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Accurate buoyancy and drag force models to predict particle segregation in vibrofluidized beds
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The segregation of large intruders in an agitated granular system is of high practical relevance, yet the accurate
modeling of the segregation (lift) force is challenging as a general formulation of a granular equivalent of a
buoyancy force remains elusive. Here, we critically assess the validity of a granular buoyancy model using a
generalization of the Archimedean formulation that has been proposed very recently for chute flows. The first
model system studied is a convection-free vibrated system, allowing us to calculate the buoyancy force through
three different approaches, i.e., a generalization of the Archimedean formulation, the spring force of a virtual
spring, and through the granular pressure field. The buoyancy forces obtained through these three approaches
agree very well, providing strong evidence for the validity of the generalization of the Archimedean formulation
of the buoyancy force which only requires an expression for the solid fraction of the intruder, hence allowing for
a computationally less demanding calculation of the buoyancy force as coarse graining is avoided. In a second
step, convection is introduced as a further complication to the granular system. In such a system, the lift force is
composed of granular buoyancy and a drag force. Using a drag model for the slow-velocity regime, the lift force,
directly measured through a virtual spring, can be predicted accurately by adding a granular drag force to the
generalization of the Archimedean formulation of the granular buoyancy. The developed lift force model allows
us to rationalize the dependence of the lift force on the density of the bed particles and the intruder diameter,
the independence of the lift force on the intruder diameter, and the independence of the lift force on the intruder
density and the vibration strength (once a critical value is exceeded).

DOI: 10.1103/PhysRevE.103.062903

I. INTRODUCTION

Segregation is commonly observed in granular materials
that contain a mixture of particles that differ in size [1–4],
density [5,6], shape [7] or mechanical properties (friction,
elasticity) [8,9]. A fundamental understanding of the physics
behind segregation in granular materials is not only a scientific
curiosity [10–12], but also of high relevance for practice. In
practical applications such as the mixing of pharmaceutical
ingredients [13], the filling (and discharge) of hoppers [14],
or the transport of granular media through agitation (e.g.,
vibration) from one processing unit to the other [15,16], size
- and density-induced segregation is unavoidable and has
to be controlled or at least minimized when designing unit
operations or granular conveyer systems. In most industrial
applications such as the food or pharmaceutical industries
a well-mixed state is desired and indeed critical to ensure
the desired product specification, hence an in depth under-
standing of the parameters controlling segregation is critical.
Besides the industrial relevance of segregation, it also prevails
in dynamic natural phenomena such as debris flow [17]. A
well-studied segregation phenomenon is the so called “Brazil
nut phenomenon” (BNP) [18], which describes the upward
motion of an intruder in a vibrating granular bed, where the

*These authors contributed equally to this work.

intruder diameter is larger than the diameter of the bed parti-
cles.

A. Qualitative models

Depending on the vibration strength, the BNP can be ratio-
nalized by one of the following two models: The first model
is valid for low vibration strengths (typically low or even
irregular vibration frequency); the upward migration of the
intruder is explained by the arch (or vault) effect, whereby
upon an upward movement of the intruder, voids are formed
at the bottom part of the intruder. A new, higher, intruder
position in the bed is stable if the large intruder is supported
by at least two particle contacts below its center of gravity
(two-dimensional case). Small bed particles are able to easily
fill the voids below the intruder leading to a continuous up-
ward motion of the intruder through a series of stable intruder
“jumps.” This explanation has been termed also the percola-
tion model [1,18–21]. In such a segregation regime, a critical
minimal size of an intruder compared to the bed particle size
is required to trigger segregation [19–21] and the rise velocity
of the intruder increases with increasing intruder size [19].
According to the second model, which is valid under con-
ditions of high vibration strength (typically a high vibration
frequency), a convection cell establishes in the vibrating bed.
This convection cell carries the intruder upward in the center
of the bed, leading to a rise velocity of the intruder that is
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independent of the ratio of the intruder size to bed particle
size [22]. The region of downward particle motion at the
walls is thin, making it impossible for the large intruder to be
convected downward once it has reached the top surface of the
bed [19,23]. Depending on the type and strength of agitation
of a granular bed, the intruder size [1,19,24] and/or density
[25–27] is known to affect the tendency for segregation. In
general, bigger and lighter intruders segregate more favorably.

B. Quantitative models

In recent years, attempts have been made to develop not
only qualitative, but also quantitative segregation models,
which requires a hydrodynamic description of a segregating
granular bed. So far, no model has been found which describes
a segregation force on an intruder that is generally applicable.
Instead, separate models have been developed which are only
applicable to either dilute [28,29] or dense granular systems
[4,7,30]. Additionally, among the models for dense systems
one finds different models for either sheared systems, i.e.,
systems with convective particle motion, or vibrated systems
with no inherent convective motion.

