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Controllable wrinkling in a prestretched dielectric elastomer sheet with striped electrodes
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Controllable wrinkling of dielectric elastomer (DE) sheets is often applied to achieve some special applications
such as diffraction gratings, optical sensors, soft actuators, and adjustable wetting surfaces. It is required to
precisely predict and control the threshold voltage and wavelength of wrinkling. In view of the weakness of loss
of tension criterion, a nonlinear plate theory considering the bending energy of DE sheet is utilized to investigate
the wrinkling phenomenon in a prestretched DE sheet with striped electrodes. The results show that the threshold
voltage of wrinkling is bigger than the corresponding voltage obtained from loss of tension, which results from
the fact that the bending energy has a certain inhibiting effect on wrinkling of the DE sheet. Furthermore, the
threshold voltage and wavelength of wrinkling can be effectively regulated by controlling prestretch. The striped
electrodes can also effectively control the threshold voltage and wavelength. Especially, there exists an optimal
width ratio of electrode corresponding to the lowest threshold voltage. The proposed method can be used to
predict and control the behavior of wrinkling in the engineering applications of DE structures.
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I. INTRODUCTION

Dielectric elastomer (DE) is a kind of electroactive poly-
mer, and has a lot of excellent features such as being light
weight, having high energy density, large deformation, fast
response, low cost, and good flexibility [1–3]. The DE sheet
can produce large deformation under the action of an electric
field [4]. Based on this principle, the DE sheet can be used
to design and manufacture transducers, smart actuators, flex-
ible sensors, and soft robots [3], etc. Currently, the DE sheet
has got certain applications in many fields, such as crawling
robots [5], artificial eyes [6,7], energy harvesters [8], and soft
grippers [9].

In order to achieve large deformation at relatively low
voltage, the DE material is often fabricated into a thin film
structure. In this case, the DE sheet is more prone to wrinkle
under the action of the same electric field. The wrinkling
phenomenon is often thought to be a form of DE sheet failure
[10–15], which should be avoided as much as possible in prac-
tical application. Meanwhile, the wrinkling phenomenon in
some cases can recover without causing any damage [16,17].
In addition, the wrinkling phenomenon of DE sheet is also
used to achieve some special applications such as diffraction
gratings [18], optical sensors [19], and adjustable wetting
surfaces [20].

In order to analyze the critical conditions for DE sheet
wrinkling, the instability criterion of loss of tension is often
used to predict the critical voltage [21–25]. Generally, the DE
sheet is very thin and its bending energy is small, therefore,
the loss of tension in the DE sheet under the action of electric
field is considered as the critical condition for wrinkling [24].
This criterion is simple and the theoretical prediction results
are in good agreement with the experimental results in many
cases [21–26]. Although this criterion can approximately
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estimate the critical condition of wrinkling, the important
results such as the wavelength of wrinkling cannot be ob-
tained due to ignoring bending energy [27]. The applications
of DE sheet in many fields such as soft robot and artificial
eye all require the precise control of its critical voltage and
wavelength of wrinkling. Recently, the DE plate theory con-
sidering bending energy has attracted much attention [27–30].
A DE plate theory was developed to study the wrinkling
critical voltage and wavelength of the annular sheet, and the
theoretical prediction was consistent with the experimental
results [27]. Based on the wavelength obtained by nucleation
theory, the post-buckling of the DE sheet was analyzed by an
energy method considering bending energy, stretching energy,
and electric field energy to predict wrinkling amplitude [28].
A theoretical model is developed to predict the wrinkling
wavelength, post-buckling amplitude, and critical wrinkling
voltage of the substrate-free membrane [29]. A model of the
wrinkled plate is established and provides good estimates of
the critical voltage and wave number of wrinkles [30].

The above theories have been applied in the cases of DE
sheets with full coated electrodes. Recently patterned elec-
trodes are used in applications of the DE sheet to achieve
a variety of instability morphologies [27]. In this work, we
explore the wrinkling behavior and mechanism of a system of
DE sheet with striped electrodes, and focus on the effect of the
width ratio of striped electrodes and prestretches, by consider-
ing the bending, stretching, and electric field energy, which is
different from the loss of tension criterion. To regulate defor-
mation and wrinkling of DE sheet with patterned electrodes,
based on the nonlinear plate theory, a model considering the
prestretch and striped electrodes is developed, and wrinkling
behaviors of the DE sheet is extensively studied in this paper.
The rest of the paper is organized as follows. In Sec. II, a
nonlinear plate model for the DE sheet is formulated and
linear stability analysis of the DE sheet with striped electrodes
is conducted. In Sec. III, the prebuckling stress fields are
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FIG. 1. Schematic diagram of a DE sheet with two ends clamped by rigid fixtures: (a) A DE sheet with initial length l0 and thickness H
in the reference state; (b) the DE sheet with prestretches λx0 and λy0 along the x-axis and y-axis directions, respectively, and current thickness
h; (c) the DE sheet coated with carbon grease as electrodes on the left side of width a in the undeformed state without wrinkling and (d) the
wrinkling state of DE sheet. The DE sheet will generate wrinkles when the applied voltage � is on and large enough. In the current state, the
stretches of the coated carbon grease and without grease regions are λxL and λxR, respectively.

given and then the effects of width ratio and prestretch on the
critical condition and mode of wrinkling are investigated. The
concluding remarks are given in Sec. IV.

