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Calibrating surface hyperelastic constitutive models in soft solids
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Soft solids such as silicone gels, with bulk shear modulus ranging from ∼10 to 1000 kPa, exhibit strongly
strain-dependent surface stresses. Moreover, unlike conventional stiffer materials, the effects of surface stress in
these materials manifest at length scales of tens of micrometers rather than nanometers. However, the calibration
of constitutive parameters for surface hyperelasticity has proved to be challenging. Using a reasonably general
surface constitutive model, we explore the possibility of obtaining its parameters from force-twist, torque-twist,
and force-extension (force-compression) responses of a soft cylinder held between two inert, rigid plates. The
motivation behind using these responses is derived from the fact that the roles of the surface constitutive param-
eters, under suitably ideal conditions, are neatly separated from each other and the three responses easily yield
values of the three parameters. Moreover, through large deformation finite-element simulations with coupled bulk
and surface hyperelasticity, we delineate the extent to which deviation from the ideal conditions may be tolerated.
Using an example with previously reported material parameters, we estimate that, for cylindrical specimens with
a radius of the order of 100 μm, the capability to measure forces and torques of the order of 1–100 μN and
103–105 μN-μm, respectively, will be required to determine the parameters accurately.

DOI: 10.1103/PhysRevE.103.063003

I. INTRODUCTION

Surface tension in liquids is isotropic, deformation inde-
pendent, and numerically equal to the liquid’s surface free
energy. In analogy with surface tension, surface stresses in
solids can also be envisaged [1]. However, solid surface stress
is, in general, anisotropic and deformation dependent and is
related to the surface energy by the Shuttleworth equation [2].
In a deforming solid, strain energy is apportioned into that of
the bulk and the bounding surface, which obey different con-
stitutive formulations. In the case of stiff, crystalline solids,
surface stresses are negligible at the macroscale and become
important only at the nanoscale (see, e.g., Refs. [3–5]).

Broadly speaking, surface elasticity assumes importance
at length scales comparable to the so-called elastocapillary
length given by γ /E , where γ and E are measures (surface
tension and bulk shear modulus, for instance) characterizing
the elasticity of the surface and the bulk, respectively. Ul-
trasoft solids such as silicone gels and hydrogels have bulk
moduli ranging from 100 Pa to 100 kPa. Reported values
of the surface tension of silicone gels are in the range of
20–100 mN/m [6–10], leading to elastocapillary lengths of
∼10–200 μm. At length scales of hundreds of micrometers,
contrary to stiff crystalline materials, surface elasticity as-
sumes importance in the case of these ultrasoft solids.

Soft solids are increasingly being used in applications
ranging from orthopedic implants [11,12], tissue engineer-
ing [13], electronic packaging [14], to soft robotics [13].
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Moreover, the effects of surface elasticity in these materials
are not subtle. Surface elasticity significantly affects the ge-
ometry close to the contact line between soft solid spheres
and a rigid surface [15] as well as between a soft solid surface
and a liquid droplet [6,16,17]. The depth sensing indentation
response of soft solid surfaces is also influenced by surface
elasticity [18]. It also competes with the elasticity of the bulk
to produce longitudinal undulations on thin soft filaments [19]
and controls the wavelength of instability patterns in thin, soft,
confined films [20].

To model and understand many of the above phenomena,
a complete constitutive characterization of both the bulk and
surface elastic responses is necessary. However, the constitu-
tive behavior of the surface in a soft solid can be difficult to
calibrate through experiments. If we assume that the surface
stress is independent of surface strains, the problem becomes
somewhat tractable and ingenious albeit indirect methods
have been used to measure surface stress in such cases. For
instance, Nadermann et al. [7] have measured surface stresses
in a soft solid film by placing a drop under the film. Mondal
et al. [9] have estimated the surface tension of an elastomer
by monitoring the deformation of the surface when a liquid
is forced into a cylindrical channel located right below the
surface. Xu et al. [10] indented thin films of a relatively
stiff solid (Young’s modulus �100 kPa) to measure surface
stresses. Assuming the surface stress to be independent of sur-
face strains results in a wide scatter in the values determined
by these studies. For example, reported values of the surface
tension of silicone range from ∼20 to 100 mN/m [6–10].

When the surface stress depends on surface strains, the
experimental characterization of the surface constitutive be-
havior becomes more challenging (e.g., Ref. [16]). In general,
the energy per unit undeformed area γ of an elastic surface
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has an isotropic part and a part dependent on surface strains
[21]. One method of characterizing surface constitutive be-
havior involves concentrating on the microscopic structure
of the wetting profile at the contact line between vapor, a
liquid droplet, and a prestretched flat soft solid. In this region,
locally, strain energetic contributions from the surface out-
weigh that from the bulk. In fact, Xu et al. [22] characterized
both the strain-independent and strain-dependent parts of the
surface stress using the geometry of the wetting ridge formed
at the contact line of a stretched silicon gel substrate with a
liquid droplet. Xu et al. [22] assumed that the surface stress
depends linearly on the surface strain, and showed surface
stress increases very significantly over its initial value with
deformation. Their results unequivocally establish that strain-
dependent surface stresses in soft materials are an essential
aspect of their constitutive behavior.

In this paper we propose a more direct method for
characterizing the surface constitutive behavior. The elastic
parameters of macroscopic, stiffer engineering materials are
routinely obtained from tests where reasonably homogeneous
states of uniaxial (or, at most, biaxial) stress are established
in the test specimen. These tests are useful because the ex-
perimentally measurable force-displacement (or torque-twist)
response of the sample can be easily connected to the uniaxial
stress strain behavior. We explore the possibility of extracting
surface elasticity parameters in soft solids through such direct
tests.

