of deformation).

The static, linearly elastic version of this problem has
been solved by Muskhelishvili [20]. The first step is to
transform from Cartesian coordinates (x, y) to elliptical
coordinates (ζ , θ ):

x = W

(
ζ + m

ζ

)
cos θ, y = W

(
ζ − m

ζ

)
sin θ. (2.1)

Curves of constant ζ are ellipses, and curves of constant θ

are orthogonal hyperbolas. If we take the boundary of the
elliptical hole to be at ζ = 1, then the semimajor and semimi-
nor axes of the ellipse have lengths W (1 + m) and W (1 − m),
respectively. Let 0 < m < 1 so that the long axis of the ellipse
lies in the x direction, perpendicular to the applied stress, in
analogy to a mode I crack.

To produce a long, thin ellipse, let W be larger than any
other length in the system, and fix m � 1 so that the curvature
at the tip, i.e., at x = W (1 + m), is large but finite. Denote
this curvature by Ktip. Then a calculation to leading order in
1/

√
W yields

m ≈ 1 − 2 ε, ε ≡
√

1

2KtipW
� 1, (2.2)

where ε will be the principal small parameter in this analysis.
My scheme is to use the elasto-plastic equations of motion

to determine the behavior of this elliptical notch under mode
I straining. There are serious difficulties with this scheme. We
know that this shape does not remain elliptical; its motion
must involve shape changes that cannot be described simply
by time-dependent values of the parameters W and Ktip. This
is true even in the purely elastic case for a time-varying
applied stress.

To minimize the difficulties of the elliptical approximation,
we can focus on only the immediate neighborhood of the
sharp tip, θ < ε � 1, and look only at the early onset of
deformation there. For simplicity, I have relegated the general
elliptical formulas to the Appendix, and use only near-tip and
early-onset approximations derived from those formulas here
in the main text.

Equation (A8) tells us that the deviatoric stress near the
tip is

sθ,θ = −sζ ,ζ ≡ s(x̃, θ ) ≈ σ∞ ε2

(ε + x̃)3

(
1 − 2 θ2

ε2

)
, (2.3)

where x̃ = ζ − 1 � 1 is the dimensionless distance from the
tip along the x axis. The bare tip stress is

s(0, 0) = σ∞
ε

= σ∞
√

2 κ W/dtip, (2.4)
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where κ ≡ Ktip dtip is a dimensionless tip curvature, dtip is
the initial tip radius, and μ is the shear modulus. The factor
(W/dtip)1/2 is a measure of the initial stress concentration at
the tip.

For simplicity, assume that the material is incompressible.
Also assume hypo-elasto-plasticity (additive decomposition
of elastic and plastic rates of deformation). These assumptions
imply that the diagonal elements of the rate-of-deformation
tensor have the form

Dθθ (ζ , θ ) = −Dζ ζ (ζ , θ ),

≡ D(ζ , θ ) ∼= 1

2μ

ds(x̃, θ )

dt
+ Dpl (x̃, θ ), (2.5)

where s(x̃, θ ) is the deviatoric stress defined above. Dpl (x̃, θ )
is the (θ, θ ) element of the plastic rate-of-deformation tensor.
It will play a central role in what follows.

Next use Eqs. (A1) and (A2) in the Appendix to express
the rate of deformation tensor D in terms of the mate-
rial velocities vζ and vθ near the crack tip, and thus use
Eq. (2.5) to write equations of motion for those velocities.
Using the same approximations for small x̃ and small θ used
above, I find

Dζ ζ
∼= 1

2εW

[
∂vζ

∂ x̃
+ ∂vθ (0)

∂θ

θ2

ε2

] (
1 − θ2

2 ε2

)
≡ − D(x̃, θ ) (2.6)

and

Dθθ
∼= 1

2εW

[
∂vθ

∂θ
+ vζ

ε

(
1 − θ2

ε2

) ](
1 − θ2

2 ε2

)
≡ + D(x̃, θ ), (2.7)

where

D(x̃, θ ) ∼= D0(x̃)

(
1 − 2 θ2

ε2

)
(2.8)

and

D0(x̃) = 1

2μ
ṡ(x̃, 0) + Dpl

0 (x̃). (2.9)

In Eqs. (2.8) and (2.9), I have assumed that, to lowest order in
θ2/ε2, Dpl

0 carries the same θ dependence as the stress.
The tip velocity is

vtip = vζ (0) = −
∫ ∞

0
dx̃

dvζ

dx̃
= 2εW

∫ ∞

0
dx̃ D0(x̃). (2.10)

We also need to compute the tip curvature. Start with the
geometric formula [21]

− K̇tip

K2
tip

= vtip + 1

2Ktip W

∂2vζ

∂ θ2

∣∣∣
θ=0

. (2.11)

To evaluate this expression, define

vζ (x̃, θ ) ≡ v0(x̃) + v2(x̃)
θ2

ε2
, (2.12)

so that Eq. (2.11) becomes

− κ̇

κ
= κ

dtip
[v0(0) + 2 v2(0)]. (2.13)

Now use Eq. (2.7) at θ = 0 to write(
∂vθ

∂θ

)
θ=0

= −v0(x̃)

ε
+ 2 ε W D0(x̃) (2.14)

and insert this into Eq. (2.6). Collecting terms proportional to
θ2/ε2, I find

dv2

dx̃
= ε W D0(x̃) + v0(x̃)

ε
. (2.15)

Then, using

dv0

dx̃
= −2ε W D0(x̃) (2.16)

and combining terms, I find

κ̇

κ
= 2

ε2

∫ ∞

0
x̃ dx̃ D0(x̃). (2.17)