II. MODEL AND THEORETICAL FORMULATION

A. Prebuckling analysis for a prestretched DE sheet
with striped electrodes

Two ends of a DE sheet are clamped by two rigid fix-
tures, and a Cartesian orthogonal coordinate system (x, y, z)
is adopted, where the z axis is normal to the DE plane as
shown in Fig. 1. The initial state is regarded as the reference
state as shown in Fig. 1(a), in which the thickness of DE
sheet is H and its length along the x axis is l0, while the
length along the y axis can be seen as infinite. Subsequently,
the DE sheet will be prestretched along the x-axis and y-axis
directions and the prestretches are λx0 and λy0, respectively.
Under the action of prestretching, the thickness of DE sheet
changes into h uniformly as shown in Fig. 1(b). In this state,
the left side of DE sheet is coated with carbon grease as the
electrode and the coated width is a as shown in Fig. 1(c). In
the actuated state, the electrical voltage � is applied on the
two surfaces of DE sheet. When the applied voltage is large
enough, the wrinkles will nucleate and grow in the DE sheet
as illustrated in Fig. 1(d). At this state, the current stretches
of the coated carbon grease and without grease regions are
λxL and λxR, respectively. In the following, the deformation
of DE sheet without wrinkles will be analyzed first. Then, we
theoretically analyze the nucleation of the wrinkle for the DE
sheet subjected to a certain voltage.

In the initial state, i.e., the reference state, each material
particle in the DE sheet along the x-axis and y-axis directions
will be denoted by coordinates X and Y , respectively. In the
wrinkling state, the position of the particles X and Y can be
described by the functions of x(X ) and y(Y ), respectively.

The stretches along the x-axis and y-axis directions can be
described as

λx = dx

dX
, λy = dy

dY
. (1)

Generally, the DE material is assumed to be incom-
pressible. Thus, the stretch along the z-axis direction is
λz = 1/λxλy.

The electric field intensity E along the z-axis direction for
the DE sheet can be calculated

E = �

h
, (2)

where h = Hλz.
The force balance equation along the x-axis direction in the

DE sheet can be given as

∂

∂x

(
σxx

λx

)
= 0. (3)

Based on the assumption of the ideal DE model, the per-
mittivity ε is assumed to be constant, which is not affected by
deformation and electric field [31]. Hereon, the free energy
function Ws(λx, λy, λz ) for the neo-Hookean hyperelastic
model is given as

Ws = μ

2

(
λ2

x + λ2
y + λ2

z − 3
)
. (4)

Thus the constitutive relations for DE material can be ob-
tained by Ref. [32]

σxx = ∂Ws(λx, λy, λz )

λyλz∂λx
− εE2,

σyy = ∂Ws(λx, λy, λz )

λxλz∂λy
− εE2. (5)
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Considering the impressible condition of λz = 1/λxλy,
substituting Eq. (4) into Eq. (5) leads to

σ L
xx = μ

(
λ2

xL − λ−2
xL λ−2

y

) − εE2,

σ R
xx = μ

(
λ2

xR − λ−2
xR λ−2

y

)
, (6a)

σ L
yy = μ

(
λ2

y − λ−2
xL λ−2

y

) − εE2,

σ R
yy = μ

(
λ2

y − λ−2
xR λ−2

y

)
, (6b)

where the term of −εE2 is the well-known Maxwell stress
caused by the electric field, σ L

xx, σ R
xx, σ L

yy, and σ R
yy are local

stresses, in which L indicates the left part of DE sheet with
coated carbon grease and R indicates the right part of DE sheet
without coated carbon grease.

According to the balance Eq. (3), one can get the following
relation:

σ L
xx

λxL
= σ R

xx

λxR
. (7)

In order to obtain the solution of Eq. (7), there still need
a supplementary equation, i.e., the deformation compatibility
equation

λxLa + λxR(l − a) = λx0l. (8)

With the help of Eq. (8), we can easily obtain the current
stretches and stresses in the DE sheet by solving Eq. (7).

B. Linear stability analysis for the DE sheet

To investigate the wrinkling phenomenon of DE sheet, a
nonlinear plate theory is introduced to establish the governing
equations of striped DE sheet subjected to the electromechan-
ical loading. In the derivation of theoretical formulas, the
relationships between the stress and deflection w = w(x, y)
in the z-axis direction will be derived firstly for a striped DE
sheet based on the neo-Hookean model [33] and Kirchhoff’s
hypotheses [34]. Then, the bending moment and twisting
moment are further derived, and the force balance condition
provides the governing equation for the wrinkling of the DE
sheet.

