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Structural transition in two-dimensional Hertzian spheres in the presence of random pinning
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Using molecular dynamics simulation we have investigated the influence of random pinning on the phase
diagram and melting scenarios of a two-dimensional system with the Hertz potential for α = 5/2. It has been
shown that random pinning can cardinally change the mechanism of first-order transition between the different
crystalline phases (triangular and square) by virtue of generating hexatic and tetratic phases: a triangular
crystal to hexatic transition is of the continuous Berezinskii-Kosterlitz-Thouless (BKT) type, a hexatic to
tetratic transition is of first order, and finally, there is a continuous BKT-type transition from tetratic to the
square crystal.
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I. INTRODUCTION

Studying the self-organization of two-dimensional (2D)
systems, especially soft or deformable colloidal mesoparticle
systems such as dendrimers, star polymers, and block-
copolymer micelles [1–3], is of great interest for both
fundamental science and technological applications. Of par-
ticular interest for optical applications are the structures of
crystalline phases and the relation of these structures with
the form of interparticle potential. The most popular poten-
tials used to describe deformable nanocolloids are nontrivial
phenomenological interactions, some of which even lead to
a complete overlap among the components and demonstrate
very rich phase behavior [1,4–7]. It seems that the simplest
form of the family of these potentials is the Hertz potential
[4]. Recently the behavior of 2D Hertzian spheres has been
studied in a number of articles [8–12].

In the present article we discuss the influence of disorder
on the phase diagram of 2D Hertzian spheres. As far back
as in the 1970s it was established that the melting of 2D
systems could in principle be different from the melting of
three-dimensional (3D) crystals. If in the 3D case melting is
always a first-order phase transition, then 2D systems can melt
according to several different scenarios (see [13,14] and the
references in these works). Today there are known at least
three different melting scenarios of 2D systems: first, melting
via a first-order phase transition [15,16] and, second, a melting
scenario according to the Berezinskii-Kosterlitz-Thouless-
Halperin-Nelson-Young theory (BKTHNY) [17–21]. In this
scenario melting takes place via two continuous transitions of
the Berezinskii-Kosterlitz-Thouless (BKT) type. As a result
of the first transition, the long-range orientational order is
destroyed in the crystal and transforms into quasi-long-range
(power decay of the orientational order correlation functions),
and the translational order from quasi-long-range becomes
short-range. The obtained phase is called hexatic. The second
continuous BKT phase transition leads to a disappearance of
the quasi-long-range orientational order, as a result of which

the system changes to isotropic liquid with short-range ori-
entational and translational orders. Finally, the third melting
scenario of 2D crystals is as follows: melting also occurs in
two stages, but transition from crystal to hexatic is continuous
of the BKT type, and from hexatic to liquid is of the first
order [22–26]. We will call these scenarios the first, second,
and third.

It is significant that in all classical works on studying 2D
melting only one crystalline structure was considered, i.e.,
a triangular crystal that is a close-packed structure in two
dimensions. At the same time, recent experimental works have
shown the possibility of the existence of other 2D and quasi-
2D crystalline structures. A more widely known example is
graphene that is a sheet of graphite, i.e., a 2D layer with
a honeycomb structure [27]. Later, other 2D and quasi-2D
structures were also found, for instance, square ice in water
confined in a slit pore [28], a square crystal of iron atoms in
the defects of graphene [29], complex crystalline structures
in a thin colloidal film [30], and in a system of vortices in
superconductors [31,32]. However, up to now obtaining non-
triangular 2D crystals is rather an exception than a rule, and
the overwhelming majority of 2D systems crystallize exactly
into a triangular lattice.

At the same time, nontriangular 2D crystalline lattices
have been found in a large number of works on computer
simulation of 2D systems, for instance, in a system with
two scale-repulsive shoulder potentials [33–38] and in water
[39–43]. In [44–48] a square crystal was found, in [47,48]
a honeycomb structure was observed, and the Kagome lat-
tice was discovered in [43,49]. In a number of publications
formation of quasicrystalline phases in 2D systems was
reported [50–53].

Experimental investigation of 2D crystal melting is compli-
cated by the presence of the so-called “pinning” of particles.
It means that because of the effects of interaction with the
underlayer some particles turn out to be pinned to certain
fixed places. It is clear that the presence of pinning and the
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concentration of pinned particles may considerably affect a
system’s behavior.

