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Enhanced flow rate by the concentration mechanism of Tetris particles when discharged
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We apply a holistic two-dimensional (2D) Tetris-like model, where particles move based on prescribed rules,
to investigate the flow rate enhancement from a hopper. This phenomenon was originally reported in the literature
as a feature of placing an obstacle at an optimal location near the exit of a hopper discharging athermal granular
particles under gravity. We find that this phenomenon is limited to a system of sufficiently many particles. In
addition to the waiting room effect, another mechanism able to explain and create the flow rate enhancement
is the concentration mechanism of particles on their way to reaching the hopper exit after passing the obstacle.
We elucidate the concentration mechanism by decomposing the flow rate into its constituent variables: the local
area packing fraction φE

l and the averaged particle velocity vE
y at the hopper exit. In comparison to the case

without an obstacle, our results show that an optimally placed obstacle can create a net flow rate enhancement of
relatively weakly driven particles, caused by the exit-bottleneck coupling if φE

l > φc
o , where φc

o is a characteristic
area packing fraction marking a transition from fast to slow flow regimes of Tetris particles. Utilizing the
concentration mechanism by artificially guiding particles into the central sparse space under the obstacle or
narrowing the hopper exit angle under the obstacle, we can create a manmade flow rate peak of relatively strongly
driven particles that initially exhibit no flow rate peak. Additionally, the enhanced flow rate can be maximized
by an optimal obstacle shape, particle acceleration rate toward the hopper exit, or exit geometry of the hopper.

DOI: 10.1103/PhysRevE.103.062904

I. INTRODUCTION

Both experimentally and numerically, placing an obstacle
at an optimal distance away from the exit of a hopper has
been shown to enhance the gravity-driven granular hopper
flow rate on the order of ten percent [1–6]. This strategy
has been shown to be effective not only on passive granular
particles but also on self-governing species [7–11]. One of
the possible explanations for the enhanced flow rate is the
waiting room effect, wherein particles are slowed down by
the obstacle and then accelerate within the void underneath
it on their way toward the hopper exit [1,3,4,6,8]. However,
some studies are either unable to reproduce this phenomenon
[12,13] or able to reproduce it even under conditions in which
the void space below the obstacle has been eliminated through
the introduction of a special obstacle shape that diminishes
the waiting room effect [6]. Conventional experiments and
numerical approaches, governed by Newtonian dynamics,
contain multiple competing mechanisms such as interparticle
collaborative motion and particle acceleration due to gravity;
these cannot be easily decomposed and inspected separately.
To isolate the roles of these competing mechanisms, a more
primitive dynamic model is needed.

*gao@shizuoka.ac.jp

In our previous studies, we showed that the interparticle
friction, particle dispersity, and obstacle geometry are not
directly responsible for the enhanced flow rate [14]. We then
proposed a 2D Tetris-like model, where particles move ac-
cording to prescribed rules rather than in response to forces in
order to switch off interparticle collaborative motion. Using
our model, we still observed the enhanced flow rate; therefore,
the collaborative motion of particles via Newtonian dynam-
ics is also not the key mechanism [14,15]. Another more
simplified Tetris-like model, where particles can only move
diagonally, was proposed to study the packing behavior of
granular materials under vibration [16]. In contrast to reduc-
tionist models, such as discrete element methods that preserve
enough details to quantitatively reproduce a specific physical
phenomenon, Tetris-like models are holistic and focus on sim-
ilarities between different nonequilibrium systems containing
animate or inanimate discrete particles. The results of our
model suggest that the concentration of particles arriving at
the hopper exit is essential to the observed flow rate peak,
as the local area packing fraction of particles φl (defined in
Ref. [14] and again in Sec. III B) increases near the hopper
exit and can become larger than its value near the obstacle. In
contrast, we do not observe the same pattern of φl variation in
a system that exhibits no flow rate peak.

Following this finding, this work further uses the 2D Tetris-
like model to explore how the flow rate is influenced by the
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number of particles in the hopper; the concentration behavior
of particles below the obstacle; and the waiting room effect,
as it relates to obstacle geometry, particle acceleration, and
exit geometry of the hopper. We find that the flow rate peak-
ing phenomenon is limited to a system of sufficiently many
particles and that an obstacle in a hopper containing too few
particles only reduces its flow rate. In addition, placing an
obstacle in a hopper of sufficiently many particles can reduce
the particle area packing fraction more than without an obsta-
cle and therefore particles move faster. The net effect is two
downstream particle flows concentrating at the hopper exit
with an area packing fraction able to be greater than a charac-
teristic value, which triggers an exit bottleneck coupling. This
mechanism is directly responsible for the flow rate peaking
phenomenon if particles are relatively weakly driven and the
obstacle is optimally placed. Moreover, we utilize the concen-
tration mechanism to prove that a flow rate enhancement can
be generated in a system discharging relatively strongly driven
particles that originally exhibits no flow rate peak. This can be
accomplished by artificially increasing the horizontal driving
strength asymmetrically of the particle flowing down stream
of the obstacle or by narrowing the hopper exit angle under
the obstacle. Finally, we evaluate the waiting room effect and
show the existence of an optimal obstacle geometry, particle
acceleration rate toward the hopper exit, and exit geometry
can maximize or create an enhanced flow rate.

Below we elaborate on our Tetris-like model, which gen-
erates the probability-driven hopper flow in Sec. II, followed
by quantitative investigation of the hopper flow rates under
different conditions in Sec. III with discussion. We conclude
our study in Sec. IV.

II. THE TETRIS-LIKE MODEL

To study the simplest 2D granular hopper flow without
invoking Newtonian dynamics, we propose a model, named
after the video game Tetris, where objects fall one at a time
following some prescribed rules within a confined space. Per
position-update cycle in our model, each particle i of uniform
diameter d attempts to move exactly once from its current x
and y positions (xold

i , yold
i ) to (xnew

i , ynew
i ), specified by

xnew
i = xold

i + Nx(0, αxσ )

ynew
i = yold

i − |Ny(0, αyσ )|rs
ns

i , (1)

where Nx and Ny are normal distribution functions having
zero means and standard deviations αxσ and αyσ , and spec-
ify displacements of particle i. The two independent control
parameters αx and αy determine the driving strengths in the
horizontal x and vertical y directions, respectively. The abso-
lute value about Ny guarantees that a particle always moves
in only one direction toward the hopper exit. We chose a
moderate σ = 0.05d so that on average particles exit the
hopper containing no obstacle with their trajectories parallel
to the hopper walls [15]. A move attempt is only realized
if it creates no overlap between any object in the system.
Otherwise, the move attempt is rejected and the attempted
particle stays still. Which particle moves first is determined
by a random sequence, regenerated at the beginning of each
position-update cycle. Additionally, each particle i remem-

bers its position-update history, recorded as a monotonically
increasing number ns

i > 0 or decreasing number n f
i < 0 for

consecutive successful or failed attempts. Whenever one pa-
rameter becomes nonzero, the other is reset to zero. The
speedup rate rs � 1 in the vertical y direction mimics the
effect of particle acceleration due to gravity during free fall.
A particle that successfully updates its position ns

i times can
attempt a longer jump due to acceleration by a factor of rs

ns
i

during the next position-update cycle. We do not include n f
i

in Eq. (1) because it is intrinsically related to particle re-
bounding behavior, which is not allowed in the current model.
The Tetris-like model can also be viewed as a 2D cellular
automaton in a sense that the size of a cell, surrounded by a
circular excluding zone of diameter d , is infinitesimally small
down to the machine precision. Additional details about the
Tetris-like model can be found in our previous studies [14,15].