1. Buoyancy force in dilute vibrated systems

In this context, Shishodia and Wassgren [27] modeled the
segregation of intruders in a two-dimensional (2D) vibroflu-
idized bed using the discrete element method (DEM), i.e., a
Lagrangian modeling approach that is related to molecular
dynamics simulations. They considered a shallow bed, i.e., the
ratio of the bed height to width was <1, that contained fric-
tionless particles. A consequence of this dilute vibrated bed
was that the vertical granular pressure gradient was constant
only over a very small height, with increasing and decreasing
pressure gradients with a vertical position below and above the
center of the bed, respectively. Shishodia and Wassgren [27]
observed that upon vibration the intruder reached an equilib-
rium position within the bed. At the equilibrium position, the
downward directed gravitational force is balanced by a net lift
force due to particle-intruder contacts. The vertical position of
the equilibrium position of the intruder was found to increase
with increasing vibration strength, decreasing density ratio of
the intruder to the bed particles, and increasing coefficient of
restitution. Subsequently, Shishodia and Wassgren [27] devel-
oped a hydrodynamic model of the granular system to predict
the equilibrium position of the intruder, whereby a buoyancy
force Fb, which balances the intruder weight, arises from the
net pressure in the system:

Fb =
∮

p · nds. (1)

In a 2D granular system, the (granular) pressure is P =
1/2(τs,xx + τs,yy + τc,xx + τc,yy), where τs,xx and τs,yy are the
streaming normal stresses and τc,xx and τc,yy are the collisional
normal stresses [27,31]. In two dimensions, the streaming
normal stresses are given by τs,xx = ρpφ〈u′ 2〉 and τs,yy =
ρpφ〈v′ 2〉 , where ρp is the particle density, φ is the mean
solid fraction, and u′ and v′ are the velocity fluctuations in
the horizontal and vertical directions, respectively. Here, 〈 〉
denotes a temporal average. The collisional normal stresses

are given by τc,xx= �rpJ·ex

W �ybin�t and τc,yy= �rpJ·ey

W �ybin�t [27], where
rp is the radius of the bed particles, J is the momentum
exchange during a collision, W and �ybin are the width and
height of the sampling bin, respectively, and ex and ey are
the unit vectors along the x and y directions. The summation
is performed over all collisions occurring within time �t in
a given bin. Shishodia and Wassgren [27] postulated that at
equilibrium, the pressure force acting on the intruder (i.e.,
buoyancy) balances the particle weight, yielding (in a 2D
system)

d p

dy
= −mI g

πd2
I

= −ρI g, (2)

i.e., an intruder that is larger than the bulk particles will rise up
to the position where the pressure gradient equals –mI g/πd2

I ,,
where mI and dI are the mass and diameter of the intruder,
respectively. This model relies on the assumption that the
presence of an intruder does not affect the pressure field of the
system that is established without the presence of an intruder.
Using Eq. (2) in combination with a given pressure profile
in the granular bed, the equilibrium position of an intruder
can be calculated. When the mass of the intruder becomes too
large (to be supported by the pressure gradient), the intruder
sinks to the base plate and oscillates synchronously with the
base plate. However, Shishodia and Wassgren [27] noted that
the findings of their model might not be readily extrapolated
to deep granular beds due to a large number of nonbinary
contacts, the possible occurrence of convective patterns, and
the effects of an interstitial fluid.

2. Lift force in dense sheared systems

More recently, also the hydrodynamic modeling of segre-
gation in dense shear flows has attracted appreciable interest
[30,32–34]. For example, Guillard et al. [30] proposed scaling
laws for the segregation force acting on single intruder in 2D,
dense shear flows. In their shear flow simulations, the particles
were modeled by DEM with the gravitational vector varying
from vertical to horizontal directions. The segregation (or lift)
force was measured via a virtual spring and was found to be
proportional to the pressure gradient and shear stress gradient
(i.e., buoyancylike forces), viz.,

Flift = −πd2
I

4

(
F

∂ p

∂y
+ G

∂|τ |
∂y

)
, (3)

where F and G are empirically derived functions of the
friction coefficient μ = |τ |/p and size ratio dI/dp. Interest-
ingly the segregation force was found to have a maximum
at dI/dp ∼ 2 and switching off gravity resulted in a zero
segregation force owing to a uniform pressure distribution in
the bed.

van der Vaart et al. [34] followed up on the work of Guil-
lard et al. [30] aiming to shed more light on the origin of the
segregation (lift) force in 3D monodisperse, dense shear flows.
Unlike Guillard et al. [30], van der Vaart et al. [34] modeled
the segregation force acting on the intruder Flift as the sum
of a Saffman-like lift force and a generalized buoyancy force
that depends on the ratio of the diameter of the intruder to the
diameter of the bed particles, i.e., Flift = Fsaff + Fb, where Flift

is the total lift (segregation) force, Fb is the buoyancy, and Fsaff
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is the Saffman force. van der Vaart et al. [34] argued that the
granular buoyancy force arises from the hydrostatic pressure
acting on the Voronoi surface of the intruder, yielding a more
generalized expression of the buoyancy force [34], viz.,