The above approach allows us to calibrate a more versa-
tile surface stress–surface strain relationship than has been
attempted so far. At the very least, surface stresses can arise
due to stretch in either principal direction or change in sur-
face area. Specifically, as an alternative to indirect tests (e.g.,
characterizing elasticity parameters by studying the geometric
properties of the wetting ridge), we propose that surface elas-
ticity in soft solids can also be characterized using “global”
force-displacement or torque-twist responses of soft solid
samples. In particular, we show that theoretically, under rea-
sonable simplifying assumptions, it is possible to partition the
axial force and torque in a sequence of tension (compression)
and twisting protocols on soft cylinders in a manner such that
the characteristic parameters of the surface elastic constitutive
equation are easily determined.

The idea is further explained in Figs. 1(a)–1(c). A soft
cylinder of radius R0 and length L is molded in a rigid
mold between two plates at Z = 0 and L. The lower plate
is fixed. Force Fz and torque Mz exerted on the upper plate
are measured. The stretch of the cylinder in the Z direction is
denoted by λ and is the ratio between the deformed length and
reference length L. As soon as the mold is removed [Fig. 1(b)],
the cylinder exerts a force on the upper plate, Fz(λ = 1).
The cylinder is subsequently extended (compressed) to λ and
twisted by τL with a torque Mz (with the twist per unit unde-
formed length being denoted by τ ) as shown in Fig. 1(c). We
show that as the cylinder is subjected to a combined tension
(compression) and torsion, the axial force Fz(λ, τ ) and torque
Mz(λ, τ ) can be partitioned neatly into parts that depend on
the bulk and surface hyperelastic properties.

However, in order to extract the surface hyperelastic pa-
rameters, the cylindrical specimen must be small, probably
in the micrometer range. Measuring forces and torques will

FIG. 1. We consider that a soft solid is held in a rigid mold in
(a) and the mold is removed in (b). The cylinder has an initial radius
R0 while it is held between two rigid plates. In (c) the axial force
and torque, Fz and Mz, respectively, are measured on the upper plate
while the cylinder is extended (compressed) and twisted, while the
lower plate is held fixed. The initial length of the cylinder is L.

also require sensitive devices. While we do not attempt an
implementation of the idea, a few practical aspects need at-
tention. These are elucidated through large deformation-based
finite-element (FE) simulations with coupled bulk and surface
hyperelasticity.

Four possible deviations from the ideal conditions assumed
in deriving the closed-form solutions are considered. First,
fidelity to the closed-form solutions for Fz and Mz will de-
pend on the aspect ratio L/R0. Second, it will also depend
on whether or not the bulk is perfectly incompressible. Third,
whether the sample sticks to the upper plate or slips on it is
expected to affect the overall Fz or Mz. Finally, when removed
from the mold, a soft solid may deviate from cylindricity
depending on its length and surface energies of the plate
and surrounding fluid. We study the effects of each of these
possibilities with a view to suggest approximate limits on the
specimen sizes that will allow us to effectively determine the
surface characterizing parameters.

II. A SOFT CYLINDER UNDER COMBINED TENSION
(COMPRESSION) AND TORSION

The kinematics and kinetics of a solid undergoing large de-
formations within the framework of coupled bulk and surface
hyperelasticity have been discussed by many authors (e.g.,
Refs. [23–27]). Details of the continuum mechanics formula-
tion and FE implementation are also given in our earlier work
[28].

Consider the undeformed and deformed configurations of
a cylinder under combined extension (compression) and tor-
sion, shown in Fig. 2. Both the undeformed and deformed
configurations are axisymmetric. We use the cylindrical po-
lar coordinate systems with base vectors ER, E�, EZ and
er, eθ , ez to describe a position in reference and current config-
urations, respectively. The surface of the cylinder in reference
and current configurations is spanned by E�, EZ and eθ , ez,
respectively.
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FIG. 2. The initial configuration of the cylinder of radius R0 and length L is deformed into a twisted and extended (compressed) final
configuration. The coordinates of a point are (R,�, Z ) in the initial configuration and it maps, under twist and extension (compression), to
(r, θ, z) in the deformed one. The Cauchy stress in an infinitesimal element in the bulk as well as the coupling between bulk and surface stresses
at r = r0 are also shown.

In the bulk, the Cauchy stress σ, in the absence of body
forces, is governed by the equilibrium equation

div σ = 0, (1)

where div(·) is obtained with respect to current coordinates.
The bulk Cauchy stress is obtained from an isotropic strain
energy density function W , that, for an incompressible bulk,
depends on the first two invariants I1 and I2 of the right
Cauchy-Green strain tensor C.

The surface of the solid is like an infinitesimally thin but
stretchable “wrapper” attached to the bulk. It is also endowed
with a separate constitutive equation. The strain energy den-
sity (energy per unit undeformed surface area) γ of the surface
depends on the invariants of the surface right Cauchy strain
tensor Cs, i.e., Is

1 and Is
2. Surface Cauchy stress σs, shown

in Fig. 2, is obtained in terms of the derivatives of γ (Is
1, Is

2 ).
On the surface at r = r0, where the outward normal is er ,
equilibrium demands that

divs σs|r0
= (σ · er )|r0

. (2)

The right-hand side represents the traction due to the bulk
stress σ and, if surface elasticity was negligible, for a traction-
free surface, it would have been zero. In our case, the surface
divergence of σs balances the traction due to the bulk stress σ

at the surface r = r0.
Consider a combined extension (compression) and torsion

of the undeformed cylinder occupying the volume 0 � R �
R0, 0 � � < 2π , 0 � Z � L. As shown in Fig. 2, a generic
point X (defined by coordinates R,�, Z) is mapped to x

(defined by r, θ, z) as

r = λ−1/2R,

θ = � + τZ,

z = λZ. (3)

The axial extension (compression) is characterized by λ, while
τ is the twist per unit undeformed length. Note that λ and τ

do not vary spatially. Also, the cylinder is assumed to remain
a cylinder throughout the deformation.

