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Micromechanical description of the compaction of soft pentagon assemblies
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We analyze the isotropic compaction of assemblies composed of soft pentagons interacting through classical
Coulomb friction via numerical simulations. The effect of the initial particle shape is discussed by comparing
packings of pentagons with packings of soft circular particles. We characterize the evolution of the packing
fraction, the elastic modulus, and the microstructure (particle rearrangement, connectivity, contact force, and
particle stress distributions) as a function of the applied stresses. Both systems behave similarly: the packing
fraction increases and tends asymptotically to a maximum value φmax, where the bulk modulus diverges. At
the microscopic scale we show that particle rearrangements occur even beyond the jammed state, the mean
coordination increases as a square root of the packing fraction, and the force and stress distributions become more
homogeneous as the packing fraction increases. Soft pentagons experience larger particle rearrangements than
circular particles, and such behavior decreases proportionally to the friction. Interestingly, the friction between
particles also contributes to a better homogenization of the contact force network in both systems. From the
expression of the granular stress tensor we develop a model that describes the compaction behavior as a function
of the applied pressure, the Young modulus, and the initial shape of the particles. This model, settled on the joint
evolution of the particle connectivity and the contact stress, provides outstanding predictions from the jamming
point up to very high densities.
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I. INTRODUCTION

Matter composed of soft particles covers a wide class of
materials such as emulsions, microgels, foams [1,2], biologi-
cal cells [3–6], and metal powders [7–9]. Under compression,
the general characteristic of these materials is related to their
ability to deform rather than to break. They can also fill the
void space in a better way than the rigid particle assemblies
do. Such remarkable properties, essentially due to the shape
change, represent an important distinction with regard to rigid
particle systems. In particular, since the particle deforma-
tion is generally governed by a characteristic stress (e.g.,
the Young modulus), the behavior of soft particle assemblies
is much more sensitive to the confining pressure than rigid
particle assemblies.

The numerical and experimental investigation of particu-
late packings composed of soft, highly deformable particles is
an extensive and promising field of study. This is not only due
to the development of advanced experimental devices or the
increasing computational power and numerical techniques,
but because many fundamental behaviors have already been
described for assemblies of rigid grains [10,11]. Among these
behaviors, we find the transition to jamming [12–16], the

*manuel-antonio.cardenas-barrantes@umontpellier.fr
†david.cantor@polymtl.ca
‡jonathan.bares@umontpellier.fr
§mathieu.renouf@umontpellier.fr
‖emilien.azema@umontpellier.fr

force transmission [17–20], or the effects induced by particle
geometry [21–30], to name a few.

An open question today is how robust these findings are
concerning soft particle assemblies. On the one hand, one
of the main difficulties with experiments is to make relevant
quantitative measurements at the grain scale, for example, to
follow the shape change of the particles [1,31]. On the other
hand, introducing the correct particle shape deformations in
numerical simulations with discrete element methods gives
rise to various technical difficulties, mainly seen in the in-
crease of the computational time. Regarding this, different
discrete element strategies have been proposed, such as the
bonded-particle method [32,33] and couplings between clas-
sical finite element or meshless methods [34–39]. The latter
methods, although computationally expensive, have the ad-
vantage of closely representing the geometry of the particles.

At the macroscale, the compaction beyond the jamming
point is a subject of great interest. A large number of com-
paction equations have been proposed [7–9,40–43], but only
recently was a micromechanical-based model for circular par-
ticle assemblies established [44]. At the microscopic scale,
by studying the behavior of foams and other assemblies of
rubberlike particles, it has been shown that the mean coordina-
tion number increases as a square root of the packing fraction
[1,16,45–47], and also the stress distribution seems to become
more homogeneous as the packing fraction increases [2]. But,
in general terms, the literature on this subject is still in its
beginnings.

