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A typical dense non-Brownian particulate suspension exhibits shear thinning (decreasing viscosity) at low
shear rate or stress followed by a Newtonian plateau (constant viscosity) at intermediate shear rate or stress
values which transitions to shear thickening (increasing viscosity) beyond a critical shear rate or stress value and
finally undergoes a second shear thinning transition at extremely high shear rate or stress values. In this study,
we unify and quantitatively reproduce all the disparate rate-dependent regimes and the corresponding transitions
for a dense non-Brownian suspension with increasing shear rate or stress. We employ discrete particle dynamics
simulations based on the proposed mechanism to elucidate its accuracy. We find that a competition between
interparticle interactions of hydrodynamic and nonhydrodynamic origins and the switching in the dominant
stress scale with increasing the shear rate or stress lead to each of the above transitions. Inclusion of traditional
hydrodynamic interactions, attractive or repulsive Derjaguin-Landau-Verwey-Overbeek (DLVO) interactions the
interparticle contact interactions, and a constant friction (or other constraint mechanism) reproduces the initial
thinning as well as the shear thickening transition. However, to quantitatively capture the intermediate Newtonian
plateau and the second shear thinning, an additional nonhydrodynamic interaction of non-DLVO origin and a
decreasing coefficient of friction, respectively, are essential, thus providing an explanation for the presence of
the intermediate Newtonian plateau along with reproducing the second shear thinning in a single framework.
Expressions utilized for various interactions and friction are determined from experimental measurements and

hence result in excellent quantitative agreement between the simulations and previous experiments.
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I. INTRODUCTION

Dense suspensions of particles are abundant in nature and
industrial applications with examples ranging from household
cornstarch solution to metallic pastes used in solar cells [1].
In spite of the Newtonian behavior of the suspending fluid
medium, suspensions exhibit a plethora of non-Newtonian
behaviors including yield stress [2], nonzero normal stress
differences [3], shear-rate-dependent rheology [4,5], and par-
ticle migration [6], to name a few [7]. The consensus among
researchers is that there is no timescale but a stress scale that
gives rise to the nonlinear rate-dependent behavior in dense
particulate suspensions [8].

Historically, it has been reported that a typical dense
(volume fraction, ¢ £ 0.5) non-Brownian suspension [par-
ticle sizes greater than O(1 pum)] exhibits four distinct
rate-dependent regimes in its rheological flow curve. The sus-
pension’s rheological behavior transitions from one regime to
another with an increase in the imposed shear rate or stress.
The suspension exhibits shear thinning (decreasing viscosity)
at low shear rates followed by a Newtonian plateau (almost
constant viscosity) at intermediate shear rates which transi-
tions to shear thickening (ST) (increasing viscosity) beyond a
critical shear rate. Shear thickening can be gradual [continu-
ous ST (CST)] or sudden [discontinuous ST (DST)]. Finally,
if we further increase the shear rate or stress to extremely high
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values, the suspension again undergoes another shear thinning
transition [4,5,7,9,10]. This is depicted in Fig. 1.

Numerical models and theoretical studies to date are able
to quantitatively capture the shear thinning at low shear
rates [2,11,12] and the ST transition at intermediate shear
rates [11-16]. The initial shear thinning at low shear rates
arises from the presence of a repulsive double layer barrier
(steric interactions) and the van der Waals attractive forces
[collectively known as Derjaguin-Landau-Verwey-Overbeek
(DLVO) interactions].
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FIG. 1. Schematic showing the typical rheological flow curve
for dense non-Brownian suspensions. This rheological behavior is
commonly observed for non-Brownian suspensions [4,5,7,9].
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Shear thickening in suspensions has been known from the
early 20th century and has been an active topic of research
since then. As a result, a plethora of explanations for this
phenomenon can be found in the literature. Some of these
explanations include the sudden emergence of turbulence be-
tween the particles [17], order-disorder transitions [18,19],
and hydrodynamics-induced particle clustering [13,20-22],
but none of these explanations can quantitatively reproduce
the viscosity jump observed in ST transitions [11,23,24]. For
example, purely hydrodynamic-interaction-based simulations
[14,25-27] give a weak logarithmic shear thickening (weak
CST). Even though this purely hydrodynamics-based point
of view is able to describe the rheology of moderately con-
centrated suspensions (¢ < 45%) which exhibit a weak CST,
it cannot predict the strong CST and CST to DST transi-
tion routinely observed in highly concentrated suspensions
(¢ > 50%) [11,22,28-31]. The recently proposed lubricated
to frictional transition of the particle contacts [11,32,33] and
constraint-based mechanisms [12,34] have been proven to be
very efficient in capturing the ST onset, the CST to DST
transition, and the shear jamming in dense suspensions.

Over the years, many explanations have been given for the
second shear thinning at extremely high shear rates. These
include an increase in the maximum packing density due
to breakdown of spanning clusters [35], elastohydrodynamic
effects [36], microscale non-Newtonian shear thinning effects
of the interstitial solvent [37], inhomogeneous microstructure
at high shear rates after the ST transition [38], surface tension
effects and eventual sample ejection [28], and adhesion-based
constraint relaxation due to stress [12]. However, none of
these explanations can make quantitative predictions for the
second shear thinning regime. In addition, the reason for the
intermediate Newtonian plateau still eludes researchers [5,7],
thus limiting the existing numerical and theoretical frame-
works from being able to quantitatively reproduce the entire
unified flow curve. Hence, understanding the origins of the
Newtonian plateau is a crucial piece of the puzzle that allows
us to unify all four rate-dependent regimes and the corre-
sponding transitions from one regime to another.

