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Recent experiments and simulations of amorphous solids plastically deformed by an oscillatory drive have
found a surprising behavior—for small strain amplitudes the dynamics can be reversible, which is contrary to
the usual notion of plasticity as an irreversible form of deformation. This reversibility allows the system to
reach limit cycles in which plastic events repeat indefinitely under the oscillatory drive. It was also found that
reaching reversible limit cycles can take a large number of driving cycles and it was surmised that the plastic
events encountered during the transient period are not encountered again and are thus irreversible. Using a graph
representation of the stable configurations of the system and the plastic events connecting them, we show that the
notion of reversibility in these systems is more subtle. We find that reversible plastic events are abundant and that
a large portion of the plastic events encountered during the transient period are actually reversible in the sense
that they can be part of a reversible deformation path. More specifically, we observe that the transition graph can
be decomposed into clusters of configurations that are connected by reversible transitions. These clusters are the
strongly connected components of the transition graph and their sizes turn out to be power-law distributed. The
largest of these are grouped in regions of reversibility, which in turn are confined by regions of irreversibility
whose number proliferates at larger strains. Our results provide an explanation for the irreversibility transition—
the divergence of the transient period at a critical forcing amplitude. The long transients result from transition
between clusters of reversibility in a search for a cluster large enough to contain a limit cycle of a specific
amplitude. For large enough amplitudes, the search time becomes very large, since the sizes of the limit cycles
become incompatible with the sizes of the regions of reversibility.
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I. INTRODUCTION AND SUMMARY

Understanding the response of a configuration of in-
teracting particles in a disordered solid to an externally
imposed force is one of the main challenges currently facing
researchers in the fields of soft matter physics and rheol-
ogy [1,2]. As an amorphous solid adapts to the imposed
forcing, it starts to explore its complex energy landscape
which gives rise to rich dynamics [3,4]. One example of such
dynamics is the response to an oscillatory driving, which for
small amplitudes, can lead to cyclic response: a repeated se-
quence of configurations whose period is commensurate with
that of the driving force [5–11]. Such cyclic responses encode
information and possess memory about the forcing that caused
them. Memory effects of this kind have been observed ex-
perimentally [12], as well as numerically [5,13], in cyclically
driven (sheared) amorphous solids, colloidal suspensions [2],
and other condensed matter systems, such as superconduct-
ing vortices and plastically deformed crystals [14–19]. Cyclic
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response is important in many applications of plastic de-
formation such as fatigue experiments and the stability of
geophysical structures. Large amplitude oscillatory shear is
used extensively to characterize the rheological properties of
soft materials [20].

An important feature of cyclic response in amorphous
solids is that for small shear amplitudes, the steady-state
response includes plastic events that keep reoccurring in
consecutive driving cycles and are in this sense reversible.
However, before the system settles in a cyclic response, it
typically undergoes a transient period in which the dynamics
is not repetitive and the plastic events can thus be regarded as
irreversible. As the amplitude of shear is increased, transients
become increasingly longer and, eventually, at a critical strain
amplitude, the dynamics becomes completely irreversible.
Here we will consider this critical strain to be the yield
strain [6,21] though it is sometimes referred to as the irre-
versibility transition.

Since both reversible and irreversible plastic events involve
particle rearrangements, it is not clear what distinguishes one
from the other [21–30]. Recently, we have shown that in
the athermal, quasistatic (AQS), regime we can rigorously
describe the dynamics of driven disordered systems in terms
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of a directed state-transition graph [31–33]. The nodes of this
graph, the mesostates, correspond to collections of locally
stable particle configurations that transform into each other
under applied shear via purely elastic deformations. The edges
of the graph therefore describe the plastic events. Further-
more, we have demonstrated that such transition graphs can
be readily extracted from molecular simulations of sheared
amorphous solids [33]. The ability to link the topology of the
AQS transition graph with dynamics has provided a means
of probing the complex energy landscape of these systems.
Here we show that analysis of such graphs in terms of their
strongly connected components (SCCs) [34] allows us to dis-
tinguish between reversible and irreversible events and better
understand the organization of memory in these materials.

In the AQS networks of sheared amorphous solids, SCCs
correspond to sets of mesostates connected by plastic de-
formation pathways such that each mesostate in the SCC
is reachable from each other mesostate in the SCC by a
plastic deformation path. Due to this property, a plastic tran-
sition which is part of these paths can be reached arbitrarily
many times and is reversible. Reversible plastic events are
thus events that connect states within an SCC. Conversely,
irreversible plastic events are transitions between states in
different SCCs, since by their definition, transitions between
mesostates belonging to different SCCs cannot be reversed.
The ability to identify reversible plastic events as events inside
SCCs and irreversible plastic events as transitions between
SCCs allows us to better understand the transient and re-
versible dynamics of amorphous solids. At the same time, this
distinction facilitates comparing the properties of the corre-
sponding plastic events. We observe that changes in energy
and stress during irreversible events are significantly larger
than for reversible events. While many irreversible transitions
occur at high stresses and energies associated with yielding,
we also find a significant amount of irreversible transitions
occurring at much lower stresses and energies.

We further study the properties of SCCs and find that
their overall size distribution follows a power law. For strains
near and above yield, very small SCCs proliferate. Since the
plastic events associated with cyclic response are reversible,
they must be confined to a single SCC. The statistics of
SCC sizes thus provides an estimate of the memory retention
capability and its dependence on the strain amplitude of the
driving. Furthermore, these findings also shed light on the
mechanisms giving rise to the long transient dynamics ob-
served in cyclically sheared amorphous solids. We show that
reversible plastic events are dominant up to a strain of about
γrev = 0.085, which is below the yield strain γy = 0.135 in
this system. For strains above γrev and approaching yielding,
irreversible plastic events become increasingly dominant. This
finding suggests that there is a change in the dynamic re-
sponse of these systems as the driving crosses from the below
yield to the near yield regime around γrev = 0.085. Indeed,
we find that in the subyield regime γ < γrev, large SCCs are
readily available and the transient to a limit cycle is largely
constrained by finding the right one, i.e., a response where all
plastic transitions are reversible and thus confined to the same
SCC. On the other hand at the near-yield regime, γrev < γ <

γy, the SCC size does matter. This regime is characterized by
small SCCs and hence SCCs of the required size are rare. As

a result, the transient dynamics is dominated by a search for
an SCC of the appropriate size.

