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Memory in three-dimensional cyclically driven granular material

Zackery A. Benson ,1,2 Anton Peshkov ,3 Derek C. Richardson ,4 and Wolfgang Losert 1,2

1Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742-2431, USA
2Department of Physics, University of Maryland, College Park, Maryland 20742-4111, USA

3Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627-0171, USA
4Department of Astronomy, University of Maryland, College Park, Maryland 20742-2421, USA

(Received 14 October 2020; accepted 7 May 2021; published 30 June 2021)

We perform experimental and numerical studies of a granular system under cyclic compression to investigate
reversibility and memory effects. We focus on the quasistatic forcing of dense systems, which is most relevant
to a wide range of geophysical, industrial, and astrophysical problems. We find that soft-sphere simulations with
proper stiffness and friction quantitatively reproduce both the translational and rotational displacements of the
grains. We then utilize these simulations to demonstrate that such systems are capable of storing the history of
previous compressions. While both mean translational and rotational displacements encode such memory, the
response is fundamentally different for translations compared to rotations. For translational displacements, this
memory of prior forcing depends on the coefficient of static interparticle friction, but rotational memory is not
altered by the level of friction.
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I. INTRODUCTION

The study of memory in materials is an extensive field
of research with implications for our understanding of biol-
ogy, condensed matter physics, and granular materials [1–4].
Memory in materials corresponds to storing information in
a material state. A familiar example of a state is the local
direction of magnetization, which enables magnetic informa-
tion storage [5]. Retrieving this memory requires knowing the
material state used to store the information, e.g., that hard
drives store information in magnetized regions of a certain
size.

Granular materials can also store information about their
past: It is possible to discern the direction [6] of prior re-
arrangements or the amplitude of prior shear [7]. However,
the material state that stores this information is not yet well
understood. It has been shown that systems with identi-
cal density and pressure, but different preparation history,
would diverge in their future evolution [8]. Therefore, it is
highly probable that, unlike in the case of magnetization,
memory in granular systems is not stored in macroscopic
quantities such as the density or pressure, but in a complex
state space involving particle positions, velocities, and contact
networks [9,10].

Previous simulations [9,10] and experiments [7,11] have
demonstrated that it is possible to retrieve granular memory
by measuring particle displacements in response to periodic
driving. The memory is extracted by conducting a sweep of
perturbation amplitudes, which measures the mean square
displacement (MSD) of the grains [9,12]. Specifically, mem-
ory of the prior driving emerges when the MSD transitions
from being reversible to irreversible. The majority of memory
studies on granular systems have focused on memory encoded

in the linear displacements of the grains [7,9], with only a few
works studying frictional dissipation [10,13]. Since friction is
present in most real-world materials, it is crucial to understand
how friction affects memory formation in granular materials.
Further, since friction drives rotations, it is important to dis-
cern whether memory can be encoded in individual rotations
of particles.

In this paper we study memory formation in a dense three-
dimensional packing of athermal frictional grains subject to
cyclic compression. Almost all granular matter is subject
to cyclic forcing in geological, astrophysical, or engineering
contexts. It has been shown that cyclically driven assemblies
of spheres exhibit either reversible or irreversible motion de-
pending on the perturbation applied [3,14–17]. Consequently,
these types of assemblies can act as a model system for explor-
ing the formation and origin of memory in granular materials.
We expand our study to measure all aspects that characterize
the system, including grain rotations and translations, and
their role in encoding memory. We do this numerically using
soft-sphere discrete element method (DEM) simulations that
we calibrate using experimental data. Finally, we demonstrate
that memory does form in our assembly of spheres by mea-
suring the displacements of our grains between cycles, and
we probe the effect frictional contacts have on the evolution
of our system.

II. METHODS

A. Experiments

The experimental system consists of a monodispersed mix-
ture of 20 000 acrylic, spherical grains with diameters of
0.5 cm, which possess a cylindrical cavity across their center

2470-0045/2021/103(6)/062906(7) 062906-1 ©2021 American Physical Society

https://orcid.org/0000-0002-1098-0175
https://orcid.org/0000-0003-1209-8132
https://orcid.org/0000-0002-0054-6850
https://orcid.org/0000-0002-1792-7860
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.103.062906&domain=pdf&date_stamp=2021-06-30
https://doi.org/10.1103/PhysRevE.103.062906


BENSON, PESHKOV, RICHARDSON, AND LOSERT PHYSICAL REVIEW E 103, 062906 (2021)

TABLE I. Physical parameters used in the simulations.