One should discriminate between the two types of pinning.
In the case of quenched disorder, a random fraction of parti-
cles could be pinned either to random positions in the system
or on lattice sites of the underlying crystal phase. With regard
to the pinned particles at random sites, it was shown theo-
retically that quenched disorder influenced crystalline order
but almost did not affect orientational order. So the BKTHNY
melting scenario persisted, and the solid phase was destroyed
entirely for high pinning fractions (see [54–59]). Experiments
and simulations of 2D melting of superparamagnetic colloidal
particles with quenched disorder confirmed the increased sta-
bility range of the hexatic phase (see [60–62]).

However, in [63] the authors study the melting of a 2D
system of hard disks with quenched disorder, which results
from pinning random particles on a crystalline lattice. This
kind of pinning stabilizes the solid phase and can destroy the
hexatic phase. We are not aware of real experiments with this
kind of disorder.

Finally, in [64] it was demonstrated that random pinning
could qualitatively change the first-order melting scenario—it
can generate the hexatic phase and transform the first-order
transition into the third type of melting scenario.

As mentioned above, recently a number of 2D systems
have been discovered where various crystalline phases exist.
It should be noted that in the earlier publications including the
seminal articles by Halperin, Nelson [19,20], and Young [21]
a triangular crystalline structure was only considered, and now
a strict melting theory exists only for this structure. In more re-
cent articles where the new crystalline phases were found the
main attention of the authors was focused on the structure of
these phases and their melting scenarios. At the same time, the
possible structural transitions among these crystalline phases
were not discussed at all. It was implicitly supposed that the
transformations of these phases with different symmetries oc-
curred as a standard first-order phase transition. However, as
was shown in our previous publication [64], random pinning
could change one first-order melting transition into two (the
third melting scenario in that work) due to generation of the
hexatic phase. The question is whether it is possible to see
similar behavior in the case of a first-order structural transi-
tion. The problem is even more interesting because random
pinning will affect both crystalline phases. The main goal of
the present article is to investigate the influence of random
pinning on the structural transitions in 2D systems.

One of the systems, in which in the 2D case a complex
phase diagram with a large number of different phases is
observed, is the Hertz model. It is a system of particles that
interact through the potential

U (r) = ε(1 − r/σ )αH (1 − r), (1)

where H (r) is the Heaviside step function and parameters ε

and σ set the energy and length scales. In the case of α = 5/2
the Hertz potential corresponds to the energy of deformation
of two elastic spheres [65].

The phase diagram of Hertzian spheres with α = 5/2 has
many different ordered phases in both three dimensions [7,66]
and two dimensions [9]. Also, in Hertzian spheres a number

of anomalous properties of liquid are observed (see [66] for
the 3D case and [9] for the 2D one).

The phase diagram of 2D Hertzian spheres with α = 5/2
was discussed in several publications [9–11]. The most com-
plete calculation of this phase diagram is given in [9], which
shows that in this system several stability regions of the tri-
angular crystal are observed, several of the square one as
well as a number of other phases including the dodecagonal
quasicrystal. In that work as well the melting scenarios of the
triangular and square crystals with low density were deter-
mined, and it was shown that in this system all three currently
known melting scenarios take place. During changing from
low to high densities, the melting lines of both triangular
and square lattices pass through a maximum, after which the
melting temperature begins falling with an increase in density.
Moreover, in the region of the reentrant melting curve of the
triangular phase there are two tricritical points, in which a
change in the melting scenarios takes place from the third to
BKTHNY at the maximum and from BKTHNY to the third at
lower temperatures. The tricritical point on the melting curve
of the square crystal is located at the maximum, in which a
change in the transition scenario from the third to a first-order
transition takes place.

In the present paper we examine the influence of random
pinning on the melting scenario of the triangular and square
crystals of 2D Hertzian spheres with α = 5/2 and on the
transition between these two crystalline phases in the region
of reentrant melting at low temperatures. The influence of
random pinning on the structural transition has never been
considered up to now to the best of our knowledge. As
mentioned above, the previous works considered only the
influence of random pinning on melting of the triangular
crystal where melting occurs according to the first and the
third scenarios [58,64]. Therefore studying the behavior of 2D
Hertzian spheres at different concentrations of random pin-
ning allows us to solve three problems at once: (1) considering
the influence of random pinning on melting of the triangular
crystal when the different melting scenarios take place,(2)
investigating the influence of random pinning on melting of
the square crystal in the two different melting scenarios, and
(3) we also demonstrate that random pinning drastically
changes the scenario of the structural transition between the
triangular and square crystalline phases. In Fig. 1 we summa-
rize the results, which will be discussed in detail below.