In this paper we analyze the compaction behavior of as-
semblies composed of soft pentagons, beyond the jamming
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point, by means of a coupled discrete element and finite
element method: the nonsmooth contact dynamics (NSCD)
approach. In order to evidence the effects of the initial shape
on the macro- and microstructure, assemblies of circular
particles under similar characteristics of compression are sim-
ulated. The contact friction is also systematically studied.

The paper is structured as follows. The numerical pro-
cedures and the compression test are described in Sec. II.
Section III is focused on the evolution of the packing fraction
and the bulk properties beyond the jamming as a function
of the applied pressure and for different values of friction.
The microstructure, described in terms of particle mobility,
connectivity, force, and stress transmission, is discussed in
Sec. IV. In Sec. V we present the microstructural elements
behind the evolution of the packing fraction and the bulk
properties at the macroscopic scale. Finally, conclusions and
perspectives are discussed in Sec. VI.

II. NUMERICAL PROCEDURE

In the NSCD’s frame [48,49], we simulate packings of
deformable and incompressible particles with two different
shapes, regular pentagons and disks, under external isotropic
compression. The NSCD method consists of coupling the
finite-elements method (FEM), used to model the deformable
particle itself, and the contact dynamics (CD) method, used
to deal with the dynamics of the particles and the contact
forces within the packing. The CD method considers a contact
law with nonpenetrability and no regularization of the friction
law between the particles for the determination of contact
forces. The deformable particles are modeled following a
neo-Hookean incompressible material law. The simulations
are implemented on the open-source platform LMGC90 [50],
where the NCSD algorithm is parallelized [51].

First, N p = 500 rigid particles are randomly placed into
a two-dimensional square box bounded by rigid walls. To
avoid crystallization, a small size polydispersity around
the mean diameter of the particles 〈d〉 is introduced (d ∈
[0.8〈d〉, 1.2〈d〉]). For a pentagon, d is the diameter of its
circumcircle. The packing is then isotropically compressed
under a small stress σ0 up to its jamming point. We consider
that the jamming point is reached once the variations of the
packing fraction φ remain below 0.05%, with φ defined as
φ = ∑

i∈V Vi/V , where Vi is the volume of the particle i and V
the total volume of the packing. In our simulations, the jam-
ming point corresponds to a packing fraction φ0 ≈ 0.808 and
≈0.817 for disks and pentagons, respectively. At this point,
the box size is L0 × L0. Second, the particles are meshed with
92 triangular elements (see inset in Fig. 1). We use a constant
Poisson ratio equal to 0.495 and a Young modulus E such
that σ0/E � 1. With these conditions, the strain energy of
one particle is given by � = (1/4)E (I1 − 3)/(1 + ν), where
I1 = tr(F T F ), and F is the deformation gradient tensor [52].

Finally, the packings are isotropically compressed by im-
posing the same constant velocity v on the box boundaries.
The velocity v is carefully chosen to be sure that the system is
always in the quasistatic regime defined by the inertial number
I = γ̇ 〈d〉√ρ/P, with γ̇ = v/L0, ρ the particle density, and P
the confining stress [10,53]. The quasistatic limit is ensured
for I � 1. Thus, in all the simulations, v is computed from

FIG. 1. Close-up views of the assembly of pentagons (a), (b) and
disks (c), (d) at μ = 0 and for P/E = 0.025 (a), (c) and P/E = 0.3
(b), (d). The insets of (a) and (c) show the finite element mesh used
for both pentagons and disks, respectively.

the inertia parameter, replacing I by I0 = 10−4 and P by σ0.
In this way, the inertia parameters remain below 10−4 during
the compaction process. We performed a large number of
tests for different coefficients of friction between particles,
μ ∈ [0.0, 0.1, 0.2, 0.4, 0.8], while we kept the coefficient of
friction with the walls equal to zero. The gravity is set to zero.
Figure 1 shows frictionless assemblies of pentagons and disks
at the jammed state and beyond.

