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We investigate the local and long-range structure of several space-filling cellular patterns: bubbles in a quasi-
two-dimensional foam, and Voronoi constructions made around points that are uncorrelated (Poisson patterns),
low discrepancy (Halton patterns), and displaced from a lattice by Gaussian noise (Einstein patterns). We study
local structure with distributions of quantities including cell areas and side numbers. The former is the widest
for the bubbles making foams the most locally disordered, while the latter show no major differences between
the cellular patterns. To study long-range structure, we begin by representing the cellular systems as patterns of
points, both unweighted and weighted by cell area. For this, foams are represented by their bubble centroids and
the Voronoi constructions are represented by the centroids as well as the points from which they are created.
Long-range structure is then quantified in two ways: by the spectral density, and by a real-space analog where
the variance of density fluctuations for a set of measuring windows of diameter D is made more intuitive by
conversion to the distance h(D) from the window boundary where these fluctuations effectively occur. The
unweighted bubble centroids have h(D) that collapses for the different ages of the foam with random Poissonian
fluctuations at long distances. The area-weighted bubble centroids and area-weighted Voronoi points all have
constant h(D) = he for large D; the bubble centroids have the smallest value he = 0.084

√〈a〉, meaning they
are the most uniform. Area-weighted Voronoi centroids exhibit collapse of h(D) to the same constant he =
0.084

√〈a〉 as for the bubble centroids. A similar analysis is performed on the edges of the cells and the spectra
of h(D) for the foam edges show h(D) ∼ D1−ε where ε = 0.30 ± 0.15.
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I. INTRODUCTION

There are many known ways to quantify the local structure
of foams and other cellular systems using cell size, shape,
topology, and neighbor correlations [1–4]. Distributions of
such local measures are used to describe the entire foam pack-
ing, and under proper normalization they remain the same as
the foam coarsens; i.e., they exhibit statistical self-similarity
[5–13]. By contrast, quantifying the long-range structure of
foams and other cellular systems remains an open question.

Recently the concept of hyperuniformity was introduced
regarding the structure in disordered materials at long
distances [14–16]. Materials are called hyperuniform if long-
range density fluctuations are suppressed to the same extent
as in crystals. Work on hard-particle packings of bidisperse
disks, ellipses, and superballs at the jamming transition found
they are hyperuniform, leading to the hypothesis that hype-
runiformity exists in all systems at the jamming transition
regardless of particle shape or polydispersity [17–19]. Anal-
ysis of a wide assortment of other disordered materials at
or slightly below the jamming transition finds signatures of
hyperuniformity [20–25]. However, hyperuniformity is not a
signature of all jammed systems: Work on simulated packing
of bidisperse soft disks shows it does not exist above the
jamming transition [26–28]. Additionally, Ref. [28] shows for
two dimensions and Ref. [27] shows for three dimensions that
systems above jamming are both not hyperuniform and their

overall uniformity decreases as the distance above jamming
increases. This is where foams pose an interesting problem.
Ideally dry foam is far above the jamming transition and hence
should not be hyperuniform, yet it is completely space filling
and the total absence of density fluctuations makes it trivially
hyperuniform. Nevertheless the bubble packing structure and
the distribution of liquid films are visually disordered, pos-
sessing large spatial density fluctuations that could impact
behavior and need to be quantified.

While foams are a naturally occurring cellular packing, this
same problem exists for any disordered system with global
packing fraction φ = 1. To examine this problem in detail we
generate space-filling cellular packings by partitioning space
with Voronoi constructions around point patterns of varying
disorder. Such packings were analyzed in recent studies with
regards to their long-range uniformity and other properties
[29–31]. In Ref. [30] the authors, using a standard method for
diagnosing hyperuniformity, find that the small-q wave vector
scaling of the spectral density behaves like χ (q) ∼ q4 where
the exponent is exact based on the conditions of their simula-
tion. They do not present experimental data, so we perform the
same kind of Fourier analysis as they do but on our foam sys-
tems as well as on our simulated Voronoi constructions. Since
all of the packings closely mirror the conditions analyzed in
Ref. [30], we are interested in whether analyzing our systems
recover the same spectral density scaling exponent. This also
allows us to test the extent to which foams are hyperuniform.
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More generally we compare the uniformity of their long-range
structure to the other space-filling cellular patterns, using both
Fourier space and real space methods.

In real space, testing for hyperuniformity is done by
randomly placing a series of local observation windows
throughout a sample, measuring the area fraction covered by
the particles that land within each window and calculating the
variance of the measured set of area fractions. This is repeated
for growing observation windows, and if at large length scales
the variance is suppressed to the same extent as in crystals
then the system is said to be hyperuniform. There are two
ways to define the area fraction within a measuring window.
One method calculates the area covered by a particular phase
of the media that lands inside the window. If a cellular pack-
ing has global packing fraction φ = 1 then every measuring
window finds a local area fraction φw = 1 and no meaningful
signature of hyperuniformity can be found. The other method,
which we employ here, defines a cell as a point weighted
by the area of the cell; any points that land inside the local
observation window have the entire area of their cell counted,
but points that land outside the observation window have none
of their area counted.

Measuring the asymptotic scaling behavior at small q or at
large lengths provides an answer to whether these systems are
hyperuniform but does not provide additional insight into the
actual structure of the underlying pattern. This can be done in
principle using the same tools for diagnosing hyperuniformity
in real space but a necessary step is converting the fluctuations
observed in a local measurement window into a length scale;
this length scale is called the hyperuniformity disorder length
h and its size is the average distance from the boundary of a
local measurement window where the particle number density
fluctuates [32,33]. Therefore the value of h provides us with
an intuitive length scale for disorder that probes the nature
of long-range structure as well as the structure at smaller
distances. This technique is called “hyperuniformity disorder
length spectroscopy” (HUDLS) and has shown success in
identifying long-range structure for other soft systems [28].
Here we use it to uncover and compare the extent of potential
hidden order of various structural features of foam and other
cellular patterns. We are also able to determine whether the
local structure informs long-range structure.