The bulk Cauchy stress tensor in matrix notation can be
written as (see Appendix B)

σ = −p

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ + 2W1

⎛
⎝λ−1 0 0

0 λ−1 + τ 2r2 λτ r
0 λτ r λ2

⎞
⎠

−2W2

⎛
⎝λ 0 0

0 λ −τ r
0 −τ r λ−2 + λ−1τ 2r2

⎞
⎠, (4)

where W1 = ∂W
∂I1

and W2 = ∂W
∂I2

. The undetermined pressure
p(r, θ, z) arises due to incompressibility. It can be shown to be
a function of r only. As shown in Appendix A, it is determined
from boundary conditions and the equilibrium equation as

p = −
∫

2W1τ
2rdr + (2W1λ

−1 − 2W2λ) + C, (5)

where C is a constant of integration.
Similarly, using the referential surface strain energy den-

sity (which is a function of the invariants of the right
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Cauchy-Green surface strain tensor Cs, i.e., Is
1, Is

2), the Cauchy
surface stress tensor can be obtained in a similar manner as
(see Appendix B)

σs = 2γ1λ
−1/2

(
λ−1 + τ 2r2 λτ r

λτ r λ2

)
+ 2γ2λ

1/2

(
1 0
0 1

)
,

(6)

where γ1 = ∂γ

∂Is
1

and γ2 = ∂γ

∂Is
2
. Recall that the surface stress is

σs = σ s
θθeθeθ + σ s

θzeθez + σ s
zθ ezeθ + σ s

zzezez.
Equilibrium at the surface r = r0 is governed by Eq. (2).

This equation has to be used to determine the constant C in
Eq. (5). The procedure for doing so involves computing the
surface divergence of the surface stress σs and is detailed in
Appendix C.

Now substituting Eq. (5) in Eq. (4), we can easily extract
the axial stress component σzz as

σzz =
∫

2W1τ
2rdr + 2W1(λ2 − λ−1)

− 2W2(λ−2 − λ + λ−1τ 2r2) − C, (7)

where the expression for C is to be taken from Eq. (C7).
The total axial force Fz and total axial moment Mz on the

cylinder can be calculated as

Fz = F b
z + F s

z ,

Mz = Mb
z + Ms

z ,

where the axial forces due to bulk and surface stresses are
evaluated as

F b
z =

∫ 2π

0

∫ r0

0
σzzrdθdr,

F s
z =

∫ 2π

0
σ s

zzr0dθ, (8)

respectively. The contributions to the axial moment from the
bulk and the surface stresses are

Mb
z =

∫ 2π

0

∫ r0

0
σθzr

2dθdr,

Ms
z =

∫ 2π

0
σ s

θzr
2
0dθ. (9)

It will be shown in Sec. II A that the total force and mo-
ment can be decoupled in the sense that one part depends
on the surface hyperelastic parameters while the other de-
pends on the bulk. We can derive compact versions of these
contributions for specific forms of W and γ and loading
protocols.

A. Axial force and moment for specific forms of W (I1, I2 )

We consider two specific forms of the bulk strain energy
density W (I1, I2), namely, the neo-Hookean with

W = μ

2
(I1 − 3), (10)

and Gent [29] with

W = −μJm

2
log

(
1 − I1 − 3

Jm

)
. (11)

In both the models, μ denotes the modulus of the hyperelastic
bulk. The Gent model [29] phenomenologically accounts for
the finite extensibility of macromolecular chains making up
the underlying network, i.e., it models unbounded stiffening
of the material as I1 → Jm + 3. It reduces to the neo-Hookean
model [Eq. (10)] as Jm → ∞.

For the surface, a minimal hyperelastic surface energy
density function is chosen. This includes an initial surface
stress that is independent of surface strains with further strain-
dependent contributions dependent on Is

1, Is
2 [21]. With such

a model, we have three parameters σo, μs, and λs to be
calibrated. The first parameter is akin to surface tension and
contributes even in the absence of surface strains. The second
includes the energetic cost of unidirectional stretching of the
surface, while the third governs its response to purely areal
stretches. Thus,

γ = σo

√
Is
2 + μs

2

(
Is
1 − 2 − log Is

2

) + λs

8

(
log Is

2

)2
. (12)

We will also use the following nondimensional quantities
(denoted by an overbar):

F z = Fz

μR2
0

, Mz = Mz

μR3
0

, W 1 = W1

μ
, W 2 = W2

μ
, R = R

R0
, τ = τR0, γ 1 = γ1

μR0
, γ 2 = γ2

μR0
. (13)

Here, R denotes the radial coordinate of a point in the undeformed configuration, which maps to r in the deformed. Consequently,
R0 maps to r0. Note that the quantities associated with surface hyperelasticity, namely, γ1, γ2, are normalized by μR0. So γ α

(for α = 1, 2) can be small, and the effect of surface hyperelasticity negligible, if the cylinder either has a large radius R0 or its
surface parameter γα is small. Surface effects are small also for materials with large modulus μ.

Extracting bulk and surface stress components from Eqs. (4) and (6), respectively, and substituting in Eqs. (8) and (9), we can
derive the nondimensional axial force and moment as

F z

π
= 2

∫ 1

0

(
2W 1(λ − λ−2) − 2W 2(λ−3 − λ−1 + λ−3τ 2R

2
) −

∫ 1

R
2W 1λ

−2τ 2RdR

)
RdR

︸ ︷︷ ︸
bulk contribution

+ 2γ 1(2λ − λ−2 − λ−2τ 2) + 2γ 2︸ ︷︷ ︸
surface contribution

,

(14)
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Mz

π
= 2τ

∫ 1

0
(2W 1 + 2W 2λ

−1)λ−1R
3
dR︸ ︷︷ ︸

bulk contribution

+ 4γ 1λ
−1τ︸ ︷︷ ︸

surface contribution

. (15)

It is obvious from Eqs. (14) and (15) that the contributions from bulk and surface energies are completely decoupled.
When the bulk is neo-Hookean [Eq. (10)] and the surface obeys Eq. (12), the axial force and moment take the forms