II. SYSTEM AND METHODS

In the present paper using a molecular dynamics method
within the framework of the software package LAMMPS [67]
we simulated a 2D system of Hertzian spheres in the region
of low densities, in which the triangular and square phases
were observed (see Fig. 1). When investigating the triangular
phase, N = 20 000 particles were simulated in a rectangular
box, whereas to study the square phase, N = 22 500 particles
in a square box were used. In all cases, periodic boundary
conditions were applied. The samples of liquid were obtained
by melting respective lattices.

The systems were simulated using 60 million steps with
time interval dt = 0.0001 in NVT and NVE ensembles
(NVT for equilibration and NVE for production); the first
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FIG. 1. The full phase diagram of a pure system and of a sys-
tem with pinning in the area of existence of the triangular and
square crystals. (1) Cyan is liquid-hexatic phase coexistence; (2)
blue is the hexatic phase without pinning; (3) magenta is the hexatic
phase with 0.1% pinning; (4) green is the extension of the hexatic
phase for 0.2% pinning; (5) olive is liquid-tetratic phase coexistence;
(6) yellow is the tetratic phase without pinning; (7) orange is the
tetratic phase with 0.2% pinning; (8) violet is hexatic-tetratic coexis-
tence. See explanations in the text.

30 million steps were used for equilibration. The concen-
tration of pinning particles at random positions varied from
0.1% (the triangular lattice) to 0.2% (the square lattice). We
chose these two small values of the concentrations of pin-
ning centers because as was shown in the seminal paper by
Nelson [54] (see also [55,56]) a large fraction of pinning
sites simply destroyed crystalline order (quasi-long-range
translational order) leaving hexatic order (quasi-long-range
orientational order) almost unchanged. The previous simula-
tions [58–61,64] showed that a small concentration of pinning
centers, 0.1, during the melting of the triangular lattice was
sufficient to see the qualitative change of the phase diagram
as a result of hexatic phase generation, but the crystal was
not destroyed completely. Since the square phase is more
resistant to random pinning, we used larger concentration, 0.2
These small concentrations are sufficient to demonstrate the
qualitative effect of random pinning on the mechanisms of 2D
melting and the structural transitions between the crystalline
phases. The procedure of introduction of pinning particles is
described in detail in [58,59,64]. We considered not fewer
than 10 different systems with various initial random positions
of fixed particles with further averaging by these replicas.
In the course of simulation, the system pressure was calcu-
lated as a function of density and temperature. The transition
regions between different phases were determined based on
the peculiarities on the equations of state (isotherms) and the
Mayer-Wood loop (an analogy of the van der Waals loop
for the 3D case), while the structure of these phases was
obtained from the radial distribution functions. We also cal-
culated orientational and translational order parameters and
their correlation functions to determine the stability limits of
the triangular and hexatic phases as well as the square and
tetratic (an analogy of hexatic for the square crystal) phases.

The translational order parameter is calculated in the stan-
dard way [19,20,59,64]:

ψt = 1

N

〈〈∣∣∣∣∣
∑

j

eiGr j
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〉〉

r p

. (2)

The local orientational parameter is given in the following
way [19,20,59,64]:

�m j = 1

Nj

Nj∑
k=1

emiθ jk , (3)

where Nj is the number of the nearest neighbors of particle
j that is determined from the Voronoi construction, θ jk is
the angle of the bond between particles j and k relative to
an arbitrary reference axis, G is a primary reciprocal lattice
vector, and index r p points to averaging by 10 replicas with
different initial random positions of the fixed particles. The
global orientational order parameter is obtained by means of
averaging over all particles

ψm = 1

N

〈〈∣∣∣∣∣
N∑
j

�m j

∣∣∣∣∣
〉〉

r p

, (4)

where m = 6 for the triangular lattice and m = 4 for the
square one.