II. METHODS

A. Hyperuniformity: Scaling and definitions

In this section we begin with a review of established meth-
ods used to diagnose hyperuniformity in ways that quantify
long-range structure; expert readers may skip to Sec. II B.
Hyperuniformity is diagnosed by measuring the asymptotic
scaling of either the spectral density χ (q) for small q or the
variance σ 2

φ (D) in the set of local volume fractions measured
in randomly placed windows of diameter D for large D. A
scaling exponent ε relates the two quantities. If the spectral
density has small wave vector behavior like χ (q) ∼ qε with
ε > 0, or more generally if χ (0+) = 0, then a system is said
to be hyperuniform; small-q scaling with 0 < ε � 1 corre-
sponds to the long length scaling σ 2

φ (D) ∼ 1/Dd+ε where
d is dimensionality; for ε � 1, χ (q) ∼ qε corresponds to

σ 2
φ (D) ∼ 1/Dd+1 and we say the system is strongly hype-

runiform. By contrast, ordinary systems exhibit Poissonian
fluctuations where ε = 0. In reciprocal space the spectral den-
sity is χ (0+) = C where C > 0 is some constant and in real
space the volume fraction variance scales like σ 2

φ (D) ∼ 1/Dd

according to the dimensionality. While the exponent ε can be
used as a proxy for order, its actual value does not have a direct
physical interpretation. Instead of the exponent ε, we derive
meaning from the actual values of the χ (q) and σ 2

φ (D) by use
of different means in reciprocal and real space as follows.

For the spectral density, some intuition is achieved by
choosing a proper normalization of χ (q) according to the
spectral density for a Poisson pattern where particles are
placed totally at random. If a cellular patterns in two dimen-
sions is represented by a central-point with the entire area aj

of particle j is at the location r j of its center then a suitably
normalized definition of the spectral density is

χ (q) ≡
(∑

a je
iq·r j

∑
ake−iq·rk

)/∑
a2

j , (1)

where q = |q| for isotropic packings and the sums are over
all particles. This normalization means Poisson patterns have
χ (q) = 1, which becomes a nominal upper bound and insight
into structure at a given q is extracted from how far χ (q) lies
below this value. Another benefit of this normalization is for
systems of monodisperse particles or for point patterns the
spectral density reduces to the structure factor, S(q).

In real space, structure is quantified intuitively by the spec-
trum of hyperuniformity disorder lengths h(D); full details
and examples may be found in Refs. [28,32,33], and are
given more briefly in the remainder of this section. Determin-
ing h(D) for two-dimensional systems begins by finding the
variance σ 2

φ (D) for a set of local area fractions
∑

Niai/A�,
where Ni is the number of particles of species i whose
centers lie inside a randomly placed window of area A� =
π (D/2)2 and the sum is over species. This is the real space
definition of the central point representation. Using these def-
initions a completely random arrangement of particles will
have σ 2

φ (D) = 〈a〉/A� where 〈a〉 = ∑
φiai/

∑
φi is the area

fraction weighted average particle area, φi is the area fraction
covered by particles with ai, and φ = ∑

φi is the area fraction
of all the particles in the system.

The measured area fractions fluctuate depending on where
the measuring window is within the system due to differences
in the number and sizes of particles landing inside the win-
dow; hyperuniform configurations have fluctuations that are
understood to be due to particles at the surface of the measur-
ing windows [14]. However, particle centers do not actually
lie on the window surface. Instead, it is more appropriate to
picture fluctuations as determined by the average number of
particles whose centers lie inside the window within some
distance h of the surface; this is shown pictorially for a cir-
cular window in Fig. 1. For circular windows with area A� =
π (D/2)2, we can thus define h from the number variance via
σ 2

Ni
≡ (φi/ai )π [(D/2)2 − (D/2 − h)2], where the right-hand

side is simply the average number of particles of species i
whose centers lie in the green annulus. The number vari-
ance is then converted to an area fraction variance using
σ 2

φ = ∑
σ 2

Ni
a2

i /A2
�. Finally, averaging over species leads to the
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a

(D)=( i /ai ) [(D/2)2 (D/2 h)2] Ni
2

FIG. 1. Image of a quasi-two-dimensional (quasi-2D) foam with
the bubble centroids marked by dots. The total area of bubbles
enclosed in a circular window is taken as the sum of areas for
bubbles whose centroids land within the window (large filled cir-
cles). The area fraction variance is controlled by the number of
particles in the shaded region of thickness h(D), averaged over
window placements. As depicted here for D = 8

√〈a〉, the hyperuni-
formity disorder length is h(D) = √〈a〉 where 〈a〉 is the area-fraction
weighted average bubble area. The value of h(D) is inflated by over
10× its actual value for illustrative purposes.

following explicit definition of h(D) in terms of the measured
variance:

σ 2
φ (D)

φ
≡ 〈a〉

π (D/2)2

{
1 −

[
1 − h(D)

D/2

]2}
, (2)

≈ 2
〈a〉h(D)

(D/2)3 for D � h(D). (3)

These expressions were given in footnote 2 of Ref. [28]. Note
that smaller h(D) means smaller fluctuations and more uni-
formity, while larger h(D) means more disorder. Furthermore,
σ 2

φ (D) ∼ 1/Dd+ε corresponds to h(D) ∼ D1−ε ; therefore,
Poissonian fluctuations have ε = 0 and correspond to h(D) ∼
D, and the upper bound is h(D) = D/2 for a Poisson pattern
where all particles inside the measuring window contribute
to area fraction fluctuations. Strong hyperuniformity where
ε � 1 corresponds to a large-D asymptote that is constant:
h(D) = he and particles inside the window further than he

do not contribute to measured fluctuations. For this case,
σ 2

φ (D) ∼ 〈a〉he/D3 is made dimensionally correct by the exis-
tence of he as an emergent length rooted in the intuitive notion
of what it means to be hyperuniform. Thus he is the desired
measure of structure that is independent of D when the system
is hyperuniform, and Eq. (2) generalizes upon this to systems
with any degree of uniformity.