III. MACROSCOPIC BEHAVIOR

A. Macroscopic variables

Under isotropic compression, the confining stress acting on
the assembly is given by P = F/L, where F is the computed
force on the walls and L its length. For a granular assembly,
we can also compute the confining stress from the granular
stress tensor σ. To do so, we start from the tensorial moment
Mi of each particle i, defined as [10,54–57]

Mi
αβ =

∑
c∈i

f c
α rc

β, (1)

where f c
α is the α component of the force acting on the particle

i at the contact c, rc
β is the βth component of the position vec-

tor of the same contact c, and the sum runs over the contacts
of the particle i (c ∈ i). Then the average stress tensor σ, in
the volume V , is given by [10,54–57]

σ = 1

V

∑
i∈V

M i. (2)

The confining stress then takes the form P = (σ1 + σ2)/2,
where σ1 = σ2 are the principal stress values of σ.
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FIG. 2. Packing fraction φ as a function of the reduced pressure
P/E for assemblies of soft pentagons and different values of friction
in (a) linear-linear scale and (b) log-linear scale. The insets show the
same data for assemblies composed of soft disks. The dashed lines
are the elastic approximations [Eq. (10)], and the continuous lines
are the predictions given by Eq. (11) for μ = 0 (black) and μ = 0.8
(red).

From a geometrical point of view, the cumulative volumet-
ric strain is defined by

ε = − ln
φ0

φ
. (3)

B. Evolution of the packing fraction and bulk modulus

Figure 2 shows the evolution of φ as a function of the
reduced pressure P/E for assemblies of pentagons and disks
(insets). Regardless of the value of friction, the packing frac-
tion follows the same general trends. From the jammed state,
the packing fraction increases rapidly for small values of P/E
and reaches an asymptote at φmax. We observe a progressive
separation of the compaction curves as the friction increases,
which results in a slight decrease in the value of φmax. This
offset between the curves is more evident for pentagons than
for disks. Such a difference is explained by the fact that the
friction and the particle shape restrict the mobility of the
particles. This point is discussed in detail in Sec. IV.

From the φ − P/E relation, it is also possible to character-
ize the bulk properties of the assemblies through the definition
of the bulk modulus K :

K (φ) = dP

dφ

dφ

dε
. (4)
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FIG. 3. Evolution of the bulk modulus K normalized by E as a
function of the packing fraction φ for soft assemblies of pentagons
and disks (inset). The predictions given by Eq. (12) are shown in
continuous lines.

Figure 3 shows the evolution of K (φ) as a function of φ in
assemblies of pentagons and disks (inset). We observe that the
bulk evolution follows the same trends, regardless of the shape
of the particles and friction. K appears to be an increasing
function of φ, with divergence at φmax. This divergence is ex-
pected since the system tends to oppose its own compression
due to the progressive filling of the void space and the intrinsic
incompressible behavior of the particles. In other words, the
assembly of soft particles begins to behave as a rigid body.

In this section we observe that, at the macroscale, the
compaction behavior beyond the jamming of assembly of soft
pentagons and soft disks is similar. Small differences appear
mainly on the values of the maximum packing fraction that
each system can reach, which mainly depends on the friction.

IV. MICROSTRUCTURAL ASPECTS

A. Geometrical features

1. Particle rearrangements

A way to quantify the rearrangement of an assembly of
particles is to measure the deviation of the movement of
the particles from a reference direction, where the reference
direction can be defined from the ideal case of a continu-
ous, homogeneous, and deformable medium. The difference
between the actual displacement and this referential displace-
ment is the so-called nonaffine motion. During compression,
each material point would move, on average, towards the ge-
ometric center of the system. Thus we define a rearrangement
parameter for each particle i, denoted by θ̂i, as the absolute
value of the angle θi between its velocity vi and the vector de-
fined from its center and the geometric center of the assembly,
divided by π (θ̂i = |θi|/π ).