The geometrically symmetric hopper, measuring L = 83d
in height with a fixed hopper angle θ1 = 0.4325 (rad) and a
changeable exit angle θ2, contains N randomly placed parti-
cles at the beginning of each simulation. The hopper’s orifice
size is a function of θ1 and θ2. In all figures except Figs. 13
and 14, θ2 = θ1, which gives an orifice width of about 6.366d .
In Figs. 13 and 14, the orifice size decreases with increasing
θ2, where the maximum value of θ2 = 0.5 corresponds to the
minimum orifice size of about 4.061d . To conserve the total
number of particles within the system, N , a particle coming
out of the hopper from its exit will reenter it from above
with the particle’s new x position randomized in between
W = [−L/4, L/4], as shown by a snapshot in Fig. 1(a). After
a simulation reaches its steady state, we measure the flow rate
Jo in terms of the average number of particles passing the ori-
fice of the hopper containing no obstacle per position-update
cycle. Similarly, we measure Ja when the hopper contains a
circular obstacle or an obstacle with a semicircular component
of diameter D = 0.112L whose center is placed along the
symmetric axis of the hopper at a height H above its exit. We
use obstacles of different shapes to study the effects of the
obstacle geometry on the flow rate, such as an obstacle with a
hollow duct of width Wd or another one composed of a semi-
circle top and isosceles triangle bottom specified by an angle
θo to the vertical, as depicted in Fig. 1(b). Each data point of Jo

or Ja is obtained using 45 different initial conditions in steady
state followed by 990 000 position-update cycles to ensure
adequate sampling and to obtain error bars representing the
standard deviation of each measured quantity.

III. RESULTS AND DISCUSSION

Below, we first plot the normalized hopper flow rates Ja/Jo

as a function of the total number of particles in the system
N . We then show the flow rate enhancement is caused by
the particle concentration mechanism below the obstacle by
measuring the constituent variables, the local area packing
fraction φl and the averaged particle velocity vy along the y
direction, of Ja/Jo. After that, we investigate the importance
of the particle concentration mechanism within the void below
the obstacle in between y = [0, H] by artificially making the
horizontal driving strength αx anisotropic in this region, which
mobilizes particles in the void space and increases the local
area packing fraction φl near the hopper exit. We show that
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FIG. 1. (a) A snapshot of the system setup. A symmetric hopper
(green lines) with equal height and top width L, a hopper angle
θ1, and an exit angle θ2 contains a round obstacle (green circle)
of diameter D, placed along its centerline at a height H above its
exit. Particles discharged from the hopper reenter it from its top
boundary with their x positions randomized in between W = 0.5L.
The discrete red-blue colors represent the values of ns

i > 0 or n f
i < 0,

recording the position-update history of consecutive successes or
failures. (b) The other two kinds of obstacles, a hollow circle and
a semicircle-triangle, used in the study. Their circular parts have the
same diameter D, and they are also located at a height H above the
hopper exit, measured from their centers (cross marks).

this strategy is actually a way of utilizing the concentration
mechanism by manipulating particles below the obstacle. We
also use an obstacle with a hollow duct of variable width
Wd to examine the sensitivity of the particle concentration
mechanism. Finally, we explore the waiting room effect on
the flow rate enhancement by using a semicircular obstacle
with a triangular half of adjustable θo, changing the vertical
speed-up rate rs, or varying the exit angle of the hopper θ2.

A. The effect of the total number of particles in the system

To test the effect of the total number of particles in the
hopper N on the flow rate, we tried 10 different system sizes
between N = 8 and 2048 and measured the corresponding
Ja/Jo. The results with αx = 1.0, αy = 0.333, and rs = 1.0 are
shown in Fig. 2(a1) for normalized Ja/Jo and Fig. 2(a2) for
unnormalized Ja. Initially, Ja increases rapidly with N . When
N is smaller than about 300, the obstacle only slows down
the normalized flow rate monotonically with increasing N
and diminishing H . However, when N � 342, Ja/Jo becomes
greater than 1.0, reflecting that H exceeds a characteristic
value, and exhibits a local peak. The enhanced flow rate can
be achieved only when the obstacle is placed within an H
range that shrinks with increasing N and finally saturates as

FIG. 2. (a1) Normalized hopper flow rates Ja/Jo measured at
the exit of a hopper with θ2 = θ1 and containing a round obstacle.
The total number of particles in the system N = 8 (dark green),
128 (cyan), 256 (pink), 284 (dark purple), 312 (navy), 342 (purple),
370 (red), 398 (orange), 428 (green), and 2048 (black). The driv-
ing strengths αx = 1.0, αy = 0.333, and the speed-up rate rs = 1.0.
(a2) Same plot as in panel (a1) except unnormalized hopper flow
rates Ja are shown. The curves of N = 8 and 128 are not included
because their Ja values are outside the visible vertical range. (b) A
snapshot focusing on the lower half of the hopper with N = 428
where an obstacle is placed as indicated by the arrow in panel (a1).
Particles are colored by the blue-red scheme in Fig. 1(a).

N approaches about 428, the minimum number of particles
required to reproduce the results at the large system size limit.
A snapshot where a flow rate peak happens with N = 428 is
shown in Fig. 2(b). The outcome of the system size depen-
dence test suggests that the flow rate enhancement is limited to
a system of a sizable number of particles. As we reveal in the
following sections, as particles move through the two channels
between the obstacle and the hopper walls their trajectories
concentrate and a slightly sparser but faster particle flow is
formed and discharged at the hopper exit, as compared to the
case without the obstacle. This produces a larger than unity
Ja/Jo. A hopper containing too few particles cannot sustain
the associated concentration mechanism crucial for the flow
rate peak.
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B. The concentration mechanism causing the flow rate peaking
phenomenon in the Tetris-like model