For the sake of simplicity, the deformation gradient from
the reference state Br to prestretched state Bp is used to de-
scribe the deformation of the DE sheet when it is subjected
to a homogeneous electric field along the z-axis direction. So
one can obtain

F0 = diag(λx, λy, λz ). (9)

In the following, the displacement field will be represented
by u, v, and w in the three orthogonal directions x, y, and z. At
this moment, the deformation gradient from the prestretched
state Bp to the wrinkled state Bw can be given by

F1 =

⎡
⎢⎣

1 + ∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x 1 + ∂v

∂y
∂v
∂z

∂w
∂x

∂w
∂y 1 + ∂w

∂z

⎤
⎥⎦. (10)

Finally, we can get the deformation gradient from the ref-
erence state Br to the wrinkled state Bw as F = F1 · F0. With
the help of the deformation gradient F, we can obtain the left
Cauchy-Green strain tensor B = F · FT.

Based on the assumption of the ideal DE model, Cauchy
stress in the DE sheet can be decomposed into elastic stress
and Maxwell stress

σ = σe + σm, (11)

where the elastic stress σe can be described by strain en-
ergy density Ws of the incompressible elastomer. The stress
σe = F(∂Ws/∂F) − pI can be described by the deformation
gradient F and hydrostatic pressure p as well as unit matrix
I. In this paper, the neo-Hookean model [33] is adopted. One
can obtain

σe = μB − pI, (12)

and the Maxwell stress is a diagonal tensor

σm = diag
(− 1

2εE2, − 1
2εE2, 1

2εE2
)
. (13)

Here, considering the incompressibility of the DE material,
we can get

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0. (14)

And substituting Eqs. (12) and (13) into Eq. (11), we can
obtain

∂u

∂x
= 1

2μλ2
x

(
σxx + p + εE2

2

)
− 1

2
,

∂v

∂y
= 1

2μλ2
y

(
σyy + p + εE2

2

)
− 1

2
,

∂w

∂z
= 1

2μλ2
z

(
σzz + p + εE2

2

)
− 1

2
. (15)

Combining Eqs. (14) and (15), we can get

p = 3μλ2
xλ

2
y − λ2

yσxx − λ2
xσyy − λ4

xλ
4
yσzz + λ4

xλ
4
yεE2

λ2
x + λ2

y + λ4
xλ

4
y

− εE2

2
.

(16)
Substituting Eq. (16) back into Eq. (11), we can get the

specific expressions of the constitutive equation. Hereon,
according to the traditional plate theory [34], the stress
components in the z direction can be ignored. In addition,
we can also derive the displacement relationships of u =
−z ∂w

∂x , v = −z ∂w
∂y . Therefore, we can further obtain the

nonzero stress components with a distance z from the middle
plane of DE sheet as follows:⎧⎪⎨

⎪⎩
σxx

σyy

σxy

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

μ
(
λ2

x − λ−2
x λ−2

y

) − εE2

μ
(
λ2

y − λ−2
x λ−2

y

) − εE2

0

⎫⎪⎬
⎪⎭

− z

⎡
⎢⎣

C11 C12 0

C21 C22 0

0 0 C33

⎤
⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

∂2w
∂x2

∂2w
∂y2

∂2w
∂x∂y

⎫⎪⎪⎬
⎪⎪⎭

, (17)

where C11 = 2μ(λ2
x + λ−2

x λ−2
y ), C22 = 2μ(λ2

y + λ−2
x λ−2

y ),
C12 = C21 = 2μλ−2

x λ−2
y and C33 = μ(λ2

x + λ2
y ). Then, we can
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obtain the bending moments Mxx, Myy and twisting moment
Mxy through the following integral formula:⎧⎨

⎩
Mxx

Myy

Mxy

⎫⎬
⎭ =

∫ h/2

−h/2

⎧⎨
⎩

σxx

σyy

σxy

⎫⎬
⎭zdz. (18)

According to the plate theory, the force balance condition
in the normal direction requires that

∂2Mxx

∂x2
+ 2

∂2Mxy

∂x∂y
+ ∂2Myy

∂y2
+ Nxx

∂2w

∂x2

+2Nxy
∂2w

∂x∂y
+ Nyy

∂2w

∂y2
= 0, (19)

where Nxx = ∫ h/2
−h/2 σxxdz, Nyy = ∫ h/2

−h/2 σyydz and Nxy =∫ h/2
−h/2 σxydz are all the membrane forces.

According to the geometry model of DE sheet in Fig. 1, we
can obtain the following boundary conditions and continuity
conditions

w|x=0 = 0,
∂w

∂x

∣∣∣∣
x=0

= 0,

w|x=l = 0,
∂w

∂x

∣∣∣∣
x=l

= 0, (20)

and

w−|x=a = w+|x=a,
∂w

∂x

−∣∣∣∣
x=a

= ∂w

∂x

+∣∣∣∣
x=a

. (21)

On left and right sides of the position x = a in Fig. 1(c),
the bending moments are equal and the vertical shear forces
are also equal, namely

M−
xx|x=a = M+

xx|x=a, Q−
x |x=a = Q+

x |x=a, (22)

where Qx = ∂Mxx
∂x + 2 ∂Mxy

∂y is the so-called effective shear
force, which has considered the shear force balance caused
by the twisting moment Mxy.