III. TDT PLASTICITY AND THE BOUNDARY LAYER
APPROXIMATION AT LARGE DISLOCATION DENSITIES

One of the most important features of the thermodynamic
dislocation theory is its first-principles prediction of yield
stresses. As shown, e.g., in [7] (and as will be shown again
here), the TDT deformation mode changes very sharply but
continuously from reversible elasticity to irreversible plastic-
ity at a yield stress sy that depends on temperature, dislocation
density, and strain rate. Understanding this transition is es-
pecially important for fracture analysis. It tells us that, when
the externally applied stress becomes large enough, the de-
formation changes abruptly from elastic to plastic at some
position in front of the notch tip, thereby producing a plastic
zone whose behavior controls the onset of fracture. Knowing
the dynamics of this elastic-plastic boundary allows us to
formulate a boundary-layer approximation similar to the one
that was used in the metallic-glass theory [13].

The TDT expression for the plastic rate of deformation
along the x̃ axis, Dpl

0 (x̃), first appearing above in Eq. (2.9),
is

Dpl
0 (x̃) = 1

τpl

√
ρ̃ exp

[
−TP

T
e−s̃(x̃)/

√
ρ̃

]
. (3.1)

Here, the plastic timescale is τpl = a τ0/b, where a is a min-
imum spacing between dislocations, b is the length of the
Burgers vector, and τ0 is a microscopic timescale of the order
of 10−10 s. ρ̃ is the density of dislocations in units of a−2, s̃ =
s/μT , where μT is a reduced shear modulus, and μT

√
ρ̃ is

the Taylor stress (see [7,8]). This double-exponential formula
assumes that plastic deformation is entirely determined by the
rate at which entangled dislocations are unpinned from each
other by thermal fluctuations. The pinning energy is kBTP.
Note that Dpl

0 is an extremely rapidly varying function of s̃,
ρ̃, and the ambient temperature T because the pinning energy
is very large, TP ∼ 104 K.

Equation (2.9) gives the total rate of deformation Dθθ along
the x̃ axis as the sum of elastic and plastic terms. Yield-
ing occurs when the elastic term ṡ/2 μ becomes negligibly
small because it is dominated by the much more strongly
stress-dependent plastic term. That is, the yield point occurs
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when

1

τpl

√
ρ̃ exp

(
−TP

T
e−s̃y/

√
ρ̃

)
= Dy, (3.2)

where Dy is the total rate of deformation at the yield point and
s̃y is the dimensionless yield stress in units of μT . Thus

s̃y√
ρ̃

= ln

(
TP

T

)
− ln

(
ln

√
ρ̃

τplDy

)
. (3.3)

To estimate Dy, note that this total deformation rate must be
continuous across the elastic-plastic boundary, and look at the
outer edge of this boundary where the elastic stress is given by
Eq. (2.3). Also note that we need only an order-of-magnitude
estimate for Dy because it appears here only as the argument
of a double logarithm. Write Eq. (2.3) in the form

s(x̃y, 0) = sy = σ∞ ε2

(ε + x̃y)3
≡ σ∞

ε ν3
, (3.4)

where x̃y = ε(ν − 1) is the position of the boundary, and

ν3 ≡ σ∞
syε

. (3.5)

To find Dy, take the time derivative of Eq. (3.4):

Dy = 1

2μ
ṡ(x̃y, 0) ∼= σ̇∞

2με ν3
= c0

σ̇∞
σ∞

s̃y, (3.6)

where c0 ≡ μT /2 μ. Here, I have assumed that σ∞ carries the
dominant time dependence and that ν and ε, which describe
the position and curvature of the tip and yield surface, vary
more slowly. Also note that the ratio σ̇∞/σ∞ is an inverse
timescale that, for these purposes, we can identify as the ex-
ternal driving rate τ−1

ex . (I will be more careful later in defining
τex.) Combine this result with Eq. (3.3) to obtain

s̃y√
ρ̃

= ln

(
TP

T

)
− ln

(
ln

ξ
√

ρ̃

c0 s̃y

)
, (3.7)

where, as in [13], I have defined ξ ≡ τex/τpl . Equation (3.7)
is a nonlinear equation that can be solved for s̃y/

√
ρ̃; but it is

sufficient to make a first-order approximation for large TP/T :

s̃y√
ρ̃

∼= ln

(
TP

T

)
− ln

{
ln

[
10 ξ

c0 ln(TP/T )

]}
. (3.8)

Here, the arbitrary factor 10 in the argument of the double
logarithm simply keeps it greater than unity for computational
purposes.

In order for s̃y to be well defined, we must constrain this
formula to be valid only for large enough ρ̃. Otherwise, small
values of ρ̃ would produce small values of s̃y and large values
of ν according to Eq. (3.5); and this would mean that the width
of the plastic zone, x̃y = ε (ν − 1), would be unphysically
large. Moreover, we know that this width cannot be negative; ν
cannot be less than unity. Thus, I rewrite Eq. (3.5) as follows:

ν1(y) ≡
{

y1/3, if y > 1
1, otherwise

(3.9)

and then

ν̄(y) =
{
ν1(y), if ρ̃ > ρ̃min

1, otherwise , (3.10)

where y = σ∞/syε. The quantity ρ̃min is a minimum disloca-
tion density required for the validity of this statistical theory
in the neighborhood of a finite-sized notch tip.