F z

π
= (λ − λ−2) − 1

4
λ−2τ 2 + σ oλ

−1/2 + μs(2λ − λ−1 − λ−2 − λ−2τ 2) + λs

2
λ−1 log λ, (16)

Mz

π
=

(
1

2
+ 2μs

)
λ−1τ . (17)

For a bulk that obeys the Gent model, these quantities are

F z

π
= Jm(Jm − 3λ2 + 3)

2τ 2 log

(
Jm − 2λ−1 − λ2 + 3 − λ−1τ 2

Jm − 2λ−1 − λ2 + 3

)
+ Jmλ−1

2
+ σ oλ

−1/2

+μs(2λ − λ−1 − λ−2 − λ−2τ 2) + λs

2
λ−1 log λ, (18)

Mz

π
= Jmλ(Jm − 2λ−1 − λ2 + 3)

τ 3 log

(
Jm − 2λ−1 − λ2 + 3

Jm − 2λ−1 − λ2 + 3 − λ−1τ 2

)
− Jm

τ
+ 2μsλ

−1τ . (19)

B. Simple torsion and pure extension

In special case of simple torsion, the cylinder is held at λ =
1, while τ is varied. In that case, the axial force and moments
take the simple expressions

F z

π
= −1

4
τ 2 + σ o − μsτ

2,

Mz

π
=

(
1

2
+ 2μs

)
τ , (20)

for a neo-Hookean solid, and

F z

π
= J2

m

2τ 2 log

(
Jm − τ 2

Jm

)
+ Jm

2
+ σ o − μsτ

2,

Mz

π
= J2

m

τ 3 log

(
Jm

Jm − τ 2

)
− Jm

τ
+ 2μsτ , (21)

for one that obeys the Gent model. Note that in either case,
the expression for the torque contains only μs. The axial force
in pure torsion is not zero and its surface contribution part
depends on σ o and μs. The constant λs does not enter Eqs. (20)
or (21).

In case of pure extension (compression), when τ = 0, and
λ is varied, Mz = 0. For the neo-Hookean solid,

F z

π
= (λ − λ−2) + σ oλ

−1/2 + μs(2λ − λ−1 − λ−2)

+ λs

2
λ−1 log λ, (22)

and for solids obeying the Gent model,

F z

π
= Jm(λ − λ−2)

Jm − 2λ−1 − λ2 + 3
+ σ oλ

−1/2

+μs(2λ − λ−1 − λ−2) + λs

2
λ−1 log λ. (23)

In pure extension (compression), the axial force depends on
all three constants associated with surface hyperelasticity.

The three constants σ o, μs, and λs can be determined
through the following deformation sequence:

(1) At λ = 1, right after the mold is removed [see
Fig. 1(b)], F z(1) �= 0. The upper plate experiences a force
F z = πσ o. Therefore, the parameter σ o can be determined by
measuring F z(λ = 1).

(2) Further, a twist τL applied to the upper plate requires an
axial torque Mz that depends only on μs. So, if the torque-twist
response is available, μs can be determined.

(3) Finally, using the axial force-extension (force-
compression) response, the remaining constant λs can be
determined.

Obviously, the forces and moments involved are small. For
instance, when σo � 20 mNm−1, and μs � 100 mN m−1 (us-
ing typical values reported in Ref. [22]), the force at λ = 1 is
of the order of ∼10 μN for a cylinder of radius R0 = 100 μm.
Similarly, for a twist per unit length of τ = 1 rad, the mo-
ments will be of the order of ∼104 μN-μm. Using larger
values of R0 will increase the total force and moment but,
according to Eqs. (20)–(23), the terms due to bulk deformation
will overwhelm the surface hyperelastic terms.

The above procedure works if, as assumed in the deriva-
tions, the cylinder remains a cylinder throughout the defor-
mation. Consequently, the expressions for axial force and
moment, in either case, do not depend on the length L of
the cylinder. Deviations from the ideal situation will lead to
dependence on the length, as will be demonstrated in the next
section.

Equations for Fz and Mz [Eqs. (20) and (21)] in pure torsion
and for Fz in pure extension (compression) [Eqs. (22) and
(23)] can be plotted for both neo-Hookean and Gent cases.
In Figs. 3(a)–3(c), we plot only the bulk contributions to the
forces and moments (i.e., in the case where σo = μs = λs =
0). These plots indicate the sensitivity of the responses to
the value of Jm. While a Gent hyperelastic material offers
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FIG. 3. Effect of the parameter Jm on (a) axial force-twist and
(b) torque-twist responses in case of simple torsion and (c) force-
extension response in case of uniaxial tension of a cylinder. No
surface effects are considered here.

more variety in the hyperelastic response, for Jm > 100, the
neo-Hookean and Gent materials have indistinguishable re-
sponses. For smaller values of Jm too, if the twist per unit
nondimensionalized length is limited to about 1 rad and the

axial stretch to about 1.5, the responses for both cases, for all
values of Jm, are close. Thus for τ < 1 rad and L < 1.5, the
neo-Hookean model is adequate for the bulk.

III. RESULTS: POSSIBLE DEVIATIONS FROM THE IDEAL

The analytical closed-forms of the torque-twist, force-
twist, and force-extension (force-compression) responses
discussed in the previous section assume that the cylinder
remains a cylinder all through the deformation. As mentioned
earlier, a consequence of this is that the analytical responses
are independent of the length L.

In this section, we compare the results from the closed-
form response equations with FE solutions and attempt
to identify limits within which the deformations must be
performed in order that deviations from cylindricity are in-
consequential.

Finite-element simulations are performed in the commer-
cial software ABAQUS, using a user-defined element subroutine
(UEL). The formulation for this UEL is discussed in detail in
Ref. [28]. The UEL was developed for eight-noded surface
elements, which are wrapped around the cylinder. The bulk
is discretized with C3D20 and C3D15 for compressible cases
and corresponding hybrid elements are used for incompress-
ible. In case of extension (compression), we take advantage
of the axisymmetry and use CAX8H elements for the bulk
and a specially developed three-noded element for the surface.
Details of the finite-element formulation are given in the Sup-
plemental Material [30].