�t kn Cn Ct μS μR μT β

25 μs 4 × 106 g/s2 0.2 0.5 0.2 0.01 0.001 0.5

that is used to track the rotations of the particles. The grains
reside in a square-based container with a side length of 15 cm
up to a height of approximately 10 cm and are immersed in
an index-matching solution (Triton X-100, n = 1.49), which
allows us to track the translations of the particles as well as
their rotations. A free weight of 1 kg is placed on top to
achieve a constant external pressure. The system is sheared
by compressing a lateral wall horizontally along a single axis
by an amplitude A and a whole cycle is completed when the
wall compresses and then fully decompresses the system. We
consider the response of the system to repeated compression
cycles. Additional information on the experimental setup can
be found in Refs. [15,18].

B. Simulations

Our numerical model consists of soft-sphere DEM sim-
ulations using an in-house software package [19]. A linear
spring is used to calculate the forces between grains, with a
spring constant chosen to maintain much less than 1% overlap
between grains. A friction model is included consisting of
static, rolling, and twisting friction (see [19]). Material and
simulation parameters are provided in Table I. The simula-
tion mimics our experiment with 20 000 soft spheres that are
dropped into a square container of length 15 cm and a free
weight placed on top [see Fig. 1(b)].

In the experiments, rotational displacement is calculated as
the change in the orientation of the cylindrical cavity located
within the grain. The angle is then multiplied by the radius
of the bead to compare with linear displacements. Measuring
only a single axis for the rotations means that we are only
capturing two of the three rotational degrees of freedom:

Rotations around the axis of the cylindrical cavity remain
undetected. In contrast, the simulations allow us to fully track
the rotations of the particles. Therefore, when comparing our
simulations to the experiments, we calculate the rotational
motion using only a single tracked axis (see Appendix B).

III. RESULTS AND DISCUSSION

A. Verifying the numerical model

Figure 1 shows a projection in the yz plane of each grain’s
position in both the experiments (left) and simulations (right)
after 400 cycles of compression with an amplitude of A =
0.15 cm (1% of the container size). The color corresponds to
the displacements of the grains when fully compressed. The
results show excellent agreement for both the translational
and rotational motion between the simulations and the exper-
iments. We see shear zones in the translations at an angle to
the compression wall which are not observed in the rotations.
The shear zones indicate that the displacements at maximum
compression are highly coupled to each other within each
band, whereas the rotations appear to be randomly distributed
and uncorrelated with translations. In other work [20] we
found the rotations to be correlated with the spatial gradient
of linear displacements.

Since rotations are driven by friction between contacts, we
expect our simulations to match our experiments at a unique
friction coefficient. Figure 2(a) shows probability density
functions (PDFs) of the end-of-cycle translational displace-
ment for three values of friction for our simulations. In all
cases, the system is compressed at an amplitude of 1% for
400 cycles; then the PDFs are generated using data from
ten consecutive cycles. We see a large difference in grain
displacements as the friction is varied. Specifically, it appears
the system systematically gets more reversible as the friction
is reduced. That is, the total displacement after a completed
cycle is lower for lower friction. By adjusting the friction
coefficient, we match our experiments to our simulations
nearly perfectly for a static friction coefficient of μS = 0.2.

FIG. 1. Spatial distribution of displacements (top row) and rotations (bottom row) for the simulations (left) and experiments (right) at full
compression. Color indicates the magnitude of motion, with red and blue being large and small displacements, respectively; both the simulation
and the experiment are on the same scale. The compression amplitude is 1.0% of the container size. The schematic shows a snapshot of the
simulation setup. The pattern on the beads is a visual aid to observe the orientation. The compression wall is in red and compresses along the
y axis.
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FIG. 2. (a) PDFs of the amplitude of translational displacement
after a whole cycle. Colors indicate the static friction coefficient
between grains. Closed circles correspond to experimental results.
(b) Comparison with experimental observations of both the rotational
(open circles) and translational (closed circles) displacement. The
rotations correspond to the angle between a single-tracked axis in
both the experiments and simulations.