The next step toward a boundary-layer theory is an ap-
proximation for the integrations over the plastic zones in
Eqs. (2.10) and (2.17). I approximate s̃(x) by writing

s̃(x̃) ∼= s̃y + (s̃0 − s̃y)

(
1 − x̃

x̃y

)
for 0 < x̃ < x̃y, (3.11)

where s̃0 is the time-dependent tip stress. The outer boundary,
at x̃ = x̃y, is determined by the yield stress s̃y as computed
above. In principle, we could substitute this approximation
into the formula for Dpl

0 (x̃) given in Eq. (3.1) and evaluate
the integrals. A much simpler procedure is to write

Dpl
0 (x̃) ∼= 1

τpl
q(s̃0, ρ̃, T )

(
1 − x̃

x̃y

)
, 0 < x̃ < x̃y, (3.12)

where

q(s̃0, ρ̃, T ) =
√

ρ̃ exp

(
−TP

T
e−s̃0/

√
ρ̃

)
. (3.13)

Outside the plastic zone, i.e. for x̃ > x̃y, the stress is deter-
mined by Eq. (2.3) at θ = 0. Inserting the latter expression and
the approximations in Eqs. (3.11) and (3.12) into Eqs. (2.10)
and (2.17), and integrating separately over the elastic and
plastic zones, I find

vtip

dtip
= (ν̄ − 1)

2κ

[
c0 ˙̃s0 + q(s̃0, ρ̃, T )

τpl

]
+

(
1

2 κ ν̄2

)(
σ̇∞

2 με

)

(3.14)

and

κ̇

κ
= (ν̄ − 1)2

3

[
c0 ˙̃s0 + q(s̃0, ρ̃, T )

τpl

]
+

(
2ν̄ − 1

ν̄2

)(
σ̇∞

2 με

)
.

(3.15)

It remains to find an equation of motion for the tip stress
s̃0. I do this by making a circular approximation as in [13].
Consider a pair of concentric circles around the notch tip, with
radial variable r and a radial rate of deformation v(r). The
inner circle has a radius R equal to the tip radius dtip/κ , and
the outer circle is at the boundary of the plastic zone, thus at
R1 = ν̄R. The analogs of the equations of motion, Eqs. (2.6)
and (2.7), are

∂v

∂r
+ v

r
= 0 (3.16)

and

−∂v

∂r
+ v

r
= −r

d

dr

(
v

r

)
= 2

[
c0 ˙̃s(r) + Dpl

0 (r)
]
. (3.17)

The first of these equations is the statement of incom-
pressibility, which implies that v(r) = R Ṙ/r. If we make
the boundary-layer approximations analogous to Eqs. (3.11)
and (3.12), i.e.,

s̃(r) ∼= s̃y + (s̃0 − s̃y)
R1 − r

R1 − R
, R < r < R1 (3.18)
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and

Dpl
0 (r) ∼= 1

τpl
q(s̃0, ρ̃, T )

(
R1 − r

R1 − R

)
, R < r < R1, (3.19)

then we can integrate Eq. (3.17) and use Eq. (3.19) to find

Ṙ

R
− Ṙ1

R1
=

[
c0 ˙̃s0 + q(s̃0, ρ̃, T )

τpl

]
λ(ν̄), (3.20)

where, using R1/R = ν̄,

λ(ν̄) = 2
∫ R1

R

dr

r

(
R1 − r

R1 − R

)
= 2 ν̄

ν̄ − 1
ln ν̄ − 2. (3.21)

Finally, use Eq. (3.14) to evaluate Ṙ = vtip, integrate
Eq. (2.16) to evaluate Ṙ1, insert these expressions into the
left-hand side of Eq. (3.20), and solve for ˙̃s0. The resulting
equation of motion for the tip stress is

c0 ˙̃s0 = −q(s̃0, ρ̃, T )

τpl
+

(
σ̇∞

2 με

)
(ν̄)

ν̄3
, (3.22)

where

(ν̄) = ν̄ − 1

2 λ(ν̄) − ν̄ + 1
= (ν̄ − 1)2

4 ν̄ ln ν̄ − (3 + ν̄)(ν̄ − 1)
.

(3.23)

Despite appearances, (ν̄) is continuous at the onset of
plasticity, i.e., (1) = 1. Importantly, it diverges at ν̄ ∼= 5.1,
describing the sudden expansion of the plastic zone and rapid
unshielding of the notch tip that occurs when the far-field
stress becomes critically large.

The next step in this analysis is to rewrite the preced-
ing equations of motion in a dimensionless notation and to
supplement them by equations of motion for the internal vari-
ables ρ̃ and T . First, define a dimensionless stress intensity:

ψ ≡ σ∞
μT

√
2W

dtip
= σ∞

μT ε
√

κ
(3.24)

and define

ψ̇ = σ̇∞
μT

√
2W

dtip
≡ 1

τex
, ξ ≡ τex

τpl
. (3.25)

Assuming that the external driving rate σ̇∞ remains constant,
we can use ψ as the independent time-like variable, and
rewrite Eqs. (3.15) and (3.22):

1

κ3/2

dκ

dψ
= c0

[
(ν̄ − 1)2

3

(ν̄)

ν̄3
+

(
2ν̄ − 1

ν̄2

)]
(3.26)

and
ds̃0

dψ
= − ξ

c0
q(s̃0, ρ̃, T ) + √

κ
(ν̄)

ν̄3
. (3.27)

Here, ν̄ remains as given by Eqs. (3.9) and (3.10) with y =
ψ

√
κ/s̃y. The yield stress s̃y is given by Eq. (3.8) and the

function (ν̄) is given by Eq. (3.23). The expression for vtip

in Eq. (3.14) was used in the derivation of Eq. (3.22) and is no
longer needed at this stage of the analysis.