The orientational correlation function (OCF) is defined as

Gm(r) =
〈 〈�m(r)�∗

m(0)〉
g(r)

〉
r p

, (5)

where g(r) =< δ(ri )δ(r j ) > is the pair distribution function.
In the hexatic and tetratic phases the long-range behavior of
Gm(r) has the form Gm(r) ∝ r−ηm with ηm � 1

4 [19,20].
The translational correlation function (TCF) is

calculated as

Gt (r) =
〈
< exp[iG(ri − r j )] >

g(r)

〉
r p

, (6)

where r = |ri − r j |. In the solid phase the long-range behav-
ior of Gt (r) has the form Gt (r) ∝ r−ηT with ηT � 1

3 [19,20].
The stability limits of the square crystal were determined in
the same way. In the hexatic (tetratic) phase and isotropic
liquid Gt (r) decays exponentially.

The presence of random pinning decreases the range of
stability of a crystalline phase and consequently relatively
expands the area of existence of the hexatic (tetratic) phase,
which allows investigating its dynamic properties by means of
calculating the diffusion coefficient [59]. To do this Einstein’s
method was used, i.e., mean-square displacement < r2(t ) >

was calculated, which is proportional to time at large times,
< r2(t ) >= 4Dt , where D is a diffusion coefficient.

III. MELTING OF THE TRIANGULAR CRYSTAL IN THE
PRESENCE OF RANDOM PINNING

Let us consider Hertzian spheres with random pinning
0.1% in the melting area of the triangular crystal (see Fig. 1).
Recall that random pinning, as a rule, does not practically
affect the stability limit of hexatic but significantly decreases
the stability area of a crystal. As a result, compared with a
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(a)

(b)

(c)

FIG. 2. (a) The equation of state of Hertzian spheres at T =
0.00375 with concentration of random pinning 0.1% at the left
branch of the triangular crystal melting line. (b) The behavior of
OCF G6 of the same system. (c) The behavior of TCF Gt of the
same system.

system without random pinning the area of existence of the
hexatic phase relatively increases [9,54–56,58,61,64].

Figure 2(a) presents the system’s equation of state on
isotherm T = 0.00375 at the crossing of the left branch of the
triangular crystal melting curve with the Mayer-Wood loop

characteristic of first-order transition. On this isotherm we
marked the points of stability loss of the crystal and hexatic
obtained from analysis of the orientational and translational
order parameter correlation functions shown in Figs. 2(b) and
2(c). From the obtained results it can be concluded that the
crystal to hexatic transition is a continuous one of the BKT
type, while the hexatic to isotropic liquid transition is a first-
order transition. Thus, on the left branch the melting scenario
remained the same as in the system without pinning (the third
scenario) [9], but the stability limit of the crystal shifted to
higher densities, which led to expansion of the hexatic phase
existence area.

Figure 3 shows an equation of state without the Mayer-
Wood loop and the behavior of the correlation functions at the
crossing of the right branch of the triangular crystal melting
curve at T = 0.00375 (see Fig. 1). In this area in the absence
of random pinning the system melts via two continuous tran-
sitions of the BKT type in accordance with the BKTHNY
theory [9]. We can see that in this case the introduction of
random pinning also did not change the transition scenario but
only significantly expanded the hexatic phase existence area.

IV. THE INFLUENCE OF RANDOM PINNING ON SQUARE
CRYSTAL MELTING

In this part of the paper we address the influence of random
pinning on melting of the square crystal in Hertzian spheres.
In order that the effect of random pinning becomes more
vivid, we increased the concentration of pinned particles to
0.2%. Searching for the distinct boundary between the square
crystal and the tetratic phase was carried out similarly to the
procedure described above for the triangular crystal.

Figure 4(a) shows the equation of state of the system
with random pinning at T = 0.0032 at the crossing of the
left branch of the square crystal melting line, on which the
Mayer-Wood loop was found, and in Figs. 4(b) and 4(c):
the orientational and translational order parameter correlation
functions for the square crystal are shown. In order to visu-
alize the influence of random pinning on the tetratic phase
we also show in Fig. 4(a) the limit of stability of the square
crystalline phase without pinning that goes out of the Mayer-
Wood loop. In this region without random pinning the crystal
to tetratic transition is a continuous one of the BKT type,
whereas the tetratic to isotropic liquid transition is a first-order
transition [9]. It is evident that in the presence of random
pinning the area of tetratic phase existence has significantly
expanded without changing the melting scenario, which is in
qualitative agreement with the influence of pinning on trian-
gular crystal melting for the third melting scenario.