To this end, we propose a unifying mechanism which quan-
titatively reproduces various regimes and transitions in the
rheological flow curve of a dense non-Brownian suspension
of smooth hard spheres. Since we are specifically interested
in non-Brownian suspensions, we assume the Péclet number
Pe to be much greater than O(10%), which typically corre-
sponds to particle sizes greater than O(1 um). Quantitative
agreement between the discrete particle dynamics simulations
based on the proposed mechanism and the experimental data
bolsters the validity of the proposed model. Though pieces of
this puzzle have been studied in detail in the context of spe-
cific suspensions showing specific behaviors, e.g., initial shear
thinning due to the presence of attractive forces [2] and ST
due to the lubricated to frictional contact transition [11,30,39],
here we put forth an effort to unify all four disparate regimes.
Furthermore, as mentioned, there is no explanation for the
Newtonian plateau in the literature and the explanations given
for the second shear thinning are not quantitative. We show
that the inclusion of interparticle interactions of non-DLVO
origin is the key to explaining and quantitatively capturing the
intermediate Newtonian plateau regime. Relaxation of con-

straint on the particle motion in the form of decreasing friction
accurately predicts the second shear thinning, thus unifying
all four disparate regimes observed in the flow curve of a non-
Brownian dense suspension. Finally, we will also demonstrate
the versatility of the proposed model to reproduce various
other rheological flow curves containing one or more of the
four above-mentioned regimes.

II. PHILOSOPHY BEHIND UNIFICATION

In a Stokes flow regime, i.e., where the particle Reynolds
number Re is negligible, the particle motion in suspensions
is governed by a simple balance between the hydrodynamic
(F) and the sum of all other nonhydrodynamic interactions
acting on the particle (3_, F*) [25]. Each of these interactions
leads to corresponding stress scales in the system which scale
as approximately O(|F%|/6a?), where a is the particle char-
acteristic length scale. This scaling implicitly tells us that each
interaction is competing with the hydrodynamic interactions
which scale as [F| ~ 6wna’y, where y is the imposed
shear rate and 7y is the suspending fluid viscosity. There is
a consensus that the competition between these stress scales
gives rise to the rate-dependent rheological behavior in dense
suspensions [8]. Previous experiments [S] and computations
[2] show that the attractive and repulsive forces of DLVO
origin give rise to the first shear thinning at low shear rate
suspensions and hence are the choice of interactions for cap-
turing the first shear thinning regime. The exact expressions
for DLVO interactions are readily available from theoretical
analyses and previous experimental data [5,40].

We hypothesize that the presence of non-DLVO forces,
which are noncontact interparticle interactions and become
dominant when the particles are extremely close but not
touching each other, delays the ST transition to higher shear
rates after the initial shear thinning. This happens because
non-DLVO forces introduce an additional stress scale which
needs to be overcome before the activation of the constraint
mechanism (explained below) required for ST transition and
hence gives rise to the intermediate Newtonian plateau. The
presence of the non-DLVO forces has been confirmed by
experimental measurements [41] and has been analyzed the-
oretically as well [42—44]. The non-DLVO forces can arise
due to the presence of charge layers on the particle surface
or due to hydration effects [41]. As will be shown from the
simulation results, it is the magnitude of the non-DLVO forces
which determines the range of shear rate or stress where the
Newtonian plateau is observed. The absence of non-DLVO
interactions leads to the disappearance of the intermediate
Newtonian plateau. The quantitative matching with the ex-
perimental data can only be obtained by accounting for the
non-DLVO forces, thus corroborating the validity of this hy-
pothesis.

Any microscopic mechanism that introduces constraints on
particle motion can result in the shear thickening transition,
while relaxation of such a constraint can qualitatively
reproduce the shear thinning. Lubrication interactions
between individual asperities on particle surfaces can
lead to CST as well as DST [16]. Constraint formation
and relaxation by stress e.g., adhesion, can qualitatively
reproduce the shear thickening and shear thinning transitions,
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respectively [12]. However, to obtain a quantitative matching
with experiments, we must know the exact expressions from
experimental measurements for these constraint interactions.
Hard particle-particle contacts resulting in friction are
a constraining mechanism which has been investigated
thoroughly and hence exact expressions from experimental
measurements are available. So, without the loss of generality,
friction is the choice of constraint mechanism for this study
to quantitatively reproduce the CST, DST, and CST to DST
transition with increasing ¢ and second shear thinning in the
flow curve of a dense non-Brownian suspension.

It has been shown that a sudden activation of friction
between the particles as they come into dry contact owing
to the irregularities on particle surfaces results in the ST
transition (CST and DST depending on the suspensions
volume fraction ¢) [11,45]. The same has also been validated
by experiments [33,46]. This is analogous to activating a
constraint on the relative motion between the particles. On
the other hand, a coefficient of friction u decreasing with the
normal load between the particles is analogous to relaxation
of the constraint and hence would result in shear thinning
[1,47]. Constraint mechanisms based on friction have been
proven to be very efficacious in reproducing various shear
stress—shear rate curves that are observed experimentally
for dense suspensions, CST to DST transition beyond a
critical volume fraction, and most importantly jamming
[48,49]. Furthermore, there are many experimental studies
that validate the role of friction [33,46,47]. Hence, friction
is the constraining mechanism utilized here. We would
like to emphasize that, owing to the additive nature of the
nonhydrodynamic forces, any other constraining mechanism
can be readily used, given expressions for the interactions
are known. So the proposed unifying mechanism utilizes the
well known Stribeck curve for interparticle friction along
with hydrodynamic, DLVO (attractive or repulsive forces),
non-DLVO, and contact forces to unify disparate regimes in
the flow curve of non-Brownian dense suspensions.

