
PHYSICAL REVIEW E 103, 062901 (2021)

Large-deviation quantification of boundary conditions on the Brazil nut effect
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We present a discrete element method study of the uprising of an intruder immersed in a granular media under
vibration, also known as the Brazil Nut Effect. Besides confirming granular ratcheting and convection as leading
mechanisms to this odd behavior, we evince the role of the resonance on the rising of the intruder by using
periodic boundary conditions (pbc) in the horizontal direction to avoid wall-induced convection. As a result, we
obtain a resonance-qualitylike curve of the intruder ascent rate as a function of the external frequency, which is
verified for different values of the inverse normalized gravity �, as well as the system size. In addition, we intro-
duce a large deviation function analysis which displays a remarkable difference for systems with walls or pbc.
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I. INTRODUCTION

Granular materials exhibit a number of startling phenom-
ena that play a central role in various human activities and yet
defy a comprehensive theoretical description [1–9]. Among
them, the Brazil Nut Effect (BNE) [10,11] is a paradigmatic
example of segregation, when an intruder (a grain of different
size or density [12–14] compared to its surroundings) rises
to the surface of a box or container under external vibra-
tion [15–19]. Since the original theoretical description made
by Rosatto et al. [15], several real and computational exper-
iments as well as further theoretical approaches pointed out
two main mechanisms to explain this perplexing behavior:
wall friction-induced convection [20] and granular ratcheting
phenomena [16]. Subsequent studies to Ref. [15] showed such
systems experience different regimes, depending on the char-
acteristic acceleration of the system a = ω2A, normalized by
the acceleration of gravity g, defining its factor � ≡ a/g [11]
(ω is the angular frequency and A is the amplitude of the
oscillations). For � > 1, when the system is pushed up, the
confining medium behaves liquidlike and the intruder dis-
places particles from the medium mainly due to its greater
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inertia, but when it is pulled down, the medium responds as
solidlike and the intruder becomes stuck, a mechanism known
as “granular ratchet” which is responsible for the “reverse
buoyancy” observed in these systems. Similarly, for dense
dry granular media, the granular gaslike approximation does
not work [5]. Despite various efforts to identify the role of
boundary conditions (walls), friction coefficients, interstitial
fluid [21], and intruder geometry, among others, a compre-
hensive theory to describe the BNE is still missing [22]. It is
noteworthy that, in addition to the condition � > 1, frequency
in itself is also an important control parameter for the BNE
phenomenon. By changing the geometry, coefficients of fric-
tion, and wall properties, there is a change in the frequency
range in which the BNE is observed [16].

In this paper, we went a step further to understand this
intriguing physical phenomenon by presenting a rationale to
predict that the system should resonate to some characteristic
frequency of the external vibrations since the grains are mod-
eled as masses connected by slightly subcritical dissipative
springs and subjected to an external sinusoidal force. Thus,
by means of an innovative analysis, we calculate the large
deviation function (ldf) which turns out to be an important
metric to characterize different behaviors onto this granular
problem. We conclude interpreting the ldf results to evidence
the role of the boundary on the system dynamics and that, in
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FIG. 1. (a) A typical snapshot of the system studied. Grains are
represented by discs: hollow discs (◦) are moving downward while
filled ones (•) are moving upward (against gravity). Color level
shown at left side indicates the magnitude of the speed: red indicates
no movement while blue indicates the maximum value for the speed.
It is worth noting the inertia of the intruder accelerating the grains
above him (bluish grains). It is also possible to observe the transition
between the grains rising and falling in the reddish region around the
intruder, a characteristic responsible for the granular ratchet effect.
While the intruder easily displaces the grains on the way up, he is
unable to move the grains that descend due to the steric exclusion.
(b) Sinusoidal displacement imposed to the substrate. This snapshot
was taken after the minimum of the oscillation of the substrate,
marked as a blue dot in this plot.

the periodic boundary condition case, the resonance plays a
major role in the intruder ascent.