We also need equations of motion for the dislocation den-
sity ρ̃ and the temperature T . In principle, these quantities

should be spatially varying fields; but it will be consistent with
the other approximations made here to treat them as single
values at the notch tip. Thus I write

d ρ̃

dψ
= A ξ q(s̃0, ρ̃, T ) s̃0(ψ )

[
1 − ρ̃(ψ )

ρ̃∞

]
. (3.28)

This is a simplified version of the usual TDT equation
that says that the rate at which dislocations are formed
is proportional to the rate at which plastic work is done
in units of the dislocation energy. The right-hand side
contains a detailed-balance factor, [1 − ρ̃(ψ )/ρ̃∞], which
accounts for dislocation annihilation by requiring that ρ̃ ap-
proach its effective thermodynamic steady-state value ρ̃∞.
The dimensionless coefficient A should be approximately
temperature-independent if the dislocation energy is a con-
stant. As we shall see, however, A may depend on the driving
rate (via the dimensionless ratio ξ ) because of geometric ef-
fects ignored in this analysis.

Similarly, I assume an equation of motion for the tip tem-
perature T in the form

dT

dψ
= C(T ) ξ q(s̃0, ρ̃, T ) s̃0(ψ ), (3.29)

where C(T ) is proportional to the Taylor-Quinney conversion
factor, i.e., the fraction of the work done on the system that
is converted to heat. In principle, there should be a cooling
term in Eq. (3.29) describing how T relaxes to the ambient
temperature T0. Here I will assume that that term is negligible.
However, as in earlier analyses of thermal softening and adi-
abatic shear banding [22–24], the coefficient C(T ) is strongly
T -dependent.

IV. COMPARISON WITH EXPERIMENT AT LARGE
DISLOCATION DENSITIES

Turn now to the use of the preceding equations in inter-
preting Gumbsch’s data for fracture toughness of predeformed
tungsten. Both the experimental data and the theory are shown
in Fig. 1. The open triangles are the experimental points taken
from Fig. 2 of [18]; the solid curve is the theory. As stated
in the Introduction, the principal difference between these
predeformed systems and non-predeformed single crystals is
that here we can assume that the initial density of dislocations
is high enough to be in the TDT entanglement regime.

A. System parameters

Throughout this paper, I have used ρ̃∞ = e−4 [5], and
have chosen ρ̃min = 0.1 ρ̃∞. The initial dislocation density for
these predeformed samples is taken to be ρ̃0 = 0.2 ρ̃∞. Le and
collaborators [25] have found recently from bulk plasticity
data that TP

∼= 36 000 K for tungsten. In Eq. (3.28), I have set
A = 10. In Eq. (3.29), I have used

C(T ) = C0 exp(−TA/T ) (4.1)

with TA = 3500 K and C0 = 0.7×108. I have arbitrarily set
ξ = 1 for this first set of calculations, which means that I
have absorbed an arbitrary dimensionless factor into the ratio
of timescales τex/τpl . Throughout this analysis, I have used
c0 ≡ μT /2 μ = 0.01.
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FIG. 1. Experimental data for fracture toughness as a function
of temperature (open triangles) and theoretical prediction (solid
curve) for predeformed tungsten. The fracture toughness Kc is in
units MPa m1/2. The loading rate, i.e., the stress-intensity rate, is
0.1 MPa m1/2 s−1.

B. Numerical results

Figure 2 is a graph of the tip stress s̃0(ψ ), computed
using the parameters listed above, with initial temperature
T0 = 460 K, and for values of ψ out to about 3.34. This curve
illustrates several important features of the theory, especially
the brittle-ductile transition. Note that the stress rises linearly
from ψ = 0. This is the initial elastic response predicted by
Eq. (3.27) for ν̄ = 1 (no boundary layer). The curve starts
to bend over at ψ ∼= .2 in a relatively smooth plastic yield-
ing transition. That transition can be seen in more detail in
Fig. 3, where I have plotted the rate of plastic deformation
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FIG. 2. Theoretical tip stress s̃0(ψ ) for predeformed Tungsten at
initial temperature T0 = 460 K. An enlarged graph of the singularity
at ψ ∼= 3.34 is shown in Fig. 4.
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FIG. 3. Rate of plastic deformation q[s̃0(ψ ), ρ̃(ψ ), T (ψ )] as a
function of ψ for T0 = 460 K. Note that the abrupt increase in q at the
yield stress of about s̃y

∼= 0.2 corresponds to the onset of tip shielding
seen in Fig. 2.

q[s̃0(ψ ), ρ̃(ψ ), T (ψ )] as a function of ψ in the range 0 <

ψ < 1. This transition is not infinitely sharp; but it is sharp
enough to justify the approximations made in deriving the
expressions for the yield stress in Eqs. (3.7) and (3.8) and
in deriving the equation of motion for s̃0 in Eqs. (3.22) and
(3.27).

The second dominant feature of the stress curve in Fig. 2 is
the strong singularity at ψ ∼= 3.34. This is where the plastic
boundary layer near the notch tip breaks down and the tip
stress rises abruptly, indicating the onset of large-scale ductile
failure. This behavior is driven by the divergence of the func-
tion (ν̄) at ν̄ ∼= 5.1. An expanded picture of this divergence
of s̃0(ψ ) is shown in Fig. 4, making it clear that this rapid
upturn is mathematically smooth. This divergence of the stress
is accompanied by a divergence of the temperature T (ψ ) as
shown in Fig. 5.
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FIG. 4. Expanded graph of s̃0(ψ ) at the divergence near
ψ ∼= 3.34, originally seen as a sharp discontinuity in Fig. 2.
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FIG. 5. Theoretical tip temperature T (ψ ) for T0 = 460 K. Note
the strong divergence at the onset of the ductile instability
at ψ ∼= 3.34.