A. Stribeck curve for friction

The Stribeck curve for friction has been used widely in
the literature to explain the sliding phenomenon occurring
in lubricated contacts [50]. In a typical Stribeck curve, the
coefficient of friction p is plotted as a function of the Som-
merfeld number S = nV /W, where 1 is the lubricant dynamic
viscosity, V is the relative sliding velocity between contact-
ing surfaces, and W is the normal load [50]. However, for
rough surfaces, the surface asperity height dictates the full-
film to boundary lubrication contact transition (see [51] and
the references therein). Particle surface roughness is one of the
important parameters governing the rheology of dense suspen-
sions as even the most idealized smooth particles have surface
irregularities of 0(0.001-0.01) times the particle radii [47].
These surface asperities not only lead to interparticle contacts,
but also dictate the friction in interesting ways. Hence, efforts
to investigate the influence of particle roughness on dense
suspension rheology have gained much traction in recent years
[16,45,49,52].

In the case of particles coming into contact, the av-
erage roughness height results in an additional secondary

length scale (along with the primary length scale, which is
particle size a) in the system. While the particle-size distri-
bution governs the hydrodynamic interactions, the secondary
length scale introduces geometrical and interparticle force
constraints [45]. So we define A as the dimensionless gap
between the particles, i.e., A = h/h,. Here h is the interparticle
gap and A, is the average roughness height (defined below).
High A (A > 2) signifies well separated particle without a dry
contact and the friction force is mostly due to lubrication in-
teractions (full-film contact) [50]. The effect of increasing the
shear rate or stress in the suspension is to reduce the average
interparticle gap, thus bringing particles close to each other.
As particles move closer to each other A decreases, and partial
elastohydrodynamic lubrication (EHL) results in a sudden rise
in pu [53,54]. In this regime (1 < A < 2), partial dry contact
between the particles is expected to occur. In addition, as the
interparticle gap becomes comparable to the mean particle
surface roughness size, repulsive forces of non-DLVO origin
(arising due to hydration or a stagnant charge layer on the
particle surface) are expected to be present with magnitudes
a few orders higher than the repulsive forces of DLVO origin,
viz., arising from the double layer potential [55-57].

As A decreases further (A < 1), the contact enters boundary
lubrication, i.e., full dry contact between the particles. In this
regime, the coefficient of friction has a high value if the
contact between the particles is elastic, which is true if the
asperity deformation is smaller than a threshold value §. [58].
If A decreases even further, the contact enters a plastic regime,
which results in a significant reduction in the coefficient of
friction [58]. This reduction in the friction coefficient with
plastic deformation of asperities requires a tremendous nor-
mal load, which happens only at extremely high shear rate or
stress values. As a result, we get the second shear thinning
regime. These phenomena are depicted in Fig. 2.

B. Summary of relevant interactions

The transitions in the flow curves are governed by the
competition between various stress scales in the system for
non-Brownian suspensions. In the present study, we have four
such stress scales that determine the various transitions.

(1) In the regime of attractive and repulsive forces when
the particles are not touching and are separated, i.e., A > 2
(full-film regime in the Stribeck curve), the friction is due
to the tangential lubrication forces which is implicit in our
hydrodynamic force modeling. Hence, Coulomb’s friction law
is not applicable.

(i) The non-DLVO force is a noncontact force, and hence
does not lead to constraints on sliding motion. This force
is present only when the particles are not touching but are
very close to each other, i.e., 1 < A <2 (EHL regime on the
Stribeck curve).

(iii) The interparticle contact and a high coefficient of fric-
tion when the particles just come into contact (0.95 < A < 1)
lead to the shear thickening transition.

(iv) The decrease in the coefficient of friction as the as-
perities deform more and enter a plastic region (A < 0.95)
explains the second shear thinning regime. It should be noted
that the second shear thinning was also observed for nonat-
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FIG. 2. Schematic showing the coefficient of friction p (thin
black line) and the dimensionless normal force magnitude |F,| (thick
red line) between a close particle pair as a function of dimensionless
interparticle gap A = h/h,. Boundary, partial elastohydrodynamic,
and full film lubrication regimes in the Stribeck curve are demarcated
based on the value of A. Similarly, dominant interparticle interactions
in each of these regimes are also shown in red font. The insets at the
top show the various regimes in terms of separation between two
close particles. The arrows in these insets are shown to qualitatively
indicate the size of the interparticle gap and the range of the dominant
interparticle interaction with respect to the roughness and the particle
size.

tractive and nonadhesive particles [10], which cannot be
explained by stress-induced relaxation of constraints.

We briefly elaborate on the methods and simulation frame-
work used in this study in the following section before
presenting the main results.

III. SIMULATION METHODOLOGY

We simulate the shear flow of neutrally buoyant inertialess
bispherical particles with a radius ratio of 1.4 and equal vol-
ume fractions in a cubical domain of size L = 15a. Here a is
the radius of the smaller particle. For this particular particle-
size distribution, the dry close packing fraction ¢, is 0.66
[49]. We use ¢, to normalize the volume fraction ¢ values in
this study for direct comparison with experiments. Simulation
results do not change much for a bigger domain size L = 20a.
The suspending fluid is Newtonian with viscosity 79. The
imposed shear rate is y with Lees-Edwards periodic boundary
conditions on all sides. Also, the Péclet number Pe > O(10%)
[4,5,7], so the flow is in the non-Brownian regime.