In Fig. 5 the same analysis is performed for the right branch
of the square crystal melting curve. In Fig. 5(a) the equation
of state with the Mayer-Wood loop at the crossing of the
melting curve right branch at T = 0.0032 is shown. Again,
we can see a very wide area of the tetratic phase under the
influence of pinning, the border of which was determined
from the behavior of Gt in Fig. 5(c). Recall that in the system
without random pinning this branch melted via one first-order
transition [9] (both criteria following from the behavior of G4

and Gt are inside the Mayer-Wood loop), i.e., in this case we
observe a qualitative change in the melting scenario: in the
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(a)

(b)

(c)

FIG. 3. (a) The equation of state of Hertzian spheres at T =
0.00375 with concentration of random pinning 0.1% at the right
branch of the melting line of the triangular crystal. (b) The behavior
of OCF G6 of the same system. (c) The behavior of TCF Gt of the
same system.

presence of random pinning the system melts according to the
third scenario.

Thus, the introduction of random pinning significantly in-
fluences square phase melting. As in the triangular crystal
case, a considerable increase in the tetratic phase existence

(a)

(b)

(c)

FIG. 4. (a) The equation of state of Hertzian spheres at T =
0.0032 with concentration of random pinning 0.2% at the left branch
of the melting line of the square crystal; (b) orientational correlation
function G4 at T = 0.0032; and (c) translational correlation function
Gt along the same isotherm.

area occurs. Moreover, if for the left branch the changes are
limited to the shifting of the crystal stability line, then in the
right one a change in the crystal melting scenario takes place
from one first-order transition to the third type of melting.
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(a)

(b)

(c)

FIG. 5. (a) The equation of state of Hertzian spheres at T =
0.0032 with concentration of random pinning 0.2% at the right
branch of the square crystal melting line; (b) orientational correlation
function G4 at T = 0.0032; and (c) translational correlation function
Gt along the same isotherm.

V. THE INFLUENCE OF RANDOM PINNING ON
TRANSITION FROM THE TRIANGULAR LATTICE TO

THE SQUARE ONE

Above it was shown that random pinning could signifi-
cantly affect 2D crystal melting. This influence is primarily

FIG. 6. The equation of state of Hertzian spheres at T = 0.00125
with concentration of random pinning 0.2% at the crossing of the
first-order phase transition from the triangular to square crystal as
compared with the system without pinning.

connected with a considerable growth of the existence areas
of the phases that are an intermediary between the crystal
and liquid (the hexatic phase for the triangular crystal and
tetratic for square). In some cases, this intermediary phase
does not exist at all in the system without pinning but appears
in its presence [64]. This enables us to suppose that at low
temperatures in the neighborhood of transition between two
crystals the stability limit of the triangular phase will move
to lower densities and that of the square phase will be shifted
to higher densities. One can conclude that the structural tran-
sition will take place not between two crystals but with the
participation of the hexatic and tetratic phases. This is to our
knowledge a new mechanism of structural transition in two
dimensions in the presence of random pinning. We believe
that this mechanism is general and independent of the form
of the potential. This part of the paper is devoted to verifying
this mechanism. In doing so we will simulate systems with
random pinning concentration 0.2%.

Figure 6 shows the equation of state at T = 0.00125 in
the area of densities that crosses the transition line from
the triangular crystal to the square one. For comparison, the
results for the system with and without random pinning are
shown. It can be seen that in the system without random
pinning a sharp fall from one phase to the other takes place
in the middle of the two-phase area. Such behavior, to all
appearances, is connected with the effects of metastability in
transitioning between the two crystals that can be resolved by
means of lengthy simulation or by the introduction of defects
in the form of random pinning. As can be seen from Fig. 6 in
the system with pinning the Mayer-Wood loop already has a
smooth standard form.

In order to understand the nature of change of the equation
of state along isotherm T = 0.00125 under the influence of
pinning (Fig. 6) in the metastable area (for instance, to the
coexistence of what phases will it correspond?) and beyond
it let us consider the correlation functions of translational and
orientational order for the triangular lattice to the left of the
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(a)

(b)

FIG. 7. (a) The orientational and (b) translational correlation
functions with the symmetry of a triangular lattice with concentration
of random pinning 0.2% in the region of transition from the triangu-
lar to square crystal at T = 0.00125.