Fb =
∮

pn · dS̃I = φρpg
∫

ṼI

dV

= φρpgṼI = φ

φI
ρpgVI , (4)

where S̃I is the surface of the Voronoi volume of the intruder,
ṼI is the Voronoi volume of the intruder, P is the hydrostatic
pressure, and n is the outward-directed normal vector to S̃I .
The Voronoi volume of a particle in a granular system is the
volume of a cell that contains all of the space that is closer
to the particle considered than any other particle. Equation
(4) differs from the classic Archimedean formulation of a
buoyancy force in a granular media, i.e., Fb = φρpgVI , as
it is a function of dI/dp (with Fb = mI g = Fg for dI/dp =
1). Using DEM simulations, the empirical equation φI =
(φ − 1)(dI/dp)c + 1 (c = −1.2 and φ = 0.577) was obtained.
Subtracting the granular buoyancy force from the contact
force Fc a granular Saffman-type lift (segregation) force was
obtained and expressed as Fsaff = −λxηbIθμ–0.5d2

I d–1
p sng(γ̇ ),

where λx = 〈vIx(t ) − vx(zI , t )〉 is the velocity lag of the in-
truder with respect to the bulk downstream flow, η = |τ |/γ̇ is
the granular viscosity, Iθ = γ̇ d/(P/ρ )0.5 is the inertial num-
ber, μ = |τ |/P is the bulk friction coefficient, γ̇ is the local
shear rate, and a is a fitting parameter.

3. Buoyancy in dense convection-free systems

In the systems described above (Sec. II) a shear flow has
been present. Hence, granular drag and/or forces arising from
velocity gradients might affect segregation making in turn
the elucidation of the contribution of the buoyancy force on
segregation challenging if not even impossible. An ideal sys-
tem to study segregation would be free of a convective flow
pattern. To avoid convection in a vibrated bed, Huerta et al.
[35] proposed an experimental setup to vibrate the lateral
walls of the bed such that adjacent walls move out of phase
(ϕ2 − ϕ1 = π ), ensuring an almost constant bed volume. In-
deed, Huerta et al. [35] could not observe any convective
patterns, which was probed by placing tracer particles. Sub-
sequently, Huerta et al. [35] measured the lift force (which is
equal to the buoyancy force in a convection or velocity-free
system) acting on the intruder using a dynamometer that was
connected with a wire to the intruder. Key observations of the
experimental work of Huerta et al. [35] were (i) the buoyancy
force becomes independent of � for � � �cr = 5, and (ii) the
buoyancy force follows Archimedes’ principle, i.e., buoyancy
is proportional to the volume displaced. However, fitting the
experimentally determined buoyancy force as a function of
the intruder volume VI gives a positive intercept for VI = 0,
which might suggest that a classic Archimedean formulation
of the buoyancy force underestimates the buoyancy force as VI

approaches small values. This observation was explained by
Huerta et al. [35] by the argument that when the intruder size
approaches the size of the bed particle, the intruder becomes
indistinguishable from the bed material and they suggested

that buoyancy only occurs for intruders that are “considerably
larger than the volume of the beads.”

4. Drag force in convective systems

However, in most of the naturally and industrially preva-
lent granular systems, convection is inherent. Hence, when
studying the segregation dynamics of intruders in such sys-
tems, the drag force acting in the opposite direction to the
(relative) intruder motion has to be considered. Generally, two
different drag regimes have been considered, viz., a slow- and
a rapid-velocity regime [36,37]. The motion of an intruder
in dense vibrating beds, i.e., the system considered in our
work, will typically fall into the slow-velocity regime in which
the drag force is independent of the relative intruder velocity.
Albert et al. give a commonly used drag force correlation for a
discrete object with a circular cross sectional area in the slow
flow regime [36,38] as

Fd = ηgρp(yh − y)d
2

I , (5)

where ρp is the density of the bed particles, dI is the diameter
of the intruder, yh is the filling height of the bed, y is the in-
truder position along the bed height, and η = B

√
32π2/27e2,

where e is the coefficient of restitution and B is a constant
depending on the surface properties, morphology, and packing
of the grains. The independence of the drag force on the in-
truder velocity in the slow-velocity regime has been confirmed
by Reddy et al. [39].

5. A general segregation force

Here we propose a segregation model, which is generally
applicable to dense systems, with and without convective mo-
tion. To this end, a model system is created where convection
can be turned on or off by switching friction between particles
and walls on or off. Switching wall friction on introduces an
upward convection in the center of the bed which in turn
leads to a drag force on the intruder. By subtracting the
buoyancy, which is determined by the generalized buoyancy
model, from the lift force, we could obtain the drag force, i.e.,
Fd = Flift − Fb, which suggests that the value of Fd depends on
the chosen buoyancy model. By confirming whether the drag
force agrees with the granular drag model, Eq. (5), we could
further verify and extend the applicability of the generalized
Archimedean principle in the system under consideration.