We use Ball-Melrose approximation [59] to calculate the
hydrodynamic interactions F/, repulsive force of electrostatic
origin FX, van der Waals attractive force F4, repulsive forces
of non-DLVO origin F¥”, and contact interactions FC. The
repulsive forces F® and FM? act normally towards the particle
center; FR decays with interparticle surface separation 4 over a
Debye length k ~! as |FR| = Fg exp[—« (h — 2h,)] for h > 2h,
and |FR| = Fi for h < 2h,. The non-DLVO repulsive forces
are dominant when the interparticle gap is comparable to par-
ticle surface roughness size [60,61]. So we use a non-DLVO

TABLE I. Simulation parameters.

¢ v/ k! Fy h, Fyvp
0.52,0.57 0.001-50.0 0.04a 1073 F 0.0la 10Fx

repulsive force for h, < h < 2h, with an exponentially decay-
ing form |FVP| = Fyp exp[—A(h — h,)/a] for h > h, [41] and
|FNP| = Fyp for h < h,. We choose A = 1000 for this study.
Similarly, the attractive force of van der Waals origin also acts
normally but in the opposite direction to the repulsive force
and is modeled as [F*| = F4/[(h — h,)* + 0.01]. Here 0.01 is
used to prevent the divergence in F4 when h — h, [2]. We
use the DLVO repulsive force as the characteristic force scale
to nondimensionalize the governing forces. So the character-
istic stress scale is given by oy = Fr/6ma® (and rate scale
Yo = 09/ No), related to the transition from lubricated contacts
(hydrodynamic) where particles are separated to direct contact
between particles.

We model the surface roughness as a hemispherical bump
of size h, on the base sphere as shown in the insets in fig. 2.
The contact interactions are modeled using the Hertz law
for the normal contact force |FS| = k,(8/8.)*/* and a linear
spring for the tangential contact force F¢ = k&, [1]. Here § =
h, — h is the asperity deformation, §. is the threshold for elas-
tic to plastic transition, and &, is the tangential spring stretch.
The contact activates only when 4 < h,. Contact interactions
obey Coulomb’s friction law |FE| < uF€. The details and
validation of the algorithm can be found elsewhere [1,45,49].
Figure 2 depicts how [F,| = |FF|+ [FMP| — |F*| + |F¢]
varies with A. It is well known that u is not constant and
depends on the normal load |F¢| [5,33,58]. Since [F| oc 8%/
following the Hertz law, v can also be described as a func-
tion of the dimensionless interparticle gap A = h/h, (since
6 =1 — Ah,). We calculate the bulk stress ¢ in the system
by volume averaging the stresslets due to all the interac-
tions [1,45,49]. Rheological properties can be quantified from
the bulk stress, e.g., the relative viscosity of the suspension
n, = o12/noy, second normal stress difference N, = oy —
033. Values of simulation parameters used (unless mentioned
otherwise) are summarized in Table 1.

Friction coefficient. We use the dimensionless gap-size
dependent (A = h/h,) Stribeck curve to model u [54]. For
A > 1, the reduction in p with decreasing A is captured in
lubrication interactions [15] and hence there is no need to
use Coulombs friction law explicitly. We approximate w in
the partial EHL regime by a step function [15] for simplicity.
For A < 1, asperities come into contact, resulting in a sud-
den rise in w; w has a high value if the contact is elastic,
ie., § < 8., where § is the asperity deformation defined as
6 = |h — h,| [47,58]. If the asperities deform further such
that § > §., the contacts transition into the plastic regime,
resulting in a steep decrease in . Experimental measurements
[5] have shown that the friction coefficient decreases with the
normal load as u = —a'In(|FS|) + &/, or in terms of A [since
|FS| o §3/? by the Hertz law and § = h,(1 — 1)] we can say
u=—aln[(1 —A)]+bfor0 <A <1, whered', b/, a, and b
are constants. We choose a = % and b = —0.2 in this study.
We call this friction model logarithmic decay friction. Data
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FIG. 3. (a) Relative viscosity as a function of dimensionless shear rate y/y, for two different volume fractions (PS denotes present
simulations) compared against experiments (EX denotes experiments, y, = 200 s~! for experimental data) of Chatté et al. [5]. The volume
fractions are scaled with dry close packing fraction ¢, for direct comparison. For the simulations ¢, = 0.66. (b) Probability distribution
function (dotted lines) of the average dimensionless interparticle gap (1) with increasing y = /3 (legend) along with the friction coefficient
(solid lines) for the logarithmic decay friction model. Dotted lines are spline fits to guide the eye. Dashed lines demarcate the transition between

interaction ranges as explained in Fig. 2.

for additional friction models along with results for varying a
and b in the logarithmic decay model are shown in Sec. V.
Thus, all the expressions used for various forces have a
solid experimental backing. One way to distinguish them
experimentally is to measure them carefully in terms of the
interparticle gaps as modeled in the paper. We have used the
expressions from the experimental measurements [5] to make
a quantitative comparison with their results. However, the
freedom to choose the values of various input parameters such
as the relative magnitudes of the forces, the Debye length,
parameters a and b in the friction law, and the roughness size
based on the system enables the model to capture various
regimes in the flow diagram. For the systems which do not
show a Newtonian plateau, one only needs to switch off the
non-DLVO forces or make their magnitude 0. This allows
us to unify various flow regimes observed for non-Brownian
suspensions as demonstrated in the following sections.

IV. RESULTS AND DISCUSSION

We demonstrate the accuracy of the proposed model by di-
rect comparison of the calculated suspension relative viscosity
with experimental values for polyvinyl chloride particles sus-
pended in a Newtonian fluid medium [5] in Fig. 3(a). Chatté
et al. [5] used a system that had previously been characterized
to take advantage of the data from the literature. They used
a suspension of polyvinyl chloride (PVC) particles suspended
in a Newtonian fluid (1,2-cyclohexane dicarboxylic acid di-
isononyl ester). The classical studies by Hoffman [4,9] also
used PVC particles. In addition, PVC particles are known to
transition from a lubricated to a frictional contact regime [33].
They used two suspensions with a log-normal distribution
(D1) and a trimodal distribution with log-normal peaks (D2).
The sizes of the particles are chosen in such a way that the
Brownian effects are negligible. Hence, these suspensions are
non-Brownian.