In Sec. II, we present the simulation model and the reso-
nance. In Sec. III, we define the normalized ascent rate and
study it in the framework of the large deviation theory. In
Sec. IV, we present our final conclusions.

II. MODEL

We perform discrete element method (DEM) simulations
in two dimensions using molecular dynamics code [23] con-
sidering dry granular simulations, and a geometry design
inspired in experimental setup. A hard core potential is used in
a discrete element code with a third-order [23] gear-predictor-
correction scheme. A sample in Fig. 1 shows us that most of
the grains below the intruder are falling, while most grains
above the intruder are rising. This snapshot reveals the gran-

ular ratchet mechanism: the grains below the intruder act as
a solid while the grains above are displaced by the intruder’s
inertia and moving to below it. Two sets of simulations are
analyzed with different boundary conditions: a usual geome-
try with frictional walls, and another with periodic boundaries
conditions (pbc) in the horizontal direction. We opted for
this geometry to avoid steric exclusion induced by walls
that enhances the granular ratchet effect. In this way, we
expect to identify the specific contribution of convection to the
segregation mechanism. Although other studies considered
frictionless walls to avoid convection [24,25], we study BNE
considering pbc.

The choice of studying the cases of pbc and frictional walls
(fw) is a natural one when trying to determine the role of the
walls in the ascent of the granular intruder. It is clear that
the presence of frictional walls is responsible for the rise of
convection currents formed due to the frictional contact of the
moving grains and the wall. In Fig. 1 (fw), the asymmetry of
the motion already shows the effect of those currents. Using
pbc eliminates any symmetry breaking effect in this regard.
The intruder ascent can no longer be explained by convection
driving: it has to have a different cause. We shall see that it
occurs, very slowly, in a limited range of frequencies, which
suggest that the rising is akin to some resonant effect emerging
from the complex behavior of the grains.

A. Setup

The sample preparation consists of depositing 2500 grains
on a 37.5 grain-diameter wide substrate. The intruder is placed
in such way that, after the deposition is finished, it remains sta-
tioned a few grains above the substrate. The intruder is a disk
with radius 2.5 times as large as the average radius of other
grains, with the same material density and stiffness though.
The dynamics of the discs (grains) is implemented consider-
ing the modified Cundall-Strack rheological model [26] and
the contact forces are modeled by two terms: an elastic com-
ponent, represented by normal and tangential springs, and a
viscous term, equivalent to a damper. We neglected damping
in the tangential direction and thus Coulomb’s friction dissi-
pates energy along it. That is a quite fair approach as grains
are subjected to an intense agitation and most of the contacts
are very short lived.

Regarding the microscopic parameters, they were chosen
with the objective of obtaining the best performance of the
code. The base definitions of the standard units can be found
in Atman et al. [27]; basically, we considered the average
grain’s diameter as a unit of length, the grain average mass is
taken as unit of mass, and the gravity is a unit of acceleration.
All the remaining units are derived from them. That means
that the normal and tangential spring stiffness are equal to
kn = 1000, kt = 750, respectively, and both kinetic and static
friction coefficients are equal to μ = 0.5. The damping coeffi-
cient is chosen so that the contact between the smallest grains
of the system is supercritical.

We performed a set of simulations applying an external
vibration that imposes a sinusoidal vertical displacement to
the substrate with frequency ω and amplitude A. Depending
on the parameter values, this forced sinusoidal field induces a
solidlike to fluidlike transition at each oscillation [15]. These
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regimes are associated with the nature of the interactions
between the intruder and the surrounding media. As we previ-
ously noted, in Ref. [15] it is argued that for � > 1, and when
the system is being pushed upwards, the granular medium
behaves like a fluid and the intruder pushes the grains around
it, due to its larger inertia. When the oscillation reaches its
minimum, the grains below the intruder act like a solid due to
the force chains formed from the substrate and the intruder
becomes trapped. For pbc, we never observed the intruder
rising for � � 1, while it is easily checked for the fw case.
Another peculiar characteristic of the pbc case is the much
longer time for the intruder to reach the surface, as can be
seen in the horizontal axis of Figs. 2(b) and 2(c). Results were
averaged over five samples.