A combination of Eq. (19) with conditions of Eqs. (20)–
(22) sets an eigenvalue problem. The deflection of DE sheet
can be assumed as following function:

w = f (x) cos(ky), (23)

where f (x) is a single variable function, and k is wave number
of wrinkle.

Substituting Eq. (23) into Eq. (19), we can obtain the
following homogeneous ordinary differential equation

D1
d4 f (x)

dx4
+ D2

d2 f (x)

dx2
+ D3 f (x) = 0, (24)

where, for the zone of 0 � x � a

D1 = −H3μ
(
λ4

xLλ2
y + 1

)
6λ5

xLλ5
y

,

D2 = −ε�2λxLλy

H
+ Hμ

(
λ4

xLλ2
y − 1

)
λ3

xLλ3
y

+ k2H3μ
(
λ4

xLλ2
y + λ2

xLλ4
y + 2

)
6λ5

xLλ5
y

,

D3 = k2ε�2λxLλy

H
− k2Hμ

(
λ2

xLλ4
y − 1

)
λ3

xLλ3
y

− k4H3μ
(
λ2

xLλ4
y + 1

)
6λ5

xLλ5
y

, (25a)

and for the zone of a � x � l

D1 = −H3μ
(
λ4

xRλ2
y + 1

)
6λ5

xRλ5
y

,

D2 = Hμ
(
λ4

xRλ2
y − 1

)
λ3

xRλ3
y

+ k2H3μ
(
λ4

xRλ2
y + λ2

xRλ4
y + 2

)
6λ5

xRλ5
y

,

D3 = −k2Hμ
(
λ2

xRλ4
y − 1

)
λ3

xRλ3
y

− k4H3μ
(
λ2

xRλ4
y + 1

)
6λ5

xRλ5
y

. (25b)

In Eq. (24), we will define the dimensionless quantities:
dimensionless coordinate x̄ = x/H , dimensionless width ā =
a/H and l̄ = l/H , dimensionless thickness .h̄ = h/H ., dimen-
sionless stresses σ̄xx = σxx/μ and σ̄yy = σyy/μ, dimensionless
voltage �̄ = �/(H

√
μ/ε), and dimensionless wave number

k̄ = kH . The dimensionless coefficients are given as follows:
for the zone of 0 � x̄ � ā

D̄1 = −λ4
xLλ2

y + 1

6λ5
xLλ5

y

,

D̄2 = −�̄2λxLλy + λ4
xLλ2

y − 1

λ3
xLλ3

y

+ k̄
(
λ4

xLλ2
y + λ2

xLλ4
y + 2

)
6λ5

xLλ5
y

,

D̄3 = k̄2�̄2λxLλy − k̄2
(
λ2

xLλ4
y − 1

)
λ3

xLλ3
y

− k̄4
(
λ2

xLλ4
y + 1

)
6λ5

xLλ5
y

, (26a)

for the zone of ā � x̄ � l̄

D̄1 = −λ4
xRλ2

y + 1

6λ5
xRλ5

y

,

D̄2 = λ4
xRλ2

y − 1

λ3
xRλ3

y

+ k̄
(
λ4

xRλ2
y + λ2

xRλ4
y + 2

)
6λ5

xRλ5
y

,

D̄3 = − k̄2
(
λ2

xRλ4
y − 1

)
λ3

xRλ3
y

− k̄4
(
λ2

xRλ4
y + 1

)
6λ5

xRλ5
y

. (26b)

Substituting Eq. (23) into Eqs. (20) and (21), we can very
easily get the corresponding dimensionless expressions of the
boundary conditions and continuity conditions. So we will
not elaborate here. However, the bending moment and shear
force balance conditions in Eq. (22) will be given explicitly as
follows:

(
1 + λ4

xLλ2
y0

) d2 f̄
dx̄2 − k̄2 f̄

λ5
xL

=
(
1 + λ4

xRλ2
y0

) d2 f̄
dx̄2 − k̄2 f̄

λ5
xR

, (27)

k̄2
(
1 + λ4

xLλ2
y0 + λ2

xLλ4
y0

) d f̄
dx̄ − (

1 + λ4
xLλ2

y0

) d3 f̄
dx̄3

λ5
xL

= k̄2
(
1 + λ4

xRλ2
y0 + λ2

xRλ4
y0

) d f̄
dx̄ − (

1 + λ4
xRλ2

y0

) d3 f̄
dx̄3

λ5
xR

. (28)
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FIG. 2. The effect of the applied voltage on the stretches λxL and λxR for the different width ratios of striped electrodes: (a) λx0 = 1.5,

(b) λx0 = 2.0, and (c) λx0 = 2.5. (d) The effect of the applied voltage on the stretch λxL for the width ratio a/l = 0.5. With the increase of
applied voltage, the stretch λxL increases, while λxR decreases. Under the conditions of the same applied voltage and width ratio a/l = 0.5, the
stretch λxL increases with the increase of prestretch.