The last assumption needed in order to compute the theo-
retical values of the fracture toughness shown in Fig. 1 is that
brittle fracture is initiated when the dimensionless deviatoric
tip stress s̃0 reaches a critical value, say, s̃c. Figure 6 shows
six different tip-stress functions s̃0(ψ ) for initial temperatures
T0 = 100 K, 200 K, 350 K, 460 K, 500 K, and 600 K, and a
horizontal dashed line at s̃ = s̃c = 0.31, which is my estimate
for the breaking stress in this case. The values of the fracture
toughness Kc in Fig. 1 are proportional to the values of the
stress intensity ψc at which the stress curves cross s̃c, i.e.,
s̃0(ψc) = s̃c. From this analysis, I estimate that Kc

∼= 20 ψc.
This proportionality factor should depend only on the in-
strumentation and not the sample preparation; thus I use it
throughout this paper.
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FIG. 6. Tip stresses s̃0(ψ ) for temperatures T0 = 100 K, 200 K,

350 K, 460 K, 500 K, and 600 K, from top to bottom, plus a dashed
line at the breaking stress s̃0 = s̃c = 0.31.

The theoretical fracture-toughness curve shown in Fig. 1
was constructed by computing s̃0(ψ ) at 14 different initial
temperatures T0. For clarity, only six of those curves are
shown in Fig. 6. At the lowest temperatures, plastic shielding
is negligible, and the fracture toughness levels off at ψc ≈ s̃c,
i.e., at Kc

∼= 6. At the highest initial temperatures, the shield-
ing effect is strong and the tip stress does not reach s̃c before
the boundary layer undergoes its thermal instability indicated
by the (nearly) vertical lines in the figure. Those intersections
automatically give us values of ψc on the ductile part of the
curve. The one exception is the s̃0(ψ ) curve at T0 = 460 K
whose peak is tangent to the horizontal line at s̃c = 0.31.
Here I assume that the toughness jumps discontinuously from
the tangent point to the thermal instability point, and that
this is what is interpreted experimentally as the brittle-ductile
transition. Surely this is only an approximation.

On the whole, given the uncertainties in both the theory and
the experiments, this nontrivial agreement with experiment
over a temperature range of 500 K leads me to believe that
this part of the theoretical picture is basically correct. But the
picture is less clear for the non-predeformed crystals.

V. FRACTURE TOUGHNESS OF NON-PREDEFORMED
CRYSTALS: THEORY

Gumbsch’s measurements of the fracture toughness of non-
predeformed crystalline tungsten at several different driving
rates bring us into a qualitatively new, fundamentally un-
certain, and highly interesting dynamical situation. Initially,
these notch tips are not surrounded by substantial densities
of entangled dislocations. On the contrary, with increasing
opening stresses, they are first driven to emit dislocations
one at a time. As those dislocations move away from the tip,
they produce plastic deformation of the material and the tip
shape. This situation immediately poses a challenge for any
first-principles analysis.

To see what is happening, start by assuming that a single
dislocation in the neighborhood of the notch tip is subject to a
drag force, so that its velocity (say, in the θ direction) is

v
drag
θ = b sθ,θ

η(T ) τdrag
, (5.1)

where η(T ) is a T -dependent drag coefficient with the dimen-
sions of stress, τdrag is the associated time constant, and sθ,θ

is the θ, θ component of the deviatoric stress introduced in
Eq. (2.3). I am greatly oversimplifying this situation. Strictly
speaking, sθ,θ should be the projection of the deviatoric stress
onto a glide plane, and I should be averaging over orientations
of glide planes relative to the orientation of the notch tip.
But the approximation in Eq. (5.1) is already good enough
to reveal an important shortcoming of the theory as it stands.

Suppose that we were dealing with a set of noninter-
acting dislocations moving in a uniform environment. Then
Orowan’s formula – essentially dimensional analysis – would
tell us that the corresponding rate of plastic deformation
[see Eq. (2.5)] is

Ddrag
θ,θ = −Ddrag

ζ ,ζ ≡ Ddrag ∝ ρD bv
drag
θ ∝ ρD b2 sθ,θ

η(T ) τdrag
, (5.2)
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where ρD is the areal density of these “dragged” dislocations;
and the “∝” symbols imply as yet unknown, dimensionless
proportionality factors.

Now use Eq. (2.17) to compute the part of the equation
of motion for the curvature κ arising from this deformation
rate, and transform to the dimensionless variables introduced
in Eqs. (3.24) and (3.25). I find that

1

κ3/2

(
dκ

dψ

)
drag

∝ ξ ρ̃D ψ

η̃(T )
, (5.3)

where ρ̃D = a2ρD. The dimensionless drag coefficient is

1

η̃(T )
= μT

η(T )

(
b

a

)2
τpl

τdrag
. (5.4)

Also, in this limit with no plastic shielding, we know that the
tip stress is s̃0 = ψ

√
κ , so that(

ds̃0

dψ

)
drag

∝ ξ ρ̃D ψ2 κ

η̃(T )
. (5.5)

Equations (5.3) and (5.5) have exactly the wrong depen-
dence on the driving rate. Remember that ξ ≡ τex/τpl , so
that the external driving rate is proportional to 1/ξ . These
equations seem to tell us that the approach to fracture becomes
slower with increasing driving rate; but experiment and com-
mon sense tell us the opposite.

The problem here is that Orowan’s simple dimensional
analysis is unlikely to be correct in a situation where there are
multiple competing length scales and timescales. The separa-
tion between the dislocations may be substantially larger than
the radius of curvature of the notch tip. Moreover, these dis-
locations may be escaping from the tip region in times shorter
than the timescale for tip growth. This is far too complex a
situation to be modeled by the mathematical approximations
used here. In order to make progress, I must make some
simplifying, ad hoc assumptions.