To understand the flow rate peaking phenomenon, we de-
compose the flow rate into Ja = φlvyw in terms of the local
area packing fraction φl , the width-averaged particle velocity
vy (in the y direction), and the passage horizontal width w

at vertical location yc where vy is measured. Specifically,
we define φl (yc) at y = yc as the ratio of the total area of
particles, whose centers reside within the space confined by
y = yc + �y/2, y = yc − �y/2, and the two hopper walls, to
the available area of the confined space. Similarly, we define
vy(yc) = �y/t̄ at y = yc, where t̄ is the average position-
update cycles required for a particle travels from y = yc +
�y/2 to y = yc − �y/2. We chose a constant �y = 0.03L ≈
2.49d throughout this study. For a given system setup, we ran-
domly choose 10 trials out of the 45 initial conditions to obtain
the means and error bars of φl and vy. Superscripted with a
capital E , the calculated hopper flow rates at the exit with or
without the obstacle may be expressed as JE

a = φE
l vE

y wE or
JE

o = φE
lov

E
yow

E , respectively. The local values of φE
l , vE

y , φE
lo,

and vE
yo are measured at yE

c = 0.015L ≈ 1.245d , only slightly
above the hopper exit at y = 0 for an accurate estimation, and
wE is the corresponding orifice width at yE

c . An extra subscript
letter o is added to distinguish the values measured without an
obstacle. Putting everything together, we have the normalized
flow rate JE

a /JE
o = (φE

l /φE
lo)(vE

y /vE
yo) in terms of the product

of the normalized local area packing fraction φE
l /φE

lo and the
normalized averaged particle velocity vE

y /vE
yo at the hopper

exit.
In the lower box of Fig. 3(a), we plot Ja/Jo with αy = 0.333

and N = 2048, copied from Fig. 2(a1), together with its cor-
responding measured constituent variables φE

l /φE
lo and vE

y /vE
yo

that give the calculated JE
a /JE

o . The calculated JE
a /JE

o using
φE

l /φE
lo and vE

y /vE
yo are in close agreement to the measured

Ja/Jo, supporting our approach of variable decomposition and
its estimation. As the obstacle is placed at a higher place
above the hopper exit with increasing H/d , the two channels
between the obstacle and the hopper walls become wider
and allow more particles to move through. As a result, this
creates a monotonically increasing φE

l /φE
lo at the hopper exit.

Correspondingly, a higher packing fraction comes with higher
particle clogging probability, which reduces particle velocity.
Therefore, we simultaneously observe a monotonically de-
creasing vE

y /vE
yo at the hopper exit. Placing the obstacle too

close to the hopper exit blocks too many particles, yield-
ing a low φE

l /φE
lo. On the other hand, placing the obstacle

too far from the hopper exit results in vE
y /vE

yo < 1 due to a
high clogging probability from too many particles being dis-
charged out of the hopper. Only an optimally placed obstacle
blocks just enough particles so that φE

l /φE
lo is slightly lower

than 1 while also allowing particles to be discharged more
quickly at the hopper exit with vE

y /vE
yo > 1. This creates an

enhanced flow rate, where a characteristic transition happens
when φE

l > φc
o ≈ 0.55, as discussed in the Appendix [varia-

tion of φE
l is shown in Fig. 3(b) below]. The characteristic

transition experiences a positive feedback from the shrinking
geometry of the hopper, which raises φE

l with decreasing vE
y

while particles move through the hopper exit. Reciprocally, a
slower vE

y increases φE
l , which helps maintain the condition

FIG. 3. (a) The lower box shows a plot of normalized local area
packing fraction φE

l /φE
lo (dotted line) and normalized averaged parti-

cle velocity vE
y /vE

yo (dashed line), measured at yc = 0.015L ≈ 1.245d
(lower yellow region in the inset). The calculated normalized flow
rate using the product JE

a /JE
o = (φE

l /φE
lo)(vE

y /vE
yo) is also marked (red

squares). The corresponding normalized hopper flow rate Ja/Jo (solid
line) is copied from Fig. 2(a1) for reference. The upper box shows
a plot of vBN

y /vE
yo, measured at bottleneck yc = H − 0.015L (upper

yellow region in the inset). The dashed line indicates its plateau
value. The driving strengths αx = 1.0, αy = 0.333, the speed-up rate
rs = 1.0, and N = 2048. (b) Averaged local area packing fraction φl

in the shaded zone in between y = [0, H ] for the three selected cases
labeled in panel (a), where the obstacle is placed at 1 (dark green), 2
(pink), and 3 (navy). The dotted lines are φl next to the hopper wall
within a stripe of width wb ≈ 3.669d , limited by the black dashed
lines marked on the inset. The horizontal dashed lines indicate the
lowest y positions of the obstacle. The black line is the corresponding
averaged local area packing fraction φlo while the hopper contains no
obstacle.

of φE
l > φc

o until particles are discharged from the hopper.
In the upper box of Fig. 3(a), we plot normalized bottleneck
velocity vBN

y /vE
yo, measured at yc = H − 0.015L, which ex-

hibits a plateau before the flow rate peak and decreases again
afterward. The plateau is a signal that upstream particles at
the bottleneck start to sense the downstream characteristic
transition.

In Fig. 3(b), we plot the local area packing fraction φl (y)
under the obstacle in between y = [0, H] [see the shaded zone
in the inset] of the three selected cases, labeled in Fig. 3(a).
We chose the zone in this way because φl exhibits the most
significant variation in this region, and its pattern of variation
depends on whether a system exhibits an enhanced flow rate or
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not, as reported in our previous study [14]. In all cases, φl first
decreases to a local minimum somewhere below the obstacle
due to the available void therein, after which φl increases
because of the concentration of particles on their way toward
the hopper exit. In the case after the flow rate peak [labeled
as 3 in Fig. 3(a)], φl decreases again to facilitate the discharge
of extremely densely packed particles with φl > 0.6 near the
hopper exit. To observe the true variation of φl without the
interruption of the void below the obstacle, we also plot φl

next to the hopper wall within a stripe of width wb ≈ 3.669d ,
which is the narrowest width between the obstacle and the
hopper wall when the obstacle is placed at the lowest posi-
tion of the three selected cases. Both before and at the flow
rate peak, φl next to the hopper wall still exhibits some de-
crease immediately after particles pass the narrowest channel
segments, which implies particle acceleration. Afterward, φl

stays approximately constant until reaching the hopper exit.
The fact that φl can maintain a constant value is not trivial
and is caused by the shrinking geometry of the hopper exit,
generating a concentrating effect, which goes away as soon as
we reduce the exit angle θ2, as shown later in Fig. 13(b). In
contrast, φlo exhibits a monotonic decrease below the obsta-
cle. By comparing φl with φlo, we can see that introducing an
obstacle into the hopper changes the discharging mechanism.
When the hopper contains an obstacle near its exit, the two
concentrated particle flows merge near the hopper exit before
discharge. When the hopper contains no obstacle, on the other
hand, a dense group of particles with φlo > φc

o above the
hopper exit has to dismantle first before exiting the hopper,
as suggested by the progressively decreasing φlo toward the
hopper exit.