Figure 4 shows a color map of the particle rearrangement
parameter for each particle at three different levels of com-
paction in the frictionless case. For disks, we observe that
although, on average, the nonaffine movement is lower than
in the case of pentagons, these rearrangements are more local-
ized, with small zones of higher dynamics at different stages
of the compaction. Since there is no friction and no edges
blocking the movement, disks can easily rearrange and find
a state of minimum energy more rapidly. On the other hand,
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FIG. 4. Color map of the particle rearrangement parameter θ̂i in
assemblies of frictionless disks and pentagons for different levels of
compaction.

the nonaffine movement in the pentagon packings, for high
values of compaction, is much more homogeneous with no
clear zones of strong dynamics. This is because, as opposed to
disks, the geometry of the pentagons prevents the free move-
ment of the particles, only allowing the nonaffine movement
in certain specific directions along the particles’ edges, not
always the best direction to find the state of minimum local
energy.

In the inset of Fig. 5 we see the evolution of the mean
value of the rearrangement parameter θ̂ = 〈θ̂i〉i as a function
of the packing fraction, for μ = 0 and μ = 0.8. Basically, for
a low friction coefficient, θ̂ slowly increases with φ, while it
decreases for larger friction coefficients. In other words, the
particle rearrangements, although small, occur even after the
jamming point and at each stage of the deformation.

To have a better idea of the reorganization of the particles
along the compaction process, we compute θ̂φ , the asymptotic
value of θ̂ as the packing fraction goes to φmax, and plot it
as a function of the friction coefficient in Fig. 5. We see that
low friction allows larger particle rearrangements while high
friction tends to prevent it. Another point to note is that the
particle reorganization is higher in pentagon assemblies. In
this case, sliding is enhanced by side-side contact, as previ-

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
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FIG. 5. θ̂φ as a function of the friction coefficient for assemblies
of pentagons (continuous line) and disks (dashed line). The inset
shows the evolution of θ̂ as a function of the packing fraction φ for
two different values of friction.

ously shown in nondeformable particle assemblies [27,58].
From these measures we can deduce that the differences in
the evolution of the compaction curves observed in Fig. 2
are related to the small local rearrangements in the system.
This observation also highlights the irreversible nature of the
compaction beyond the jamming, confirming recent works
[46,47].

2. Shape parameter

Besides the particle rearrangement, the mechanical proper-
ties of soft particle assemblies are intrinsically related to the
local deformations of the particles. Let us define the circular-
ity index as usual,

R̂ =
〈
4π

Vi

a2
i

〉
i

, (5)

with ai the particle perimeter and 〈...〉i the average over the
particles in the volume V . Figure 6(a) shows the evolution
of R̂ scaled with the initial circularity at the jammed state,
R̂0, as a function of φ for different values of the friction.
For disks, R̂0 is equal to 1, and R̂/R̂0 decreases as the pack-
ing fraction increases. As shown in Fig. 6(b), the disks turn
progressively into nonregular polygonal shapes with rounded
corners. In contrast, for pentagons, R̂/R̂0 increases with φ,
with R̂0 	 0.86 (the value of the circularity for regular pen-
tagons), to a maximum friction-dependent value and quickly
decreases, regardless of the friction. Initially, as illustrated in
Fig. 6(b), the pentagons tend to adopt a rounded and regular
shape by smoothing the corners. However, beyond a maximal
circularity value, a nonregular polygonal shape is observed.
This, along with intruding-corner effects into free space, are
some of the facts that contribute to pentagons achieving higher
packing fraction compared to assemblies of disks.

B. Particle connectivity

The first statistical quantity to describe the contact network
is the coordination number Z , defined as the average number
of contacts per particle for nonrattler ones. At the jammed
state, the packing structure is characterized by a minimal value
Z0, which depends on the friction coefficient and the packing
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FIG. 6. (a) Evolution of R̂/R̂0 as a function of φ for different val-
ues of friction in assemblies of pentagons and disks (inset). (b) Group
of particles extracted from the assemblies of pentagons and disks,
respectively, undergoing the same cumulative packing fraction.

preparation. For instance, in frictionless assemblies of disks,
Z0 = 4, while Z0 ∈ [3, 4] if friction is activated [59–61]. For
assemblies of rigid polygons, the jammed-state coordination
number Z0 remains close to 4, regardless of the value of the
friction [21,62,63].