B. Resonance

In analogy with the role of damping in traditional reso-
nance analysis, the nonmonotonic behavior of the intruder
vertical velocity distribution is a plain indication of resonant
behavior in the system [28] since, for each value of �, there
is a specific resonance frequency range where the maximum
ascent rate occurs [please, see Figs. 2(d) and 2(e)]. This dis-
tinct behavior cannot be explained by the reverse buoyancy
argument; note that Fig. 2(e) was built using the data from
the system with pbc, so there is no wall-induced convection.
The similarity with the forced damped harmonic oscillator
problem can be evidenced as follows.

Hence, from those aforementioned results in the literature
it can be concluded that granular ratcheting due to wall-
induced convection [16] is the main mechanism acting on
the BNE. On the other hand, when pbc are considered, the
granular ratchet argument in itself fails to actually explain the
intruder ascent rate behavior (see Fig. 3), which depends on
ω given a fixed �. That dependency on ω is expected for
a typical resonant system. The ascent rate is measured by
considering the intruder vertical displacement after a certain
elapsed time interval that is the same for all samples. The nor-
malization was achieved by dividing the abscissa by the corre-
sponding natural frequency ω0, adjusted by Eq. (2). Using that
scaling, it is clear the system behaves like a forced damped
harmonic oscillator, and thus resonant modes should appear.

To validate the approach of the system as a resonant oscil-
lator and validate the analogy between the ascent rate and the
sharpness curve as plotted in Fig. 3, we perform a fitting of
the ascent rate curves in function of the frequency by means
of the transmissibility function G(ω) that corresponds to
the solution of the damped harmonic oscillator differential
equation

d2y

dt2
+ 2ζω0

dy

dt
+ ω2

0y = � sin(ωt ), (1)

where ω0 is the natural frequency of the system and m is the
average mass of the grains, ζ is the damping ratio, a parameter
of the fitting function. The solution to this equation can be
written is several forms depending on the element over which
is measured the response. Considering the resonant system
in analogy to a RLC circuit, composed by a Resistor (R), an

FIG. 2. (a) Sequential positions of the intruder (x, y) taken at
constant time intervals (1000 molecular dynamics steps), for a sys-
tem with periodic boundaries in the horizontal direction. y = 0
indicates the box floor and the unities are in unities of the mean grain
diameter. The change in colors indicates the time elapsed in the simu-
lation, the red corresponds to the beginning of the simulation and the
blue to the end. As the color changes, it is possible to verify that the
intruder crosses the periodic boundary several times. Middle panels:
time series for intruder horizontal position at different � for system
with (b) fw or (c) with pbc. In (b), simulations run until 2000

√
d/g,

while in (c) simulations run until the intruder rises beyond the highest
grain. (d, e) Corresponding probability distribution functions (PDFs)
of the intruder speed. Note the asymmetry features of PDFs. In the
panels, d is the average grain diameter, t is the time, g is the gravity,
v is the vertical intruder velocity, ω is the external frequency, and
� is the normalized magnitude of the imposed acceleration. Legend
presented in panel (b) applies to panels (b), (c), (d), and (e) equally.

Inductor (L), and a Capacitor (C), if we measure the transfer
function overthe resistive element, which represents the ascent
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FIG. 3. Intruder ascent rate v curves for various
normalized external accelerations � for the pbc case.
� = 1.15 and 2500 grains is in , � = 1.25 and 2500 grains
is in , � = 1.40 and 2500 grains is in , � = 1.50 and 2500 grains
is in , � = 1.25 and 1875 grains is in , all with 37.5d wide.

rate of the intruder, the solution for the gain reads

G(ω) = 2ζω0ω√
(2ζω0ω)2 + (

ω2
0 − ω2

)2
, (2)

which we used to fit the data in Figs. 3 and 4. Note the bell
shape of the fitting curves, analogous to the sharpness curve
for the amplitude magnitude typical in traditional resonance
analysis.