After the governing Eq. (24) being dimensionless, only
width ratio a/l is the system parameter that can be adjusted
in the theoretical analysis. The membrane stresses σ̄ L

xx and
σ̄ L

yy as well as the stretches λxL and λxR are all dependent
on the electric field intensity Ē caused by voltage �̄. For a
given a/l , the eigenvalue of voltage in Eq. (24) can be solved
numerically by virtue of the function of bvp5c in Matlab and
the corresponding eigenvector is the waveform of wrinkling.

III. RESULTS AND DISCUSSIONS

A nonlinear plate theory is introduced to investigate the
wrinkling phenomenon of a DE sheet subjected to electrome-
chanical loading. In the following, we calculate the membrane
stresses by using Eq. (6), and obtain the critical voltages and
wrinkling mode of DE sheet by solving Eq. (24).

A. Prebuckling stress field in the DE sheet

In order to obtain the prebuckling stress state in the DE
sheet, the principal stretches λxL and λxR in Eq. (7) will be
solved first with the boundary condition of Eq. (8) by using
the software of Mathematica. It should be mentioned here that
the principal stretches λxL and λxR depend on the applied volt-
age �̄. Subsequently, substituting the stretches into Eq. (6),
the stresses σ̄ L

xx, σ̄ R
xx, σ̄ L

yy, and σ̄ R
yy can be easily obtained and

they are also dependent on the applied voltage �̄. Figure 2
plots the effect of the applied voltage on the stretches λxL and
λxR for the different width ratios of striped electrodes (a/l =
0.2, 0.5, 0.8, and 1.0). With the increase of applied voltage,
the stretch λxL increases, while λxR decreases as shown in
Figs. 2(a)–2(c). In other words, for all the width ratios, the
current area of electrode always increases with the increase
of the applied voltage. This is because the larger the applied
voltage, the larger the Maxwell stress. It is worth noting that
a/l = 1.0 means that the DE sheet is fully coated with elec-
trodes, and thus λx = λx0. In addition, in order to study the
influence of prestretch on the deformation, the stretch λxL is
taken as an example as shown in Fig. 2(d). It can be seen that
under the conditions of the same applied voltage and width
ratio, the stretch λxL increases with the increase of prestretch.
This indicates that the prestretch can effectively affect the
deformation of DE sheet.

After the functions of λxL and λxR about the applied voltage
having been obtained, we can substitute the above functions
into Eq. (6) to get the stresses σ̄ L

xx, σ̄ R
xx, σ̄ L

yy and σ̄ R
yy. Figure 3

plots the effect of the applied voltage on the stresses σ̄ L
xx

and σ̄ R
xx for the different width ratios (a/l = 0.2, 0.5, 0.8,

and 1.0). Generally, the stresses σ̄ L
xx and σ̄ R

xx both decrease
with the increase of applied voltage as shown in Figs. 3(a)–
3(c). However, the stress σ̄ L

xx with the width ratio a/l = 0.2
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FIG. 3. The effect of the applied voltage on the stresses σ̄ L
xx and σ̄ R

xx for the different width ratios of striped electrodes. (a) λx0 = 1.5,

(b) λx0 = 2.0, and (c) λx0 = 2.5. (d) The effect of the applied voltage on the stress σ̄ L
xx for the width ratio a/l = 0.5. Generally, the stresses σ̄ L

xx

and σ̄ R
xx both decrease with the increase of applied voltage. However, the σ̄ L

xx with a/l = 0.2 appears to increase first and then decrease. Under
the conditions of the same applied voltage and width ratio a/l = 0.5, the stress σ̄ L

xx increases with the increase of prestretch.

appears to increase first and then decrease. The reason for this
phenomenon is that the thickness of electrode zone a/l = 0.2
becomes thinner sharply as shown by the black square-line
in Fig. 4(a). In this case, the total stress is determined by
the competition between the elastic stress and Maxwell stress

as shown in Fig. 4(b). With the increase of applied volt-
age, the total stress σ̄ L

xx appears to increase when the elastic
stress increment is dominant, but decreases when the Maxwell
stress increment is dominant. For a/l = 0.5, 0.8, and 1.0, the
Maxwell stress increment is dominant with the increase of

FIG. 4. The effect of the applied voltage on the thickness h̄L and stress σ̄ L
xx for the different width ratios of striped electrodes. (a) The

current thickness h̄L of the left part of DE sheet; (b) the elastic stress σ̄ Le
xx and Maxwell stress σ̄ Lm

xx . The thickness for electrode zone a/l = 0.2
becomes thinner sharply than that for the other electrode zones a/l = 0.5, 0.8, and 1.0. With the increase of applied voltage, the elastic stress
σ̄ Le

xx increases while Maxwell stress σ̄ Lm
xx decreases. The total stress σ̄ L

xx is determined by the competition between the elastic stress and Maxwell
stress, which causes the σ̄ L

xx with a/l = 0.2 to increase first and then decrease as shown in Fig. 3(a).
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FIG. 5. The effect of the applied voltage on the stresses σ̄ L
yy and σ̄ R

yy for the different width ratio of striped electrodes. (a) λx0 = 1.5,
(b) λx0 = 2.0, and (c) λx0 = 2.5. (d) The effect of the applied voltage on the stress σ̄ L

yy for the width ratio a/l = 0.5. The stresses σ̄ L
yy and σ̄ R

yy

both decrease with the increase of applied voltage. And the stress σ̄ L
yy in the electrode zone changes quickly from tensile stress to compressive

stress. This is the cause of wrinkling.