We consider four possible deviations from the ideal situa-
tion. In each case, we look at aspect ratios L = 1 (which we
call the short cylinder) and 5 or 10 (long cylinder).

(1) Effect of bulk compressibility. In the closed-form
solutions derived, we have assumed the bulk to be incompress-
ible, i.e., the bulk modulus κ → ∞. A finite bulk modulus
will affect the force-twist, torque-twist, and force-extension
(force-compression) responses. Limits of κ = κ/μ, for which
the closed-forms are useful, need to be established.

(2) Effect of friction between the cylinder and the plates. As
shown in Fig. 4(a), the top and bottom surfaces of the cylinder
may not be able to slip unhindered on the confining plates. In
simple torsion, in particular, boundary conditions applied at
the top and bottom are (θ − �)|0 = 0 and (θ − �)|L = τL.
An extreme case is that of perfect stick where r|0,L = R. On
the contrary, perfect slip requires that r|0,L be completely
unconstrained. To study the effect of friction between the soft
solid and the constraining plates, we simulate the cases of
perfect slip and perfect stick.

(3) Effect of surface energy of the plates. When the mold
is removed, the cylinder is assumed to remain a cylinder.
However, when the surface energies of the wall-air and wall-
solid interfaces γwa and γws are considered and perfect slip
is allowed at Z = 0 and L, the cylindrical capillary bridge
develops a meniscus as shown in Fig. 4(b), with the contact
angle θc given by the Young’s relation σo cos θc = γwa − γws.
Young’s equation strictly holds when surface hyperelasticity
is absent. The contact angle will deviate from θc when μs and
λs are not zero [28]. Torque-twist and force-twist responses of
the noncylindrical capillary bridge should lead to responses
that deviate from the ideal.
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(a)

(b)

FIG. 4. “Perfect slip” and “perfect stick” boundary conditions
are explained in (a). The cylinder develops into a meniscus (b) when
perfect slip is allowed, and wall-air and wall-solid interface energies
γwa and γws, respectively, are considered.

(4) Nonmonotonic force-extension behavior in uniaxial ten-
sion. The force obtained in Eq. (22) for the neo-Hookean case,
for certain combinations of surface parameters, may not be
monotonically increasing with λ. As reported by Xuan and
Biggins [31], the Rayleigh-Plateau instability ensues when the
force-stretch curve is nonmonotonic. We consider cases where
σ o, μs, λs � 0. The axial force Fz is monotonically increasing

if, for all values of λ, dF z

dλ
> 0, which implies that

2λ3/2 + 4λ−3/2 − σ o + μs(4λ3/2 + 4λ−3/2 + 2λ−1/2)

+ λsλ
−1/2(1 − log λ) > 0. (24)

Clearly, any positive value of μs will satisfy the above in-
equality. Thus, for a given value of μs � 0, it is possible to
determine the region in the σ o-λs plane where the above in-
equality holds and therefore Fz increases monotonically with
λ. For three values of μs, the domains in which σ o and λs

must lie in order that the force-extension response is mono-
tonically increasing is shown in Fig. 5(a). The corresponding
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FIG. 5. (a) Bounds on surface parameters σ o and λs, for three
values of μs, obtained from inequality (24). For a given μs, values
of σ o and λs lying to the left of the curve yield a monotonic force-
stretch response. (b) Typical force-stretch responses in tension for
parameters corresponding to points 1, 2, and 3 marked in (a).

force-extension responses are depicted in Fig. 5(b). For the
three representative points marked 1, 2, and 3 in Fig. 5(a),
the responses are shown for values of μs to the left and right
of the marked points. For example, for point 2, responses
are plotted for μs = 0 [for which the parameters represented
by point 2 do not satisfy inequality (24) and the response is
not monotonically increasing] and μs = 0.5 (for which the
monotonically increasing response is expected).

If the combination of surface parameters is such that a
monotonically increasing response is expected, the cylin-
der should remain a cylinder throughout the deformation.
However, constrained radial displacements at the wall-solid
interface might change this situation. For the extreme cases
with perfect slip and perfect stick at the interface, we explore
the possibility of obtaining nonmonotonic force-extension
responses even when the parameters σ o, μs, λs satisfy the
inequality (24).

We will now explore the effects of the above deviations one
by one. In all cases, results for the short cylinder (L = 1) are
plotted with thin lines and those for the long one (L = 5 or
10) are plotted with thick lines. The bulk is assumed to obey
neo-Hookean hyperelasticity for all cases reported henceforth.

The effect of compressibility, κ = κ/μ, is shown in
Figs. 6(a) and 6(b) for the case of simple torsion. All cases
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FIG. 6. Effect of normalized bulk modulus κ = κ/μ on the
(a) force-twist and (b) torque-twist responses in pure torsion. Perfect
slip is assumed at the wall-solid interfaces. The bulk is assumed to
be neo-Hookean. The results for the short and long cylinders are
identical in this case and only one set is shown. Circles represent
the closed-form expressions (20). The surface parameters taken are
σ o = 1, μs = 6, and λs = 0.

shown are for perfect slip at the wall. For all the cases
simulated, both force-twist and torque-twist responses are in-
dependent of L. As shown in Figs. 6(a) and 6(b), respectively,
the closed-form expressions (20) expectedly match very well
with the simulated response for the incompressible material.
When the bulk is compressible, the response increasingly
deviates from Eqs. (20). Even Fz(λ = 1), from which σ o is
obtained, increases with compressibility. The torque-twist re-
lation, shown in Fig. 6(b), is also sensitive to compressibility
except for very small twist (τ < 0.25 rad). It is clear from
Figs. 6(a) and 6(b) that the protocol for determining surface
hyperelastic constants may not work if the bulk is highly
compressible. The FE analyses in Fig. 6 show that, as a rule
of thumb, limiting τ to less than 0.25 rad will allow us to use
the closed-form force-twist and torque-twist relations when
the bulk modulus κ � 100μ.