II. RESULTS

A. Mesostates, AQS state transition graphs, and mutual
reachability

Consider the athermal dynamics of an amorphous solid
being subject to shear strain along a fixed direction. After its
initial preparation, before the system is subject to any external
forcing, it is in a local minimum of its potential energy. As we
increase the strain in a slow and adiabatic manner, the energy
landscape deforms and the position of the local energy min-
imum in configuration space changes. For a range of strains
that is dependent on the particle configuration, the amorphous
solid adapts by purely elastic deformation to the strain incre-
ments. This elastic response lasts until we reach a value of the
strain where the particle configuration attained ceases to be a
local energy minimum and thus becomes unstable. Increasing
the strain further, the system relaxes into a new local energy
minimum and this constitutes a plastic event. Thus, given a
locally stable configuration of particles, there exists a range
of strains, applied in the positive and negative directions, over
which an amorphous solid adapts to changes in the applied
strain in a purely elastic manner and which is punctuated on
either end by plastic events. In Ref. [33], we have called such a
contiguous collection of locally stable equilibria a mesostate.
Thus, with each mesostate A we can associate a range of
strain values (γ −[A], γ +[A]) over which the locally stable
configurations transform elastically into each other and that
is limited by plastic events at γ ±[A]. When a plastic event
occurs, the system reaches a new, locally stable configuration
which must necessarily belong to some other mesostate B.
Since mesostate transitions are triggered at either end of the
stability interval (γ −[A], γ +[A]), we call transitions under
strain increase and decrease U, respectively, D transitions.
For example, if mesostate B is reached under a U transition
from A, we write this symbolically as B = UA. The mesostate
transitions under strain increases and decreases have a natural
representation as a directed graph, the AQS state transition
graph. Here each vertex is a mesostate and from each vertex
we have two outgoing directed transitions, namely one under
U and the other under D. As explained above, in the context of
sheared amorphous solids, the transitions of the AQS graphs
correspond to purely plastic events. These events can be traced
back to localized regions in the sample, the soft spots, where
a small number particles undergo a rearrangement. In the
simplest picture, soft spots can be thought of as two-level
hysteretic elements [35,36], which interact with each other via
Eshelby-type long-range elastic deformation fields [37].

Since the AQS transition graph represents the plastic de-
formation paths under every possible history of applied shear
along a fixed axis, the dynamic response of the amorphous
solid will be encoded in the graph topology. The connection
with soft-spot interactions was already explored in Ref. [33],
and our aim here is to explore the implications of graph topol-
ogy on the dynamics. To this end, we perform a decomposition
of the graph into its SCCs. This decomposition is based on the
relation of mutual reachability of mesostates, which is defined
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FIG. 1. (a) Illustration of the construction of a catalog of mesostates starting from the reference state O at generation g = 0. Transitions in
black/gray (red/orange) designate U (D) transitions. Under U and D transitions, we obtain 2, 4, and 5 new meostates at generations g = 1, 2,
and 3, respectively. Transitions leading to new mesostates at each generation have been highlighted. (b) A mesostate transition graph generated
from an initial configuration O (marked as a red dot) with several strongly connected components (SCCs) highlighted in different colors.
The largest six SCCs have sizes: 929 (green), 222 (brown), 115 (yellow), 90 (orange), 37 (cyan), and 20 (purple). Transitions within an SCC
correspond to reversible plastic events, since for any deformation path connecting two states in an SCC, by definition there is also a reverse path.
Irreversible plastic events are transitions between states belonging to different SCCs. (c) The inter-SCC graph is a compressed representation
of the graph in (b), showing the SCCs as squares with colors that correspond to the colors in (b). The arrows connecting the SCCs are the
irreversible plastic events and the inter-SCC graph is therefore acyclic.

as follows: two mesostates A and B are said to be mutually
reachable if there is a sequence of U and D transitions that
lead from A to B and back from B to A. Mutual reachability
is an equivalence relation: if A and B are mutually reachable
and B and C are mutually reachable, then A and C are also
mutually reachable. Thus mutual reachability partitions the
set of mesostates of the AQS transition graph into (disjoint)
sets of mutually reachable states. In network theory, such sets
are called SCCs [34].

B. AQS transition graphs from simulations

As we have shown in Ref. [33], it is possible to extract
AQS state transition graphs from simulations of a sheared
amorphous solid. The details of the construction of such
graphs can be found in Appendix A 1 and A 2, as well as
the Supporting Material of Ref. [33]. Here we summarize the
main procedure and our data. We start with an initial stable
particle configuration belonging to a mesostate O, which we
call the reference state, and we assign O to generation g = 0.
We then determine its range of stability γ ±[O], as well as
the mesostates UO and DO that it transits into. The latter are
the mesostates of generation g = 1. Proceeding generation by
generation, and identifying mesostates that have been encoun-
tered at a previous generation we can assemble a catalog of
mesostates, which (i) lists the stability range of each mesostate
and (ii) identifies the mesostates that these transit into under
U and D transitions. Figure 1(a) illustrates the initial stages
of the catalog acquisition. We have extracted from numerical
simulations eight catalogs, each corresponding to a different
initial configuration quenched from a liquid. These catalogs
contain a total of nearly 400 000 mesostates and we identified
the SCCs that they belong to. Table I summarizes our data.
Figure 1(b) shows a portion of an AQS state transition graph
obtained from catalog No. 1 of the data set. The excerpt shown

contains 1542 mesostates. The reference state O, containing
the initial configuration, is marked by a big circle (in red)
and nodes belonging to the same SCC have the same color.
SCCs with less than 15 nodes are shown in dark gray. The
largest six SCCs shown have sizes 929 (green), 222 (brown),
115 (yellow), 90 (orange), 37 (cyan), and 20 (purple).