applied voltages as shown by the red circle-line, blue triangle-
line, and green rhombus-line in Fig. 4(b). In order to study
the influence of prestretch on the stress, the stress σ̄ L

xx with
the width ratio a/l = 0.5 is taken as an example as shown
in Fig. 3(d). It can be seen that under the conditions of the
same applied voltage and width ratio, the stress σ̄ L

xx increases
with the increase of prestretch. This indicates that the pre-
stretch can effectively change stress distribution in the DE
sheet.

Figure 5 plots the effect of the applied voltage on the
stresses σ̄ L

yy and σ̄ R
yy for the different width ratios (a/l =

0.2, 0.5, 0.8, and 1.0). It can be seen from Fig. 5 that the
stresses σ̄ L

yy and σ̄ R
yy both decrease with the increase of applied

voltage. And the stress σ̄ L
yy in the electrode zone changes

quickly from tensile stress to compressive stress as shown
in Figs. 5(a)–5(c), while the stress σ̄ R

yy in the nonelectrode
zone is tensile stress. It also should be mentioned here that
the compressive stress σ̄ L

yy is the reason of voltage induced
wrinkling. With the increase of prestretch, the required volt-
age for the onset of compressive stress decreases gradually
(i.e., 0.49, 0.41 and 0.35 as shown in Figs. 5(a)–5(c)). These
three voltages are the critical voltages obtained from the
criterion of loss of tension. The stress σ̄ L

yy with the width
ratio a/l = 0.5 is taken as an example to study the influence
of prestretch on the stress as shown in Fig. 5(d). It can be

seen from Fig. 5(d) that under the conditions of the same
applied voltage and width ratio a/l = 0.5, the compressive
stresses increase with the increase of prestretch at the ap-
plied voltage larger than 0.3. This can be understood by
the rewritten stresses σ L

xx = λ2
xL(μ−ελ2

y ( �
H )

2
) − μλ−2

xL λ−2
y and

σ L
yy = μ(λ2

y−λ−2
xL λ−2

y ) − ελ2
xLλ2

y ( �
H )2 obtained by substituting

the equations λzL = 1/λxLλy, hL = HλzL, and E = �/hL into
Eqs. 6(a) and 6(b). Obviously, the stress σ L

xx increases with
the increase of prestretch λxL when the other parameters
keep constant, while σ L

yy is determined by the competition
between the elastic stress μ(λ2

y−λ−2
xL λ−2

y ) and Maxwell stress
−ελ2

xLλ2
y ( �

H )2. With the increase of prestretch λxL, the elastic
stress increases while Maxwell stress decreases when the
other parameters keep constant. Therefore, with the increase
of prestretch, the stresses may increase in both directions at
voltages lower than 0.3. In this case, the compressive stresses
in the y-axis direction can be augmented by increasing pre-
stretch to promote wrinkling of the DE sheet.

Figure 6 plots the effect of the applied voltage on the
stresses σ̄xx and σ̄yy for the different prestretches (λy0 = 1.0,
1.5, and 2.0). It can be seen from Fig. 6 that both the stress
σ̄xx and stress σ̄yy decrease with the increase of applied volt-
age. With the increase of prestretch, the variation of stress
with applied voltage becomes steeper. For the width ratio
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FIG. 6. The effect of the applied voltage on the stresses σ̄xx and σ̄yy with the different prestretches. (a) σ̄xx for a/l = 0.5, (b) σ̄yy for
a/l = 0.5, (c) σ̄xx for a/l = 1.0, and (d) σ̄yy for a/l = 1.0. For a given width ratio a/l , both the stress σ̄xx and stress σ̄yy decrease with the
increase of applied voltage. With the increase of prestretch λy0, the variation of stresses σ̄xx and σ̄yy with applied voltage becomes steeper.

a/l = 0.5, the stress σ̄ L
xx in the electrode zone and the stress

σ̄ R
xx in the nonelectrode zone intersect at zero as shown in

Fig. 6(a). This is because the forces between the left part and
right part of DE sheet are balanced in the x-axis direction.
When σ̄ L

xx is equal to zero, σ̄ R
xx must be equal to zero. For

large applied voltages, the compressive stress σ̄ L
yy increases

with the increase of prestretch λy0 as shown in Fig. 6(b). This
means that the larger the prestretch λy0 is, the more likely
it is to cause wrinkling instability of DE sheet. There are
some similar results existing in DE sheets with fully coated
electrodes (a/l = 1.0) as shown in Figs. 6(c) and 6(d).