In Fig. 7, results pertaining to perfect stick at the walls
are presented. Under perfect stick, for compressible solids,
the aspect ratio L affects both the force-twist and torque-twist
responses shown in Figs. 7(a) and 7(b), respectively.

When the bulk is incompressible, for all values of L, the
responses match the theoretical ones. For moderate levels of

compressibility (κ = 50), longer cylinders remain closer to
the theoretical force-twist response. The torque-twist response
for compressible solids, on the other hand, is closer to the
theoretical for shorter cylinders [see Fig. 7(b)]. As a com-
promise, by using 1 � L � 5, we can still utilize Eqs. (20)
to extract the surface hyperelastic parameters, even when
the bulk is moderately compressible. Equations (20) will
not be applicable for highly compressible materials (e.g.,
κ = 5).

The reason for dependence on the aspect ratio L in case of
perfect stick at the walls is explained through Fig. 7(c). Here,
deformed configurations of the cylinder at τ = 1 are shown.
The deformed configurations are for a hyperelastic surface
with strong dependence on surface strains. When the bulk
is incompressible, both the short and long cylinders remain
cylinders after deformation. But when the bulk is highly com-
pressible and perfect stick conditions prevail at the wall-solid
interface, the deformed configuration deviates from cylindric-
ity. The responses, therefore, deviate from the theoretical and
also exhibit dependence on L.

In case of uniaxial tension too, responses for the case of
perfect slip at the wall-solid boundary do not exhibit any
dependence on L and follow Eq. (22) very faithfully. The
dependence on length manifests, as in the case of pure torsion,
in perfect stick condition.

Consider surface hyperelasticity parameter sets for which
a monotonically increasing force-extension response is ex-
pected. For instance, σ o = 0, μs = 0, with λs = 50 [see
Fig. 5(a)] is one such case, for which the force-extension curve
is shown in Fig. 8(a). In this case, the response of longer
cylinder with perfect stick condition at the wall-solid interface
is close to that predicted by Eq. (22).

Though the responses are very close, the deforming long
cylinder does not remain exactly a cylinder during extension.
The deformed shape at λ � 2 develops an interesting feature
as shown in Fig. 9(a). The initially cylindrical tube devel-
ops a periodic variation of the radius in the z direction for
σ o = 0, μs = 0, and λs = 50. At the same level of stretch,
the amplitude of the periodic undulation is higher when σ o

is increased, as shown for σ o = 5. When this deformation is
unstable, it will quickly lead to fracture of the cylinder. So, for
practical purposes, uniaxial extension of long cylinders may
not be feasible.

For short cylinder, on the other hand, the response is very
far from ideal and also exhibits nonmonotonic behavior for the
same set of parameters. As shown in Fig. 9(b), necking in the
short cylinder due to expansion is severe and develops early in
the deformation. The severe departure from cylindricity, into
a capillary shape with a meniscus like a catenoid, causes the
force-extension curve to be nonmonotonic.

The force-extension response is not always nonmonotonic,
though it is always higher than that of the long cylinder. Non-
monotonicity is the result of high values of σ o [as shown in
Fig. 8(b)] or λs [as shown in Fig. 8(a)]. High values of μs, on
the other hand, restore the monotonic behavior [as shown in
Fig. 8(c)] and suppress the instability [as shown in Fig. 9(a)].

Finally, we consider the case where perfect slip prevails at
the wall-solid interface but balance of forces at the contact
line lead to a contact angle θc �= π/2. The effect of surface
hyperelasticity on the actual value of θc that the undeformed
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FIG. 7. (a) Force-twist and (b) torque-twist responses of long (L = 5, thick curves) and short (L = 1, thin curves) cylinders under the
condition of perfect stick at the walls. The three colors (line styles) represent three values of κ = 5, 50, and ∞. Responses using the closed-form
expressions in Eqs. (20) have been shown by circles. The values of surface properties considered here are σ o = 1, μs = 6, and λs = 0.
Deformed shapes at τ = 1 are shown in (c) for long and short cylinders. The top row is for cases where the bulk is incompressible and the
bottom one is for highly compressible. Deformed configurations with both perfect slip and perfect stick are shown for the compressible case.

cylinder adopts is discussed in detail in Ref. [28]. In particular,
the meniscus shape developed by the solid capillary bridge
has been compared to a similar liquid bridge. Unless σ o is
very high, the solid bridge does not adopt a shape that has
constant mean curvature like a liquid bridge. When extended
uniaxially, the solid bridge attains a shape with constant mean
curvature. The value of which is not governed merely by σ o

but also depends on μs and λs.
We consider a surface that is strongly sensitive to surface

strains. When θc in the initial configuration is 90◦, i.e., γws =
γwa, there is no effect of length on the force-twist or torque-
twist response. In fact, as shown in Fig. 10(b), the torque-twist
response is remarkably independent of θc.

However, the force-twist response is affected significantly
by θc. When θc �= 90◦, a sharp change in curvature develops
close to the contact line [see the deformed configuration in
Fig. 10(c) at τ = 0.4 rad] in order to satisfy the Young’s equa-
tion there. For short cylinders, the region of high curvature is a
significant part of the total length. As shown in Fig. 10(a), for
θc = 30◦ and 60◦, the force-twist response for L = 1 deviates
significantly from the theoretical. For L = 5, the region of
high curvature is a small part of the total length and over
rest of the length, cylindricity is maintained. As a result, the

force-twist response for L = 5 deviates only slightly from the
theoretical [see Fig. 10(a)].

IV. CONCLUSIONS

Equations (20) and (22), for a bulk obeying neo-Hookean
hyperelastic model, and (21) and (23), for the Gent model,
demonstrate the theoretical possibility of determining surface
hyperelastic parameters through a set of pure torsion and pure
extension (compression) tests on a soft solid cylinder.