The definitions for the hyperuniformity disorder length are
discussed in much more detail in Refs. [28,32,33]. These
references also go through the calculations of the upper bound
h(D) = D/2 as well as a lower bound for the separated-
particle limit where the size of the measuring window is
smaller than the average distance between two particles.

We also note that hyperuniformity is truly a measure of
number fluctuations and because points are given a weight

equal to their area the above discussion is in the context of
long wavelength area fraction fluctuations. However, using the
central point representation fluctuations in any order param-
eter can be determined by assigning an appropriate weight
to each point, i.e., for fluctuations in coordination number
each point is given a weight equal to its number of contacts
[34]. Assigning equal weight to each point makes the system
monodisperse and it is treated simply as a point pattern; the
signature of hyperuniformity for these systems is fluctuations
in the number variance that grow more slowly than the volume
of the window. This treatment changes the definitions and
bounds from above: the spectral density reduces to the struc-
ture factor S(q) and all particle areas are a j = 1; the random
expectation for the number variance is σ 2

N (D) = ρA� where ρ

is the number density. The definition of h(D) also changes and
is defined by rearranging σ 2

N = ρπ [(D/2)2 − (D/2 − h)2];
h(D) whether defined from the number variance or the area
fraction variance is calculated from a ratio of the measured
variance to the expected variance for a totally random system
in both cases and our intuition for what it measures remains
the same. Because foams have not been studied in the context
of hyperuniformity, we explore our systems both as monodis-
perse point patterns using the centroids of the bubbles and
as polydisperse systems where the centroids are weighted by
their bubble area.

B. Foam and Voronoi data

We study foam made from a solution that is 75% deionized
water, 20% glycerin, and 5% Dawn Ultra Concentrated Dish
Detergent. It is generated inside a sample cell made from
two 1.91 cm-thick acrylic plates separated by a spacing of
0.3 cm and sealed with two concentric o rings, the inner
of which has a 23 cm diameter; this is the same apparatus
used in Ref. [35] for foam coarsening experiments. Foams are
produced as follows. First the trough is filled with the desired
amount of liquid, then flushed with nitrogen and sealed. The
entire sample cell is vigorously shaken for several minutes
until the gas is uniformly dispersed as bubbles that are smaller
than the gap between the plates. The foam is thus initially very
wet, opaque, and three dimensional. The cell is immediately
placed above a Vista Point A light box and below a Nikon
D90 camera with a Nikkor AF-S 300mm 1:2.8D lens. After a
few hours, the bubbles become large compared to the gap and
the foam has coarsened into a quasi-two-dimensional state;
thereafter, images are acquired every 2 min for 24 h.

To extract relevant data for bubbles, such as their locations
and areas, we first have to reconstruct the foam microstructure
and film network. The reconstruction methods are described
more thoroughly in the Supplemental Materials of Ref. [36].
Briefly, the first step is to locate the vertices via a convolution
method using an example vertex structuring element and the
foam image. After the vertex locations are identified they are
connected to their neighbors by exploiting Plateau’s law that
the vertices are the junction of three films meeting at 120◦ and
that pairs of vertices are connected by films that are circular
arcs. Finally bubbles are identified by making closed loops of
vertices.

To perform the above hyperuniformity analyses, the foams
need to be represented by points. The bubble centroids are a
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(a) Foam (b) Einstein (c) Halton (d) Poisson

(e) Foam (f) Einstein (g) Halton (h) Poisson

a. a. a. a.

5 a. 5 a. 5 a.5 a.

FIG. 2. Disordered points patterns: (a) the locations of the centroids of the bubbles in a quasi-two-dimensional foam; (b) an Einstein pattern
where points are randomly displaced from a square lattice with root mean square displacement δ/b = 0.26 where b is the lattice spacing; (c) a
Halton set, which is a low discrepancy pattern where points are determined algorithmically; (d) a Poisson pattern where points are placed
totally at random. (e)–(h) show the cellular patterns that partition space around the point patterns as labeled: (e) displays the bubbles of a
quasi-2D foam as well as the bubble centroids; (f)–(h) show the cells of a Voronoi construction, which are created around the filled circles
that occupy each cell. In all parts open circles are used for particle centroid patterns and filled circles show points used to generate Voronoi
constructions. For analysis of area fraction fluctuations all points are given a value equal to the area of the cell they occupy.

logical choice, as given by

xc =
∑

(xi + xi+1)(xiyi+1 + xi+1yi )/(6α), (4)

yc =
∑

(yi + yi+1)(xiyi+1 + xi+1yi )/(6α), (5)

α =
∑

(xiyi+1 + xi+1yi )/2, (6)

where the sums are between all neighboring pairs of vertices
on a bubble. An example of the large-scale point pattern
and a zoomed-in version are shown in Figs. 2(a) and 2(e),
respectively.