Figure 2(b) shows the results for μS = 0.2 alongside the
experiments for both the rotational and translational displace-
ment of the grains. In the experimental setup, the rotations
are affected due to the cylindrical cavity hole locking in
place with other grains (see [15] for details). To negate this
effect, we restrict our analysis of rotations in experimental
data to the grains that do not contact through the hole. The
translations are unaffected by the hole contact. Furthermore,
Fig. 2(b) shows that the value of friction that best matches the
translational displacements predicts the rotational motion as
well. We observe a wider distribution for the rotations when
compared to the translations and the grains appear to rotate a
larger distance than they translate over an entire cycle. This
stems from the irreversibility of rotations compared to the
translations [15].

As the system is compressed, we expect it to evolve asymp-
totically towards some unknown steady state as it forms a
memory of its input [10]. Accordingly, we present in Fig. 3
the mean displacements of the grains, between each cycle, as
a function of the cycle number. We subtract the final steady-
state value, which is the average of the motion for the final 20
cycles, to reveal a power-law evolution, similar to what is done
in Ref. [10], for both translations and rotations with exponents
of ∼0.7 and ∼0.6, respectively. The difference in the initial
number of translations in the simulations indicates that the
initial configuration of the experimental system, produced by
stirring and deposition of a top weight, is not fully captured
in the simulated initial conditions. We note that both experi-

FIG. 3. Mean displacement as a function of the cycle number for
the experiments (circles) and the simulations (crosses). The theoreti-
cal steady-state displacement is subtracted from both curves to reveal
a power-law behavior. Dashed lines correspond to the fitted curve,
with exponents of approximately 0.7 and 0.6 for the translations and
rotations, respectively.

ments and simulations evolve following the same power-law
exponent and converge to the same system state (Fig. 3).

B. Encoding and reading memory

For the rest of this paper we will use the simulations to ex-
plore memory formation in a cyclically compressed granular
system. Using the simulations allows us to perform a parallel
readout of the memory commonly used in these types of
studies [7,9,12]. The training protocol takes a trained configu-
ration (i.e., the positions, forces, and orientations) of a system
and conducts a parallel sweep by conducting a full compres-
sion cycle 0 → A′ → 0 with a variable A′. The displacements
are calculated by taking the position after each cycle. In our
case, we perform an initial training at a compression am-
plitude A = 1% (0.15 cm) and then use that configuration
of grains and interparticle forces repeatedly in a sweep of
compressions A′ = 0.05%–2.5%. Figure 4 shows the readout
results for our simulations as a function of both the friction
and the number of training cycles. We consider motion up to
400 cycles; in this regime, several macroscopic parameters,
including the packing fraction and compression force on the
wall, remain unchanged from cycle to cycle. Thus, we argue
that the system has reached a sufficiently steady state up to the
resolution of our measurements.

Memory of the compression amplitude is apparent in the
translations as a dip in the mean displacement of the grains
and subsequent increase beyond the 1% marker. Moreover,
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FIG. 4. Parallel memory readout protocol for (a)–(c) translations and (d)–(f) rotations. Static friction is varied, with (a) and (d) μS = 0.05,
(b) and (e) μS = 0.2, and (c) and (f) μS = 0.5. Colors indicate the number of training cycles performed before the readout. The dashed line
indicates the amplitude at which the system was trained. A dip at the training amplitude appears for translations. Two distinct power laws
emerge in the rotations.

we see that the memory formation appears to be stronger the
more cycles the system has experienced. However, for the
high-friction case, the material reaches a steady state after 100
cycles in which the change in the memory effects is not dis-
cernible anymore. The dip at 1% appears less pronounced for
the high-friction case [Fig. 4(c)], suggesting that the motion is
not periodic in the same way as for low friction [Figs. 4(a)
and 4(b)]. It is important to note that at low friction, the
system presents identical mean displacements for different
perturbation amplitudes around the dip. This implies that it is
not possible to determine the state of the system from a single
perturbation.