C. Reversible and irreversible plastic events

The partition of the mesostates of an AQS transition graph
into SCCs allows us to identify two types of transitions:
transitions within the same SCC and transitions connecting
different SCCs. The former transitions are plastic deforma-
tions that can be reverted, since mutual reachability assures

TABLE I. Properties of the eight mesostate catalogs, labeled 1–8
that were extracted from the molecular simulations. For each catalog,
we list the maximum number of generations gmax. This means that
the catalog contains all mesostates that can be reached from the
initial mesostate O by at most gmax + 1 plastic events, i.e., U or
D transitions. In the third column, we specify the number N of
mesostates belonging generations g � gmax, while the fourth column
lists the number of strongly connected components NSCC that these
states form.

Run gmax N NSCC

1 40 48 204 18 887
2 43 56 121 27 702
3 37 43 951 17 451
4 36 43 550 18267
5 41 44 656 19 971
6 35 51 784 27 133
7 41 51 741 21 516
8 45 46 395 18 122
ALL n/a 386 402 169 049
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FIG. 2. (a) Normalized distributions of energies at the onset of
reversible (blue dots) and irreversible (red squares) plastic events
(transitions). (b) Normalized distributions of the energy drops during
reversible (blue dots) and irreversible (red squares) plastic events
(transitions). The results in this figure combine data sampled from
all eight catalogs.

that for any transition from A to B there exists a sequence
of transitions from B to A. We will therefore call these
transitions reversible [38]. On the other hand, transitions be-
tween two different SCCs must necessarily be irreversible:
There is a plastic deformation path from a mesostate in one
SCC to a mesostate in another SCC, but there is no defor-
mation path back. If there had been one, these two states
would have been mutually reachable, and therefore part of
the same SCC. Further details on identifiying transitions as
reversible are given in Appendix A 3. We can condense the
transition graph by collapsing all states belonging to an SCC
into a single vertex so only transitions between SCCs re-
main [39], i.e., the irreversible transitions. The graph obtained
in this way is the inter-SCC graph, and by construction, this
graph is acyclic, i.e., it cannot contain any paths that lead
out of and return to the same SCC. Figure 1(c) shows the
inter-SCC graph obtained from the mesostate transition net-
work shown in Fig. 1(b). The size of the vertices represents
the size of the respective SCCs with a logarithmic scaling
as indicated in the legend to the right of the figure. The
color and placement of the SCC vertices follows those of
Fig. 1(b).

Since the SCC decomposition allows us to distinguish
reversible from irreversible plastic events, we can use it to
compare their properties. In Figs. 2 and 3, we compare
the statistics of reversible and irreversible events across the
entire eight catalogs. In Fig. 2(a), we show the energies
at the onset of reversible (blue dots) and irreversible (red
squares) plastic events. We see that while reversible events
occur predominately at low energies, the distribution for irre-
versible events is bimodal: there is a concentration of events

at low energies and another concentration at high energies.
Figures 3(a) and 3(b) show density plots of the stress at
which reversible and irreversible plastic events occurs as a
function of the energy. We can see that the secondary peak
of irreversible transitions at higher energies correspond to
stresses σ close to and above the yield stress (the stress at
the yielding/irreversibility transition), which is σy ∼ 2.5 in
units of the simulation and that reversible events are much
scarcer in this region. In Fig. 2(b), we compare the energy
drops due to reversible and irreversible plastic events. We
can see that both exhibit power-law behavior. The irreversible
events, while showing a strong cutoff, give rise to much larger
energy drops in general and correspond to large collective
particle rearrangements (avalanches). In Figs. 3(c) and 3(d),
we show a density plot of the stress drops �σ and stresses
σ associated with reversible and irreversible plastic events,
respectively. The figure reveals that the events accompanied
by large stress avalanches are concentrated close to and above
the yield stress and exhibit a secondary peak in the density
plot of the irreversible events. While it is obvious that close
to yielding the system experiences a large number of large
irreversible events, the figures also clearly shows the presence
of a large number of irreversible events with small stress drops
at stresses much below yield. In the following, we shall argue
that these events play a role in the transient dynamics ob-
served in simulations under oscillatory shear at subyield strain
amplitudes [5,6,27,28].

D. AQS transition graph topology

Figure 4(a) shows the size distribution of SSCs extracted
from all eight catalogs. The solid line is a power-law be-
havior with exponent of 2.67 and serves as a guide to the
eye. We estimated the power-law exponent and its uncer-
tainty using the maximum-likelihood method described in
Ref. [40], and by considering only the 24 488 SCCs with
sizes sSCC � smin = 4. This choice was motivated by the em-
pirical observation that small SCCs containing mesostates
at the largest generations of the catalog limit are more likely
to increase in size, if the catalog is augmented by going
to higher number of generations. The exponent depends on
the choice of cutoff smin: for smin = 1, 2, 3, and 4, we ob-
tain (number of data points indicated in parentheses) the
exponents 2.033 ± 0.003 (169049), 2.529 ± 0.005 (81528),
2.60 ± 0.01 (40021), and 2.67 ± 0.01 (24488), respectively.
The exponents for smin = 2, 3, and 4 fall all into a an interval
between 2.5 and 2.7, while the exponent of 2.203 obtained
with the cutoff smin = 1 seems to be significantly different.
In fact, as we will show shortly, close to yielding there is
a proliferation of SCCs with size one and this affects the
estimate of the exponent. Thus the distribution of SCC sizes is
broad, following a power-law s−α

SCC, with an exponent of about
α = 2.67 and with the main source of uncertainty in α coming
from the choice of the lower cutoff smin. Figure 4(a) also
compares this distribution against the distributions obtained
by limiting the generation number in the catalogs to a maximal
generation number. It is clear that the distribution does not
change significantly.