The first objective of our work is to probe numerically the
validity of a generalized Archimedean formulation, Eq. (4), to
describe a granular buoyancy force. Eq. (4) has been proposed
for chute flows and takes into account the solid fraction around
an intruder. To this end we use a model system, i.e., a vibrating
bed that is free from convection (zero wall friction). The vi-
brating bed is vibrated horizontally and the validity of Eq. (4)
is assessed by measuring the magnitude of the buoyance force
through a virtual spring force Fs via Fb = Fs + mg and through
its definition by integration of the stress tensor on the intruder
surface [Eq. (1)].

We subsequently expand our study to a system that con-
tains convection (by imposing friction to the side walls) which
inevitably introduces also a drag force that acts onto the
intruder. The drag force is determined by subtracting the
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FIG. 1. Illustration of the simulated granular system. An intruder
is immersed inside the granular bed and connected to a virtual spring.
The lift force is determined via the measured spring force, i.e., Flift =
− (Fs + Fg), where the spring force is calculated using Hooke’s law,
Fs = k�yey, where k is the spring stiffness of the virtual spring and
�y is the vertical displacement of the intruder compared to its initial
position. The sidewalls are vibrated such that the two walls (red wall)
opposite each other follow the displacement x(t ) = ±A0sin(ωt + φ1)
with A0 being the amplitude and f = ω0/(2π ) the frequency of the
excitation. The vibration of the other two side walls (blue wall) is
given by z(t ) = ±A0sin(ωt + φ2), hence adjacent walls move out of
phase by φ2 − φ1 = π .

buoyancy force [Eq. (4)], from the total lift force, i.e., Fd =
Flift − Fb and through a granular drag force formulation.

Using a granular drag force formulation, we are able to
correctly predict the segregation (lift) acting on an intruder
in a granular system and to correctly predict the dependence
of the lift force on a variety of system parameters, hence
providing a general modeling framework to predict the seg-
regation and buoyancy forces on granular intruders in dense
granular systems with and without convection, i.e., sheared
and vibrated.

II. METHOD

In this work, the system under investigation is a rectan-
gular bed containing 27 000 particles [Fig. 1]. To allow a
comparison with the experimental work of Huerta et al. [35]
the following particle mixture is used: a 50:50, bidispersed
mixture of glass beads of radii 1.5 and 2.0 mm (density of
2240 kg/m3). The length, width, and filling height of the
container are x = 0.107 m, z = 0.107 m, and y = 0.095 m,
respectively. The lateral walls of the container are excited
sinusoidally in the xz plane. Two walls opposite each other vi-
brate by imposing the displacement x(t ) = ±A0sin(ωt + φ1)
with A0 being the amplitude and f = ω0/(2π ) the frequency
of the excitation. The vibration of the other two side walls is
given by z(t ) = ±A0sin(ωt + φ2), hence adjacent walls move
out of phase by φ2 − φ1 = π . Such a vibration leads to an
almost constant square area (+/−0.07%) with time, avoiding
arguably the formation of convection patterns. Inside the bed,
an intruder is placed at the coordinates (0 m, 0.05 m, 0 m)
and the vibration is initiated at t = 0 s. The intruder diameter
was varied from 1.67d̄p to 12d̄p in the simulations, where d̄p

is 3.5 mm, which is the average bed particle diameter of the
system.

TABLE I. Material properties used.

Parameters Value

Poisson’s ratio of the particles 0.45
Restitution coefficient of particle-wall contact 0.6
Restitution coefficient of particle-particle contact 0.6
Shear modulus of wall-particle contact 5.0 × 106 Pa
Shear modulus of particle-particle contact 5.0 × 106 Pa
Time step 10–5s
Total simulation time 200 s
Friction coefficient for particle-wall contact 0.5
Friction coefficient for particle-particle contact 0.5
Normal contact stiffness 4.18 × 106 N/m

The vibration strength, � = A0ω
2
0/g, applied in this work

ranged from � = 2.51–60 (varied through changes in the
frequency while keeping the amplitude fixed at A0 = 1 mm).
The interactions between the particles were modeled via a
discrete element method (DEM) [40] using the open source
LIGGGHTS package [41]. A spring-dashpot model describes
the collisional forces (normal Fni j and tangential contact force
Fti j):

Fni j = √
δni jR∗(knδni jnn − ηnvni j ), (6)