Since the rotations also have a similar power-law evolution
in the average displacements as a function of cycle number,
we expect the memory readout to be similar to that of the
translations. Figures 4(d)–4(f) show the readout of the mean
rotations for static frictions of 0.05, 0.2, and 0.5, respectively.
Immediately, we observe that the rotations appear not to have
a similar memory signature in their displacements. How-
ever, there is a distinct power-law behavior that undergoes
a slope change as the amplitude is increased that gets more
pronounced as the system experiences more training cycles.
Specifically, after 400 cycles, we find an exponent of ∼0.7 for
small amplitudes and then ∼1.4 for large amplitudes, 2 times
the small-amplitude exponent. One might suspect that the
change in behavior of rotations is caused by the change in the
translational motion. However, it appears that the rotational
memory behaves similarly for all friction values, which is not
the case for translational displacement. Even with the change
in the power law, it appears that the memory of the drive does
not seem to be present in the average rotational motion of the
grains; however, the evolution or formation of the memory
could be present in collective rotations [21,22] at longer length
scales, which is a topic left for future work.

Figure 5 shows how the reversibility is affected by dif-
ferent preparation amplitudes. We have three systems that

were compressed at 0.5%, 1%, and 2% and performed the
same parallel readout to quantify the reversibility. We did
this for μS = 0.2, the friction that best corresponds to the
experiments. Clearly, the reversibility relies heavily on the
prepared amplitude (hence the dip in the curves). Addition-
ally, it appears that the system gets more irreversible at higher
compression amplitudes and we see a very pronounced min-
imum for higher amplitudes. This makes sense as the sample
gets less reversible for higher amplitudes. However, looking at
the rotations, we see that the power-law increase has a similar
exponent for amplitudes higher than the prepared amplitudes
for all three curves (∼1.4).

The memory we observe here is distinct from previous
interpretations such as return point memory [23]. Instead,
this phenomenon appears more like novelty detection [24]. It
appears that the reversible steady state depends on the entire
trajectory (0 → A′ → 0). That is, each grain has a unique tra-
jectory that it will respond to at amplitude A and any deviation
from this amplitude will form a new, different trajectory. This
is clear in Fig. 8, where we plot trajectories within a cycle

FIG. 5. Parallel memory readout protocol for (a) translations and
(b) rotations for static friction μS = 0.2. The colors indicate the
amplitude the state was prepared at.
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for three consecutive cycles for all the friction values. We see
that the paths overlap most for the lowest friction case. This is
also the friction that has the most pronounced dip in Fig. 4(a).
These repeated trajectories go away for higher friction values.
Moreover, the area within the trajectories goes down for the
highest friction. This could directly correlate with the absence
of the dip in the μS = 0.5. This phenomenon is similar but
not equivalent to the return point memory interpretation. For
the rotations, we do not see any structure in the trajectories
(see Fig. 9). Instead, we see that the higher-friction cases of
0.2 and 0.5 have trajectories that appear uncorrelated with the
wall compression.

IV. CONCLUSION

We have demonstrated that soft-sphere collisional simula-
tions successfully capture the quasistatic rearrangements and
rotations of a jammed granular system. We have shown that
three-dimensional dense frictional grains exhibit a memory
effect when subject to boundary-driven periodic forcing. We
verified that the rotational displacements do not encode mem-
ory in the same way as the translations, which could be due to
the lower overall reversibility of rotations compared to trans-
lations; however, we did see a difference in mean rotational
irreversibility both below and above the training amplitude
in the form of a power law. Moreover, we have found that
at low- and intermediate-friction values, the translations ap-
pear to be most reversible at the prepared amplitude. Our
work further probes the reversibility of granular rotations in
jammed materials. Specifically, we emphasize that irreversible
motion still has some kind of memory signature embedded
in the rotational displacements that is fundamentally different
from translations, whose memory can be read out by prob-
ing reversibility. Moreover, our observation of memory in a
quasistatic system poses the challenge of how to extract this
memory from measurements on the static particle configura-
tion alone, e.g., by using machine learning [25].
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APPENDIX A: SIMULATION PARAMETERS

The simulation parameters are given in Table I. The sim-
ulations are performed using a soft-sphere model, where a
linear repulsion force is proportional to the amount of overlap
between grains and the torque is a linear spring force propor-
tional to the deviation from the initial point of contact between
two grains. In Table I, �t and kn correspond to the time step
and normal spring constant, respectively. We use a spring
constant and time step such that grains maintain an overlap
much less than 1% of their radius. Although in practice the
acrylic beads used in the experiments are orders of magnitude

FIG. 6. PDF of the full cycle rotation using one axis (closed
circles) or two axes (open circles) when computing the magnitude.

more stiff, we see this as a fair approximation that effectively
reproduces the translational and rotational motions observed
in the experiment.