To understand the nature of the disorder in the location of
bubble centroids, we compare three different types of pattern.
The first is an Einstein pattern; these consist of points initially
placed on a square lattice and then randomly displaced by
kick sizes drawn from a Gaussian distribution. Varying the
root mean square (RMS) displacements of the particles will
tune the disorder in the patterns [32]. Here we set the standard
deviation to be δ = 0.26b, where b is the lattice spacing. This
gives the same number variance as for the second type of
pattern, known as Halton patterns. These use points from a
low discrepancy sequence [37]. They are of general inter-
est because although they are noncrystalline they fill space
quite evenly, making them and other low discrepancy patterns
useful in, e.g., Monte Carlo integration [38–40]. Creating
a Halton pattern in two dimensions is done by choosing
two integers { j1, j2} whose only common denominator is 1;
each number is an independent seeding element for a list of

numbers. For our patterns we take j1 = 2 and j2 = 3. The nth
number in the sequence is determined by converting n into a
number with base jk , writing the number in reverse order after
a decimal point and converting this fraction back into base 10
representation. This is done for both seeding elements and the
pair of numbers creates one point in the Halton pattern. The
final cellular pattern is a Poisson pattern where uncorrelated
points are laid down by drawing numbers from a high-quality
random number generator. Figures 2(b)–2(d) shows the sam-
ple point patterns.

Bubbles, however, are not simply points but are actually
highly polydisperse cells of a larger space-filling pattern.
Therefore we also study how the areas of bubbles are dis-
tributed throughout space. For this analysis to keep with the
definitions for χ (q) and h(D) from Eqs. (1) and (2), the bubble
centroids are given a weight equal to the area of the bubble
they occupy. To find the areas, the bubbles are first treated as
polygons and the polygonal areas are calculated using Eq. (6).
The curved edges of the bubbles are not accounted for in
this initial calculation. Accounting for this additional area, the
final calculation of the area of any bubble is its polygonal area
plus or minus the area under each of the circular arcs if the
arc bends away or towards from the centroid of the bubble,
respectively. The foams are space filling and have a packing
fraction of φ = 1.

Similar to the point pattern analysis, we want to compare
data from bubbles to data from other cellular structures. In
simulation we are free to partition space, however, we choose
as long as we maintain a packing fraction φ = 1; for this study
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we create cellular patterns from Voronoi constructions around
the three types of simulated point patterns described earlier in
this section. A Voronoi construction tiles space by separating
points into cells whose edges are lines equidistant from the
two points that share that edge. Voronoi patterns are generated
using an intrinsic MATLAB function and this function also
identifies the locations of the vertices for each cell. All cells
are polygons meaning only Eq. (6) is needed to calculate the
cell area. Voronoi constructions, especially those made around
Poisson patterns, have been studied extensively but much of
the work is beyond the scope of this paper [41]; here they are
used to study the structure of cellular patterns that are built
around point patterns of known disorder and compare that to
the structure of quasi-2D foams, which are cellular patterns
that surround point patterns of unknown disorder. Recently
work on cellular patterns in the context of hyperuniformity by
partitioning space using several methods including Voronoi
constructions was published [30,31]; it does not include any
experimental data nor does it consider the hyperuniformity
disorder length.

III. RESULTS

Using the methods described above we reconstruct three
snapshots of the same foam as it coarsens. They are taken
{6, 10, 18} h after its initial preparation and have N =
{2767, 1842, 1099} bubbles, respectively. The total number N
of bubbles decreases with time as the foam coarsens, whereby
smaller bubbles shrink away and larger bubbles grow due
to differences in Laplace pressure. This is accompanied by
an increase in both the mean bubble area a = ∑

ai/N and
the φ-weighted average bubble area 〈a〉 = ∑

ai
2/

∑
ai. In-

dividual foam data sets are referred to by the latter: 〈a〉 =
{10, 15, 25} mm2. For the simulated patterns, the Voronoi con-
structions are made in a square box bounded by (0, 1) with
N � 4.97 × 105 cells each. This is large enough that only one
pattern of each type is generated and analyzed.

A. Bubble-scale quantities

Though it is not our main interest, for orientation and
completeness we start by investigating several standard local
structural features, beginning with the distribution of bubble
areas. Figure 3(a) shows the cumulative distribution function
for the bubble areas normalized by the mean bubble area for
the three snapshots of the coarsening foam. Evidently, the data
collapse nicely, as expected for a foam that has coarsened
into the self-similar scaling state. Statistically, older foams
appear the same as taking a smaller subsection of a younger
foam with the same number of bubbles. Self-similarity is well
documented and has been observed in experiment [5–8] and
simulation [9–13]. It is once again found here, where the data
fit well to a slightly compressed exponential consistent with
previous work [2,3,35].

In addition to providing insight into the local structure of
the foam the collapse of these distributions serves two more
purposes. First it shows our methods for calculating the bubble
areas are correct, which is very important for our hyperuni-
formity analysis. Second because the foam is self-similar the
data from the three images can be collected together to make

FIG. 3. Cumulative distribution function data for (a) bubble areas
for foam as it coarsens and (b) areas of Voronoi cells constructed
around point patterns as labeled. In (a) the bubble areas collapse after
normalizing by the mean area a. In (b) all the foam data are collected
into one distribution and plotted as the black curve. In both parts the
red dashed line shows an exponential area distribution and the gold
dotted curve is a compressed exponential.

one distribution with better statistics. This is done for the
normalized bubble areas and the data are plotted in Fig. 3(b)
as a black curve. Comparing the cumulative distributions of
cell areas for the Voronoi constructions to those of the bubble
areas for the foam show the latter is the widest. In this sense,
the local structure of the foam is the most disordered. The
distributions of cell areas for the Voronoi constructions show
that cells generated around the Einstein and Halton patterns
have the most local order, with nearly identical distributions.
The cells generated around the Poisson patterns have a local
order between Einstein or Halton and the foams. One way to
quantify the local disorder is thus by the width of the area
distributions, or equivalently by the dimensionless ratio a2/a2.
The values extracted from the data are collected in Table I.
These increase with increasing disorder, and are less than the
value a2/a2 = 2 for an exponential distribution.