Ft i j = √
δt i jR∗(−kt ui jnt − ηt vt i j ), (7)

where kn and kt are the spring constants in the normal
and tangential direction (given by kn = 4/3E∗ and kt =
8G∗, with E∗ = ([1 − v2

i ]/Ei + [1 − v2
j ]/Ej )–1 and G∗ =

([2 − v2
i ]/Gi + [2 − v2

j ]/Gj )–1 where Ei, j , vi j, and Gi j are
the particle’s Young’s modulus, the Poisson ratio, and the
shear modulus, respectively). Further, ηn and ηt are the
damping coefficients in the normal nn and tangential nt di-
rections, respectively. The overlap between two particles in
the normal direction is δni j = |ui − u j |�t , where ui and u j

are the velocities of the ith and jth particle at t0 and �t
is the time interval. The tangential displacement of a con-
tact is calculated as uti j = (uik − u jk )nn�t − (ω j (k+1)nk+2 −
ω j (k+2)nk+1)ri�t − (ωi (k+1)nk+2 − ωi (k+2)nk+1)r j�t , where
k rotates from x to z, ri and r j are the radius of the ith particle
and the jth particle respectively, and ω is the angular velocity.
The tangential contact force is limited by Coulomb’s law, i.e.,
|Fti j | � μ|Fni, j |. A summary of the values of the modelling
parameters used in this work is given in Table I.

To determine the segregation force acting on the intruder,
a virtual spring is used [30]. The virtual spring connects the
center of the intruder to its initial position (0 m, 0.05 m, 0 m)
(Fig. 1). In the system modeled (convection free), three forces
act on the intruder: (i) gravitation Fg, (ii) the force exerted by
the virtual spring Fs, and (iii) the lift force arising from the
contacts between the bed particles and the intruder (the lift
force is commonly also referred to as the segregation force)
[30,34]. Hence, at equilibrium the lift force acting on the
intruder is balanced by

Flift = Fc = −(Fg + Fs), (8)

where Fc is (the sum of) the contact forces acting be-
tween the intruder and the surrounding bed particles, Fs =
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FIG. 2. Vertical position of an intruder tracked over 200 s.
The dashed horizontal line corresponds to the equilibrium position
around which the intruder oscillates.

−k(y − y0)ey, with k being the stiffness of the virtual spring,
y is the average vertical position of the intruder for a given
setting, and y0 is the initial position of the intruder that is fixed
to y0 = 0.05 m. As an example, Fig. 2 plots the instantaneous
vertical position of an intruder as a function of time over
200 s.

From Fig. 2 we can observe that the intruder rises quickly
and reaches an equilibrium position, around which it oscillates
after ∼20 s. The values of the intruder position reported in
the following are the values obtained in this equilibrium state
(with simulations typically being performed over 200 s). To
assess whether the magnitude of the spring stiffness of the
virtual spring affects the numerical results, simulations were
repeated for varying values of k. As shown in Fig. 3 the lift
force is independent of the spring stiffness k for 5 N/m < k <

200 N/m, in agreement with a previous report [30]. The inset
in Fig. 3 plots �y = y − y0 of the intruder, normalized by
the intruder diameter, as a function of the normalized spring
stiffness of the virtual spring. The slope of this line, multiplied
by the diameter of the intruder dI and the normal stiffness

FIG. 3. Normalized segregation (lift) force as a function of the
spring stiffness k normalized by the stiffness of the interparticle
force, i.e., kn = 4.18 × 106 N/m. Inset: �y = y − y0 of the intruder
as a function of the normal spring stiffness of the virtual spring.

FIG. 4. Lift force versus vibrational amplitude A, × : � = 8.0,
dI/dp = 5 and � : � = 20.0, dI/dp = 7.

of the interparticle collisions kn, is equal to the spring force.
Owing to the very high linearity, the lift force acting on the
intruder can be determined via Eq. (8). In this work a constant
spring stiffness of k = 80 N/m was used for the virtual spring.

We further assessed the sensitivity of the determined seg-
regation force to the amplitude A and the angular frequency
ω of the vibration. Figure 4 confirms that the lift force is
not sensitive to the amplitude and angular frequency of the
vibration for a given vibrational strength �.

III. RESULTS

Prior to assessing the validity of the different granular
buoyancy models, we performed a sensitivity analysis of the
dependence of the lift force on the dimensionless vibration
strength �, as a minimal value of � is required to fluidize
the system [5,35]. Figure 5 plots the lift force [Eq. (8)] as
a function of �. Similar to the experimental observation of
Heuta et al. [35], we also observe that the lift force reaches
asymptotic values for � > 6 (inset of Fig. 5). The reason for a

FIG. 5. Lift force as a function of the volume of the intruder
for five different vibration strengths grouped as � = 2.51 < �cr and
� = 8.0, 20.0, 40.0, 60.0 > �cr where �cr = 6 is the critical vibra-
tion strength. Inset: Lift force as a function of vibration strength
(dI/d p) to determine �cr.
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FIG. 6. Profile of the solid volume fraction φ in the bed as a
function of the y direction for 8 < � < 60.