Mayer-Wood loop and inside of it and do the same for the
square one to the right of the loop and inside of it, respec-
tively. Figure 7 shows the correlation functions corresponding
to the triangular lattice. From these figures it is evident that
at density ρ = 2.26 the triangular crystal loses stability and
continually transitions according to BKT to the hexatic phase,
which, in turn, loses stability at ρ = 2.33 that is inside the
loop. An analogous situation arises for the square crystal:
from the correlation functions in Fig. 8 it is evident that the
tetratic stability limit is located inside the loop at ρ = 2.32,
while the stability limit of the crystal itself is outside of it
at ρ = 2.42, which is evidence of its continuous transition
of the BKT type to the tetratic phase. Consequently, the loop
itself corresponds to the hexatic-tetratic coexistence area and
to the first-order transition between these phases owing to
the basic difference of their orientational symmetry. With a
further increase in density a continuous BKT transition from
the tetratic phase to the square crystal takes place.

Thus in the presence of random pinning the scenario
of transition between the two crystals changes funda-
mentally, in this case between the triangular and square
crystals. Whereas in the system without random pinning

(a)

(b)

FIG. 8. (a) The orientational and (b) translational correlation
functions with the symmetry of a square lattice with concentration of
random pinning 0.2% in the region of transition from the triangular
to square crystal at T = 0.00125.

this transition occurs via a first-order phase transition, in
the presence of random pinning transformation from the
triangular crystal into the square one takes place via a
whole cascade of transitions of a different nature. As was
shown previously [64], random pinning could transform a
first-order melting transition into two transitions correspond-
ing to the third melting scenario. In the present case, one
first-order structural transition changed into three transi-
tions. First, the triangular crystal continuously transforms
into the hexatic phase. After that, the hexatic phase transitions
to tetratic via a first-order phase transition. Finally, the tetratic
phase continuously transforms into the square crystal. This
scenario is illustrated in Fig. 9.

It is noteworthy that the mechanism of transition between
crystals detected by us in the presence of random pinning is in
qualitative agreement with the influence of random pinning on
crystal melting [64]. Random pinning destabilizes the crystal
and expands the existence area of the hexatic (in the case of
the square crystal, tetratic) phase. Moreover, the introduction
of random pinning can generate the hexatic or tetratic phase
if in the system without it melting took place by means of
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FIG. 9. The sequence of phases in transition from the triangular
to square crystal in the system with 0.2% of random pinning at
T = 0.00125.

first-order transition without the hexatic or tetratic phase. An
example of such behavior is the right branch of square crystal
melting in the system under investigation. Similarly, in transi-
tion from one crystal to another random pinning destabilizes
the crystal before reaching the first-order transition line (the
Mayer-Wood loop) and transforms it into the hexatic (tetratic
for the square crystal) phase.

Figure 1 represents the phase diagram of Hertzian spheres
both without random pinning and with random pinning with
concentrations 0.1% and 0.2%, which reflects the given re-
sults and considerations. It should be noted that while in order
to watch the influence of random pinning on the melting curve
it was sufficient to add only 0.1% of fixed particles, to observe
the influence of random pinning on transition between the
crystals it was necessary to increase the concentration of fixed
particles to 0.2%. This may be due to the fact that the overall
mobility of the particles during transition from one crystal
to another is lower than during melting of the system. To
illustrate this, let us consider the behavior of the diffusion
coefficient at T = 0.00125 in the density range from ρ = 2.24
to 3.06 (Fig. 10). The lowest densities of this range correspond
to the triangular crystal, the highest, to the tetratic phase at
the densities up to square crystal melting on the right branch.
The values of the diffusion coefficient in the different phases
are denoted by different symbols. As expected, in the crystals
without random pinning the diffusion coefficient is near zero.
On the introduction of random pinning, the diffusion coeffi-
cient becomes somewhat above zero, which is characteristic
of crystals with defects. The diffusion coefficient sharply in-
creases in the hexatic and tetratic phases as well as in the area
of their coexistence.

Similar conclusions can be made from shear modulus be-
havior shown in Fig. 11. It is evident that the shear modulus
has great importance in the crystalline phases. In transition to
hexatic or tetratic the shear modulus falls sharply. Importantly,
in the presented simulation the shear modulus in the hexatic
and tetratic phases turns out to be more than zero, which is due
to simulation limitations. However, it might become strictly
zero after solving the renormalization group equations shown

FIG. 10. Diffusion coefficient behavior depending on density in
the system with pinning 0.2% and in the transition area between the
triangular and square crystals at T = 0.00125.

in the Appendix. In the coexistence area of hexatic and tetratic
the shear modulus becomes zero.