It is worth mentioning that Rivas et al. [29] studied several
granular systems with walls and with pbc as well as con-
cluding that convection only plays a significant role above
∼33 rad/s for both systems. It is worth noting that we worked
within a range of frequencies one order of magnitude smaller
than that threshold; there is no significant convection contri-
bution in the pbc, and we can disregard this source of transfer
of moment to the intruder.

Bearing in mind that the intruder is initially placed near
the bottom of the system, the periodic external force has the

FIG. 4. Left: Intruder position in function of time for � = 1.25
for pbc and different imposed frequencies exhibiting a nonmonotonic
behavior as the frequency increases. Right: Ascent rate curves for
two different system sizes with pbc. 1875 grains in �, 2500 grains
in ◦. The normalization was made by dividing the abscissa corre-
sponding to the larger system by the ratio of system sizes. These
results were taken from a single sample.

effect of making the intruder vibrate vertically by small dis-
placements [see the initial segments of the trajectory, in red, in
Fig. 2(a)]. Consistently with that argument, we found that this
shock-wave hits the intruder periodically at the very beginning
of an upwards movement, accelerating it upwards to make a
large jump, leading to the resonant behavior. After jumping to
a higher position, the downwards movement is again blocked
by the granular media, resulting in the ratchet effect. It can
be expected that, as the distance between the intruder and the
lower wall increases, the resonant frequency decreases since
the shock wave velocity is approximately constant. However,
the speed of the shock wave depends on the apparent density
and, as it varies continuously due to the influx of external
energy, the time interval between the jumps is not constant and
too complex to estimate as well. To ensure this interpretation
is correct, we decided to run simulations with another system
size and compare resonant frequencies.

Figure 4(b) shows the resonance curve normalized for two
different systems under pbc, with 1875 and 2500 grains, re-
spectively. The linear dependence of the scaling factor with
the system size is another hallmark of resonance phenomena.
Figure 4(a) shows the intruder individual trajectories for each
frequency tested. Note the characteristic emblematic behavior
of the frequency 0.058 curve: the intruder remains almost
motionless for the first 10 000 time units (even experiencing
a slight dip) and suddenly rises to the surface. This sudden
rise, characterized by large leaps, is a further evidence that
resonance is acting on the intruder displacement.

III. LARGE DEVIATION THEORY

In Ref. [30] it was demonstrated experimentally that the
motion of a self-propelled large particle, driven only by the
asymmetry of its shape, could be shown to exhibit fluctuation
properties that were a symmetry property of a large deviation
function of an appropriate quantity related to its horizontal
motion. The BNE also exhibits the same characteristic ratch-
eted motion, albeit in the vertical direction. it is important to
check whether the same hidden fluctuations might be behind
the intruder’s motion.

Basically, we are interested in quantifying the fluctuations
of the ascent rate distribution of the intruder. For this, we
measure the normalized Wτ [30]

Wτ (t ) = 1

τ

∫ t+τ

t

v(t ′)
〈v〉 dt ′, (3)

where v(t ) is the intruder vertical velocity at time t and 〈·〉 de-
notes the average over [0, t + τ ]. Next, we calculated P(Wτ ),
the density probability function of Wτ , and obtained the rate
function (RF) at the limit

RF(Wτ ) = − lim
τ→∞

1

τ
ln P(Wτ ). (4)

Taking into account that Wτ is analogous to the en-
tropy production rate [30–32]1, the linear response theory of

1The entropy described here is the granular macroscopic entropy,
which does not take into account the microscopic thermal entropy
produced by the heat generating granular inelasticity.
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(a) (b)