decreasing lift force for � < �cr is that under these conditions
only the regions close to the walls are fluidized whereas the
center of the bed is only poorly fluidized, leading in turn to
reduced segregation dynamics. Indeed, when Huerta et al.
[35] inserted two small intruders into a bed that was kept at
� < �cr (one intruder was placed close to the walls and the
other one in the center of the bed) the intruder closer to the
wall segregated faster to the top surface. Overall, the value of
�cr ∼ 6 as determined in our simulations is close to the exper-
imental value of �cr = 5 of Huerta et al. [35]. Once the bed
is completely fluidized, a further increase in � does not have
any appreciable effect on the lift force. Indeed, Fig. 5 confirms
that the magnitude of the lift force does not vary with � for
8 < � < 60. In addition to the lift force, also the solid fraction
in the bed (φ = 0.62) is largely unaffected by � when � > �cr

(Fig. 6). Overall the solid fraction is very homogeneous along
the height of the bed, except at the bottom, i.e., y < 0.02 m
and close to the surface, i.e., y > 0.075 m of the bed where
smaller values of φ are observed.

To probe the validity of the generalized Archimedean for-
mulation of the granular buoyancy force, Eq. (4), a system free
of convective patterns is critical to exclude the presence of any
additional forces, e.g., Saffman-type or drag forces. By setting
the friction coefficient for particle-wall contacts to zero, we
were able to establish an agitated (fluidized) system without
any convection pattern being present. Tracing some randomly
selected particles in the bed for 100 s, we could confirm the
absence of any coherent motion in the bed (Fig. 7). In the
absence of a convective pattern, the lift force Flift is equal to
the buoyancy force Fb and can be calculated by subtracting the
gravitational force of the intruder from the measured spring
force [Eq. (8)]. The buoyancy force calculated through Eq. (8)
can then be compared to the prediction of Fb via a gener-
alized Archimedean formulation [Eq. (4)] using the Voronoi
volume of the intruder ṼI . The Voronoi volume of the intruder
is illustrated in Fig. 8. The solid fraction of the intruder
φI is determined as the ratio of its (particle-based) volume
(VI = 1/6πd3

I ) and its Voronoi volume. Figure 8 shows that
when the intruder size approaches the size of the bed parti-
cles, φI approaches the bulk solid fraction of the bed, i.e.,
φI = 0.62. On the other hand, for very large intruder sizes,

FIG. 7. Temporal evolution of position r = (x2 + y2 + z2)0.5 of
randomly selected particles in the bed, when the friction coefficient
for wall-particle collisions is set to zero (� = 8.0).

φI approaches asymptotically to 1. The numerically derived
values of φI can be fitted well by the following functional
form: φI = (φ − 1)(dI/dp)c + 1 with c = −1.2. Our value of
c is slightly different than the value reported by van der Vaart
et al. [34] (c = −1.35) who studied, however, sheared systems
containing monodispersed particles.

Figure 9 plots a comparison of the buoyancy force
determined through the virtual spring [Eq. (8)] with the gener-
alized Archimedean formulation of a granular buoyancy force
[Eq. (4)]. The prediction obtained through the generalized
Archimedean principle [Eq. (4)] and the buoyancy force ob-
tained directly from the DEM simulations through the virtual
spring force [Eq. (8)] agree very well, while some deviations
are observed for high ratios of the intruder diameter to the
diameter of the bed particles (dI/dp = 7). This deviation is
most likely due to the fact that for such high aspect ratios the
upper part of the intruder (yI

∼= 0.076 m) is very close to the
bed surface, i.e., an area where the solid fraction of the bed
is reduced appreciably (see Fig. 6). The lower solid fraction
near the bed surface reduces the magnitude of the total contact

FIG. 8. Solid volume fraction of the intruder φI as a function of
dI/dp for � = 8, k = 80 N/m. The closed area around the intruder
which is bounded by a bold solid line gives the Voronoi volume ṼI of
the intruder.
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FIG. 9. Comparison of the generalized Archimedean formula-
tion of the granular buoyancy force [Eq. (4)] with the buoyancy
force determined by the virtual spring force Flift = − (Fs + mI g) in
a vibrated bed with � = 8.0.

forces on the upper part of the intruder (downward directed)
hence increasing artificially the buoyancy of the intruder.

Besides Eqs. (4) and (8) the buoyancy force can be deter-
mined also through its formal definition, i.e., by integrating
the pressure field over the (Voronoi) surface of the intruder
[27,30,34], i.e.,

Fb =
∮

pn · eydS̃, (9)

where S̃I is the Voronoi surface of the intruder. The coarse-
graining (CG) method is used to calculate the (granular)
pressure in the vibrated bed [42–44]. Here, we consider N
particles in a control volume (also termed coarse-graining
volume) whereby the center of mass of particle α is at rα (par-
ticle α moves with speed uα). In a granular media the stress
tensor σi j (r, t) is composed of the so-called kinetic stress
σ k

i j (r, t) and the collisional stress σ c
i j (r, t ), viz., σi j (r, t ) =

σ k
i j (r, t ) + σ c

i j (r, t ). The kinetic and collisional stresses are
given by, respectively [22],