Now, above the jammed state, it has been systematically
reported in the literature that Z continues to increase following
a power law

Z − Z0 = ξ (φ − φ0)α, (6)

with α ∼ 0.5, and ξ a structural parameter defined as ξ =
(Zmax − Z0)/(φmax − φ0)α , where φmax and Zmax are the values
of Z and φ when P/E → ∞. This relation has been observed
in simulations and experiments for different kinds of de-
formable systems (foams, emulsions, rubberlike particles, and
more recently, in mixtures of rigid and deformable particles
[1,16,45,52,64]). As shown in Fig. 7, we found the same pro-
portionality in our simulations, with ξ ∼ 5.1, independently
of the shape of the particles and the friction coefficient.

The particle connectivity can be characterized in more de-
tail by considering Pc, the probability of having c contacts per
particle. In Fig. 8, Pc is plotted as a function of φ for different
values of c. We see that Pc is nearly independent of μ for all
φ values. The evolutions of Pc are basically the same for both

0.00 0.05 0.10 0.15 0.20
φ − φ0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Z
−

Z
0

Power lawμ = 0.0

μ = 0.1

μ = 0.2

μ = 0.4

μ = 0.8

0.00 0.05 0.10 0.15 0.20
0.0

0.5

1.0

1.5

2.0

2.5

3.0

FIG. 7. Evolution of the reduced coordination number Z − Z0 as
a function of the reduced packing fraction φ − φ0 for assemblies of
pentagons and disks (inset) and for different values of friction coef-
ficient. The power-law relation Z − Z0 = ξ (φ − φ0)α with α = 0.5
and ξ = 5.1 is shown in a continuous line.

assemblies,that is, P3 and P4 decrease from ∼0.2 and ∼0.4,
respectively, to 0, whereas P6 increases from 0 to ∼0.6. P7

increases too, but in a much slower way, from 0 to values close
to 0.1. In contrast, P5 follows a parabola with its maximum
value at φ ∼ 0.92.

In fact, the coordination number is linked to Pc by Z =∑∞
c=1 cPc. So the monotonous increases of the coordination

number, seen in Fig. 6, results from complex compensation
mechanisms related to the grains’ role in the contact network.
The increase in Z with φ comes from the increase of 5P5 and
6P6 until φ 	 0.92 and beyond, mainly from 6P6 and 7P7.
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FIG. 8. Evolution of particle connectivity Pc as a function of φ:
for assemblies of (a) pentagons and (b) for disks.
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FIG. 9. Close-up views of the force chains in frictionless assem-
blies of pentagons (a), (b) and disks (c), (d) at the jammed state (a),
(c) and for φ ∼ 1 (c), (d). The magnitude of each normal force is
represented by the thickness of the segment joining the centers of the
particles in contact. The strong forces ( fn � 〈 fn〉) and weak forces
( fn < 〈 fn〉) are plotted in red and black, respectively.

Finally, the variations of 3P3 and 4P4 with φ have a minor
effect on Z because of the low value of c.

C. Force and stress transmission

1. Force distribution

The force chains in particle assemblies and the nonhomo-
geneous spatial distribution of their contact forces are topics
widely studied, both numerically and experimentally. These
studies are mainly performed on rigid particle assemblies of
various sizes [21,25,65,66], shapes [21,26,67], and contact
interactions [68,69]. However, it has been seldom studied for
highly deformable particle assemblies, and, in particular, in
the case of noncircular deformable shapes.