It has been shown that a polydisperse system with a log-
normal distribution of the particle sizes can be quantitatively

modeled as a bidisperse system in a way such that both
of these suspensions have similar rheological property val-
ues [62]. Hence, we are particularly interested in the D1
suspension as we can use a simple bidisperse system and
still reproduce the same rheology as done herein. However,
because these two systems have different random packing
fractions ¢,, in order to compare the viscosities, we need to
normalize the volume fraction values for these systems by
¢4 [8]. The random packing fraction for D1 suspension is
approximately 69%, while the random packing fraction for the
bidisperse system used for simulations is approximately 67%.
Hence, close quantitative agreement between the experiments
and simulations is expected if we accurately model the under-
lying physics. Also note that to access such a wide range of
shear rate values and the different regimes in the flow curve of
these suspensions, they used a combination of rotational and
special capillary rheometers as simple rotational rheometers
cannot access regions of very high normal stress differences
[28,36]. These regions correspond to high viscosity values
after the shear thickening transition and the second shear
thinning regime.

Figure 3(a) shows that the proposed model does an ex-
cellent job in quantitatively capturing the rate-dependent
rheological properties in low, intermediate, and high shear rate
limits. This shows that the hypothesis that accounting for non-
DLVO interactions recovers the initial transition from shear
thinning to the intermediate Newtonian regime. A universal
friction law based on the Stribeck curve accurately recovers
the onset of ST and then the second shear thinning that is
typical of dense non-Brownian suspensions is indeed true.

We plot the probability distribution function (PDF) of the
ensemble average of the dimensionless interparticle gap (A) at
different shear rate values corresponding to different regimes
in the rheological state diagram [Fig. 3(b)] to explain the
observed shear-rate-dependent rheological behavior. With in-
creasing shear rate values, the peak and mean of the PDF of
(A) shift to the left on the Stribeck curve. This determines
the various transitions in the rheological state diagram. At
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low shear rates, the particles are prevented from coming into
direct contact due to the combined effect of the repulsive and
attractive forces of DLVO origin. This is analogous to having
particles with bigger radii. As we increase the shear rate,
the particles are pushed closer, resulting in the reduction of
this apparent bigger radius. As a result, the effective volume
fraction of the suspension decreases with increasing shear rate
in this regime, which results in the observed shear thinning. In
the intermediate shear rate regime, the stress is high enough
to overcome the DLVO repulsive barrier between the particles
so that the particles are on average separated by a distance
approximately O(h,). However, the stress is not high enough
to overcome the short-range non-DLVO repulsion, which is an
order of magnitude higher than the DLVO barrier. This leads
to the Newtonian plateau in the relative viscosity. This plateau
in the 75, at intermediate y values is not present if we do not
consider short-range repulsive forces of non-DLVO origins [2]
as shown in Sec. V B. This indicates the governing role of
non-DLVO forces in dense non-Brownian suspensions.

If we increase the shear rate further, the stress in the sus-
pension becomes high enough so that the repulsive barrier due
to the DLVO and non-DLVO forces breaks and the particles
come into contact due to the touching of asperities on their
surfaces. The contact remains in the elastic region, resulting
in a high u between the particles and constraints on the
relative sliding between the particles. This leads to a jump
in the suspension viscosity. The shear thickening transition
takes place above a critical shear rate value y. (e.g., ¥./%
for ¢/prcp ~ 0.86 is 0.1). In the shear thickening transition
regime, the viscosity increases gradually (continuous shear
thickening) at lower volume fractions, while it undergoes a
sudden increase (discontinuous shear thickening) at higher
volume fractions. As we increase the shear rate further, the
asperities are plastically deformed (6 > 4.). As a result, the
coefficient of friction between the particles decreases signif-
icantly, which is analogous to relaxation of the constraint on
the relative sliding motion between the particles. This gives
rise to the second shear thinning transition at high shear rates.
The consequences of this shift in the PDF of () to the left
with increasing y on the transitions in dominant interaction
between the particles and the suspension rheology are de-
picted pictorially in Fig. 4.

The shift in the PDF of (A) manifests itself in determining
the relative magnitudes of different contributions from hy-
drodynamic (n*!), noncontact (n¥¢) (DLVO and non-DLVO),
and contact (r;rc) interactions to the total relative viscosity
(n,) in Fig. 5(b). As we increase the shear rate, n’ increases
gradually. At low and intermediate shear rate values, 7 is 0
as the repulsive barrier prevents direct contacts. In this regime,
nN¢ decreases with increasing shear rate, which explains the
first shear thinning behavior. However, beyond y, the particles
come into direct contact, thus resulting in the sudden jump in
1, due to high n¢. This is also known as a lubricated-frictional
transition, which has been well studied [63]. In the high shear
rate regime beyond y,., the contribution from the contact in-
teractions to the bulk suspension stress is dominant and hence
determines the suspension viscosity. Since u decreases with
increasing shear rate due to the lowering of A, n¢, and as
a consequence 7,, decreases with an increase in the shear
rate.

I./'/.
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FIG. 4. Scheme of the physics involved in the shear thinning (I
and II), Newtonian plateau (III), and shear thickening—shear thinning
(IV) regimes in the rheological behavior of a typical dense non-
Brownian suspension. The insets at the top show the approximate
interparticle gaps in regimes I-IV. In these insets, the outermost
circle represents the range of DLVO forces, the inner orange circle
represents the range in which non-DLVO forces are dominant, and
the innermost circle represents the particles. Thus, with increasing
shear rate we observe different regimes depending on which forces
are dominant in the suspension on average as depicted by the over-
laps of different force zones in the insets.