In addition to a2/a2, another good measure of bubble-scale
structure is the dimensionless shape parameter E = P/

√
4πA,

known as elongation, computed for each bubble by the ratio
of it perimeter to square root of area and scaled to be E =
1 for circular bubbles. Reference [35] finds elongation to be
one of two dimensionless shape parameters important in the
dynamics of foam coarsening with the other being circularity.
Calculating the elongation for all bubbles and collecting them
into one distribution, we compare the data to the elongation of
the Voronoi cells. The cumulative distributions are shown in
Fig. 4 and the inset of the figure is a zoom in for the small E
data. The distribution for the foam is not the widest as it was
for the areas but instead is smaller than the Poisson and goes
farther than both Halton and Einstein. We show the average
elongation and the average squared elongations in Table I and
in both cases these values are ordered from low to high as
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TABLE I. Local quantities characterizing cell size and shape in the four types of space-filling cellular patterns: average squared area
divided by the average area squared, the average number of sides of a cell, the standard deviation for the side-number distribution, the average
elongation, the average squared elongation, and the average squared edge length divided by the average edge length squared. Data for all
bubbles at the three times are collected into one distribution because the foam is in a self-similar state.

Pattern a2/a2 n σn E E 2 s2/s2

Einstein 1.05 ± 0.002 5.99 ± 0.01 0.993 ± 0.002 1.127 ± 0.0001 1.271 ± 0.002 1.29 ± 0.03
Halton 1.06 ± 0.002 5.99 ± 0.01 1.092 ± 0.002 1.142 ± 0.0001 1.308 ± 0.002 1.33 ± 0.04
Poisson 1.28 ± 0.006 5.99 ± 0.01 1.332 ± 0.002 1.181 ± 0.0002 1.403 ± 0.003 1.42 ± 0.04
Foam 1.82 ± 0.07 5.98 ± 0.08 1.17 ± 0.02 1.10 ± 0.02 1.22 ± 0.03 1.19 ± 0.01

foam, Einstein, Halton, and Poisson. Foam has the smallest
average values because the data plunge away from 1 the fastest
which is seen clearly in the inset of Fig. 4.

The four types of cellular pattern are further compared and
contrasted in Fig. 5 by examining the contribution to the full
elongation distribution by cells with different side numbers,
n. Figure 5(a) shows the data for the foam where data with
small E have large n and bubbles with a smaller number of
sides have larger E values. Interestingly the foam have regions
with little to no overlap for different n-sided bubbles; this is
exhibited by the peaks of the individual n-sided distributions
nearly matching the entire distribution especially for bubbles
with less than seven sides. For the Voronoi packings these
regions of little overlap do not exist and the peaks of the distri-
butions are not separated. Only the foams have well-separated
elongation distributions for different n-sided cells.

Other standard distributions we study include the side-
number distribution p(n), which tells the probability of
finding a bubble or cell with n sides and the area-weighted
side-number distribution F (n), which tells the fraction of
sample area that is covered by n-sided bubbles or cells. The
distributions for p(n) and F (n) are plotted in Figs. 6(a) and
6(b), respectively. The p(n) distributions are remarkably simi-
lar, which is expected given that both the bubbles and Voronoi
cells are convex polyhedra where the vertices are a junction of
three edges; this microstructure also makes it so the average
number of sides per cell is n = 6 and Table I shows this is

FIG. 4. Cumulative distribution of the elongation shape param-
eter for the various cellular patterns, as labeled. The foam data is
collected from the combined data from the three different times
during the aging process. The distributions have statistical uncertain-
ties described in Ref. [35], with error bars that are smaller than the
symbols.

almost exactly achieved for all packings. Figure 6(b) shows
the F (n) distribution for the foam is skewed more towards
cells with large n when compared to the other distributions
particularly for bubbles with n = {7, 8} sides. This is under-
stood because bubbles with a larger number of sides also
have larger areas. These distributions allow us to understand
the local structure of the cellular patterns but next we inves-
tigate whether they provide any insight into the long-range
structure.
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FIG. 5. Distribution of the elongation shape parameter for differ-
ent cellular patterns, as labeled. The full distribution is plotted as a
thick curve, and data for n-sided cells are colored according to the
number of sides. The foam data is collected from the combined data
from the three different times during the aging process.
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FIG. 6. (a) Side-number distributions, and (b) area-weighted
side-number distributions, for the various cellular patterns, as la-
beled. The foam data is collected from the combined data from the
three different times during the aging process. The distributions have
statistical uncertainties described in Ref. [35], with error bars that are
smaller than the symbol sizes.

B. Spatial density fluctuations

We now present our main results quantifying spatial varia-
tion in each of the four types of cellular patterns. Specifically,
hyperuniformity and the nature of density fluctuations at both
short and long length scales are diagnosed by the spectral
density, χ (q), and by the real space spectra of hyperuniformity
disorder lengths, h(D), respectively, computed from Eqs. (1)–
(2). Throughout, length scales are normalized by the square
root of the φ-weighted average cell area

√〈a〉. We begin with
number density fluctuations, where cells are considered as
points of equal weight (i.e., equal area) such that χ (q) reduces
to the structure factor S(q). Then we turn to fluctuations of
area fractions, followed by cell boundaries. Finally, we com-
pare various spectra for the foam samples.