We consider a model of surface hyperelasticity character-
ized by three parameters. The parameter σ o is associated with
the part of the Cauchy surface stress that is independent of
surface strains. The parameters μs and λs govern the response
of the surface to surface strains. The parameter μs can be ob-
tained from the torque-twist response, σ o from the axial force
at zero twist, while λs can be obtained from a force-extension
(force-compression) response.

The equations are exact for a cylinder held between two
confining plates, with an incompressible bulk, perfect slip
conditions at the wall-solid interface, and very low surface
energies of the confining plates as well as the wall-solid
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FIG. 8. Force-extension responses of short (L = 1, thin lines)
and long cylinders (L = 10, thick lines) in perfect slip and perfect
stick conditions at the wall-solid interface for (a) σ o = 0, μs = 0, and
λs = 50, (b) σ o = 5, μs = 0, and λs = 0, and (c) σ o = 5, μs = 50,
and λs = 0. For perfect slip, the responses of the short and long
cylinders are closely identical and the responses only for L = 1 are
shown. Circles represent the closed-form expression (22). In case of
perfect stick condition, the responses of the long and short cylinders
are very different.

interface. Moreover, it is assumed that the cylinder remains
a cylinder all through the deformation.

Possible deviations from ideal situations assumed in
deriving these equations are explained through numerical sim-
ulations. The simulations indicate the following:

(1) Actual responses are close to theoretical ones per-
taining to a neo-Hookean bulk when deformations imparted
are small (τ < 1, λ < 1.5). When they are large, finite

extensibility of the bulk is expected to play a role and the
Gent model with an appropriate value of Jm must be used
(Fig. 3).

(2) Theoretical responses are strictly valid for incompress-
ible bulk but continue to hold if the bulk modulus κ � 100μ

(Fig. 6).
(3) Deviations from theoretical expectations arise when

there is significant friction at the wall-solid interfaces, espe-
cially when the bulk is compressible. Nearly incompressible
solids with an aspect ratio (ratio of length to radius) of the
sample of about 5 exhibit force-twist and torque-twist re-
sponses reasonably close to the theoretical (Fig. 7).

(4) Force-extension (force-compression) responses pre-
dicted by Eqs. (22) and (23) remain valid only if friction is
absent at the wall-solid interface (Fig. 9).

(5) Deviations from cylindricity of the sample occur when
the contact angle at the wall-solid contact line is different than
90◦. Samples with an aspect ratio �5 minimize the effects of
strong changes in curvature in the vicinity of the contact line
(Fig. 10).

Finally, it is interesting to estimate the range of forces
and torques that need to be measured and sample sizes that
must be used to realize this theoretical possibility. These can
be roughly assessed by considering a real material that has
μ = 3 kPa, σo = 20 mN m−1, μs = 100 mN m−1, and λs =
0 mN m−1. These values are in the range of those calculated
by Xu et al. [32] for silicone gels.

Assuming these values, and the fact that incompressibility
of the bulk and restrictions on the sample’s aspect ratio are
met, the force-twist, torque-twist, and force-extension rela-
tions are shown in Figs. 11(a)–11(c) for various values of the
radius R0. As R0 varies from 50 to 10 000 μm, the nondimen-
sional parameters σ o and μs vary from 0.13 to 6.7 × 10−4 and
0.67 to 3.33 × 10−3, respectively.

The behavior of the torque-twist relation in Fig. 11(b) is
rather straightforward. As long as μs is comparable to 0.5 [see
Eq. (20)], the slope changes appreciably with radius. When
R0 is large (i.e., μs is small), the torque-twist response of
the cylinder is overwhelmingly dominated by the bulk. For
R0 = 50 and 200 μm (μs = 0.67 and 0.17, respectively), the
slope of the torque-twist response changes with μs. For higher
R0, it does not. The order of the torque that needs to be mea-
sured for R0 = 50 μm is 2000 μN-μm. Also, at R0 = 50 μm,
to determine σo, Fz(λ = 1) � π μN.

The force-twist and force-extension responses [shown in
Figs. 11(a) and 11(c), respectively] behave in the same way.
Above R0 ∼ 200 μm, the response changes imperceptibly
with μs, since an overwhelmingly large part of the force is
borne by the bulk. For R0 < 200 μm, the surface parameters
have a significant effect on the response.

For this particular example, the force-extension curve is not
required as λs = 0. However, the level of force to be measured
during extension (compression) is of the order of 100 μN for
R0 = 50 μm.

Soft solids with stiffnesses in the range of 1–1000 kPa are
increasingly being used in applications ranging from novel
adhesives and soft robotics, to tissue engineering [33–35].
There is also an increasingly convincing body of evidence that
points to the fact that many of these materials exhibit strong
surface elasticity.
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(a) (b)

FIG. 9. Deformed configurations of a soft solid cylinder under extension at λ = 2, for lengths (a) L = 10 and (b) L = 1. The configurations
are shown for various values of the surface parameters.

The ability to modulate surface stresses by varying the
extent of surface strain opens up interesting technological pos-
sibilities. For instance, the ability to control capillary forces
arising from tunable surface stresses can be useful in many
applications in soft robotics [36]. In biological systems, un-

derstanding how surface stresses influence tissue shape and
growth kinetics may lead to a better understanding of sig-
naling between cells and their mechanical environment [37].
Active modulation of interfacial stresses between cells may
be responsible for the differentiation of tissues at early stages
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FIG. 10. (a) Force-twist and (b) torque-twist responses of cylinders with an initial aspect ratio L = 1 (thin lines) and 5 (thick lines) for
three different values of θc. The configurations at τ = 0.4 rad are shown for these values of the initial contact angle in (c).
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FIG. 11. Ideal (a) force-twist and (b) torque-twist and (c) force-
extension responses of a real material with bulk shear modulus μ =
3 kPa and surface hyperelastic properties given by σo = 20, μs =
100, and λs = 0 mN m−1, for initial radii R0 = 50, 200, 1000, and
10 000 μm. The corresponding nondimensional surface parameters
are σ o = 0.13, 0.03, 0.007, 0.0007, and μs = 0.67, 0.17, 0.03, 0.003.

of embryonic development [38]. The ability to accurately
characterize and parametrize surface constitutive models for
these materials is essential for modeling their mechanics of
deformation. Especially on the scale of micrometers, it is often
not possible to neglect the effect of surface stresses in these
materials.