First, I propose including in the Orowan relation for the
drag term an extra dimensionless factor 1/ξ 2, i.e., rewriting
Eq. (5.2) in the form

Ddrag = ρD b2 sθ,θ

ξ 2 η̃(T ) τdrag
, (5.6)

where I have absorbed another dimensionless factor into η̃(T ).
Then Eqs. (5.3) and (5.5) become

1

κ3/2

(
dκ

dψ

)
drag

= ρ̃D ψ

ξ η̃(T )
(5.7)

and (
ds̃0

dψ

)
drag

= ρ̃D ψ2 κ

ξ η̃(T )
. (5.8)

In effect, I am assuming that the generalized Orowan formula
for dilute dislocations near a sharp notch tip contains, not the
number of dislocations in a square of side b, but the number
in a square whose side length is proportional to the driving
rate. In other words, as the system is driven faster, more of the
dislocations near the tip contribute to the plastic deformation.

Part of my rationale here is that, with this ξ 2 correction,
the entire temperature and driving-rate dependence of this part

of the fracture-toughness calculation resides in the product
ξ η̃(T ). Thus, if η̃(T ) is a thermal activation factor of the
form exp(−TD/T ), then we automatically obtain Gumbsch’s
scaling law relating temperature, driving rate, and fracture
toughness throughout the low-temperature, brittle regime of
these measurements.

My second proposed modification is to assume that there
are effectively two distinct populations of dislocations de-
scribed by dimensionless densities ρ̃ and ρ̃D (as before, in
units a−2). The “late-stage” density ρ̃ is the same as ρ̃ in the
preceding parts of this paper. It describes the dislocations that
become entangled with each other and shield the notch tip
during the later stages of the brittle-ductile transitions. The
“early-stage” density ρ̃D is the same as ρD/a2 in Eq. (5.2).
I assume that these two families of dislocations can be dealt
with separately from each other.

In particular, I assume that the late-stage disentanglement
dynamics is not modified by the early-stage drag stresses in
the way that I found was important in my analysis of the
Livermore molecular dynamics simulations [26,27]. There, in
a spatially uniform situation, I found an early-stage regime
in which the drag forces significantly modified the times
between pinning and depinning events, and thus measurably
affected the plastic deformation rate. I shall ignore that effect
here, and simply add the ρ̃D terms given by Eqs. (5.7) and
(5.8) to the right-hand sides of Eqs. (3.26) and (3.27).

The augmented versions of the latter equations now
become

1

κ3/2

dκ

dψ
= c0

[
(ν̄ − 1)2

3

(ν̄)

ν̄3
+

(
2ν̄ − 1

ν̄2

)]
+ ρ̃D ψ

ξ η̃(T )
(5.9)

and

ds̃0

dψ
= − ξ

c0
q(s̃0, ρ̃, T ) + √

κ
(ν̄)

ν̄3
+ ρ̃D ψ2 κ

ξ η̃(T )
. (5.10)

The equation of motion for the dislocation density ρ̃,
Eq. (3.28), remains unchanged except that the energy-
conversion prefactor A is explicitly written here as a function
of ξ to include corrections similar to those introduced in the
equation of motion for ρ̃D:

dρ̃

dψ
= A(ξ ) ξ q(s̃0, ρ̃, T ) s̃0(ψ )

[
1 − ρ̃(ψ )

ρ̃∞

]
. (5.11)

My proposed equation of motion for ρ̃D is

dρ̃D

dψ
= AD

ψ2 ρ̃D(ψ ) κ (ψ )

ξ η̃(T )

[
1 − ρ̃D(ψ )

ρ̃c

]
. (5.12)

This analog of Eq. (5.11) says that the rate at which dislo-
cations are created is proportional to the energy flow to the
tip estimated using Eq. (5.6). But here, instead of the last
factor in Eq. (5.11) which assures approach to steady-state
TDT equilibrium, I have multiplied this formation rate by
[1 − ρ̃D(ψ )/ρ̃c], with a small value of ρ̃c, to account for the
fact that most of these early-stage dislocations escape from
the tip region.

The equation of motion for the temperature T , Eq. (3.29),
remains as is, with the understanding that the prefactor C(T )
will have to be adjusted to fit different temperature regimes,
just as in the theories of thermal softening and adiabatic shear
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FIG. 7. Experimental data for fracture toughness as a function of
temperature (open triangles), and theoretical prediction (solid curve),
for non-predeformed crystalline tungsten. The fracture toughness Kc

is in units MPa m1/2. The loading rate, 0.1 MPa m1/2 s−1, i.e., ξ = 1,
is the same as in Fig. 1 for the predeformed case.

banding cited previously [23,24]. In principle, there should
be no ξ -dependent correction here because there is no analog
of the Orowan factor for normal thermal fluctuations; the
thermal length scales and timescales are always microscopic.
But different values of ξ imply different dynamic and thermal
ranges, and thus somewhat different values of C(T ).

VI. FRACTURE TOUGHNESS OF NON-PREDEFORMED
CRYSTALS: COMPARISON BETWEEN THEORY

AND EXPERIMENT

Turn now to Gumbsch’s data for non-predeformed (i.e.,
non-prehardened) tungsten crystals, specifically as shown
in Fig. 4 of Ref [18]. for loading rates 0.1, 0.4, and
1.0 MPa m1/2 s−1 (ξ = 1.0, 0.25, and 0.10). Figure 7 shows
my theoretical fit to Gumbsch’s data, and Fig. 8 is a
theoretical comparison of the two cases – predeformed and
non-predeformed – both for ξ = 1, comparable to the exper-
imental comparison shown in Gumbsch’s Fig. 2.