1. Hyperuniformity of number density

We first treat the cellular structures as patterns of points,
using both the centroids of the bubbles and Voronoi cells as
well as the points around which the latter were constructed.
By eye, the images in Figs. 2(a)–2(d) show that foam and
Poisson point patterns exhibit more low-density voids and also
more high-density clumps than the Einstein and Halton point
patterns, where the points are more uniformly distributed.
Figure 2(e)–2(h) show that the centroids are slightly shifted to
make the patterns more uniform but only at the cellular scale.
This is reflected in both the small-q scaling of S(q) data, and
in the large-D scaling of h(D) data, displayed in Fig. 7, for
both points [Figs. 7(a)–7(b)] and centroids [Figs. 7(c)–7(d)].
In particular, S(q) at small q becomes constant for foams and
equal to 1, indicating maximal randomness, for the Poisson
patterns. Correspondingly, h(D) at large D becomes D/2 for

FIG. 7. Structure factor and associated real space hyperunifor-
mity disorder length spectra for various point and centroid patterns
as labeled. The foam data, for systems with 〈a〉 = {10, 15, 25} mm2

as the curves go from dark to light gray, are the same in either (a) or
(c) or (b) or (d) and have long-range Poissonian fluctuations. The
data for the simulated point patterns are as follows: the Poisson data
lie along the random expectation (red dashed line); the Halton or
Einstein data are hyperuniform indicated by h(D) = he (magenta
dot-dashed line) and by the power-law decay of S(0+) ∼ q2 (purple
dot-dashed line). The centroid data are the same as the points data
at long distances but there is an induced short-range order at short
distances; this additional order is continued to long distances for the
Einstein or Halton centroids indicated by a smaller value of he.

the Poisson patterns, and appears to be a smaller fraction of
D for foams. The long-range nature of density fluctuations of
bubble centroids is thus Poissonian but not totally random.
The behavior is very different for the Einstein and Halton pat-
terns: For small q and large D, their spectra scale as S(q) ∼ q2

and h(D) = he (constant), and hence are hyperuniform; appar-
ently, low discrepancy and hyperuniform are synonyms. The
exponent ε = 2 reproduces prior work on Einstein patterns
[32], where the value of he was found to grow in proportion
to the size of the RMS kick of the points from their lattice
sites. Here, in fact, we selected this parameter in order to
match the value of he = 0.15

√〈a〉 found for the Halton point
patterns. This finding is helpful for intuitively understanding
and evaluating the statistical uncertainty in a Monte Carlo
integration using the Halton sequence: the variance is simply
the average number of points that lie within he of the perime-
ter. While the long-range behavior of h(D) for the Einstein
and Halton patterns coincide, by construction, their structure
factors could have been different and could have had different
ε > 1 exponents; it was thus a surprise that their S(q) at small
q match so well. Another finding, in Fig. 7(d), is that slightly
smaller but in-common values of he = 0.11

√〈a〉 are found for
the centroids of the Halton and Einstein Voronoi cells.

As for the short length scale behavior, all spectra in Fig. 7
asymptote to S(q) = 1 for large q and h(D) = D/2 for small
D. With increasing D, the real space spectra for foam, Halton,
and Einstein patterns all fall below this limit but lie above the
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separated-particle limit set by σ 2
φ (D)/φ = 〈a〉/[π (D/2)2] −

φ for windows small enough to always contain only 0 or 1
point, at random, with probability set by window size and
point density [28,32,33]. The foams spectra are found to be
the smallest and closest to the separated-particle limit at the
cellular scale, therefore they are the most uniform and least
Poissonian. At larger scales, the foam spectra then turn up
toward Poissonian behavior while the Halton and Einstein
spectra develop hyperuniform signatures. It was a surprise that
their spectra match so well at intermediate lengths.

2. Hyperuniformity of area fraction

An analysis that treats the patterns as cellular structures
is similar but, we now compute the χ (q) and h(D) spectra
where the points and centroids are weighted by the areas
of the cells they occupy. This quantifies fluctuations in area
fraction measurements taken at different length scales. Since
all the cellular patterns fill space, they are all hyperuniform
by construction—even the Voronoi pattern constructed for the
randomly placed points in the Poisson pattern. Thus the main
question is to compare the ε exponents and the he values that
respectively characterize the small-q and large-D symptotics.
This also tests the ε = 4 prediction of Ref. [30].

Results for χ (q) and h(D) for area-weighted points and
centroids are collected in Fig. 8. At the smallest scales, for
large q and small D, the spectra indicate random behavior as
expected. Slightly away from this asymptotic behavior, the
spectra all decrease but now without oscillations in the case
of χ (q) and much more closely to the separated-particle limit
in the case of h(D). In fact, the h(D) data in Fig. 8(d) for
centroids collapse and follow this closely. By contrast the
h(D) data in Fig. 8(b) for points fan out with foam being
smallest, and very closely matched to the separated-particle
limit, while the Einstein and Halton data are nearly indistin-
guishable and lie between the foam and Poisson data. This
corresponds to foam being most uniform and Poisson least
uniform. The same ordering may be seen in the χ (q) data of
Fig. 8(a), but less obviously. However, in Fig. 8(c), χ (q) is
smallest at intermediate scales for the Halton pattern.