B. Critical condition for the voltage-driven wrinkling

Wrinkling phenomenon is an important electromechanical
failure mode of a DE sheet. According to the analysis of the
stress state in Sec. III A, when the applied voltage �̄ increases
to a certain value, the compressive stress in the DE sheet
may appear. And when the compressive stress is larger than a
critical value, the wrinkles of DE sheet will appear. Depending
on magnitude of applied voltage, the DE sheet may stay in
one of the two phases: flat and wrinkling. For a given a/l
and k̄, the critical voltage �̄c for the onset of wrinkles can be
calculated by solving the eigenvalue of the governing Eq. (24).
In the following, we investigate the effect of the width ratio

of striped electrode and prestretch on the critical voltage and
wavelength.

Figure 7 plots the dependence of the critical voltage �̄c

on wave numbers for three kinds of prestretches (λx0 = 1.5,
2.0, and 2.5). For a given a/l , there exists a minimum critical
voltage �̄th at a certain k̄th, in which �̄th and k̄th are named as
threshold voltage and the most easily wrinkling wave number,
respectively. In other words, only when the voltage reaches
the threshold voltage, will the DE sheet wrinkle at a certain
wavelength. The critical wavelength of wrinkling results from
the competition between the bending energy and stretching
energy [28]. With the increase of wave number, the critical
voltage �̄c decreases first and then increases as shown in
Figs. 7(a)–7(c). For a given prestretch, the minimum threshold
voltage (or named as optimal threshold voltage) �̄

opt
th appears

and corresponds to the optimal width ratio w̄
opt
r = a/l and

wave number k̄opt
th . For the prestretch λx0 = 1.5, the opti-

mal width ratio w̄
opt
r = 0.4, optimal wave number k̄opt

th = 0.6,

and optimal threshold voltage �̄
opt
th = 0.5019 as shown in

Fig. 7(a). For the prestretch λx0 = 2.0, w̄
opt
r = 0.3, k̄opt

th =
1.0 and �̄

opt
th = 0.4196 as shown in Fig. 7(b). For the pre-

stretch λx0 = 2.5, w̄
opt
r = 0.3, k̄opt

th = 1.3, and �̄
opt
th = 0.3568

as shown in Fig. 7(c). It is worth mentioning that there exists
an optimal width ratio in each case of prestretches of λx0 =
1.5, 2.0, 2.5. Hereon, we take the prestretch λx0 = 1.5 as
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FIG. 7. The influences of prestretches on critical voltage and wave number for different width ratio of striped electrodes. (a) λx0 = 1.5,

(b) λx0 = 2.0, and (c) λx0 = 2.5. (d) The dependence of the optimal threshold voltage and wave number of wrinkling on the prestretch.

an example to investigate the effect of width ratio a/l on
the threshold voltage �̄th. According to the data drawn in
Fig. 7(a), we can get �̄th = 0.5084, 0.5030, 0.5019, 0.5021,
0.5043, and 0.5052 for a/l = 0.2, 0.3, 0.4, 0.5, 0.8, and
1.0, respectively. It can be seen that the optimal width ra-
tio and optimal threshold voltage are w̄

opt
r = a/l = 0.4 and

�̄
opt
th = �̄th = 0.5019, respectively. With the increase of a/l ,

the threshold voltage decreases first and then increases. In
engineering applications, it is very challenging to obtain low
threshold voltages, and fortunately the optimal width ratio can
effectively reduce the threshold voltage.

Based on Figs. 7(a)–7(c), and 7(d) plots the influence of
prestretch on the optimal threshold voltage �̄

opt
th and wave

number k̄opt
th . With the increase of prestretch, the optimal

threshold voltages �̄
opt
th of wrinkling decrease. This result im-

plies that the prestretch can be tuned to regulate the threshold
voltage for different applications. It is noted that the optimal
threshold voltages �̄

opt
th are all bigger than the corresponding

voltages obtained from loss of tension criterion (i.e., for the
onset of compressive stress). This results from the fact that the
bending energy has a certain inhibiting effect on a wrinkle of
the DE sheet. In addition, the wave number k̄opt

th of wrinkling
increases with the increase of prestretch. In other words, the
corresponding wavelength of wrinkling decreases with the
increase of prestretch. This means that the wavelength of
wrinkling can be manipulated by controlling prestretch for
practical applications.