A. System parameters

Parameters that remain unchanged (for all ξ ) from the
prehardened analysis are TP = 36 000 K, ρ̃∞ = e−4, ρ̃min =
0.1 ρ̃∞, and c0 ≡ μT /2 μ = 0.01, and the ratio of the mea-
sured fracture toughness to the dimensionless critical stress
intensity, Kc/ψc = 20.

In the thermal conversion factor in Eq. (4.1), I have chosen
to keep TA = 3500 K in all cases but allow moderate changes
in the prefactor C0. For the non-prehardened case shown in
Fig. 7, C0 = 2×108 (somewhat larger than C0 = 0.7×108 for
the prehardened case).

For all cases (including all ξ ), my choice of the drag coef-
ficient is

η̃(T ) = 1.2 e−TD/T , (6.1)
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FIG. 8. Comparison between theoretical fracture-toughness
curves for the predeformed case (dashed curve) and the non-
predeformed case (solid curve), both at the same loading rate ξ = 1.

with TD = 2200 K (Gumbsch’s scaling temperature). For sim-
plicity, I have chosen not to add a temperature-independent
phenomenological constant to this formula; thus the theoret-
ical fracture toughness (e.g., in Fig. 7) vanishes too rapidly
as T0 → 0.

An important parameter for the non-prehardened cases is
the limiting value of the density of the early-stage disloca-
tions. In Eq. (5.12), ρ̃c = 0.01 ρ̃∞ seems to work well for
all ξ , implying a high escape probability. However, initial
values for both ρ̃(ψ ) and ρ̃D(ψ ) must be effectively zero for
nondeformed crystals. I have taken them to be equal to 10−7

(negligibly small).
These choices of initial conditions raise an issue about the

ξ dependence of the conversion factor A(ξ ) in the equation
of motion for ρ̃(ψ ), Eq. (5.11). For computing the toughness
curve in Fig. 7, I have had to use A(1) = 100 (in contrast
to A = 10 for the prehardened case). Here I am pushing my
ad hoc model to its limits in order to start from ρ̃(0) ≈ 0 at
ψ = 0 and generate large enough values of ρ̃(ψ ) to shield
the tip at ψ ≈ 1. This problem is not so severe at the higher
driving rates.

B. Numerical results

Now, look at Figs. 7–9 and focus on the main features
of the non-predeformed case at the smallest driving rate,
ξ = 1. The comparison seen in Fig. 8 (also in [18], Fig. 2,
for the experimental points) shows that the predeformed –
i.e., “hardened” – material is indeed tougher on average than
the non-predeformed crystal. But the non-predeformed crys-
tal is tougher for a range of initial temperatures T0 near its
brittle-ductile transition. A related point is that the fracture
stress s̃c is somewhat larger for the non-predeformed crystals
(s̃c ∼ 0.45) than for the predeformed one (s̃c ∼ 0.3). Appar-
ently, the work-hardening process introduces new defects,
or weakens existing ones, thus reducing s̃c. One of my
considerations in fitting the fracture-toughness data for the
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FIG. 9. Tip stresses s̃0(ψ ) for temperatures T0 = 150 K, 175 K,

200 K, 250 K, 380 K and 500 K, from top left to bottom right, plus
a dashed line at the breaking stress s̃0 = s̃c = 0.45.

non-predeformed crystals at higher driving rates is that s̃c

must be roughly the same for all values of ξ .
The tip-stress functions s̃0(ψ ) shown in Fig. 9 for the

non-predeformed crystals at ξ = 1 are analogous to, but
interestingly different from those for the predeformed case
in Fig. 6. Most obviously, the stress curves in Fig. 9 for
the lower temperatures show the tip-sharpening instabilities
predicted by Eqs. (5.7) and (5.8). These equations can be
solved analytically when ρ̃D → ρ̃c is a constant, predicting
the observed divergence of the stress and unbounded tip
sharpening – limited only by the breaking stress s̃c as shown
in the figure. With increasing T0, the factor η̃−1 decreases
rapidly, and the sharpening effect is supressed. The result is
the pronounced shoulder on the low-temperature side of the
fracture-toughness curve in Fig. 7. The behavior at larger
values of T0, up to and beyond the brittle-ductile transition
at T0

∼= 380 K, is qualitatively the same as that for the pre-
deformed situation because, by that stage in the process, the
higher-density, late-stage dislocations are dominant.

Figure 10 shows the fracture-toughness curves, both ex-
perimental and theoretical, for the non-predeformed tungsten
crystals loaded rapidly at ξ = 0.25 and 0.10. Parameter ad-
justments for these cases are relatively modest. For the
dislocation-creation coefficients A(ξ ) in Eq. (5.11), A(0.25) =
40 and A(0.1) = 100, which means that ξ A(ξ ) ∼= 10 for both
of these cases as well as for the predeformed one with ξ = 1.
The thermal prefactors defined in Eq. (4.1) are C0 = 0.6×108

for ξ = 0.25 and C0 = 0.3×108 for ξ = 0.1. For these two
values of ξ , the breaking stresses are s̃c = 0.45 and 0.49,
respectively.

In view of the various uncertainties, including the sparse
experimental data sets near the brittle-ductile transitions, the
agreement between theory and experiment in Fig. 10 seems to
be quite satisfactory. Remember that it is these experiments,
together with the data for ξ = 1 shown in Fig. 7, that support
Gumbsch’s scaling law as shown in Fig. 5 of Ref. [18].