FIG. 5. Inset: P(Wτ ) for � = 1.25 and several values of τ as shown in the legends, for both systems: with frictional walls at left and pbc
at right. Main panels: Collapse of the RF function calculated for � = 1.25, and several values of τ . Data collapse was performed by dividing
the ratio between upward and downward probabilities by the integration time τ . For the range of integration times considered, a remarkable
collapse is observed. The frictional walls’ case is shown at left and pbc at right panel. Observe that distributions for pbc are much more
symmetric than those for fw, which lean strongly to the positive side.

fluctuation ratios (FR) predicts that RF(Wτ ) − RF(W−τ ) ∼
Wτ . Thus, we measured that quantity under different BNE
regimes and verified that the FR is valid for distinct time win-
dows τ and different boundary regimes (pbc and with friction
walls). In Fig. 5, we showed the ratio 1/τ ln P(Wτ )/P(−Wτ ).
The curves’ collapse is noticeable for the range of integration
times considered. As expected, we did not get a collapse
for shorter integration times since the oscillatory feature of
the external load dominated the dynamics for short times.
Only for long integration times, when the BNE regime can
be observed, did a good collapse occur.

The difference between the RF curves for systems with pbc
and the walls’ boundaries is striking, as shown in Fig. 5. When
there are walls confining the system, we observe a strong
asymmetry between downward and upward velocities, leading
to high values of the RF, as shown in Fig. 5(c). On the other
hand, when pbc was considered, the RF vanished for most
Wτ values only showing significantly nonzero values for very
large Wτ values. This observation concurs with the point that
the convection induced by the walls is the main mechanism
acting in the ascending of the intruder, when walls are present.
For the pbc case, the RF shows that only for high values of

FIG. 6. Collapse of the measured values. The data points are col-
lapsed for all simulations with pbc. The fit can cover the ascent rate
for different parameters, like stiffness kn, normalized acceleration �,
and the column above the intruder h.

Wτ is an asymmetry observed in the upward and downward
velocities, which is compatible with the fact that the larger
jumps occur only when resonance takes place.

IV. CONCLUSION

In conclusion, we reported a survey on the Brazil Nut
Effect considering systems with either frictional walls or pe-
riodic boundary conditions that put in evidence the leading
role played by the resonance on the ascent rate of the intruder
for the periodic boundary case. We reinforce our assertion by
measuring the rate function for each distinct boundary case,
and interpreting the difference observed in the results as a
consequence of the different roles exerted by the walls and
the resonance. As suggested by Kumar et al. [30], the phase-
space contraction associated with the origin of the collapse
in Fig. 5(b) only manifests itself for large values of Wτ . Our
results significantly change the understanding of the BNE
phenomenon and we expect that it will motivate experiments
about this alternative approach for the problem. In a future

FIG. 7. Fit of the parameters using Eq. (2). In (a), the fitted
natural frequency ω0 shows little dependence with �. In (b), the
dissipation parameter shows agreement within the error bars to a
constant value.
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FIG. 8. Temporal profile, according to stiffness. Rising trajec-
tories for the intruder. In (a), for lower hardness (kn = 1000). we
observe that the intruder can rise suddenly and fast. In (b), for a much
higher hardness (kn = 10 000), the intruder only rises for a limited
range of frequencies, and it clearly jumps each layer after some
waiting time, with the possible exception of the case for the fastest
rising rate (ω = 0.225

√
g/d) where the waiting time is minimal.

work we plan the present large deviation analysis to quantify
the contribution of each mechanism, especially resorting to an
experimental setup.
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APPENDIX

We measured the ascent rate of an intruder inside a granular
media to explain the resonance effect on the BNE in two
dimensions with frictional walls (fw), frictionless walls (flw),
and periodic boundary conditions (pbc). This Appendix con-
tains some extra information about the fitting function used to
describe the resonance effect and some other parameters, such
as stiffness constants and different intruder densities.

1. Fitting function for resonance

We proposed in our study that, in the absence of confining
walls, the BNE effect can be best explained by means of
a resonance phenomenon. To quantify it, we collapsed the
data with the function defined in Eq. (2), and normalized
the values of the abscissa accordingly, where ω0 is the bare
natural frequency for a damped harmonic oscillator and ζ is
the damping ratio, acting as a free fitting parameter.