Next, we ask for the location of SCCs in the transi-
tion graph by looking for correlations between the plastic
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FIG. 3. (a), (b) Density plot of stress versus the energy at the onset of reversible (a) and irreversible (b) plastic events. The overall parabolic
shape of the scattered points corresponds to the bulk elastic response of the samples. (c), (d) The stress drop after a plastic event versus the
stress at the onset of the plastic event for reversible (c) and irreversible (d) transitions. The color bars to the right depict the color coding of the
density from low (dark/blue) to high (bright/yellow). The results in this figure combine data sampled from all eight catalogs.

deformation history of a mesostate A and the number of
reversible transitions that are going out of it, kREV[A]. Re-
call that each mesostate in our catalog is reached from the
reference configuration O by a sequence of U and D tran-
sitions. We call this the plastic deformation history path
of A, as illustrated in Fig. 4(b). Additional details on de-
formation history are provided in Appendix A 3. For each
mesostate and deformation history path, we can identify the
largest and smallest strains under which a U, respectively,
D transition occurred, γ ±

max. These values are indicated in
Fig. 4(b) by the horizontal dashed lines. Figure 4(c) shows
a scatter plot obtained from catalog No. 1 of our data set.
Here each dot corresponds to a mesostate A that is placed

at (γ −
max[A], γ +

max[A]). Since γ −
max[A] < γ +

max[A], the dots are
scattered above the central diagonal of the figure. The loca-
tion of the yield strain γy = 0.135 of the sample is indicated
by the dashed vertical and horizontal lines. We have color
coded the mesostates according to the number kREV[A] of
outgoing reversible transitions, with blue, light red, and gray
corresponding to 2, 1, and 0 possible reversible transitions,
respectively. Note that multiple mesostates can have the same
values of the extremal strains γ ±

max and hence will be placed
at the same location in the scatter plot. To reveal correlations
between the straining history and kREV, we have first plotted
the data points for which kREV = 2, next those for which
kREV = 1 and finally, kREV = 0. In spite of this overplotting
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FIG. 4. (a) The SCC size distribution taken from the full eight catalogs (in blue) exhibits a heavy tail. The solid line is a power-law exponent
2.67 and serves as a guide to the eye. Colors other than blue correspond to distributions derived from the same catalogs but only up to a maximal
generation number of 24,28,32,36, demonstrating that the distribution of SCC sizes becomes stable for networks significantly smaller than the
ones used to calculate the exponent. (b) Plastic deformation history leading from the initial state O to a mesostate A of the catalog after g = 40
plastic events. Each vertical blue line is an intermediate mesostate P with its stability range (γ −[P], γ +[P]), while the horizontal line segments
in black (U) and red (D) that connect adjacent mesostates indicate the strains at which the corresponding plastic events occurred. For each
mesostate A and deformation history, we can identify the largest and smallest strains under which a U, respectively, D transition occurred, γ ±

max,
as illustrated by the extended horizontal lines. (c) Deformation path history dependence of kREV: Each dot represents a mesostate of catalog
No. 1. The coordinates of each dot represent the largest positive and negative strains γ ±

max, cf. panel (b), that were required to reach a specific
mesostate, while their color represents how many reversible transitions kREV = 0, 1, or 2, go out of it, as indicated in the legend. The locations
of the yield strain in both positive and negative directions have been marked by dotted vertical and horizontal lines. The region highlighted
by the light blue triangle contains the set of all mesostates that can be reached without ever applying a shear strain whose magnitude exceeds
|γ ±

max| = 0.085. The prevalence of mesostates with kREV = 2 (blue dots) inside this region implies that mesostates reached by applying strains
whose magnitudes remain below 0.085 undergo predominantly reversible transitions, i.e., lead to mesostates that are part of the same SCC.
(d) Scatter plot of the mesostates with |γ ±

max| � 0.085 across the five catalogs with 40 or more generations. As was the case for the single data
set shown in panel (c) of this figure, the region |γ ±

max| � 0.085 shows a high degree of reversibility across all five catalogs: the region contains
9298 mesostates out of which 7728 have kREV = 2 and 1194 have kREV = 1 outgoing irreversible transitions. Inset: Mean SCC size that a
mesostate belongs to, given that it is stable at some strain γ calculated from all eight catalogs. Error bars represent the standard deviation of
fluctuations around the mean. The figure shows that mesostates stable at large strains tend to belong to small SCCs.

sequence, there appears a prominent central blue region that
is bounded by γ −

max � −0.085 and γ +
max � 0.085. This region

contains 1783 mesostates out of which 1448 have kREV =
2, 257 have kREV = 1, while 78 mesostates have kREV = 0.
Thus 88% of the transitions out of these mesostates are re-
versible [41]. States with a deformation history in which
the magnitude of the applied strain never exceeded 0.085
are therefore highly likely to deform reversibly under U or
D transitions. Since irreversible transitions are rare in this
region, and it is only these transitions that connect differ-
ent SCCs, a further implication of this finding is that the
mesostates in this regime must be organized in a small number
of SCCs and we therefore expect these to be large. Upon
inspection, we find that the mesostates in this region be-
long to 199 SCCs with the largest eight SCCs having sizes
sSCC = 929, 306, 222, 115, 90, 81, 33, and 30 [42]. The ex-
cerpt of the transition graph shown in Figs. 1(b) and 1(c)
contains some of these SCCs. We have verified that such
reversibility regions are present in each of the eight cata-
logs we extracted and with similar extents in strain |γ ±

max| �
0.085. Figure 4(d) shows a scatter plot of the mesostates with
|γ ±

max| � 0.085 sampled from the five catalogs with 40 or
more generations. This region contains 9298 mesostates out of
which 7728 have only reversible outgoing transitions (kREV =

2), while for 1194 mesostates one of the two transitions is
reversible (kREV = 1).