Based on Fig. 3, our explanation of the flow rate enhance-
ment by the concentration mechanism goes as follows. Before
the peak, φE

l < φc
o, and the position of the obstacle controls

the bottleneck flux JBN
a arriving at hopper exit. The exit adjusts

its φE
l in order to maintain the steady state JE

a , that is, to
maintain the flux balance JBN

a = JE
a . In this regime, what

happens at the hopper exit does not affect the flux JBN
a . A

representative snapshot is shown in Fig. 4(a1), where we can
see that there are few particles at the exit because φE

l is low.
On the other hand, at or after the peak, φE

l � φc
o, as shown

in Figs. 4(a2) and 4(a3). The particles with φE
l � φc

o at the
hopper exit work together like a plug blocking the flow, and
therefore JBN

a > JE
a . In this situation, the steady state with no

coupling between the downstream exit and the upstream bot-
tleneck regions is not possible. If we further place the obstacle
at a higher position, the area packing fraction in the entire
region between the obstacle and the exit will build up, until
the particles block the flow through the bottleneck created by
the obstacle, as shown in Fig. 4(a4). The plateau of vBN

y is an
initial response to the downstream-upstream (exit-bottleneck)
coupling. Then vBN

y drops after the flow rate peak, similar to
a transition from the free-flow regime to the congested-flow
regime where the waiting room effect occurs [4].

Finally, a hopper discharging relatively strongly driven
particles with a larger αy = 0.439 exhibits no flow rate en-
hancement. This is because the converging geometry of the
hopper cannot effectively concentrate particles with a high
vE

y /vE
yo > 1 while discharging them and φE

l never becomes
higher than φc

o to make a flow rate peak. This is inspected

FIG. 4. (a1)–(a3) Representative snapshots of the system, focus-
ing on the zone below the obstacle, placed at 1, 2, and 3 as labeled
in Fig. 3(a). (a4) Another snapshot where the obstacle is placed
much further away from the exit of the hopper with H/d ≈ 21.414.
Particles are colored by the blue-red scheme in Fig. 1(a), and their
properties at the hopper exit are measured within the yellow region
of height �y = 0.03L.

similarly in Figs. 6(a) and 6(b1) in the next section, where
we also propose an artificial merging strategy by utilizing
the concentration mechanism to create a manmade flow rate
enhancement peak.

C. The importance of particle concentration mechanism
within the space below the obstacle

To further validate the effect of particle concentration
mechanism within the domain below the obstacle on the flow
rate, we artificially compel particles to merge horizontally on
their way toward the hopper exit when they have moved to
the shaded zone marked in the inset of Fig. 3(b). We achieve
this by introducing an anisotropic driving strength αx = m �
1.0 for particles in the domain in between y = [0, H] that
encourages them to attempt moving horizontally toward the
centerline of the hopper. On the other hand, if particles in
the same domain attempt to move horizontally away from the
centerline of the hopper, αx = 1.0 as usual. In summary, αx =
{m, toward the centerline

1, otherwise . This artificial merging strategy presum-
ably improves concentrating efficiency beneath the obstacle
by guiding particles to where more space is available and
reducing their probability of hitting the hopper walls. We find
that applying this strategy can generate a higher flow rate
peak of weakly driven particles or can even achieve flow rate
enhancement in a relatively strongly driven system that orig-
inally exhibits no such phenomenon, as shown in Figs. 5(a1)
and 5(a2), respectively.

In Fig. 5(a1), we plot the normalized flow rate Ja/Jo as a
function of H/d using the same αy = 0.333. When m = 1.0,
the system exhibits the same flow rate peak without the arti-
ficial merging strategy, as shown in Figs. 2(a1) and 3(a). We
can maximize the peak value by using an optimal m = 1.1.
In Fig. 5(a2), we plot Ja/Jo with an amplified αy = 0.439 and
the system exhibits no flow rate peak when m = 1.0 within the
same range of H/d . However, we can see that Ja/Jo exhibits
a local peak shifting to the left as m is increased. The peak
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FIG. 5. [(a1), (a2)] Normalized hopper flow rates Ja/Jo measured
at the exit of a hopper with θ2 = θ1, containing a round obstacle
and N = 2048. The driving strength αx = m is 1.0 (dark green), 1.1
(cyan), 1.2 (pink), 1.3 (dark purple), and 1.4 (navy) if particles in the
shaded zone in-between y = [0, H ] move horizontally closer to the
centerline (vertical dashed line) of the hopper, as shown by the inset.
Otherwise, αx = 1.0. The vertical driving strengths αy = 0.333 (a1)
and 0.439 (a2). The speed-up rate rs = 1.0. [(b1)–(b3)] Representa-
tive snapshots of the system, similar to Fig. 4 but representing the
three cases indicated by arrows in panel (a2).

value of Ja/Jo becomes larger than unity as m falls between
1.2 and 1.3. We argue that using 1 < m � 1.3 decreases the
probability of particles below the obstacle hitting the hopper
walls, which allows them to merge more smoothly on their
way toward the hopper exit in the available space near the
centerline, promoting a higher maximum flow rate as they
accumulate. Further increasing the value of m to 1.4 lowers the
enhanced flow rate because particles begin to experience more
failed moves near the centerline of the hopper due to more
frequent interparticle interference and can even clog at its exit,
yielding a less effective concentration mechanism. We first
verify the above argument visually using the representative
snapshots of the selected cases shown in Figs. 5(b1)–5(b3),
where particles at the hopper exit experience the character-
istic transition from φE

l < φc
o to φE

l > φc
o, a scenario similar

to that shown in Fig. 4. Next, we put our arguments under
quantitative investigation and show the results in Figs. 6 and
7.

The artificial merging strategy can be interpreted as a way
of utilizing the concentration mechanism in Sec. III B to

FIG. 6. (a) The same plot as Fig. 3(a) with N = 2048 and αy =
0.439 but different αx = m to clarify the artificial merging strategy.
Three selected cases with m = 1.0 at different H/d are labeled as
1− (dark purple), 1 (dark green), and 1+ (red) while another two
cases with m = 1.2 and 1.4 at H/d of case 1 (= 13.612) are labeled
as 2 (pink) and 3 (navy), respectively. The data for cases 1, 2, and 3
in the dashed box are vE

y /vE
yo, JE

a /JE
o on top of duplicate Ja/Jo, and

φE
l /φE

lo from left to right (shifted horizontally for better visibility).
The orange arrows indicate the direction of increasing m. The cor-
responding normalized hopper flow rate Ja/Jo with m = 1.0 (solid
line) and m = 1.2 and 1.4 (circles) are copied from Fig. 5(a2) for
reference. (b1) The same plot as Fig. 3(b), except for cases 1−, 1,
and 1+. (b2) The same plot as (b1), except for cases 1, 2, and 3.

create a flow rate enhancement peak. To show this, we plot
Ja/Jo with αy = 0.439 and m = 1.0, copied from Fig. 5(a2),
together with its measured decomposed variables φE

l /φE
lo and

vE
y /vE

yo, and the calculated JE
a /JE

o in the lower box of Fig. 6(a).
As in Fig. 3(a), φE

l /φE
lo and vE

y /vE
yo at the hopper exit mono-

tonically increase and decrease, respectively, with increasing
H/d as the obstacle is placed further away from the hopper
exit. However, φE

l is never greater than φc
o while maintain-

ing a high vE
y to create the characteristic transition shown

in Fig. 3(a), and therefore we do not observe an enhanced
flow rate. Now, we switch on the artificial merging strategy
by increasing m = 1.0 to m = 1.2 and 1.4, labeled as cases
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FIG. 7. Representative (a) P(n � ν ), using log-10 scales for both
axes, and (b) Nt/Nt

0 in the shaded zone in between y = [0, H ], as
shown in the inset of Fig. 6(b1), of the three selected cases, where
a round obstacle is placed at H/d = 13.612, indicated by arrows in
Fig. 5(a2) with m = 1.0 (dark green), 1.2 (pink), and 1.4 (navy).