VI. CONCLUSIONS

We study the influence of random pinning on the phase
diagram of 2D Hertzian spheres with α = 5/2. The full phase
diagram of a system with pinning in the existence area of
the triangular and square crystals was built. It was shown
that random pinning decreased the stability area of crystalline
phases and increased the area of stability of the hexatic and
tetratic phases as well as changing the melting scenario of
the square crystal from one first-order transition to the third
type of melting, which is in qualitative agreement with the
previous works. For the first time, the influence of random
pinning on transition between two crystalline phases was
investigated. It was shown that the introduction of random

FIG. 11. The shear modulus depending on density in the system
with pinning in the transition area between the triangular and square
crystals at T = 0.00125.
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pinning significantly changed the mechanism of transition.
While in the system without random pinning transition took
place as a first-order transition, the introduction of pinning
makes it a three-stage one: the triangular crystal continuously
transforms into hexatic, the hexatic via a first-order transition
transforms into tetratic, after which the tetratic continuously
transforms into the square crystal. This mechanism is in qual-
itative agreement with predictions on the influence of random
pinning on the melting curve and may, in a certain sense, be
considered as an extension of the BKTHNY melting mecha-
nism to transition between two 2D crystalline phases.
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APPENDIX

Of special interest is the influence of random pinning on
the behavior of the triangular crystal melting curve near its
maximum, which in the system without pinning takes place at
density ρ = 1.6 [9]. As is seen in Fig. 1, without pinning the
width of the hexatic phase tends to zero in the vicinity of the
melting curve maximum. The point with maximum tempera-
ture Tmax on the melting curve is a tricritical point in which the
hexatic-liquid transition undergoes a change in the transition
scenario from first order at ρ < 1.6 to continuous of the BKT
type at ρ > 1.6. Can random pinning affect the value of Tmax?
In Fig. 12(a) isochores ρ = 1.6 are represented that, at first
sight, fully coincide for the systems without and with pinning
0.1%. On both isochores the inflection point at T = 0.0098
is clearly seen that corresponds to the tricritical point in the
system without pinning [9,11], and, as we suppose, in the
system with pinning it will have the same value. Figure 12(b)
shows the behavior of radial distribution functions g(r) along
isochore ρ = 1.6 for the system with pinning. From the figure
it can be seen that with an increase in temperature the splitting
of the second peak characteristic of the triangular crystal is
blurred forming a single peak and at T = 0.01 the form of g(r)
corresponds to liquid. It can be supposed that the transition
from hexatic to liquid based on the behavior criterion of g(r)
occurs at T = 0.0098, which is in full agreement with the data
on the isochores.

However, these results do not provide information on the
crystal-hexatic transition boundary. In order to determine the
exact crystal-hexatic-liquid transition boundary we made use
of the criterion on the basis of studying the orientational
and translational order parameter correlation functions on
isochore ρ = 1.6 at concentration of random pinning 0.1%,
which are represented in Fig. 13. It can be seen that the crystal
loses stability with respect to transition to hexatic at slightly
above T = 0.0078, i.e., long before reaching the temperature
of a maximum (Tmax = 0.0098). Thus, the crystal finds itself

(a)

(b)

FIG. 12. (a) Isochores ρ = 1.6 for the system without pinning
and in the presence of pinning 0.1%. (b) Radial distribution functions
g(r) for the system with pinning 0.1% as they approach the tricritical
point. For better visualization, the curves are shifted along axis Y
with a step of 0.5.

completely surrounded by the hexatic phase existence area.
All three criteria with high accuracy yielded the value of the
tricritical point at Tmax = 0.0098. This result emphasizes once
again that random pinning does not affect the orientational
order parameter and its correlation function and, accordingly,
the hexatic phase stability limit.

In order to additionally confirm a substantial decrease in
crystal-hexatic transition temperature under the influence of
pinning at density ρ = 1.6 we made use of the calculation
and the renormalization procedure of the Young modulus
presented in [24,68–70]. The elastic properties of a triangular
crystalline lattice may be fully described by two independent
elastic constants, namely, bulk modulus B and shear modulus
μ. Shear modulus μ is calculated using the method suggested
in [71]. In this method, the system is considered as strained.
As a result, a nondiagonal pressure component appears that is
proportional to the shear modulus:

Pxy = μuxy + O
(
u2

xy

)
, (A1)

where uxy is strain. Figure 14 shows Pxy depending on the
strain. It can be seen that in the crystal at low tempera-
tures far from the point of transition to the hexatic phase the
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(a)

(b)

FIG. 13. (a) Orientational and (b) translational correlation func-
tions G6 and Gt along isochore ρ = 1.6 at random pinning
concentration 0.1%.

dependence is characterized by strong linearity. The accuracy
of calculations becomes worse when approaching transition to
the hexatic phase.