One prominent feature of the transition graph excerpt
shown in Figs. 1(b) and 1(c) is the large hublike SCC (green)
with sSCC = 929 mesostates and an out-degree of 39, i.e., 39 U
or D transitions to neighboring SCCs. Hubs are a common
feature of scale-free networks, which typically emerge via a
stochastic growth process of self-organization [34,43]. Such
networks are characterized by heavy-tailed degree distribu-
tions. Note that a mesostate transition graph is generated
from a single disordered initial configuration of particles by
a deterministic process for the acquisition of mesostates and
the identification of transitions between them. The initial con-
figuration itself has been obtained from a liquid state through
a quench to zero temperature. The transition graphs can there-
fore be regarded as quenched disordered graphs, linked via
the catalog acquisition process to an ensemble of initial con-
figurations extracted from the liquid state [31,32]. We have
computed degree distributions of the inter-SCC graphs over
the full catalog as well as when restricted to the reversibil-
ity regions. For example, among the 199 SCCs associated
with the reversibility region of catalog No. 1, Fig. 4(c), the
largest eight SCCs also have the largest degrees, given by
k = 39, 12, 7, 4, 3, 3, 2, and 2. The reversibility regions of
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FIG. 5. Large excerpt of the inter-SCC graph, cf. Fig. 1(c), obtained from catalog No. 1. Shown is the subgraph of 3228 SCCs (squares)
that can be reached from the SCC of the initial state by at most 15 inter-SCC transitions. These SCCs contain a total of 12 790 mesostates.
The size of the SCCs is indicated by the legend in the top left corner of the figure. The coloring scheme of the SCCs indicates the (average)
number of yield events in the plastic deformation history of the mesostates constituting the SCC, i.e., the number of mesostate transitions in
their deformation history that occur at stresses of magnitude 2.5 and higher. The figure shows patches of SCCs with the same number of yield
events. Among these, the green patch of SCCs whose constituting mesostates have suffered no yield experience is dominant. Note that even
for two (orange) or more yield events, there are relatively extended patches of SCCs of large sizes, such as the orange patch in the top left part
of the graph. These findings suggest that the transition graph contains multiple reversibility regions, such as the one shown in Fig. 4(c), that
differ only by the common history of past yield events of their constituent mesostates.

all eight catalogs display similar network features: In each
of these, we observe a few SCCs with large degrees that are
superposed on a background of a very large number of SCCs
with very small degrees. Note that every SCC has to have
at least two outgoing irreversible transitions, as explained in
Appendix A 3. While these findings per se do not rule out
the possibility of a scale-free inter-SCC graph, there are not
enough SCCs with large degrees in our catalogs to deduce a
heavy-tailed degree distribution.

The inset of Fig. 4(d) shows the (conditional) average
of the sizes of SCCs to which a mesostate A belongs to,
given that it is stable at some strain of magnitude |γ |, i.e.,
we average over the sizes of SCCs which a mesostate A
belongs to, and for which either γ −[A] < |γ | < γ +[A], or
γ −[A] < −|γ | < γ +[A] holds. Further details are provided
in Appendix A 3. The vertical error bars show the standard
deviations around the averages. For |γ | � 0.05, the mean
SCC size is around 30. The distribution of SCC sizes in
this region is very broad, as can be seen from the standard
deviations, which are much larger than the mean values. For
larger strains, the mean SCC size gradually drops to 1.2, ac-
companied by increasingly smaller standard deviations. Since
all states of a given catalog are reached from the same an-
cestral mesostate O at zero strain, a mesostate whose strain
history has never experienced a strain of magnitude larger than
γmax must be stable at some strain γ with −γmax � γ � γmax.
Thus mesostates inside the reversibility region are stable at

strain values that are also within these ranges. We therefore
conclude that the mesostates in the reversibility region are
dominantly organized in few large SCCs whose sizes follow a
broad distribution and that mesostates stable at larger strains
tend to be part of smaller SCCs.

Turning now to the mesostates placed outside the re-
versibility region, it can be seen from Fig. 4(c) that these are
more likely to have one or more outgoing irreversible transi-
tions, i.e., kREV = 1, 0. Note that mesostates in this regime are
a mixture of (i) mesostates stable at low strain values, which,
however, experienced large strains in their history and subse-
quently were driven back to lower strains, and (ii) mesostates
stable at large strains. The choice of plotting these mesostates
against maximal strains in their deformation history blurs this
distinction. However, we checked that the mesostates of (i) are
part of some other regions of reversibility and also similarly
organized into larger SCCs. On the other hand, mesostates in
(ii) must belong to comparatively small SCCs, as indicated by
the inset of Fig. 4(d). To support our expectations regarding
the mesostates of type (i), we have inspected the deforma-
tion history of mesostates belonging to an SCC, counting the
number nY of times the magnitude of the stress exceeds the
yield stress (the stress at the yielding/irreversibility transition)
σy ≈ 2.5 in their deformation history. We find that this number
is nearly constant across all mesostates constituting an SCC,
differing only from SCC to SCC. Figure 5 shows a large
excerpt of the inter-SCC graph, cf. Fig. 1(c), obtained from
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catalog No. 1. Shown is the subgraph of 3228 SCCs (squares)
that can be reached from the SCC of the initial state by at most
15 inter-SCC transitions. These SCCs contain a total of 12790
mesostates. The size of the SCCs is indicated by the legend in
the top left corner of the figure. The coloring scheme of the
SCCs shown on the top left indicates the number nY of yield
events in the plastic deformation history of the mesostates
constituting the SCC. The figure shows patches of SCCs with
the same number of yield events. Among these, the green
patch of SCCs whose constituting mesostates have suffered
no yield experience is dominant. Note that even for nY = 2
(orange) or more yield events, there are relatively extended
patches of SCCs of large sizes, such as the orange patch in the
top left part of the graph.

Putting all these findings together, we conclude that the
landscape of local energy minima accessible by arbitrary
plastic deformation protocols is composed of regions of re-
versibility with few but relatively large SCCs. The mesostates
belonging to these patches tend to have a common de-
formation history that differs from mesostates belonging
to other reversibility regions by the near-yield or yield
events they suffered in their deformation history. These re-
versibility regions are surrounded by significantly smaller
SCCs containing mesostates stable at strain values closer to
yield.