At the largest scales, for small q and large D, the area-
weighted point and centroid pattern spectra all show tell-tale
signs of hyperuniformity, as expected by construction. In
particular, the χ (q) all vanish and the h(D) all approach a
constant, he. The values of he are different for the different
patterns, and hence serve to quantify their relative degrees
of uniformity. For foams, the value is given by he/

√〈a〉 =
0.084. In Fig. 8(d), for the weighted centroids, essentially
the same value is found for the Poisson patterns and slightly
smaller values of he/

√〈a〉 = 0.080 and he/
√〈a〉 = 0.076 are

found for the Einstein and Halton patterns. In Fig. 8(b),
for the weighted points, the values are larger and indicated
less uniformity: he/

√〈a〉 = 0.10 for Einstein and Halton, and
he/

√〈a〉 = 0.15 for Poisson.
The asymptotic small-q behavior for the χ (q) spectra in

Figs. 8(a), 8(c) is not as clear as for the h(D) spectra. All
are slightly concave up, except for the weighted points of the
Poisson pattern in Fig. 8(a). It can hence be well fit with a pure
power law, qε, which gives the exponent as ε = 3.5 ± 0.1.
The foam data is least concave, and fits give ε = 4.2 ± 0.2.

FIG. 8. Spectral density and associated hyperuniformity disorder
length spectra for various cellular patterns as labeled. The foam data
are for systems with 〈a〉 = {10, 15, 25} mm2 as the curves go from
dark to light gray and are the same in either (a) or (c) or (b) or
(d). In (b), (d) the spectra of h(D) for all patterns at intermediate
and long lengths become constant and the values of he are labeled.
These values are different depending on the disorder and he for the
foam centroids is marked in both (b), (d) as a magenta dot-dashed
line. The spectral density decays like q4.2 for the foam data for all
q
√〈a〉/(2π ) < 1; for the Voronoi point and centroid data the χ (q)

decay more slowly than the foam data but still have signatures of
hyperuniformity. Only the foam data have a decay exponent near the
ε = 4 expectation determined in Ref. [30]. In (d), the h(D) nearly
collapse following the separated-particle limit (gold dotted curve) at
small D and have very similar values of he.

The other spectra appear to cross over from ε ≈ 4 at in-
termediate q to ε ≈ 3 at smallest q. Recall that ε = 4 was
expected in all cases [30]. The discrepancies from prediction
are noticeable, but not large, and are not understood.

3. Hyperuniformity of edges

We now turn attention to the lengths and locations of the
cell edges, which are depicted in Figs. 2(e)–2(h). For foams,
these are circular arcs literally made of thin aqueous soap
films, which meet three at a time at 120◦ angles according
to Plateau’s rules. This originates from surface tension, and
the need to minimize cell perimeter at constant area. For the
Voronoi constructions, the edges are fictitious straight line
segments of zero thickness; they usually meet three at a time
but at no prescribed angle.

The cumulative distribution of the length s of cell edges
is shown in Fig. 9 as a function of s/s where s = ∑

si/Ns is
the mean edge length and Ns is the total number of edges.
As expected due to surface tension, foams have the narrowest
distribution of edge lengths; this is juxtaposed with the fact
that they have the broadest distribution of cell areas. The
Poisson patterns have the widest distribution of edge lengths,
which is also expected because of the large voids. The Hal-
ton and Einstein edge distributions are intermediate and very
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FIG. 9. The cumulative distribution function of edge lengths nor-
malized by the mean edge length s for types of system as labeled.
The edges for the foams (Voronoi cells) are the films (walls) that
connect two neighboring vertices on a bubble (Voronoi cell) and
they are circular arcs (straight line segments). In (b) we show only
the CDF on a log-log scale because the power-law scaling where
NCDF ∼ s/s for the very small Voronoi wall lengths is lost when the
CDF is subtracted from 1.

similar to each other. The widths of the distributions may be
quantified by the mean-squared edge length s2 = ∑

si
2/Ns

divided by the mean edge length squared. Results are given
in Table I, and are ordered as expected.

While Fig. 9(a) reveals the full distributions and their
widths, it does not offer a good view of the preponderance
of short edges. This is revealed better by the log-log plot of
Fig. 9(b). There, NCDF ∼ s/s is seen, with nearly the same
proportionality constant, for all three types of the Voronoi
construction. The foams behave quite differently, with far
fewer short films. This may, perhaps, be explained in part
by the quasi-2D nature of our samples, where edges that are
shorter than the spacing between the plates can be eliminated
by local rearrangements of the bubble packing.

As for the spatial distribution of edges, density fluctuations
at different length scales may be quantified using the similar
metrics as above. In particular, each edge is replaced by a
point, located at the midpoint of the edge, and weighted by
the length of the edge. Then the χ (q) and h(D) spectra are
computed and the results are displayed in Fig. 10. Lengths for
each pattern are normalized 〈s〉 = ∑

si
2/

∑
si where the sum

is over all edges. As usual, the spectra show random behavior
at the smallest length scales, while at intermediate scales χ (q)
oscillates a bit and h(D) hugs the separated-particle limit. The
four pattern types are nearly indistinguishable across these
lengths. At longer distances, the spectra for the Poisson pat-
tern edges rises higher and faster than the others, indicating

h D
s
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FIG. 10. Spectral density and associated hyperuniformity disor-
der length spectra for weighted edge patterns as labeled. In both parts
the Poisson patterns show long-range random fluctuations but do not
lie exactly on the random expectation (red dashed line). The Einstein
and Halton patterns are not hyperuniform; this is more evident in the
spectral density data where the data have clearly defined minima but
(b) shows neither the Einstein nor the Halton data have h(D) = he

at large window sizes, which is evident by comparing the data to a
fiduciary constant (dot-dashed line). The power law growth (magenta
dot-dashed line) of h(D) ∼ D1−ε and χ (q) ∼ qε where ε = 0.3 is
consistent with a class of hyperuniform materials.

the greater fluctuations and lesser uniformity. The Halton and
Einstein pattern spectra dip the lowest, indicating most uni-
formity, but then rise upwards—dramatically so for χ (q). The
data even suggest that χ (q) rises to one for Poisson, Halton,
and Einstein patterns, which would indicate completely ran-
dom behavior at very large length scales greater than 1000 or
more bubbles. This is actually reminiscent of spectra reported
in Figs. 5(c), 5(e) of Ref. [28] for sphere packings very close
to jamming. All this contrasts with the foam data, which at
long lengths appear hyperuniform with power-law scaling of
χ (q) ∼ q0.3 and h(D) ∼ D0.7, where the exponent uncertain-
ties are ±0.15. Since the foam systems cannot be made larger,
we cannot rule out a turn up toward Poissonian behavior at
extremely long length scales.