The neutron scattering [22] and rheoconfocal [64] mea-
surements for Brownian suspensions [Pe < O(10°)] hint at
the role of ordering in the colloids in the initial shear thinning.
Since we use a bidisperse suspension for preventing any clus-
tering and ordering in the suspension, we expect the particles
to remain homogeneously distributed. Still, to investigate if
there is any ordering in the suspensions, we evaluate the order-
ing metric Qg [65] to quantify the ordering in the suspensions;
Qg can be calculated as

€]

Here Y,,,(6, ¢) are the spherical harmonics which depend on
the polar (f) and the azimuthal (¢) angles, which together
give us the orientation of the center-to-center vector for the
neighboring particle pairs. In addition, (Yg,,) is the average of
Y (8, ¢) over all the neighboring particles in the suspension.
Further, Q¢ quantifies the ordering in the suspension system;
Qs = 0 indicates a completely homogeneous or disordered
system. The maximum value that Qg can have is approxi-
mately equal to 0.575. This maximum values is reached for
a face-centered-cubic structure.

We plot the order metric Q¢ in Fig. 5(b). A small value of
Qg signifies the absence of ordering in the suspension, while
a large value (greater than 0.5) indicates a strong ordering.
We find that Qg values are negligible, which indicates the
absence of any ordering. However, we observe a gradual rise
and a spike in Q¢ for the lower shear rates just before the ST
transition (the end of Newtonian plateau). The value of Qg
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FIG. 5. (a) Contributions from hydrodynamic (), noncontact (n¥ €) (DLVO and non-DLVO), and contact (nf) interactions to the total
relative viscosity of the suspension for ¢ /¢, = 0.86. The trends in the respective contribution follow from Fig. 4. Lines are for guiding the
eye. (b) Flow curve for different coefficient of friction functions for ¢ /¢, =~ 0.86.

drops down significantly once the suspension undergoes a ST
transition (y /yy ~ 0.1). These calculations insinuate that the
ordering in the initial thinning regime for monodisperse sus-
pensions might be the consequence of DLVO and non-DLVO
forces preventing the particles from coming into hard contacts
as the peak in Qg coincides with the range of shear rates when
DLVO and non-DLVO interactions are dominant.

V. PREDICTING OTHER FLOW CURVES

We have used the expressions for DLVO repulsive force
and the coefficient of friction from the experimental measure-
ments by Chatté et al. [5] to make a quantitative comparison
with their results and validate the model. However, the free-
dom to choose the values of various input parameters such
as the relative magnitudes of the forces, the Debye length,
the friction law, and the roughness size based on the system
one is trying to model enables the model to capture various
regimes and transitions in the flow diagram. Increasing the
magnitude of attractive forces or increasing the Debye length
results in a steeper initial thinning [2,66] (Sec. V A). Decreas-
ing (increasing) the magnitude of non-DLVO forces will result
in a narrower (wider) Newtonian plateau (Sec. V B). For the
systems which do not show the second shear thinning, one
only needs to make the coefficient of friction a constant, which
gives us a constant viscosity in the shear thickened regime
[45] (Sec. V C). Though simulation results show that only
constraining the sliding motion between the particles gives
satisfactory agreement with experimental data for smooth
particle suspensions [47], our model can also account for
roughness effects (Sec. V D) both geometrically (by varying
the roughness size [45]) and physically (by constraining the
rolling and twisting motion [67]). Other constraints on the
particle motion such as rolling and twisting friction become
important only for rough particles [32]. Incorporating rolling
and twisting friction in the current model is straightforward
but not done as we are dealing with smooth particle sus-
pensions. This makes the proposed model very general and
applicable to a wide variety of systems.

In this section we present the simulation results obtained by
varying various controlling parameters in the proposed model.
The key parameters in the model are (i) the DLVO repulsive

force scale Fg, (ii) the DLVO attractive force scale Fj, (iii) the
non-DLVO short-range repulsive force scale Fyp, and (iv) the
exact dependence of the coefficient of friction on the contact
normal load |FY| or on the asperity deformation §. Each of
these parameters determines the suspension behavior and the
critical transition shear rates for the four regimes described.

A. Magnitude of F, controls the initial shear thinning

We first plot the DLVO force profiles for an increase in
the magnitude of the attractive forces F in the DLVO interac-
tions. These are presented in Fig. 6(a). For these simulations,
we keep the other parameters fixed as given in Table I. We
use the same friction model as described herein. We vary only
the magnitude of the attractive forces F4. Figure 6(b) shows
the effect of changing the magnitude of the attractive forces in
the DLVO interactions. As expected, with an increase in the
magnitude of the attractive forces, we observe that the slope
of the shear thinning curve at low shear rate values increases
[2]. With the increase in F4, the A below which the net DLVO
force is repulsive decreases. Note that the critical shear rate for
shear thickening transition does not change with changing Fj.
This is because, before the lubricated-to-frictional transition
can take place, the particles still need to overcome the non-
DLVO repulsive forces. So, in this model, the magnitude of
the non-DLVO forces determines the critical shear rate for
the onset of the shear thickening transition. The Newtonian
plateau disappears in the absence of non-DLVO forces. Thus,
we can reproduce the thinning-thickening-thinning transition
using the proposed model as well. Changing the magnitude
of the non-DLVO forces does not change the viscosity jump
magnitude and the viscosities in the second shear thinning
regime. This is because both of these depend on the friction
model used.