1, 2, and 3 in the dashed box in Fig. 6(a) [corresponding to
identically labeled cases in Fig. 5(a2)]. Together, we mark
how JE

a /JE
o and the associated φE

l /φE
lo and vE

y /vE
yo change with

m, indicated by the yellow arrows in the figure. Using m = 1.2
successfully increases φE

l /φE
lo while vE

y /vE
yo is only mildly

reduced at the hopper exit. As a result, we observe JE
a /JE

o > 1.
A larger m = 1.4 further increases φE

l /φE
lo but simultaneously

vE
y /vE

yo becomes too small to make JE
a /JE

o > 1. Again, the
calculated JE

a /JE
o agrees with the measured Ja/Jo well in all

studied cases. In the upper box of Fig. 6(a), we plot vBN
y /vE

yo,
which exhibits a gentle local peak. The peak indicates a weak
downstream-upstream coupling. Nevertheless, the overall ef-
fect of the concentration mechanism on relatively strongly
driven particles is not significant enough to create a flow rate
enhancement peak.

To learn more about the variation of φl under the obstacle
placed at different H/d without the artificial merging strategy
(m = 1.0), we select three H/d , labeled as 1−, 1, and 1+ in
Fig. 6(a), and plot their φl in Fig. 6(b1). In all the cases, φl

first decreases until somewhere below the obstacle and then
increases until the hopper exit. Plotting φl next to the hopper
wall reveals that the densest part of the local area packing
fraction in this region decreases monotonically toward the
hopper exit, which indicates that the converging geometry of
the hopper does not effectively help to collect particles on
their way out. Its value is even smaller than when the hopper
contains no obstacle. While the particles move fast toward the

hopper exit because of a large αy, particles with a decaying
φl passing the obstacle travel even more quickly so long as
the concentrating capability of the hopper fails to keep φl next
to the hopper wall constant, as is the case in Fig. 3(b), which
reciprocally further reduces φl next to the hopper wall below
the obstacle. Therefore, φE

l /φE
lo cannot reach a high enough

value with a still fast vE
y /vE

yo to create a flow rate enhancement.
In Fig. 6(b2), we plot φl under the obstacle with a fixed

H/d = 13.612 but different strengths of the artificial merging
strategy with m = 1.0, 1.2, and 1.4, labeled as 1, 2, and 3 in
Figs. 5(a2) or 6(a). The value of φl again decreases monoton-
ically from the narrowest points between the obstacle and the
two hopper walls to somewhere below the obstacle. Compared
with particles subject to an isotropic horizontal αx = m = 1,
φl of particles with m = 1.2 is smaller in the vicinity below
the obstacle but soon grows above all the way toward the
exit. The rise of φl is more effective than the slight drop of
vy to lead to the flow rate enhancement. When we overdo the
artificial merging strategy with an m = 1.4, φl grows much
more severely toward the exit and even exhibits a sudden
drop before the exit, destroying the flow rate enhancement,
similar to the after-peak case 3 presented in Fig. 3(b). In
addition, we plot φl next to the hopper wall with the dotted
lines, whose value with m = 1.0 decreases monotonically,
as we have seen previously. In contrast, both the cases with
m = 1.2 and 1.4 decrease only initially but then increase, but
a sudden drop close to the exit is detected when overdoing the
artificial merging strategy with an m = 1.4. We notice that the
nonlinear variation of φl near the hopper exit with increasing
m closely resembles the trend found before, at, and after
an enhanced flow rate peak by moving the obstacle up in a
hopper discharging isotropic particles, as shown in Fig. 3(b).

Focusing on the particle data with an anisotropic αx col-
lected in the shaded space in the inset of Fig. 6(b1), we go
one step further to quantitatively examine the complemen-
tary cumulative distribution function P(n � ν) with respect
to m, which gives the probability of randomly finding an n
no smaller than ν [17]. The value of n represents particles
that successfully or unsuccessfully update their positions ns or
|n f | times. We perform the calculation using 990 000 position-
update cycles after a system forgets its initial state. We also
calculate the corresponding Nt/Nt

0, where Nt is the total num-
ber of successful-type particles Ns or failed-type particles N f

counted while building P(ns � ν) or P(|n f | � ν), and Nt
0 is

the same quantity with m = 1.0 used for normalization. The
resulting P(n � ν) of the three selected cases with the same
H/d , labeled as 1, 2, and 3 in Figs. 5(a2) or 6(a), are shown in
Fig. 7(a). As m increases from 1.0 to 1.2, the range of ν with
P(|n f | � ν) between 0.1 and 1.0 barely expands, meaning that
about 90% of the motionless particles do not experience a
higher failure rate of updating their positions. On the other
hand, P(ns � ν) shows an overall increase, which leads to the
improved flow rate. As m increases again from 1.2 to 1.4,
P(ns � ν) shows no significant increase while P(|n f | � ν)
notably increases, resulting in the drop of the flow rate. The
plot of Nt/Nt

0 against m directly confirms this observation, as
shown in Fig. 7(b). Compared with the case of m = 1.0, the
case of m = 1.2 has its number of failed particles N f reduced
by about 15% and number of successful particles Ns increased
by about 5%. These numbers are also superior to those of the
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FIG. 8. Normalized hopper flow rates Ja/Jo measured at the exit
of a hopper with θ2 = θ1 and containing a round obstacle with a
hollow duct of width Wd = 0.0d (dark green), 1.5d (cyan), 2.0d
(pink), 2.5d (dark purple), 3.0d (navy), and 4.0d (purple). The total
number of particles in the system N = 2048, the driving strengths
αx = 1.0, αy = 0.333, and the speed-up rate rs = 1.0.

case with an m = 1.4, which have almost no improvement on
Ns but a dramatic increase in N f by almost 20%.

D. The sensitivity of particle concentration mechanism
within the space below the obstacle

To understand if simply filling the available space under
the obstacle can also improve the flow rate, we introduce
a different obstacle with a hollow duct of width Wd > d .
The hollow duct offers a shortcut that allows particles to
arrive at the available space below the obstacle more quickly,
potentially leading to a more efficient particle concentration
mechanism. The results are shown in Fig. 8. Counterintu-
itively, this approach has very limited effect on improving
the flow rate, except when the duct width is very narrow with
Wd = 1.5d . Much wider duct widths (Wd > 1.5d) that allow
more particles through can even have a negative influence on
the enhanced flow rate. This approach probably hinders the
original particle concentrating process due to particle exclu-
sion upon collision. Additionally, particles passing through
the uniform duct are subject to little concentrating assistance.
Assigning an anisotropic αx to particles below the obstacle,
on the other hand, is a more effective strategy which improves
the concentrating efficiency by directly reducing the collision
probability between particles and the hopper.