Calibrating surface constitutive behavior is challenging
because of the smallness of the test samples, difficulties asso-
ciated with handling them, and the extremely small forces and

displacements that need to be sensitively measured. However,
the development of direct or indirect protocols for obtaining
surface structure-property relationships for these materials is
imperative for designing and understanding practical systems.

APPENDIX A: CONSEQUENCES OF
INCOMPRESSIBILITY OF THE BULK

The equilibrium equation [Eq. (1)] can be written in terms
of the bulk Cauchy stress components as

σrr,r + σrr − σθθ

r
= 0,

1

r
σθθ,θ + σθz,z = 0,

1

r
σθz,θ + σzz,z = 0, (A1)

which leads to equations for the pressure p(r, θ, z),

p,r = −2W1τ
2r + (2W1λ

−1 − 2W2λ),r, p,θ = 0 p,z = 0,

(A2)

which show that p is a function of r only. By integrating the
first of the above equations, we get

p = −
∫

2W1τ
2rdr + (2W1λ

−1 − 2W2λ) + C, (A3)

where C is a constant of integration.

APPENDIX B: DERIVATION OF BULK AND SURFACE
CAUCHY STRESS TENSORS σ AND σs

A body deforms from a reference configuration to a current
configuration such that a material point X = RER + ZEZ in
the reference configuration maps to a point x = rer + zez in
the current configuration. The deformation gradient tensor is
defined as F = ∇0x, where ∇0 = ∂

∂R ER + ∂
R∂�

E� + ∂
∂Z EZ is

the gradient operator in the reference cylindrical coordinate
system. Now, using the chain rule of differentiation,

F = r,Rer ⊗ ER + r,�

R
er ⊗ E� + r,Zer ⊗ EZ

+θ,Rreθ ⊗ ER + θ,�

r

R
eθ ⊗ E� + θ,Z reθ ⊗ EZ

+z,Rez ⊗ ER + z,�

R
ez ⊗ E� + z,Zez ⊗ EZ , (B1)

which can be further simplified for the motion shown in Fig. 2.
Using the motion described by Eq. (3), we have, in matrix
form,

F =
⎛
⎝λ−1/2 0 0

0 λ−1/2 τ r
0 0 λ

⎞
⎠. (B2)

The Cauchy stress tensor for incompressible bulk is given as
[39]

σ = −p(r, θ, z)1 + 2W1B − 2W2B−1, (B3)

where W1 = ∂W
∂I1

and W2 = ∂W
∂I2

. Now using Eqs. (B2) and (B3)

and the left Cauchy-Green strain B = FFT , it is easy to obtain
Eq. (4).
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Let us consider the lateral surface of the cylinder with
normal ER in the reference configuration at radial position R.
The surface deformation gradient Fs [40] can be written in
matrix notation as

Fs =
⎛
⎝ 0 0

λ−1/2 τ r
0 λ

⎞
⎠. (B4)

Now using the expression of the Cauchy surface stress tensor
[28]

σs = 1√
Is
2

FsT s(Fs)T , (B5)

where

T s = 2γ11X + 2γ2Is
2 (Cs)−1, (B6)

we obtain Eq. (6).

APPENDIX C: DETERMINING divs σs AND C

At the surface r = r0, equilibrium is governed by Eq. (2)
connecting the bulk Cauchy stress σ to σs. In particular, the
surface divergence of σs is defined as

divsσs · k = divs[(σs)T ks], (C1)

where ks is the vector component of an arbitrary vector k, on
the tangent plane at x [40]. The tangent plane in this case is
spanned by eθ , ez. Let (σs)T ks = t , i.e.,

t =
(

tθ
tz

)
=

(
σ s

θθkθ + σ s
θzkz

σ s
θzkθ + σ s

zzkz

)
. (C2)

Now using the relation divs t = tr Dt with Dt = Px∇tIx and

∇t =
⎛
⎝tr,r

tr,θ−tθ
r tr,z

tθ,r
tθ,θ+tr

r tθ,z

tz,r
tz,θ
r tz,z

⎞
⎠,

we obtain

divs[(σs)T ks] = σ s
θθ,θ kθ + σ s

θz,θ kz

r

+ σ s
θz,zkθ + σ s

zz,zkz − σ s
θθ kr

r
. (C3)

Here, Px and Ix are the projection and inclusion maps at x,
respectively [40]. In the above, we have used the relations
kθ,θ = −kr , kθ,z = kz,θ = kz,z = 0. Now using the Eqs. (C1)
and (C3), we obtain

divs σs = −σ s
θθ

r
er +

(
σ s

θθ,θ

r
+ σ s

θz,z

)
eθ +

(
σ s

θz,θ

r
+ σ s

zz,z

)
ez.

(C4)

Since σs is independent of θ and z [see Eq. (6)], the above
relation can be further simplified as

divs σs = −σ s
θθ

r
er . (C5)

Applying the boundary condition Eq. (2), we find that

p(r0) = 2W1(r0)λ−1 − 2W2(r0)λ

+2γ1
(
λ−3/2 + λ−1/2τ 2r2

0

) + 2γ2λ
1/2

r0
. (C6)

Substituting the above into Eq. (A3), we can finally determine
C as

C =
∫

2W1τ
2rdr

∣∣∣∣
r0

+ 2γ1
(
λ−3/2 + λ−1/2τ 2r2

0

) + 2γ2λ
1/2

r0
.

(C7)
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