B. Fyp controls the presence, absence, and range
of the intermediate Newtonian plateau

Figure 7(a) shows the effect of varying the magni-
tude of the non-DLVO forces on the flow curve of dense
non-Brownian suspensions. For these simulations, we keep
the other parameters fixed as given in Table I and change only
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FIG. 6. (a) DLVO force (repulsion and attraction) profiles as a function of dimensionless gap for two different attractive force magnitudes.
(b) Effect of varying the attractive force magnitude on the first shear thinning regime.

Fyp. We use the same friction model as before. We only vary
the magnitude of the non-DLVO forces. The range of shear
rates over which the Newtonian plateau is observed increases
with an increase in the magnitude of the non-DLVO forces.
This is because non-DLVO forces are essentially noncontact
forces. So as their magnitude increases, the lubricated-to-
frictional transition in the particle contacts is pushed to higher
critical shear rates. Changing the magnitude of the non-DLVO
forces, however, does not change the slope of the second shear
thinning curve at high shear rates as it depends on the friction
model. This investigation shows that the presence or absence
and the range of the Newtonian plateau is determined by the
presence or absence and the magnitude of the non-DLVO
interactions, respectively. More experiments measuring the
non-DLVO forces between particles made of different materi-
als and their corresponding Newtonian plateau range can shed
more light on the role of the non-DLVO interactions.

The effect of changing the magnitude of non-DLVO inter-
actions on the ordering parameter Qg is presented in Fig. 7(b).
As we use a bidisperse system, we observe only a weak
ordering in the suspensions. Previous studies in the colloidal
regime [22,64] have attributed the shear thinning at low shear
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rates to the ordering of particles in layers in the colloids.
In our simulations for non-Brownian systems, there is no
evidence of any significant ordering. Hence, the initial shear
thinning regime observed is due to the apparent lowering
of the volume fraction as the interparticle gaps between the
particles decrease as we increase the shear rate. The particles
are pushed closer as the hydrodynamic force dominates over
the noncontact DLVO forces with an increase in the shear rate.
We however see a gradual rise in Qg until it reaches a peak just
before the shear thickening transition as shown in Fig. 7(b).
The peak is sustained over the range for which we observe
the Newtonian plateau. This hints that the ordering and the
flattening of the viscosity just before the shear thickening
might be the outcomes of the noncontact interactions between
the particles. Experiments can shed more light on this link.

C. Governing role of friction in the ST transition and rheology
at high shear rates

The second shear thinning after the shear thickening tran-
sition at high shear rates is the result of the decreasing
coefficient of friction in the boundary contact regime of the
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FIG. 7. (a) Effect of changing the magnitude of the non-DLVO force. The Newtonian plateau disappears in the absence of non-DLVO
forces. Thus, we can reproduce the thinning-thickening-thinning transition using the proposed model as well. This is useful for suspensions
which do not have a significant Newtonian plateau, e.g., silica particles [22]. (b) Order metric Qg for two different non-DLVO force magnitude.
The gradual increase in Qg in the first shear thinning regime and peak in the Newtonian regime hint at the link between ordering and the initial
shear thinning Newtonian plateau [22].
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FIG. 8. (a) Different friction laws tested for the sensitivity analysis of the model to p. Here —aln(1 — 1) + b is the logarithmic decay
model derived from the experimental measurements from Ref. [5]. The black solid line (a = % and b = —0.2), red dashed line (a = % and
b = —0.2), and pink dotted line (a = % and b = —0.5) show how u for the logarithmic decay model changes with dimensionless interparticle
gap A = h/h, = 1 + §/h,. The blue dash-dotted line shows a hypothetical exponentially decaying w. Finally, the gray solid line shows the
model of Brizmer et al. [58] for ;« which has been previously used in the literature to explain the shear thinning in dense non-Brownian
suspensions [47]. (b) Variation of viscosity for different friction models. If we use a constant u instead, we will not observe the second shear
thinning regime. The data show that the friction model determines the viscosity jump during the shear thickening transition and the slope in
the second shear thinning regime. The flow curve for suspensions which do not exhibit the second shear thinning can be obtained by choosing

a constant coefficient of friction.

Stribeck curve. Hence, the viscosity jump across the shear
thickening transition and the slope of the second shear thick-
ening regime are determined by the friction law used in the
model. This is depicted in Fig. 8(b) for friction laws shown in
Fig. 8(a). A higher value of friction leads to a larger viscosity.
Hence, the model of Brizmer ef al. has a larger viscosity in
the second shear thinning regime than other friction laws. A
friction law with a less steep decrease with particle deforma-
tion (e.g., the law of Brizmer ef al.) results in a less steep
second shear thinning regime. A constant p will result in the
disappearance of the second shear regime [45] [see Fig. 8(b)].

There is an ongoing debate in the community regarding
the presence of the second shear thinning regime as it is not
observed in all the systems. We would like to point out that the
second shear thinning has been observed to be prominent for
high volume fractions and has been seen to be present at very
high shear rates (greater than 10*~10° s~!). Hence, to observe
this regime, one would need to be able to shear the suspension
at such high shear rates. Most of the experimental studies on
ST suspensions do not explore such a high shear rate regime
as they stop their investigation right after the suspension un-
dergoes ST [22,29-31,36,68-70]; however, those which do,
have reported the second shear thinning at high shear rates
in suspensions [4,5,9,28]. In addition, we expect the second
shear thinning to depend on the particle material as well. Since
the asperities need be deformed plastically to enter the low
coefficient of friction region, the stress (and hence shear rate)
required for the same would depend on particle properties. For
example, since the Young and elastic moduli of silica particles
are larger than PVC particles, a significantly higher shear
stress or rate would be required to deform silica asperities
plastically, thus delaying the onset of second shear thinning
to very high y values. We expect our simulation results to
encourage experimentalists to investigate different suspension
systems at very high shear rate values to shed more light on
the link between plastic deformation of particle asperities and
the second shear thinning regime.