FIG. 14. The nondiagonal component of pressure as a func-
tion of applied strain along isochore ρ = 1.6 at random pinning
concentration 0.1%.

(a)

(b)

(c)

FIG. 15. (a) Trajectory y − K as a result of renormalization for
different temperatures at density ρ = 1.6 in the system with pinning
0.1%. (b) The unrenormalized K and renormalized KR Young moduli
depending on temperature for the same system. (c) Dimensionless
energy of the dislocation core Ec/kBT depending on temperature for
the same system.

Young’s modulus K of a 2D triangular crystal that is a com-
bination of bulk modulus B and shear modulus μ is calculated
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from the relation

K = 8√
3ρkBT

μ(μ + λ)

2μ + λ
, (A2)

where the Lame coefficient λ is connected with bulk modu-
lus B = (dP/dρ)T = μ + λ [18,20,21]. The unrenormalized
elastic constants and Young’s modulus only make sense for an
ideal defect-free triangular lattice. In the case of the presence
of topological defects such as dislocations, the renormaliza-
tion procedure is simply obligatory in accordance with the
BKTHNY theory about a considerable decrease in elasticity
in the presence of dislocations.

In order to renormalize Young’s modulus, first, we deter-
mine dislocation core energy Ec [72] that is directly connected
with the probability of detection of a dislocation pair:

pd = 16
√

3π2

K − 8π
I0

[
K (l )

8π

]
e

K (l )
8π e− 2Ec

kBT , (A3)

where I0 and I1 are modified Bessel functions [72,73]. Note
that pd = nd p/N , where nd p is the number of dislocation pairs
per the number of particles N . We renormalize Young’s modu-
lus and fugacity of dislocations y using the recursive equations
[20,21]:

dK−1(l )

dl
= 3π

4
y2(l )e

K (l )
8π

{
2I0

[
K (l )

8π

]
− I1

[
K (l )

8π

]}
, (A4)

dy(l )

dl
=

[
2 − K (l )

8π

]
y(l ) + 2πy2(l )e

K (l )
16π I0

[
K (l )

8π

]
, (A5)

where l is the flowing number of renormalization group
analysis. The limit of an infinite system corresponds to in-
finitely large l . Unrenormalized Young’s modulus K (l = 0)
and y (l = 0) = exp(−Ec/kBT ) serve as initial conditions for
connected differential equations [Eqs. (A4) and (A5)].

Figure 15(a) shows the trajectories in plane y-K for differ-
ent temperatures at density ρ = 1.6. The crystal loses stability
when the curves leave for infinity generating an unordered
hexatic phase. From Fig. 15(a) it is evident that this happens
at temperature between T = 0.0078 and T = 0.008. At the
same time according to the BKTHNY theory, renormalized
Young’s modulus KR undergoes a sharp jump from 16π to 0,
which is caused by the loss of shear resistivity. As shown in
Fig. 15(b) the unrenormalized K and renormalized KR Young
moduli decrease with temperature growth up to T = 0.0078.
Further temperature growth leads to a sharp fall of KR to
0, i.e., the system transforms into the hexatic phase, which
is in good agreement with the result from Gt . It is possible
to conclude that both criteria are sensitive to formation of
dislocation pairs. The dimensionless energy of the dislocation
core shown in Fig. 15(c) at the crystal-hexatic transition point
has value Ec/kBT = 5.4, which is higher than 2.84kBT in
the case of first-order transition [15]. Hence, crystal-hexatic
transition is due to dissociation of dislocation pairs and is a
continuous transition of the BKT type. So from the collection
of all criteria it is possible to say with confidence that in
the system with pinning on tricritical isochore ρ = 1.6 the
triangular crystal melts into the hexatic phase in accordance
with the BKT theory. Random pinning significantly expanded
the hexatic phase area at the expense of destruction of the
crystal, but in no way did it affect the magnitude of tricritical
temperature.
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