σ k
i j (r, t ) =

N∑
α=1

mαu′α
i u′α

j (r, t ) × �[r − rα (t )], (10)

σ c
i j (r, t ) = −1

2

∑
α,β,α �=β

fi
αβ (t )r j

αβ (t )
∫ 1

0

�[r − rα (t ) + srαβ (t )]ds, (11)

where ui
′α is the velocity fluctuation of particle α with re-

spected to the average velocity Ū (r, t ) of the particles in
the coarse-graining volume. The vector rαβ = rα − rβ points
from the center of particle β to the center of particle α, f αβ

is the contact force acting between particles α and β, and
� is the coarse-graining (CG) function. In this work, we
use the Heaviside function �(r) = H (w − |r|)/V where V =
4/3πr3 is the coarse-graining volume and w is the coarse-
graining radius. The (granular) pressure P is obtained by
P = Tr(σii )/3 [22].

FIG. 10. (a) Granular pressure profiles in the vibrated bed along
the vertical y direction. (b) Granular pressure profiles in the vibrated
bed along the horizontal x direction at y = 0.05 m.

The obtained pressure profiles (identical system but with-
out an intruder) along the vertical (y) and horizontal (x)
directions are plotted in Figs. 10(a) and 10(b) respectively
. While the pressure is almost constant along the horizontal
direction, Fig. 10(b), an almost constant pressure gradient,
similar to a classic hydrostatic pressure in a fluid, is estab-
lished in the vertical direction, Fig. 10(a). However, at the
bottom and the surface of the vibrated bed there are some
appreciable deviations from a constant pressure gradient, sim-
ilar to what has been observed in Ref. [45]. Since the intruder
was placed at the center of the bed, these boundary effects
did not affect the segregation behavior of the intruder. Using
the determined pressure gradient, the buoyancy force can be
calculated via

Fb =
∫

p · ndS̃ =
∫ (

∂ p

∂x
+ ∂ p

∂y
+ ∂ p

∂z

)
dṼ ≈∂ p

∂y
Ṽ . (12)

Figure 11 plots a comparison between the buoyancy forces
computed through the generalized Archimedean formulation,
Eq. (4), and its hydrostatic definition, Eq. (12). The calculated
values are very similar, suggesting that using the Voronoi
volume as the effective occupied space of the intruder, the hy-
drostatic definition of the buoyancy force can be applied also
to granular systems (using a coarse-graining derived granular
pressure). However, the calculation of the buoyancy force
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FIG. 11. Buoyancy force calculated through its hydrostatic def-
inition, Eq. (12), and the generalized Archimedean formulation
Eq. (4).

though its hydrodynamic definition [Eq. (12)] is rather cum-
bersome as it requires coarse graining, while the generalized
Archimedean formulation requires only one fitting parameter
(for a given system) to calculate accurately the buoyancy force
acting on an intruder allowing for an effective computation for
practical problems.

So far we have shown that the generalized Archimedean
formulation of the buoyancy force is in very good agree-
ment with the calculation through its hydrostatic definition,
Eq. (12), or its direct numerical measurement via a virtual
spring in a convection-free vibrated bed. Now we turn to a
more general system in which a convective pattern is present.
To formulate a force balance on the intruder an upward-
directed drag force Fd due to an upward-directed convection
(at the center of the bed) has to be considered, i.e.,

Flift = Fb + Fd = −(Fg + Fs). (13)

The drag force is obtained by subtracting the buoyancy
force from the segregation (lift) force (which is obtained
through the virtual spring force Eq. (8)). If the generalized
Archimedean formulation is also applicable for such con-
vective systems, the granular drag obtained through Eq. (13)
should match the values obtained through the granular drag
model given by Eq. (5).

By setting the wall friction coefficient to a nonzero value,
a convection pattern is established in the vibrated bed, as
the cross sectional area of the bed is not exactly constant
over a vibration cycle. To confirm the establishment of a
convective patter, randomly selected particles are tracked in
the bed. The trajectories are shown in Fig. 12 and confirm
an upward motion in the center of the bed and a downward
motion close to the walls. The lift force in such a convective
system, as determined by Eq. (8), far exceeds the buoyancy
force calculated through the generalized Archimedean for-
mulation Eq. (4) as shown in Fig. 13. In addition, when
normalized by the weight of the intruder the lift force becomes
dependent on the intruder size, which distinguishes it from
the weight-normalized buoyancy force in a fluid (Fb/mI g)
which is size independent. As the size ratio of the intruder to
the bed particles increases, the weight-normalized, buoyancy

FIG. 12. Particle trajectories in the xy plane starting at t =
150 s for � = 8.0. The time interval between two successive trajec-
tory points is equal to 2.5 s. The arrow indicates the moving direction
along the time.

force calculated by the generalized Archimedean formulation,
Eq. (4), approaches Fb/mI g = 0.62 whereby 0.62 is the bulk
solid fraction φ of the bed, as expected, and Fb/mI g = 1 for
dI/dp = 1.