E. Response to cyclic shear

Our findings on the topology of the energy landscape,
and its organization into patches of regions in which plastic
events are reversible, have direct implication for the response
of the amorphous solid to an applied oscillatory shear strain.
An evolution toward cyclic response, i.e., limit cycles, is a
mechanism to encode memory of the past deformation history
in such systems [2] and the loss of the capability to do so
at increasingly larger amplitudes is believed to be related to
the reversibility/irreversibility transition. We start with the
observation that the mesostates forming the cyclic response
to an applied oscillatory shear are mutually reachable and
therefore must belong to the same SCC: Consider a simple
cycle with a lower endpoint R, i.e., a mesostate R, such
that

R = DmUnR. (1)

The intermediate states of this cycle are the mesostates
R, UR, U2R, . . . UnR, DUnR, D2UnR, . . . , DmUnR = R. Any
pair of these states is mutually reachable and these states
must be part of the same SCC. Indeed, we find that many
SCCs of our catalog contain cycles of the form Eq. (1).
Figure 1(b) shows three different cycles that belong to the
yellow SCC. The U and D transitions forming the cycles have
been highlighted by black and red arrows, respectively. For
the state labeled R, we have R = D12U13R: the amorphous
solid returns to state R after a sequence of 13 plastic events
under increasing strain followed by 12 plastic events under de-
creasing strain. A cyclic response to oscillatory shear in which
the period of the driving and response coincide (harmonic
response) must be of the form Eq. (1) and will be produced by
an applied cyclic shear such that γmin → γmax → γmin → . . .

for some pair of strains γmin and γmax. To relate the length of

FIG. 6. (a) The range of strain amplitudes of oscillatory shear
of the form Eq. (2) that give rise to a limit cycle consisting of �

plastic events/mesostate transitions. Blue dots refer to average strain
values for the corresponding cycle lengths. The solid black line is a
power law with exponent 2.5. (b), (c) Note that mesostates forming
a cyclic response must belong to the same SCC and, consequently,
a limit cycle formed by � mesostates can only be part of an SCC
whose size sSCC � �. (b) Scatter of SCC size sSCC, against the strain
amplitude γ generating the limit cycle with largest � contained in
the SCC (red small dots). The bigger red dots connected by a dashed
line outline the boundary of this region—they are the smallest SCCs
that contain a limit-cycle of a strain amplitude γ . Blue dots with error
bars replot the inset of Fig. 4(d), displaying the average sizes of SCCs
that contain states stable at strain γ . (c) Scatter plot of the SCC sizes
against the length �max of the largest limit cycles, under oscillatory
shear Eq. (2) that these contain. The red curve is a prediction of the
Preisach model. Refer to text for further details. The results in this
figure combine data sampled from all eight catalogs.

a limit cycle � = m + n, cf. (1), to the drive amplitude, we
extract from our catalog every possible limit cycle of the form
Eq. (1) that is compatible with oscillatory forcing given by

0 → γ → −γ → γ . . . , (2)

for some amplitude γ . Across the eight catalogs, we identified
a total of 44 642 distinct limit cycles. Grouping these limit
cycles by their length �, we show in Fig. 6(a) the range
of amplitudes γ for which they were observed (horizontal
red line) along with their average amplitude (blue dots). As
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expected, we find that the length � of the cycle increases
with the amplitude of oscillatory shear. This behavior is well
described by a power law with an exponent of 2.5 as indicated
in the figure.

F. Transient response and the reversibility/irreversibility
transition

From the topology of the state transition graph, we can now
draw conclusions about the nature of the transients toward
cyclic response under oscillatory shear. Since limit cycles
attained at increasingly larger amplitudes are formed by a
larger number � of mesostates, these require increasingly
larger SCCs that can contain them since a limit cycle is al-
ways a part of an SCC. In Fig. 6(b), we show a scatter plot
where each dot corresponds to an SCC, and the size of the
SCC is plotted against the strain amplitude of the limit cycle
with largest � that it contains (small red dots). We have also
indicated the right boundary of the scatter region marked by
a dotted red line connecting the extreme data points [44]. In
Fig. 6(b), we have superposed the data points of the inset
of Fig. 4(d), enabling us to compare the available SCC sizes
with the sizes of the actual SCCs selected by the limit cycles
reached with oscillatory shear at amplitude γ . It is apparent
that for amplitudes above 0.08, the sizes of selected SCCs
are multiple standard deviations away from the sizes of the
available SCCs. This means that for these driving ampli-
tudes, SSCs with sizes necessary to contain them are rare
and thus transients are expected to be long, as observed in
simulations [5].

The above observations have implications for the length
of transients toward limit cycles under oscillatory shear. They
suggest that two separate dynamics govern the transient re-
sponse. At low driving amplitudes, and hence well within
the reversibility region, sufficiently large SCCs are abun-
dant and cyclic response sets in when a suitable sequence
of reversible plastic transitions has been reached and the
SCC has thereby trapped the limit cycle. Here SCC size
is not a limiting factor. On the other hand, for larger am-
plitudes, i.e., amplitudes outside of the reversibility region
but still below yield, larger SCCs are needed, which as we
have shown, become increasingly rare. It is thus plausible
to assume that the ensuing increase in the duration of the
transient is predominantly due to the search for a sufficiently
large SCC, and that the additional requirement that such
an SCC, once found, is also trapping is of secondary im-
portance, given that the probability of finding an SCC of
the right size is already very small. These observations are
consistent with earlier findings by one of us for this sys-
tem which showed that limit cycles for strain amplitudes
beyond γ ∼ 0.13 were not observed or extremely rare [5].
This further suggests that the reversibility/irreversibility tran-
sition of the response under oscillatory shear is governed by
a crossover of the probability of finding a limit cycle into a
rare-event regime due to the scarcity of SCCs of sufficient
size.

Having established the relation between the SCC size sSCC

and the driving amplitudes γ , we next connect sSCC to the
length of the limit cycles that they contain. Figure 6(c) shows
a scatter plot of SCC sizes against the length �max of the largest

limit cycles they contain. As the figure reveals, the scatter
points cover an area with a well-defined lower boundary, i.e.,
the smallest SCC size that can confine a limit cycle of a given
length �. Moreover, this boundary has a distinct concave-up
shape, and for most of the data points sSCC > �max. Thus
while SCCs of size sSCC = �max would have sufficed to trap
a limit cycle, we find that these SCCs contain many more
states in general. As will be discussed in the following
section, this is also related to the memory capacity of an
SCC.

G. SCCs and memory capacity

To understand the origin of these excess mesostates and
their connection with memory capacity, let us return to
Fig. 1(b) and consider the yellow SCC. This SCC is bounded
by a cycle with endpoint R, which contains multiple sub-
cycles, some of which have been indicated in the figure. It
therefore appears that the largest cycles inside an SCC come
with a collection of subcycles, the mesostates of which are
mutually reachable as well. In fact, if the sheared amorphous
solid had return point memory (RPM) [15,31], then any cycle
of the form Eq. (1) would necessarily be organized in a hier-
archy of subcycles and, moreover, all of these together would
be part of the same SCC [45]. Thus if RPM were to hold,
the mesostates forming the subcycles of a limit cycle would
all be part of the same SCC. RPM can be used as a means
to store information by utilizing the hierarchy of cycles and
subcycles [46]. Moreover, the nesting depth of the hierarchy
provides an upper limit for the amount of information that can
be encoded via RPM [46,47].