In addition, in order to study the influence of prestretches
in the y-axis direction on the critical voltage and wave num-
ber of a DE sheet, a plot with the prestretches λy0 = 1.0,
1.5, and 2.0 as well as width ratio a/l = 0.5 is taken as an
example as shown in Fig. 8. For λy0 = 1.0, the threshold volt-
age �̄th = 0.3579 and corresponding wave number k̄th = 1.0.
For λy0 = 1.5, �̄th = 0.3423, and k̄th = 1.05. For λy0 = 2.0,
�̄th = 0.3194, and k̄th = 1.1. It can be concluded that the
threshold voltage �̄th of wrinkling decreases with the increase

FIG. 8. The dependence of critical voltage on wave number for
different prestretches. The threshold voltages �̄th of wrinkling de-
crease with the increase of prestretch λy0.
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FIG. 9. Comparison of wave forms and wavelengths by theoretical prediction and previous experiments of DE sheet with full coated
electrodes: (a) experiment of Ref. [28]; (b) the corresponding theoretical prediction; (c) experiment of Ref. [30] and (d) the corresponding
theoretical prediction. The wave form and wavelength of wrinkling obtained from theoretical prediction are in well agreement with the
experimental results.

of prestretch λy0. The reason for this phenomenon is that the
compressive stress σ̄ L

yy for the large applied voltage increases
with the increase of prestretch λy0 as shown in Fig. 6(b).
This means that the wrinkling instability can be manipulated
by controlling prestretch in the y-axis direction for practical
applications.

C. Wrinkling mode of the DE sheet

The present model can be used to predict the wrinkling
mode of a DE sheet, such as wave form and wavelength of
wrinkling. Based on the eigenvector obtained from Eq. (24),
Fig. 9 plots the comparison of wave forms and wavelengths
by theoretical prediction and previous experiments [28,30] of
a DE sheet with full coated electrodes. In the experiments, the
wrinkling wave form of a rectangular VHB4905 sheet (50 ×
100 mm) with the prestretches λx0 = 1.5 and λy0 = 1/

√
λx0

[28] is shown in Fig. 9(a). And the wrinkling wave form of
a rectangular VHB4910 sheet (20 × 30 mm) with the pre-
stretches λx0 = 6.0 and λy0 = 1.0 [30] is shown in Fig. 9(c).
By setting the same geometry sizes and prestretches as those
of the experiments, the corresponding theoretical predictions
are given in Figs. 9(b) and 9(d). It can be seen from Fig. 9 that
the wave form and wavelength of wrinkling obtained from
theoretical prediction are well in agreement with the result
of experiment, which indicates the present model is able to
provide a good prediction about wrinkling of a DE sheet.

In the experiments [28,30], the top and bottom surfaces of
the DE sheet were all coated with carbon grease electrodes.

However, the present model can further predict the mode of
DE sheet with different width ratios of a striped electrode.
Figure 10 plots the wrinkling mode of the DE sheet with
a/l = 0.2, 0.5, 0.8, and 1.0. In the computation, we take the
prestretches λx0 = 1.5 and λy0 = 1.0 as an example. It can be
seen from the figures that the deflection in the electrode area
is relatively larger due to wrinkling, while that in nonelectrode
area is small because of its tensional state. It is noted that
the wavelength corresponding to the wave number of wrin-
kling increases with the increase of width ratio as shown in
Figs. 10(a)–10(d). By controlling the electrode area, various
wrinkling patterns can be obtained to meet the functional
requirements of luxuriant applications.

Figure 10 also shows the coexistence of wrinkled and flat
regions in the dielectric elastomer sheet with striped elec-
trodes, which is different from a DE film with fully coated
electrode deformed into the coexistence of thick flat state,
as well as thin and large-area wrinkled state due to the con-
strain of the small-area flat regions [21]. In our work, the
DE sheet with width ratio of striped electrodes a/l �= 1.0
may wrinkle into the coexistence state, in which σ̄ R

yy in the
nonelectrode zone is tensile while σ̄ L

yy triggering the wrinkling
in the electrode zone is compressive, caused by the Maxwell
stress.

IV. CONCLUSIONS

Controllable wrinkling of a DE sheet is important for some
engineering applications such as diffraction gratings, optical
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FIG. 10. The wrinkling mode of DE sheet with different width ratios of striped electrode: (a) a/l = 0.2, (b) a/l = 0.5, (c) a/l = 0.8, and
(d) a/l = 1.0. In the computation, we set the prestretches λx0 = 1.5 and λy0 = 1.0.

sensors, soft actuators, and adjustable wetting surfaces. To
precisely predict and control the threshold voltage and mode
of the wrinkling, a large deformation plate theory consider-
ing the bending energy and prestretch is used to analyze the
wrinkling phenomenon of the DE sheet with striped elec-
trodes. The results show that the prestretch has important
influence on the distribution of stress field, threshold volt-
age, and wavelength of wrinkles. For large applied voltages,
with the increase of prestretch, the stress increases in the
prestretched direction while decreases in the perpendicular to
the prestretched direction, which results in the decreases of
the threshold voltage and wavelength of wrinkles. Hereon, the
predicted threshold voltage is bigger than the corresponding
voltage of the loss of tension, which indicates that the bending
energy has a certain inhibiting effect on wrinkling of the DE
sheet. In addition, the striped electrodes can also effectively

control the threshold voltage and wavelength. With the in-
crease of width ratio of striped electrodes, the wavelength
increases, while the threshold voltage decrease first and then
increase. Also, there exists an optimal width ratio of electrode
corresponding to the optimal threshold voltage. The results
and developed methodology can be used to predict and control
the behavior of wrinkling in the engineering applications of
DE structures.
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