E. Investigating factors related to the waiting room effect

The waiting room effect, wherein particles are first slowed
down by the obstacle and then speed up due to the external
driving force within the triangular-ish void space between the
obstacle and the hopper exit, has been suggested to be respon-
sible for the enhanced flow rate. Here we examine the factors
related to the waiting room effect with the Tetris-like model
by looking at its components one by one, namely the size of
the void space, particle speed-up rate, and exit geometry of
the hopper.

1. The size of the waiting room

To understand the effect of the triangular-ish void space
on the enhanced flow rate, we replace the round obstacle by

FIG. 9. Normalized hopper flow rates Ja/Jo measured at the exit
of a hopper with θ2 = θ1 = 0.4325, and containing an obstacle com-
posed of a semicircle and an isosceles triangle with an area At and
an angle to the vertical θo = 0.7850 (dark green), 0.4325 (cyan),
0.40 (pumpkin), 0.38 (dark purple), 0.36 (navy), 0.34 (purple), and
0.32 (red). The total number of particles in the system N = 2048,
the driving strengths αx = 1.0, αy = 0.333, and the speed-up rate
rs = 1.0. The insets are three representative system setups whose
Ja/Jo is at a peak value (denoted by the arrows), with the net waiting
room area Aw = Am

w − At > 0 (A), = 0 (B), and <0 (C), where Am
w

is the maximum waiting room area (dashed triangles). The light
green area in diagram (C) indicates the shrinking geometry from the
obstacle to the hopper exit.

one composed of an identical upper semicircle and a lower
triangle with an area At and an angle θo measured from the
vertical, as shown in Fig. 9. We keep the shape of the upper
half of the obstacle unchanged so that we can focus on the
size of the waiting room, which is controlled by the lower
half of the obstacle. When θo = π/2, At = 0. We define the
maximum waiting room area Am

w as the space circumscribed
by the lower boundary of the semicircle and the two lines
parallel to the hopper walls, as indicated by the dashed triangle
in the insets of Fig. 9. The net waiting room area is found by
deducting the area occupied by the lower triangle of the obsta-
cle, Aw = Am

w − At . It decreases with decreasing θo because of
the associated increase of At . We tested seven different values
of θo between 0.7850 and 0.32. When θo = 0.7850, the area
of the composite obstacle can be fully encompassed by the
round obstacle used before. We monitored the corresponding
normalized flow rate Ja/Jo and observed that a flow rate peak
appears in all the tested cases. We can see that the value of the
flow rate peak decreases slightly as Aw changes from positive
with θo = 0.7850 to zero with θo = θ1 = 0.4325, showing that
the waiting room size affects the enhanced flow rate but is not
essential to it. Surprisingly, as we further decrease θo to about
0.36 the value of the flow rate peak increases and reaches an
optimum with Aw < 0, where the widths of the two channels
between the obstacle and the hopper walls gradually shrink
and particles must become more concentrated while flowing
through them. Similar results with Aw < 0 and Aw > 0 have
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been reported experimentally and numerically using frictional
particles in a quasi-2D hopper governed by Newtonian dy-
namics [6]; however, here we test the case of Aw = 0 and leave
all other factors untouched. It is clear that eliminating the
waiting room by reducing its area to zero does not completely
annihilate the enhanced flow rate peak but only affects its
magnitude.

Our test shows that we can create an enhanced flow rate
even though the size of the waiting room is reduced to zero.
To examine if the mechanism in Sec. III B can still explain
the phenomenon in this setup, we consider the lower box
of Fig. 10(a1). Here, we plot the measured Ja/Jo again with
the waiting room area Aw = 0 and θo = 0.4325 (copied from
Fig. 9), its measured φE

l /φE
lo and vE

y /vE
yo, and the calculated

JE
a /JE

o .
Our results show that φE

l /φE
lo and vE

y /vE
yo at the hopper

exit follow identical patterns of monotonically increasing and
decreasing, respectively, when the obstacle is placed further
away from the hopper exit, as we have seen in Fig. 3(a).
Similarly, the flow rate peaks where the characteristic tran-
sition in Fig. 3(a) happens. The results confirm the validity
of the particle concentration mechanism. In the upper box of
Fig. 10(a1), we plot vBN

y /vE
yo, which exhibits a plateau similar

to the one in Fig. 3(a). We also plot the corresponding local
area packing fraction φl under the obstacle in between y =
[0, H] in Fig. 10(a2). The variation of φl becomes noticeably
smaller but still visible after we eliminate the waiting room
area in Fig. 3(b). The visible variation of φl may suggest
interparticle spatial fluctuations, even though the widths of
the channels between the obstacle and the hopper walls stay
constant. Similar spatial fluctuations in packing fraction have
been reported both experimentally and numerically in a hop-
per or silo discharging frictional granular materials [18–21].
Before or after the flow rate peak, the value of φl decreases or
increases monotonically from the narrowest points between
the obstacle and the two hopper walls to somewhere above
the lowest point of the obstacle. At the flow rate peak, the
variation of φl is the smallest but also the most complicated.
After the lowest point of the obstacle and immediately before
the hopper exit, φl increases in all three cases due to the
merging of the two channels and decreasing of the available
space to the particles. In addition, by plotting the instanta-
neous particle x and y positions under the obstacle for the case
of the maximum flow rate enhancement, we can see the related
fluctuation of φl on a particle scale, as shown in Fig. 10(a3).

Likewise, in Fig. 10(b1), we plot φl with Aw < 0 and
θo = 0.36. The shrinking geometry from the obstacle to the
hopper exit increases the degree of fluctuation of φl which
also reflects on the particle x and y position scatter plot in
Fig. 10(b2). These results of φl with Aw = 0 and Aw < 0
show that as long as φl can reach a value between 0.5 and
0.6 upon reaching the hopper exit, a flow rate enhancement
can be achieved and the intermediate fluctuation of φl is not
essential to the peaking phenomenon.

2. The acceleration of particles within the waiting room

The second factor associated with the waiting room effect
is the acceleration of particles in the direction aligned with the
external driving force such as gravity. This factor is expressed

FIG. 10. (a1) The same plot as Fig. 3(a), except the waiting room
area Aw = 0 and θo = 0.4325. (a2) φl in between y = [0, H ] for
cases labeled as 1 (dark green), 2 (pink), and 3 (navy) in panel (a1)
and in the inset. The horizontal dashed lines indicate the lowest y
positions of the obstacle. (a3) The corresponding instantaneous x and
y position scatter plot of particles in the shaded zone with the same
y range for case 2 in panel (a2). The plot is obtained by overlapping
99 snapshots, each separated by 10 000 position-update cycles. [(b1),
(b2)] The same plots as in panels (a2) and (a3), except θo = 0.36.

by the term rns
i

s in Eq. (1), where a greater than unity rs

is the speed-up rate that allows particle i, after successfully
updating its position ns

i times, to move farther during the next
position-update cycle. We test the concentration mechanism
in Sec. III B with a larger rs = 1.01 and show that it can
still explain the flow rate enhancement even with particle
acceleration, as seen in Fig. 11. Both vBN

y /vE
yo and Ja/Jo locally

peak at the same value of H/d , similar to the transition from
the free-flow regime to the congested-flow regime where the
waiting room effect happens [4].
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FIG. 11. The same plot as Fig. 3(a) with αx = 1.0, αy = 0.333,
and N = 2048, but a larger rs = 1.01, which allows a particle
successively updating its position to move farther during the next
position-update cycle.