The tangential spring constant is defined as 5
7 kn. In addi-

tion, Cn and Ct are the restitution coefficients. Given that our
simulations are quasistatic, we do not expect the restitution
to play much of a role in the dynamics. The static, rolling,
and twisting friction values are labeled as μS , μR, and μT ,
respectively. Further, β is the rotation dashpot model’s shape
parameter (see Ref. [19] for further information on these
parameters).

APPENDIX B: CALCULATING GRANULAR ROTATIONS

Figure 6 shows a probability distribution function for ro-
tational displacements after a completed cycle using both
axes or a single axis to compute the magnitude from the
simulation data. Note that the single-axis curve can be ef-
fectively rescaled to the two-axis calculation by a division of
the rotation amplitude, consistent with a measure of Euclidian
distances of a single or two random variables. Rotation about
a single axis is given by the following equation:

sin θ = |â1 × â2|. (B1)

Here â1 and â2 are the initial and final orientations of the
grain, respectively, and θ is the angle between them. For
the simulations, this calculation is done by tracking a single
principal axis in time that is rotated based on the torques
calculated. Note here that the rotation is limited to 90◦ due
to the symmetry of a rotation about a single axis.

For the rest of paper, the simulated rotation is calculated by
a rotation matrix defined as

RP1 = P2. (B2)

Now P1 and P2 are a 3 × 3 matrix containing three tracked
principal axes of the each of the spheres. The rotation matrix
R maps the initial principal axis to the final. The angle is
calculated as follows:

2 cos θ = Tr(R) − 1. (B3)

Here the rotations are limited by 180◦ since all principal axes
are labeled and tracked throughout the simulation.
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FIG. 7. Memory readout using a symmetric drive (0 → A/2 → A/2 → 0) for different friction values. The color indicates the amount of
training cycles performed. The top row is the displacements, and the bottom row is the rotations.

APPENDIX C: SYMMETRIC DRIVE

In the main text, the shear moves the lateral wall from
position y = 0 to an amplitude A and then back to 0. This drive
is purely asymmetric. Other work on memory also probes
symmetric drives, where the compression moves the wall as
0 → A/2 → A/2 → 0. In Fig. 7 we show what our memory
signature looks like for symmetric drives. The main difference
is the absent peak around the trained amplitude. Moreover, the
system seems to take much longer (more cycles) to encode
the compression amplitude when compared to the asymmetric
drive in the paper. The rotations also do not appear to have any
memory signature for this drive.

APPENDIX D: TRAJECTORIES

Figure 8 plots trajectories of a single grain for three con-
secutive cycles, for all the friction values. The grains that were
selected are within the shear zone of the material (see Fig. 1

for reference). The plot is a projection into the yz plane for
visualization. There is a clear distinction between the three
friction values. For the low friction, the trajectories overlap
cycle to cycle with a hysteretic loop. As friction is increased,
there are two things to notice: (i) The area within the loop
decreases and (ii) the trajectories do not appear to overlap
from cycle to cycle. This difference could be the reason why
we see a dip in the memory sweep (Fig. 4) for μS = 0.5 and
0.2, whereas it is absent for 0.5.

Figure 9 presents the trajectories of the orientations of a
single grain within the sample. These grains are also taken
within the shear zone of the material. We notice no such struc-
ture in the rotations that we see in the translations. Moreover,
it appears that the rotations appear diffusive for the higher
frictions. That is, they seem to trace out random trajectories.
For the low friction, we see almost no rotation for many of
the grains. This could be caused by the low frictional force
between the grains.

FIG. 8. The yz projection of the average displacement of a small group of grains for three consecutive cycles. The color (blue to red)
corresponds to the beginning of the first cycle (blue) to the end of the third tracked cycle (red). The curves correspond to the different friction
values. The first cycle tracked here begins after 400 completed compression cycles.
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FIG. 9. Orientation trajectory of a grain for three consecutive cycles. The colors (blue to red) correspond to the beginning of the first
cycle (blue) to the end of the third cycle (red). The three spheres are the different friction values. The first cycle tracked here begins after 400
completed compression cycles.
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