Figure 9 shows a view of the normal force network in
assemblies of pentagons and disks at the jammed state for
φ close to 1. Here, the total contact force between two de-
formable particles is computed as the vectorial sum of the
forces at the contact nodes along the common interface (a
line in two dimensions). The force network density (i.e., the
number of force chains) increases as φ increases, because,
as discussed before, the mean number of contacts per par-
ticle increases. In particular, in the case of pentagons close
to the jammed state, we observe slightly stronger and more
tortuous force chains compared with disks. But, far beyond
the jamming point, the force network appears to be more
homogeneous in both cases.

The probability density functions (PDFs) of the normal
forces fn normalized by the mean normal force 〈 fn〉 for
frictionless assemblies of pentagons and disks are shown in
Fig. 10. As it is usually observed, the density of forces above
the mean value, at the jamming point, has an exponential
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FIG. 10. Probability distribution function of the normal forces fn

normalized by the average normal force 〈 fn〉 for frictionless (a) pen-
tagon and (b) disk packings, and for different packing fractions.

decay, whereas the density of forces below the mean follows
a power law [19,70].

At the jamming point (dark blues in Fig. 10), the difference
between the packings is almost indiscernible, except for a
longer exponential decay in the packings of pentagons. This
difference is also seen in the wider contact lines in Fig. 9(a) vs
Fig. 9(c), which is consistent with previous analyses [58]. On
the contrary, for higher pressures it is observed that the disks
reach highly homogeneous PDFs, with distributions closer to
Gaussian-like forms, in complete agreement with previous re-
sults presented by Kramar et al. [71]. For pentagon packings,
the normal force distributions also tend to Gaussian-like forms
but do not reach a very high homogeneity, preserving clear
power laws for weak forces and having shorter exponential
tails for strong forces. Yet, as in the disks, they show a higher
density of normal forces around the mean value as the packing
fraction increases.

The degree of homogeneity of the normal force network
can be quantified by the so-called participation number �,
defined as [72]

� =
(

Nc

Nc∑
i=1

qi

)−1

, (7)

where Nc is the total number of contacts in the system and
qi = fi/

∑Nc
j=1 f j , with fi the magnitude of the normal force

at the contact i. For a homogeneous force distribution, � is
equal to 1, while the limit in which the forces are completely
heterogeneous corresponds to � 	 0. The evolution of � as a
function of φ is shown in Fig. 11. In general, � increases with
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FIG. 11. Participation number � as a function of φ for assem-
blies of pentagons and disks (inset) and different friction coefficients.

φ from ∼0.6 at the jammed state to values close to 0.85 at φ

close to unity. These variations of � verify that the force chain
network becomes more dense and homogenous as the packing
fraction is increased far beyond the jammed point. It is worth
noting that � increases with the friction, which suggests that
the friction contributes to a faster homogenization of the force
network.

2. Particle stress distribution

According to the definition of the tensorial moment
[Eq. (1)], one can assign to each particle i a stress tensor
σ i = Mi/Vi. From this particle stress tensor, we define the
mean particle stress as Pi = (σ i

1 + σ i
2)/2, with σ i

1 and σ i
2 the

principal values of σ i. The PDF of this particle stress, normal-
ized by the mean 〈Pi〉, for frictionless assemblies of pentagons
and for increasing packing fraction φ, is shown in Fig. 12(a).
As a first approximation, the general shape of the distribution
could be compared to a Gaussian distribution around 〈Pi〉. As
the packing fraction increases, the particle stress distribution
narrows around the mean value, highlighting the increasing
homogenization of the stresses (in a similar way to the normal
force distributions).

Figure 12(b) shows the evolution of the relative standard
deviation SD of the distribution Pp, as a global measure of
the heterogeneities, as a function of φ. In both assemblies
and for all values of interparticle friction, SD declines with φ.
Furthermore, we see that for a given value of φ, SD declines
also with the interparticle friction. In other words, as observed
for the distributions of forces just before (see Fig. 11), the
particle stress also tends to be more homogeneous as the
friction increases.