0 100 200 300 400 500 600 700
0

10

20

30

40

Temperature T0 (K)

Fr
ac
tu
re
To
ug
hn
es
s

FIG. 10. Experimental data for fracture toughnesses as functions
of temperature (open squares and open circles), and theoretical pre-
dictions (solid and dashed curves) for non-predeformed crystalline
tungsten at loading rates 0.4 and 1.0 MPa m1/2 s−1, i.e., ξ = 0.25 and
0.1, respectively.

VII. DISCUSSION

The theory presented here raises many questions. Most im-
mediately: Is there a first-principles derivation of my proposed
modification of the Orowan relation in Eq. (5.6)? What is its
range of validity? Is there any way, short of full-scale, posi-
tion dependent molecular-dynamics simulations, to compute
notch-tip dynamics directly in the limit of small dislocation
densities? Similarly, how do we understand the geometry-
dependent modification of the energy-conversion coefficient
A(ξ ) that determines the density of late-stage dislocations in
Eq. (5.11)? We know that there is not really a fundamental
distinction between early-stage and late-stage dislocations.
How can we sharpen that theoretical concept?

Regarding Eq. (5.6), remember the distinction between
the present crystalline materials and the glassy materials dis-
cussed in Ref. [13]. In the glassy case, irreversible plastic
deformation is accomplished by reorientations of micro-
scopic, ephemeral shear-transformation zones. The length
scales and timescales associated with the latter mechanism are
generally very much smaller than those associated with the
dynamics of crystalline notch tips. Thus, there is no analog of
Eq. (5.6) in the glassy situation.

Even within the approximations questioned above, we can
go on to recognize apparently successful physics-based pre-
dictions of the theory and point to other directions that might
usefully be explored.

For example, Gumbsch notes that his toughness curve for
the predeformed system levels off at a fixed value at low tem-
peratures, and that the curves for the non-predeformed cases
fall below that value. That behavior appears here in Fig. 8. The
explanation can be seen in Fig. 6, where the predeformed tip-
stress curves rise linearly (elastically) at small T0 and reach the
breaking stress at s̃0

∼= s̃c independently of T0. In contrast, for
the non-predeformed system, the low-temperature tip-stress
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curves in Fig. 9 show clearly the predicted sharpening diver-
gence that drives the toughness to smaller values.

Another example (already mentioned): The theory ex-
plains the shoulders on the low-temperature sides of the
non-predeformed toughness curves as transitions between
supposed early-stage and late-stage dislocation behaviors.
Can this be made more precise?

A prediction that should be tested experimentally is that the
onset of ductile failure is accompanied by a sharp rise in the
temperature, as seen in Fig. 6.

One concluding remark: If the analysis presented here is
approximately correct, then we have made some progress
in resolving the conflicts described in [1]. The thermody-
namic dislocation theory predicts the bulk yield stress given
in Eq. (3.8). This stress generally increases as the tempera-
ture decreases. In contrast, we see in Figs. 1, 7, and 10 that
the fracture toughness generally decreases with decreasing,
sufficiently low temperatures. My proposed reason for this be-
havior is that fracture toughness is determined by the dynamic
stability of notch tips – a concept that is missing in the earlier
literature.
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APPENDIX: ELLIPTICAL FORMULAS

This Appendix lists mathematical formulas used in the
preceding analyses. The elliptical coordinates are defined in
Eq. (2.1).

First, there are expressions for the diagonal elements of the
rate-of-deformation tensor D in terms of the elliptical material
velocity components vζ and vθ . These are derived from more
general formulas in [28]:

Dζ ζ = 1

W N

[
∂vζ

∂ζ
+ vθ

ζ

1

N

∂N

∂θ

]
, (A1)

Dθθ = 1

W Nζ

[
∂vθ

∂θ
+ vζ

N

∂

∂ζ
(ζN )

]
, (A2)

where the metric function is

N2(ζ , θ ) = 1 + m2

ζ 4
− 2m

ζ 2
cos 2θ. (A3)

For small θ/ε, and ζ = 1,

N ≈ 2 ε

(
1 + θ2

2ε2

)
. (A4)

Then Eqs. (A1) and (A2) become

Dζ ζ (x̃, θ ) ≈ 1

2ε W

[
∂vζ

∂ζ
+

(
∂vθ

∂θ

)
0

θ2

ε2

](
1 − θ2

2ε2

)
(A5)

and

Dθθ ≈ 1

2εW

[
∂vθ

∂θ
+

(
vζ

ε

)
0

(
1 − θ2

ε2

) ](
1 − θ2

2 ε2

)
.

(A6)

The notation (· · · )0 means that the quantity in parentheses is
evaluated at θ = 0.

Next, there are the formulas for incompressible, two-
dimensional elasticity that I have derived from [20]. The
following formulas assume vanishing normal stress on the
surface of the elliptical hole, i.e., at ζ = 1. The stress tensor σ

is given by

σζζ + σθθ = σ∞ Re

[
1 + 2(1 + m) e−2iθ

ζ 2 − m e−2iθ

]
(A7)

and

S (ζ , θ ) ≡ σθθ − σζζ + 2iσζθ = σ∞ζ 2e2iθ

(ζ 2 − m e2iθ )

×
[
1 − e−2iθ

mζ 2
+ (1+ m) e−2iθ

(ζ 2 − m e−2iθ)2 M(ζ , θ )

]
, (A8)

where

M(ζ , θ ) = ζ 2

m

(
1 − 2 m e−2iθ + m2

)
+ e−2iθ

(
1 − 2 m e2iθ + m2

)
. (A9)

According to (A8) the deviatoric stress has components

sθθ = −sζ ζ = 1

2
ReS (ζ , θ ), sζθ = 1

2
ImS (ζ , θ ). (A10)
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