We attribute the difference between the virtual-spring de-
rived lift force and the buoyancy force calculated via the
generalized Archimedean formulation Eq. (4), to the presence
of a convective pattern and hence the presence of a drag
force that also acts in the vertical direction. When probing the
magnitude of the relative velocity between the intruder and
the bed particles, an average relative velocity of ∼0.2 mm/s
is determined in the center of the bed, i.e., within the limits
of the slow-velocity drag regime (v � 0.028 m/s). In the
slow-velocity regime the drag force is independent of the rel-
ative velocity and given by Eq. (5) where β is a constant that
depends on the restitution coefficient and the shape of the bed

FIG. 13. (�) Numerically determined [via a virtual spring us-
ing Eq. (8)], weight-normalized lift force. The solid line is the
weight-normalized buoyancy force Fb/mI g determined by the gen-
eralized Archimedean formulation, i.e., Fb = (φ/φI )ρpgVI , where
φI = (φ − 1)Sc + 1, with c = −1.35 and φ = 0.62 for � = 8.0. The
dash line is a reference line which denotes F/mI g = 1.
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FIG. 14. (�) Drag force determined by subtracting the buoyancy
force from the lift force. The lift force was measured using a virtual
spring and is given by Eq. (13). The buoyancy force was calculated
using the generalized Archimedean formulation, i.e., Eq. (4). The
solid line gives the granular drag forces determined through Fd =
βρpgd2

I (y − yh ) with β = 0.59.

particles [36]. Using the force balance Eq. (13), the drag force
Fd can be obtained by subtracting the buoyancy force from
the lift force. Subsequently, the granular drag force obtained
through Eq. (5) can be compared to the drag force determined
through Eq. (13) and in the case of a good agreement, the
lift force acting on an intruder in a convective system can be
expressed by

Flift = Fb + Fd

= φ

φI
ρpgVI + βρpg(yh − y)d2

I . (14)

Indeed, we observe a very good agreement between the
drag forces obtained and using a least squares fitting method,
β was determined as 0.59 (see Fig. 14) .

A conclusion from Eq. (14) is that the lift force acting
on the intruder is independent of the intruder density, but it
depends on the density of the bed particles and the intruder
size. To assess the validity of these key observations, we per-
formed additional simulations with a varying intruder density.
Figure 15 confirms a good agreement between the lift force
measured through the virtual spring, i.e., Flift = Fspring + mI g,
and Eq. (14) using β = 0.59 (β depends on the surface prop-
erties of the particles and the shape of the intruder).

A further consequence of the formulation of the total lift
force following Eq. (14) is that in a given system that falls
into the slow-velocity regime, the lift force is independent of
the vibration strength injected by the side wall (� increasing
from 8 to 60 as shown in Fig. 5). This can be rationalized
by the fact that for a given intruder size and position within
the bed, the buoyancy force is constant as the bulk solid frac-
tion does not vary with increasing vibration strength (Fig. 6)
and the drag force depends on β which, however, is only
a function of the coefficient of restitution and the intruder
shape.

FIG. 15. Comparison of the lift force predicted by Eq. (14) and
the lift force obtained numerically by a virtual spring [Eq. (8)] as a
function of the intruder size for different intruder densities ρI .

IV. CONCLUSION

In this study, we have verified the validity of a generaliza-
tion of the Archimedean formulation of a granular buoyancy
force that has been proposed originally for shear flows for vi-
brofluidized systems. To exclude the influence of drag forces,
a convection-free system was considered, established through
vibrating sidewalls and a friction coefficient of zero for
particle-wall contacts. The buoyancy force calculated through
the generalized Archimedean formulation, i.e., considering
the Voronoi volume of the intruder, agreed very well with
the values obtained from its hydrostatic definition (pressure
gradient) and its direct measurement through a virtual spring.
Subsequently, we have introduced an additional complexity to
the system by considering also convection (through a nonzero
particle-wall friction coefficient). The segregating (lift) force
acting on an intruder in such a system is affected by buoyancy
and drag and increases with increasing intruder size, but is
independent of the vibration strength � (once � exceeds 6)
and the intruder density. We demonstrate that a lift force
model that combines the buoyancy force (expressed through
the generalized Archimedean formulation) and a drag force
(velocity-independent in the considered slow-velocity regime)
predicts very accurately the value of the lift force obtained
through a virtual spring. This model allowed to rationalize the
independence of the segregation (lift) force on the intruder
density and the vibration strength (once a critical value of
�cr = 6 is exceeded). We hope that our work can pave the
way to the development of segregation models that allow us
to quantitatively describe more complex systems, contain-
ing, e.g., multiple intruders and/or more complex drag force
regimes.
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