V. MICROMECHANICAL-BASED
CONSTITUTIVE EQUATIONS

As mentioned above, a proper model that pictures the
compaction of deformable packings should stand on its mi-
cromechanics, which means, on the physics at the scale of the
particles and the contacts. In this direction, let us rewrite the
granular stress tensor [Eq. (2)] from the scale of the contacts,

σαβ = 1

V

∑
c∈V

f c
α�c

β = nc
〈
f c
α�c

β

〉
c, (8)
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FIG. 12. (a) Probability distribution function of the particle stress
Pi, normalized by the mean 〈Pi〉, for frictionless assemblies of pen-
tagons and increasing packing fraction φ. (b) Standard deviation
of the distribution Pp as a function of the packing fraction φ for
assemblies of pentagons and disks (inset) and for various values of
the friction coefficient.

where f c
α is the αth component of the contact force acting on

the contact c, and �c
β is the βth component of the branch vector

(the vector joining the centers of the two particles in contact).
The sum runs over all the contacts inside the volume V , and
〈...〉c is the average over all contacts. The density of contacts
nc, on the right-hand side of Eq. (8), is given by nc = Nc/V ,
with Nc the total number of contacts in the volume V .

If we consider a small particle size distribution
around the diameter 〈d〉, ∑

p∈V Vp 	 NpVp, with Vp =
(nsd2/8) sin(2π/ns), with ns the number of sides of any
regular polygonal particle, and the contact density can be
rewritten as nc 	 4φZ/(nsd2 sin 2π/ns), with Z = 2Nc/Np

the coordination number. From the definition of P via the
principal stresses of σ, we get

P 	 φZ
ns
2 sin 2π

ns

σ�, (9)

with σ� = 〈 f c · �c〉c/〈d〉2, a measure of the mean contact
stress, with · the scalar product. Equation (9) emphasizes the
mutual relation between P and φ through the packing struc-
ture described by the particle connectivity Z and the contact
stress (σ�).

A. Small deformation approach

Let us consider the deformable particle assemblies as a
network of bonds of length �c, centered on the contact point
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FIG. 13. Macroscopic volumetric strain εv as a function of the
local strain ε� at the small deformation domain in assemblies of
pentagons and disks (inset) for different values of friction.

of two particles. In the case of small and elastic deformations,
we get σ� ∼ 〈 f c〉c/d = Eε�, with ε� = 〈ln(�c/d )〉c a local
strain, defined as the mean bond strain. Our simulations, for
random packings and at small deformation, show that the
local strain and the macroscopic volumetric strain are linearly
dependent as ε� 	 (1/4)εv (Fig. 13). Then, considering that
Z → Z0 	 4, Eq. (9) leads to

Psd

E
= − φ

ns
2 sin 2π

ns

ln

(
φ0

φ

)
, (10)

the limit of P(φ) at small and elastic deformations.
The prediction given by Eq. (10) is shown in Fig. 2. As

expected, we see a fair approximation of the compaction evo-
lution in the small-strain domain but an increasing mismatch
as the solid fraction increases.

B. Large deformation approach

In the literature, there are various theoretical approxima-
tions that relate P as a function of φ for large deformations
[7–9,40–43,73]. All of them are based on different macro-
scopic assumptions that neglect the micromechanical funda-
mentals revealed by Eq. (9), and thus fitting parameters are
needed to adjust the proposed theoretical expressions to the
data. Nonetheless, it is relevant to note that most of them find
that P ∝ ln[(φmax − φ)/(φmax − φ0)].