D. Effect of particle surface roughness

Earlier theoretical and numerical studies had predicted that
increasing the particle surface roughness would lead to a
decrease in the suspension viscosity [71]. However, recent ex-
periments show that rough particle suspensions have a higher
viscosity compared to smooth particle suspensions [52]. We
have resolved this discrepancy and showed that the increase
in suspension viscosity with particle surface roughness can be
explained by using a normal load or roughness deformation-
dependent u [1] similar to the one used in this study.

The proposed model in this study is equipped to quan-
tify the effects of varying particle roughness which is not
possible in models which allow particle overlaps. Simulation
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FIG. 9. Effect of varying particle surface roughness height €, on
the suspension viscosity. Increasing surface roughness results in a
stronger initial shear thinning and increases the viscosity during and
beyond the ST transition. Note that the ST transition is governed by
the direct contact between the particles which is due to the breaking
of the lubrication film due to the particle asperities. Here all the
other parameters are the same as given in Table I, except €,, which is
varied. Here ¢ = 52%. The increase in the viscosity with roughness
in the thinning regimes is consistent with Ref. [52] and the increase
in the viscosity during the ST jump is consistent with Ref. [72]. The
viscosities in the Newtonian plateau are comparable for small change
in the roughness values.
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FIG. 10. (a) Evolution of second normal stress difference N, with applied dimensionless shear rate; N, is always negative. (b) N, scaled by
the shear stress in the suspension. This plot shows that N, mimics the stress in the system.

results accurately predict a rise in the suspension viscosity
with particle asperity size €,, as shown in Fig. 9. The increase
in the suspension viscosity with particle roughness manifests
itself in the form of a higher viscosity jump across the ST
transition, in agreement with previous experiments [72] and
simulations [45].

VI. NORMAL STRESS DIFFERENCES

Figures 10(a) and 10(b) show the dependence of the second
normal stress difference N, = 0> — 033 and the dimension-
less normal stress difference N,/o0q, in the dimensionless
shear rate. We observe N, to be negative for all the investi-
gated input parameters. We find that N, qualitatively mimics
the shear stress o in the suspension. We also find that the
first normal stress difference is small compared to N, and is
dominated by fluctuations. Hence, it is not presented here.

VII. CONCLUSION

We propose a universal model which can quantitatively
predict all of the four regimes, viz., shear thinning, Newtonian
plateau, shear thickening, and shear thinning and the transition
from one regime to the other with increasing shear rate or
stress typical to the flow behavior of dense non-Brownian
suspensions. Thus, unifying disparate rate-dependent rheo-
logical regimes in the flow curve of a dense non-Brownian
suspension of smooth particles. The unifying mechanism is
based on the competition between the interparticle hydrody-
namic interactions, nonhydrodynamic interactions of DLVO
and non-DLVO origins, contact forces, and a Stribeck curve
for the friction coefficient (a constraint mechanism), each
interaction resulting in a characteristic stress scale in the sys-
tem. The switching between the dominant stress scale with
increasing shear rate or stress explains the various regimes
and transitions observed in a dense non-Brownian suspension
[particle sizes greater than O(1 pum)]. Specifically, we showed
that accounting for the non-DLVO forces and a coefficient of
friction decreasing with the increasing normal load (asperity
deformation) is crucial to quantitatively reproduce the inter-
mediate Newtonian plateau and the second shear thinning in
the same framework. We validated the proposed hypothesis by
performing particle-scale dynamic simulations and compared
the results with previous experiments.

The presence of a Newtonian plateau [5,7] was explained
by the inclusion of non-DLVO interactions that are noncon-

tact interactions [41] and delay the onset of the lubricated to
frictional transition (hence ST). Furthermore, we did not find
any significant ordering in the initial shear thinning regime as
it was observed in some cases for monodisperse suspensions.
This begets an interesting question whether the ordering at
low shear rates or stresses for monodisperse suspensions is an
outcome of various noncontact interactions rather than being
the reason for the initial shear thinning? Further investigations
are needed in this direction.

The results also show that only constraining the sliding
motion between the particles is enough for smooth parti-
cle suspensions, unlike rough particles where constraint on
rolling motion might be crucial [32]. The ST transition is
the result of constraints on the relative particle motions due
to friction, while the second shear thinning arises due to the
reduction in the coefficient of friction with asperity defor-
mation (or normal load) at a very high shear rate or stress.
Our simulation results show that using experimentally ob-
tained expressions for the nonhydrodynamic interactions and
the constraint mechanism (e.g., coefficient of friction) is re-
quired to obtain quantitative agreement with the experimental
results.

Although we have used specific force profiles from the
direct measurements [5] for DLVO forces and w, the model
can reproduce the flow curve for any generic system given
its repulsive, attractive, non-DLVO force profiles, and friction
law. We demonstrated the versatility of the proposed model
to reproduce a gamut of flow behaviors by varying the rel-
ative magnitudes and expressions of various interactions. In
addition, the model accurately predicts a rise in the suspen-
sion viscosity with particle surface roughness, in agreement
with recent experiments. These results show that the macro-
scopic rheological behavior is determined by the microscopic
particle-pair interactions. It would also be interesting to in-
vestigate the effects of other collision models [73,74]. Thus,
to gain further insight into the physics behind the rheologi-
cal behavior of dense suspensions, accurate measurements of
interparticle interactions (especially non-DLVO interactions)
and u as a function of interparticle gap while immersed in the
fluid medium are needed.
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