Including rs = 1.01, we also tested three other values of
rs from 1.02 to 1.04 and compared the obtained normalized
flow rate Ja/Jo with that of rs = 1.00, the condition with no
particle acceleration. The results are shown in the lower box
of Fig. 12(a). We can see that both the peak value and the
range of H/d of the enhanced flow rate increase with a milder
rise of rs = 1.01 and 1.02. However, using an even higher
particle speed-up rates toward the hopper exit (rs > 1.02) has
a negative impact on the flow rate peak value, as shown by the
decreases in the two measured quantities. This decline may
also be attributed to a higher collision frequency when more
particles accelerate toward the hopper exit. In the upper box of
Fig. 12(a), we plot vBN

y /vE
yo, which plateaus with an rs = 1.00

or peaks with an rs > 1. Four representative snapshots with
an rs = 1.03 are shown in Fig. 12(b1)–12(b4). The peaks of
vBN

y /vE
yo happen ahead of those of Ja/Jo with increasing rs,

which indicates that upstream particles subject to stronger
acceleration can detect downstream particles partially block-
ing the hopper exit earlier. Thus, the corresponding peak of
vBN

y /vE
yo, signaling the downstream-upstream coupling, also

occurs earlier, as shown in Fig. 12(b2).

3. The geometry of the hopper exit

Lastly, we assess whether shrinking the geometry of the
void space from the obstacle to the hopper exit can effectively
assist the particle concentration mechanism and the flow rate
enhancement. We test this by varying the exit angle θ2 of a
hopper with a round obstacle placed at a fixed position where
a flow rate peak appears. Here, we chose the system with
N = 2048, αx = 1.0, αy = 0.333, and rs = 1.0 so that Ja/Jo

peaks at H/d = 13.612, as previously shown by the black
line in Fig. 2(a1). The results are shown in Fig. 13(a). We
find that the value of the flow rate peak drops immediately
as soon as the hopper walls become uneven with an opening
hopper exit, represented by θ2/θ1 < 1.0, where θ1 is the fixed
hopper angle. These results prove that the shrinking geometry
is crucial, a conclusion that can also be inferred from the
particle concentration mechanism in Sec. III B. In contrast,

FIG. 12. (a) The lower box shows a plot of normalized hopper
flow rates Ja/Jo measured at the exit of a hopper with θ2 = θ1,
containing a round obstacle. The upper box shows a plot of normal-
ized averaged particle velocity vBN

y /vE
yo, measured at bottleneck yc =

H − 0.015L (yellow region in the inset). The driving strengths αx =
1.0 and αy = 0.333, and N = 2048. The speed-up rate rs = 1.00
(dark green), 1.01 (cyan), 1.02 (pink), 1.03 (dark purple), and 1.04
(navy). The lower and upper horizontal axes are normalized obstacle
position H/d and normalized bottleneck width WBN/d , respectively.
[(b1)–(b4)] Representative snapshots of the system, similar to Fig. 4,
illustrating the four cases indicated by arrows in panel (a).

if θ2 is varied in the opposite direction to become uneven
with a closing hopper exit, represented by θ2/θ1 > 1.0, there
exists a very narrow range of θ2/θ1 between 1.0 and 1.029
that further enhances the peak of Ja/Jo from the flat hopper
design. Beyond that, no enhanced flow rate, Ja/Jo � 1, is
observed due to the high clogging probability produced by
the increasingly narrow hopper exit. In Fig. 13(b), we plot φl ,
below the obstacle and next to the hopper wall within a stripe
of width wb, of three selected θ2/θ1 � 1 labeled in Fig. 13(a).
The results show that if θ2/θ1 < 1, φl in this region cannot
maintain a constant value and decreases monotonically, again
confirming the necessity of the shrinking geometry of the
hopper exit for creating a flow rate peak.
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FIG. 13. (a) Normalized hopper flow rate Ja/Jo measured at the
exit of a hopper with its exit angle θ2 variable, containing a round ob-
stacle placed at H/d = 13.612, and N = 2048. The driving strengths
αx = 1.0, αy = 0.333, and the speed-up rate rs = 1.0. The green
vertical line indicates where θ2 equals the hopper angle θ1 = 0.4325
and the two hopper walls are flat. The inset is an enlargement of
the red dashed region. (b) Averaged local area packing fraction φl

in the shaded zone in between y = [0, H ] and next to the hopper
wall within a stripe of width wb ≈ 3.669d , as shown in the inset.
The three selected cases correspond to those identified in panel (a):
θ2/θ1 = 1.0 (pink), ≈0.925 (dark purple), and ≈0.694 (brown). The
horizontal dashed line indicates the lowest y positions of the obstacle.

In Sec. III C, we created an enhanced flow rate peak in
a system with αy = 0.439 that originally exhibits no such
phenomenon using an anisotropic αx below the obstacle. Al-
though effective, the strategy could be criticized for being
artificial and difficult to reproduce and verify experimentally.
Here we create a flow rate peak again in the same system
by narrowing the hopper below the obstacle, a setup which
is more practical. We show the enhanced Ja/Jo in Fig. 14(a),
where the value of Ja/Jo increases from 0.94 to 1.01, or by
about 7%, when θ2/θ1 increases from 1.0 to 1.058. It should be
noted that Jo used for normalization decreases with increasing
θ2 because the hopper opening becomes narrower. Therefore,
this method is inherently at a disadvantage as it does not
enhance the unnormalized flow rate Ja. In Fig. 14(b), we plot
φl of three selected cases with increasing θ2 before, at, and
after the peak of Ja/Jo, as labeled in Fig. 14(a). Once again,
we find a familiar variation of φl at the hopper exit, similar
to those shown in Figs. 3(b), 6(b2), 10(a2), 10(b1), and in our
previous study [14]. The value of φl at the hopper exit when
a peak of Ja/Jo occurs is between 0.5 and 0.6 in all studied
cases.

FIG. 14. (a) The same plot as Fig. 13, except αy = 0.439. (b) Av-
eraged local area packing fraction φl in the shaded zone in between
y = [0, H ], as shown in the inset, of the three selected cases labeled
in the inset of panel (a), where the value of θ2 is at 1 (dark green), 2
(pink), and 3 (navy). The horizontal dashed line indicates the lowest
y position of the obstacle.