In the micromechanical development presented here, the
challenging task consists in finding a functional form for
both σ�(φ) and Z (φ). First, for σ�(φ) taking advantage of the
proportionality of P with φ, together with Eq. (9), it is easy
to show that σ� = −α ln[(φmax − φ)/(φmax − φ0)], where the
coefficient α = (φmax − φ0)/(4φ0) is obtained from the limit
to small deformation of Eq. (9). Second, we have shown that
Z (φ) evolves as a power law of φ following Eq. (6). Then,
using the above relations together with Eq. (9), we get the
final expression of P as a function of φ:

P

E
= −

(
φmax − φ0

4φ0
ns
2 sin 2π

ns

)
{Z0−ξ (φ−φ0)α}φ ln

(
φmax−φ

φmax − φ0

)
.

(11)

Figure 2 presents our numerical data for pentagons and
disks (inset) assemblies together with the compaction equa-

tion given by Eq. (11) for μs = 0 and μs = 0.8. The
predictions given by Eq. (11) are in good agreement with our
simulations, capturing the asymptotes for small and very high
pressures, the effect of the coefficient of friction, and the effect
of the particle shape. In contrast to previous models, the only
unknown parameter in this model is the maximum packing
fraction φmax; all other constants are determined from either
the initial state, the mapping between the packing fraction
and the coordination number, and the number of sides of the
particles.

Going one step further, deriving Eq. (11) following Eq. (4)
and neglecting small terms on φ ln φ, we can obtain an explicit
equation for the bulk evolution:

K

E
=

(
φmax − φ0

4φ0
ns
2 sin 2π

ns

)
φ2

(φmax − φ)
{Z0 + k(φ − φ0)α}. (12)

Figure 3 shows the evolution of the above relation K/E as a
function of φ, with a good fit for μ = 0.0 and μ = 0.8.

VI. CONCLUSIONS AND PERSPECTIVES

In this paper we investigate the compaction behavior of as-
semblies composed of soft pentagons by means of nonsmooth
contact dynamics simulations. In order to see the effects of
particle shape, we also simulate assemblies composed of soft
circular particles. In both cases, the deformable particles are
simulated following a hyperelastic neo-Hookean constitutive
law using classical finite elements. The effect of friction was
also systematically investigated by varying the coefficient of
friction from 0 to 0.8. From the jammed state, packings were
isotropically compressed by applying a constant velocity on
the boundaries.

As a general finding, we observed that beyond the jamming
state, both systems have similar behavior. At the macroscopic
scale, the packing fraction increases rapidly and tends asymp-
totically to a maximum value φmax, where the bulk modulus
diverges. At the microscopic scale, we show three important
facts. First, the particle rearrangement is still important even
after the jamming point. Second, the power-law relation be-
tween the coordination number and the packing fraction is still
valid for assemblies of soft pentagons. And third, the contact
forces and particle stress distributions become less broad as
the level of compaction increases.

The main differences between the two systems come from
the effect of friction. Basically, φmax declines as the friction is
increased, but it decreases faster in assemblies of pentagons
than in assemblies of disks. At the microscale, the rearrange-
ment of the particles is higher for soft pentagons, although
it declines as the interparticle is increased. Interestingly, the
friction between the particles also contributes to a better ho-
mogenization of the contact force network in both systems.

Another relevant result is the extension of the compaction
equation previously established for soft circular particle as-
semblies [44] to soft noncircular particle assemblies. Our
model, derived from the micromechanical expression of the
granular stress tensor and its limit to small and elastic de-
formation, is based on the joint evolution of the particle
connectivity and the contact stress. From the expression
of these well-defined quantities, we establish a compaction
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equation and a bulk equation, free of ad hoc parameters, per-
fectly fitting our numerical data. The only unknown parameter
appearing in our equations is the maximum packing fraction
value.

A perspective to this work concerns the study of the effects
of polydispersity of systems composed of highly deformable
particles. In this case we would expect stronger coupled ef-
fects between applied pressure, particle rearrangement, and
particle size ratio on the measured quantities. Also, an ex-
pected continuation of this work will be the analysis of the
shear effects beyond the jammed state. In particular, several

questions still remain, such as, for example, the mechanical
strength and the existence of a residual state like the one
observed in rigid packings.
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