A central finding of Ref. [33] has been that for amor-
phous solids and up to moderately large strain amplitudes,
the limit cycles reached under oscillatory shear exhibit near,
but not perfect, RPM. As a result, such cycles are still
accompanied by an almost hierarchical organization into sub-
cycles [48]. The deviations from RPM are a result of positive-
and negative-type interactions among soft spots via the Es-
helby deformation kernels, as a result of which a plastic
event in one part of the sample may bring some soft spots
closer to instability, while at the same time it may stabilize
others. If such soft-spot interactions were completely absent
(or negligible), we would be in the Preisach regime, where
each soft-spot can be regarded as an independent hysteretic
two-state system and the system exhibits RPM [49,50]. Limit
cycles then become Preisach hysteresis loops whose cycle and
subcycle structure is governed by the hysteresis behavior of
the individual soft spots undergoing plastic deformations as
the cycle is reversed. Since the Preisach model exhibits RPM,
its main hysteresis loop along with its subcycles constitutes an
SCC. Due to the absence of interactions, the size of this SCC
can be estimated as follows. Assuming that a Preisach loop
is formed by L noninteracting soft spots, so � = 2L, and as-
suming further that the switching sequence of soft spots as the
loop is traversed is maximally random [51], the average size
of the SCC containing the Preisach loop is given for large L
as [47]

sPr = 1

2

√
1

eπ

e2L
1
2

L
1
4

. (3)
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In Fig. 6(c), we have superposed the Preisach prediction sPr,
assuming that L = �max/2 in Eq. (3), on top of the sim-
ulation results. Despite the rather crude assumptions made
by identifying the SCCs of the sheared amorphous solid as
Preisach loops, the Preisach prediction broadly follows the
lower boundary of the scattered points, i.e., the minimum size
of SCCs that can support a limit cycle of a given length �max.

As remarked above, the capacity for encoding memory
using RPM is related to the nesting depth d of the hierarchy of
cycles and subcycles. For the Preisach model, the average of
d can be worked out explicitly and is given as d = 2

√
L [47].

Comparing with the corresponding average SCC size sPr of
Eq. (3), this gives d = ln sPr to leading order.

III. DISCUSSION

We have analyzed the structure of transition graphs char-
acterizing the plastic response of an amorphous solid to an
applied external shear. We have focused on the strongly con-
nected components (SCCs) of these graphs. Physically, SCCs
correspond to collections of stable particle configurations that
are interconnected by reversible plastic events, so it is possible
to reach any of these configurations from any other one by an
appropriate sequence of applied shear strain. The identifica-
tion of SCCs thereby enabled us to designate plastic events
as reversible and irreversible, depending on whether these
connect states within the same SCC or not. The description in
terms of SCCs has also allowed us to characterize the topology
of the underlying energy landscape. Our analysis shows that
the energy landscape is highly heterogeneous: basins of few
but large SCCs, containing a large number of reversible tran-
sitions at strain values below yield, the reversibility regions,
are surrounded by a large number of very small SCCs, con-
sisting of local minima stable at strain values near or above
yield. The overall size distribution of SCCs is therefore rather
broad and we find it to follow a power law. Since the plastic
events constituting any cyclic response to an applied shear
must be confined to a single SCC and the number of such
plastic events increases with the amplitude of the driving, the
size of the corresponding confining SCCs becomes larger as
well. We have shown that as the driving amplitude approaches
yielding, the sizes of the required SCCs become so large that
encountering SCCs of sizes that can still confine them become
rare events. This observation provides a mechanism for the
irreversibility transition and the associated yield strain, above
which amorphous solids under slow oscillatory shear cannot
find limit cycles and the dynamics becomes irreversible.

To summarize, the graph-theoretical analysis of the driven
dynamics of amorphous solids under athermal conditions pre-
sented here reveals features of the energy landscape of glasses,
which are responsible for the memory properties of the sys-
tem. Furthermore, since a transition from reversible plasticity,
that allows the system to store memory of past deformations,
to irreversible plasticity, which allows the system to forget
past deformations, is at the heart of the yielding transition,
this analysis provides a framework for understanding this
transition. By identifying the SCC as a basic entity that groups
reversible plastic events, our study also provides the basis for
predicting the memory storage and retrieval capability of such

systems, a topic of interest in recent experimental work on this
topic [12,52].

There are many open questions that are still to be ad-
dressed. Specifically, how network features are affected by the
preparation protocol of the initial configuration and by system
size and how shearing in different orientations affects the con-
figurations encountered. Recent studies [53,54] have shown
that amorphous solids prepared by equilibrating supercooled
liquids to very low temperatures are ultrastable in the sense
that their response is almost purely elastic up to the point
of yielding (the irreversibility transition). In such materials,
preliminary results indicate a much simpler topology in the
subyield regime. When the system size is increased, we ex-
pect the opposite—that the graph will become more complex.
One can also compose different networks that stem from the
same initial configuration but are rotated by an angle, as was
performed in recent experiments [55]. One can expect that,
despite the different orientations, there will be some overlap
between the networks. However, this is still to be checked
against simulation data and will be the focus of future work.
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APPENDIX: MATERIALS AND METHODS

1. Sample preparation

We simulated a binary system of 1024 point particles in-
teracting by a soft, radially symmetric potential described
in Ref. [56] where half of the particles are 1.4 larger than
the other half. For each realization, we prepared an initial
configuration at a high temperature of T = 1.0 and ran it for
20 simulation time units (all units are mentioned in standard
Lennard Jones, dimensionless reduced units). We then ran
the final configuration for another 50 simulation time units at
T = 0.1. This quench protocol is identical to the one used in
Ref. [5] and leads to a relatively soft glass (without a stress
peak). The final configuration was then quenched to zero
temperature using the FIRE minimization algorithm. Such
a configuration is part of a mesostate and we denote this
mesostate by O and call it the reference state.
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Next, we applied shear to the quenched configuration under
AQS conditions, increasing the strain by small strain steps of
δγ = 10−4. The straining is implemented by means of the
Lees-Edwards boundary conditions [19], and after each step
we minimize the energy of the sheared configuration using
the FIRE algorithm [57]. Further details of the system and
simulation can be found in Refs. [5,56].