IV. CONCLUSIONS

We investigate the phenomenon of the flow rate enhance-
ment in a hopper discharging athermal granular particles
passing an obstacle placed near its exit. Several compet-
ing mechanisms, such as interparticle collaborative motion
and particle acceleration due to gravity are potentially re-
sponsible for the phenomenon. To separate these competing
mechanisms, we leverage a probabilistic 2D Tetris-like model,
where particles move without creating overlaps between ob-
jects in the system by following a position-update algorithm
without Newton’s equations of motion. Our model preserves
only the minimal dynamics necessary to investigate parti-
cle motion within the free space below the obstacle with or
without acceleration due to an external driving force, such as
gravity.

The enhanced flow rate phenomenon still occurs in our
probabilistic model that switches off interparticle collabora-
tive motion. We find that the peaking phenomenon is limited
to a system of at least a few hundred of particles that pass
through the channels between the obstacle and the hopper
walls, and then concentrate below the obstacle on their way
out of the hopper. Adjusting the height of the obstacle in the
hopper can reduce the amount of particles passing through the
channels between the obstacle and hopper walls and in turn
decrease the particle packing fraction at the hopper exit. Parti-
cles of lower packing fraction exited the hopper more quickly.
The flow rate enhancement can be explained by the above
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mechanism if an obstacle is placed at an optimal distance
away from the hopper exit that mildly reduces the particle
packing fraction in exchange for a faster discharging velocity.
In all studied cases, the value of the local area packing fraction
φl at the hopper exit when a flow rate peak occurs is within
a range of 0.5 and 0.6, which corresponds to the character-
istic transition from φE

l < φc
o to φE

l > φc
o, where φc

o ≈ 0.55
is a characteristic area packing fraction for the parameters
chosen in this study. Too small φl implies ineffective particle
concentration mechanism, while too large φl suggests inter-
particle repelling and/or clogging, which are both unfavorable
to enhancing the flow rate. The characteristic transition sug-
gests that particles unable to update their positions form
a cluster (two particles near to each other are treated as
clustered) that spans the hopper exit, as discussed in the
Appendix.

Based on our findings, we then utilized the concentration
mechanism by artificially requiring particles below the ob-
stacle to preferably move away from the hopper walls in the
horizontal direction. We proved that this strategy can further
amplify the value of the flow rate peak of weakly driven
particles or even create one in a relatively strongly driven
system that originally exhibits no peaking phenomenon. This
confirms that the particle concentration mechanism at the hop-
per exit is indeed responsible for the flow rate enhancement.
Although artificial, it is possible to test the anisotropic merg-
ing strategy experimentally using granular particles guided by
engraved guidelines on a 2D hopper surface or using metal-
lic particles responding to an external magnetic field [22].
Adding a shortcut path through the obstacle which allows par-
ticles to directly move toward the hopper exit interferes with
the particle concentration mechanism and generally degrades
the enhanced flow rate phenomenon.

Finally, we investigate the factors related to the waiting
room effect by decomposing it into three parts: the void space
below the obstacle, particle speed-up rate, and the exit geom-
etry of the hopper. The waiting room effect, wherein particles
are slowed down by the obstacle and then speed up within the
void below it, is believed to contribute to the higher flow rate
observed in the peaking phenomenon. Our results show that
a flow rate peak still exists even when the defined void space
of the waiting room has been reduced to zero and, more im-
portantly, can be explained by the concentration mechanism.
Moreover, the enhanced flow rate can be augmented even
further if the channels between the obstacle and the hopper
walls have a shrinking geometry toward the hopper exit. There
also exists a narrow range of particle speed-up rate or hopper
exit angles by which an existing flow rate peak can be further
improved. The latter can also be utilized to create a flow rate
peak manually.

All of these results support the conclusion that the con-
centration mechanism at the hopper exit alone can create the
hopper flow rate enhancement, even if the waiting room effect
is eliminated. However, in an experimental setup contain-
ing frictional granular particles, the concentration mechanism
and the waiting room effect likely coexist, and in tandem
give rise to the flow rate peaking phenomenon. We hope
the results of our Tetris-like model can motivate theoretical
work. We believe the particle concentration mechanism can
be used for designing hoppers that discharge granular parti-

FIG. 15. (a) Averaged particle velocity vE
yo (black circles), mea-

sured at yc = 0.03125L = 1.25d and normalized by vE
yo (max) at

φo (max) ≈ 0.66, in a square hopper of side L and a hopper angle
θ1 = 0. The calculated normalized flow rate (red squares) is obtained
using JE

o /JE
o (max) = (vE

yoφo)/(vE
yo (max)φo (max) ). The driving strengths

αx = 1.0, αy = 0.333, and the speed-up rate rs = 1.0. A sudden
slowdown of vE

yo which creates a local peak of JE
o occurs when

φo > φc
o ≈ 0.55. Particles discharged from the hopper reenter it from

its top boundary [red horizontal line in (b1)] with their x positions
randomized. [(b1)–(b3)] Representative snapshots of the system as
Fig. 4, except for the three cases indicated by arrows in panel (a),
and �y = 0.0625L = 2.5d . Each mean and its error bar are obtained
using 10 trials.

cles more efficiently and expect there to be broad industrial
applications.
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APPENDIX : GENERAL FLOWING PROPERTY
OF TETRIS PARTICLES

In all studied cases, we observe that the range of local φl

at the hopper exit is between 0.5 and 0.6 when a peak of Ja/Jo

occurs. To understand if this specific range of φl is related
to a more intrinsic property of Tetris particles without the
influence of an obstacle or the shrinking hopper geometry, we

062904-12
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chose a square hopper containing no obstacle with a hopper
angle θ1 = 0, equivalent to a channel of constant width. In
this setup, we can define a global area packing fraction φo as
the ratio of the total area of particles in the hopper to its size.
We measure the averaged particle velocity vE

yo at the hopper
exit and calculate the corresponding flow rate JE

o = φov
E
yow

E ,
where wE = L is the constant hopper width. Both quantities
are normalized by their values at φo (max) ≈ 0.66. The results
with driving strengths αx = 1.0, αy = 0.333, and the speed-up
rate rs = 1.0 are shown in Fig. 15.

In Fig. 15(a), we can see that vE
yo exhibits a sudden slow-

down when φo exceeds a characteristic area packing fraction
φc

o ≈ 0.55. The value of φc
o decreases slightly by a few per-

cent if αy increases from 0.333 to 0.439. Simultaneously, JE
o

shows a peak right before φo > φc
o. In Figs. 15(b1)–15(b3), we

show the representative snapshots of the three selected cases

before, at, and after φc
o, labeled as 1, 2, and 3 in panel (a).

Particles are colored in blue by n f or in red by ns accord-
ing to their consecutive failed or successful position-update
history. When φo < φc

o, we can see that particles unable to
update their positions (with a nonzero n f ) form small and
local clusters randomly distributed in the hopper. On the other
hand, when φo > φc

o, particles of nonzero n f form a cluster
across the system, especially along the flow direction. The
phenomenon of the sudden slowdown due to an increasing φo,
and the ensuing frequent failures of particle position-update
and system size comparable clustering behavior, seem to be
similar to the transition to slow dynamics where touching or
nearly touching particles form a network in a system governed
by Newtonian dynamics [23,24]. An investigation to fully
quantify this phenomenon of Tetris particles is left for future
exploration.
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