The chosen function behaves as a linear band-pass filter,
meaning that frequencies much lower and much higher than
w0 are damped to zero values on its response, while near
w0 the response is near to its peak. The transfer function

(a)

(b)

FIG. 9. In (a) the simulation was set to fw, width of 37.5d, shaken
frequency of 0.256

√
g/d , 2500 grains, and we varied the intruder

density, compared to the medium. In (b), a comparison between fw
and flw and a change in frequency.

corresponds to the response on velocity, which also fits the
dimension of the measured ascent rate.

To make the quantities dimensionless, we may use a set of
variables such as the mass of the intruder m, the diameter of
the grains d , and the gravity acceleration g. The normalization
factor, based on the natural oscillation frequency ω0, is depen-
dent on the height of the granular column h and on the square
root of the stiffness of the material

√
kn.

The fitting function was chosen to represent a damped
harmonic oscillator near its resonance [Eq. (2)]. Although the
BNE model is far from being a simple harmonic oscillator,
there is a qualitative concordance of the simulation results
with those of the simple resonant model.

In Fig. 6, we depict the fitting, done according to Eq. (2),
where we can see that the qualitative behavior of the BNE near
the peak value for the ascent rate is well described by the res-
onance model. Even for very hard particles kn = 10 000, the
model describes reasonably well the frequency dependence
for the ascent rate.

We also fitted the parameters ω0 and ζ , as can be seen in
Fig. 7. For the range of � studied, the values of the dissipation
factor ζ are compatible within the error bars. For the natural
frequency ω0, the fittings suggest that the values are almost
constant for a broad range of values of �.

Beyond testing the resonance hypothesis, we can turn up
the stiffness constant and observe its effect on the ascent rate.
This is done in Fig. 7.
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FIG. 10. In (a) 25d wide in pbc. Increase � leads to increase
ascent rate. In (b) 37.5 wide in pbc.

2. Harder grains in simulations under pbc

To check the results in the resonance region, we ran a
series of simulations for harder particles (intruder and grains),

kn ∼ 10 000. For harder particles, their collision duration time
is reduced (tcol ∝ k−1/2

n for harmoniclike interactions).
For the hard-particle case, we verified the resonance effect

becomes sharper, which can be seen clearly for the fit we
obtain [see Fig. 3(b)]. Concerning the individual trajectories,
jumps become much more rare and, even on the top of the
resonance frequency range, one can observe the BNE rises by
a granular layer at a time [see Fig. 8(b)].

As seen above, only at a very specific frequency (ω =
0.225

√
g/d in Fig. 8) the height increments accumulate

quickly, suggesting that at that characteristic frequency a col-
lective behavior emerges due to resonance.

Those jumps are indeed rare events along the overall move-
ment of the intruder, therefore, we would like to analyze them
from the point of view of the RF [33,34]. This approach was
successfully applied to an anisotropic intruder, confined by a
granular material, by Ramaswany et al. [30]. Here, we decided
to apply this approach to obtain the RF for the BNE regime for
both with pbc and walls. It is worth mentioning that, unlike
in Ref. [30], our intruder is symmetrical (gravity breaks the
symmetry) and oscillations are imposed along the vertical
displacement direction of the intruder.

The problem with fw has a significant difference, if com-
pared with pbc. The ascent rate is at least one order of
magnitude larger, and this property is seen in the large devi-
ation response. Comparing the difference of density between
the intruder and medium, we expect that the lighter intruder
arise more quickly than heavier ones, and fw contribute more
than flw. Figure 9 shows us that increasing � usually increases
the ascent rate.

In pbc, the greater the granular column, the narrower the
width band. The same applies to the stiffness increase. The left
panel in Fig. 10 has 25d width in three different frequencies,
the right panel has 37.5d width in ω, with different granular
columns.
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