2. Extraction of mesostate catalogs

Starting from the initial mesostates O that we obtained
from the zero temperature quench, we continue applying the
strain until reaching the first plastic event. This event corre-
sponds to a U transition from the initial configuration O at
strain γ +[O]. Similarly, we rerun the simulation starting from
the same initial configuration and shear in the same manner
but in the negative direction until another plastic event occurs,
which corresponds to a D transition from O at strain γ −[O].
This completes the first step of obtaining UO and DO, forming
the states of generation 1. Next, for each of the states UO and
DO we determine their stability ranges γ ±[UO], γ ±[DO], as
well as the states they transit under U and D, which constitute
the states of generation 2. We then proceed in a similar manner
to generation 3, etc. After each transition, we check whether
the resulting mesostate has been encountered before or not.
In the former case, we just update a table of transitions, in the
latter case we add the state to our collection of mesostates,
which we call the catalog of mesostates. Proceeding in this
way generation by generation, we assemble a catalog of
mesostates A, their stability ranges γ ±[A], along with the U
and D transitions among them, establishing in this way the
AQS state transition graph.

We can also associate with each mesostate A the generation
g[A] at which it was added to our catalog. We quantify the
extent of a catalog by the maximum number of generations
gmax, for which all transitions (both U and D transitions)
have been worked out. In other words, for all mesostates in
generation g � gmax, we have identified the mesostates that
they transit into.

We have generated eight initial states O from molecular
dynamics simulations, as described above, and used these to
extract the eight catalogs. Table I shows the number of states
N , generations gmax, and the number of SCCs NSCC contained
in each catalog along with the overall totals. Along with this
data, we have collected for each mesostate A in our catalog,
the minimum and maximum values of strain over which a
mesostate is stable, as well as the values of the stress and
energy at these two points and the changes of these two
quantities when a plastic event occurs. The analysis in the
main text is based on this data set.

The identification of the generation g[A] at which a
mesostate was added to our catalog also allows us via
back-tracking to determine the deformation history, i.e., the
sequence of U and D transitions that lead from the initial
state O to A. A sample deformation history has been shown
in Fig. 4(b). By construction, the generation g[A] is also the
smallest number of U and D transitions needed to reach A
from O. However, such a deformation history need not be
unique: with g[A] being the first generation at which mesostate
A appears in the catalog, A must necessarily have been reached

with a transition from a mesostate belonging to generation
g − 1. However, there might be different mesostates in gen-
eration g − 1 that transit into A, therefore each of these would
provide an alternative path from O to A. We have verified that
such degeneracies constitute a small fraction, about 1–3%, of
the transitions in our catalog.

3. Identification of strongly connected components, reversible
and irreversible transitions

Once the catalogs of mesostates have been compiled, we
used an implementation of the Kosaraju-Sharir algorithm [58]
to identify the SCCs of the transition graphs. Thus, given a
catalog, we are able to assign each of its mesostates to an SCC
and thereby obtain their sizes. As discussed in the main text,
transition between mesostates belonging to the same SCC
are reversible, while those between mesostates belonging to
different SCCs are irreversible.

From a numerical implementation point of view, in which
we only sample a finite number of mesostates and transi-
tions, it is possible that a transition that appears irreversible
turns reversible in a larger catalog of mesostates, as more
mesostates and transitions are added. Such conversions do
indeed occur but we find that they happen predominantly at
low generations. As yielding is approached, a large number of
small SCCs are generated and the transitions between these
typically involve large plastic events. It is therefore unlikely
that some of these transitions will become reversible, and we
verified this, inspecting our data. This is consistent with the
results of Fig. 4(a) that the SCC size distribution changes little
as catalogs with an increasingly larger number of generations
are sampled.

Note that if a mesostate has two outgoing irreversible tran-
sitions, it must necessarily constitute an SCC of size one, i.e.,
an SCC containing just this mesostate. SCCs of size one also
arise when a node in our catalog is peripheral, i.e., it belongs
to generation gmax + 1, and both outgoing transitions are left
undetermined and hence absent. Since this is an artifact of the
catalog acquisition procedure, we have excluded all peripheral
nodes in our analysis of SCCs.

The inter-SCC graph shown in Fig. 1(c) was obtained by
collapsing the SCCs into a single vertex and keeping the
irreversible transitions connecting mesostates belonging to the
different SCCs. It is easy to see that each SCC will have at
least two outgoing inter-SCC transitions. Since the AQS tran-
sitions graphs formed by only considering the U transitions
(or D transitions) are acyclic and, in particular, collections of
directed trees [31–33], inside each SCC there must be at least
one U and one D tree. The corresponding transitions out of
their roots must necessarily be irreversible and hence lead out
of the SCC.

The inset of Fig. 4(d) shows the mean SCC size that a
mesostate belong to, given that it is stable at a strain mag-
nitude |γ |. To this end, we considered 25 equally spaced
strain magnitudes with 0.000 � |γ | � 0.200, so the spacing
between successive strain magnitudes is � = 0.008. Given
a strain of magnitude |γ |, we consider all mesostates A that
are stable at ±|γ |, so γ −[A] < |γ | < γ +[A], or γ −[A] <

−|γ | < γ +[A] holds. We next perform an average over the
sizes of the SCCs that these mesostates belong to. The av-
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erage SCC size and its standard deviation obtained in this
way are then plotted against |γ |, leading to the inset of
Fig. 4(d).

Note that the partition of the range of |γ | values into
equally spaced strain values with spacing � will cause

mesostates A whose stability range γ +[A] − γ −[A] is larger
than �, to be associated with multiple and adjacent values
of |γ |. The effect of this is a smoothing of the SCC size
averages. We have checked that this does not effect our results
significantly.
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