4. Hyperuniformity of foams

As a final exercise for the foam samples, Fig. 11 compares
χ (q) and h(D) fluctuation spectra for area-weighted centroids
and length-weighted edge centers, shown earlier, as well for
weighted vertices. To account for the spatial variation of the
liquid phase, in analogy to the edge weighting, vertices are
weighted by ξi = ∑

s j/2, the sum of half-lengths for the three
connected edges; all lengths for the vertices are normalized
by 〈ξ 〉 = ∑

ξi
2/

∑
ξi. All spectra are averaged over the three

ages, since the foams are in a self-similar scaling state. At
small D (large q), all spectra appear random as expected.
At intermediate (i.e. bubble) length scales, h(D) hugs the
separated-particle limit the most for centroids and the least for
vertices. Over the same intermediate length scales, the three
χ (q) spectra are similarly ranked, with vertices showing more
disorder than films and films more disorder than centroids.
At the longest length scales the weighted centroids are hype-
runiform, since the foam cells are space filling, with h(D) =
0.084

√〈a〉 and χ (q) ∼ q4.2±0.2. The films and vertices show
evidence of weaker hyperuniformity, χ (q) ∼ε and h(D) ∼
D1−ε with ε = 0.30 ± 0.15. However, it is hard to rule out
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FIG. 11. Spectral density and associated hyperuniformity disor-
der length spectra for weighted patterns as labeled. All curves are the
average of foam data at three different times. Lengths for the bubbles,
films, and vertices are normalized by  = {√〈a〉, 〈s〉, 〈ξ〉}, respec-
tively. In both parts the bubbles exhibit strong hyperuniform behavior
where the spectral density decays like q4.2 and h(D) = he; the films
have signatures of hyperuniform behavior where h(D) ∼ D1−ε and
χ (q) ∼ qε where ε = 0.3. For the vertices (a) shows the data level off
to a constant χ (q) = 0.2 indicating long range random fluctuations
and (b) shows no clear signal.

χ (q) = 0.2 Poissonian behavior for the films and vertices.
Nevertheless, their h(D) spectra are clearly sub-Poissonian
for length scales ranging from 0.2 up to 30 or 40 bubble
diameters.

IV. CONCLUSION

To what extent are foams hyperuniform, and do Plateau’s
laws confer additional uniformity? To explore such issues, we
quantified the short- and long-range structure of a coarsening
foam using χ (q) and h(D), Hyperuniformity disorder length
spectroscopy (HUDLS). And we compared against spectra for
three other space-filling patterns. Of these, we find that the
foams are the most locally disordered because they have the
widest distribution of cell areas. However, this local structure
does not inform the long-range uniformity. Using a recently
defined emergent length scale, the hyperuniformity disorder
length, we show the bubble centroids weighted by their areas
as well as the Poisson, Halton, and Einstein points weighted
by the areas of their Voronoi cells are all hyperuniform. This
analysis also finds the weighted bubbles centroids are the most
ordered; this is evidenced by h(D) = he for all patterns, but
the value of he is smallest for foams. Relocating the Voronoi
points to the centroids of the Voronoi cells shows a near
collapse in the values of he to that of the bubbles centroids. In

Fourier space, the weighted foams are also the most ordered
when compared to any of the weighted Voronoi patterns; this
is determined from the power-law behavior where χ (0+) ∼ qε

and ε = 4.2 for the foams. This value, used as a proxy for
long-range order, is the largest among all the patterns and
only the foams have a decay exponent near the expected value
ε = 4 predicted in Ref. [30]. Additionally the foam edges are
the only ones that have signatures of hyperuniformity in both
real and Fourier space.

While the foam samples appear more ordered than the
simulated cellular patterns, the latter have about 100 × 100
more cells than the number of bubbles we were able to study
in the laboratory. It would be interesting to increase the foam
system size and see if the apparent hyperuniformity persists,
or if Poissonian features arise at extremely long distance, e.g.,
by an upturn of χ (q) at very small q or by an upturn of h(D)
at very large D. This would be difficult for both experiment
and simulation. Another open question regards wet foams,
where the bubbles do not entirely fill space. The decoration
theorem holds that, in two dimensions, wet foam structure is
obtained by decorating the vertices of a perfectly dry foam
without shifting their positions [42]. This theorem fails if there
exist films that are shorter than the extent of the decorated
vertices, which is likely for large enough foams even if very
dry. Therefore, the effect of variable wetness on long-range
structure is nontrivial.

Besides foams we could use the hyperuniformity disorder
length to determine long-range structure in other naturally
occurring cellular patterns. This analysis can be used in two
dimensions on networks made from cracks in dried mud, from
peaks and valleys in crumpled paper, or from biological cells.
In three dimensions one could study biological networks of
trabecular bone or any other types of porous materials. A
natural extension of our work is to perform analysis for three-
dimensional foams. Experiments on 3D foams has found that
they, like 2D foams, enter a self-similar scaling state [43].
Applying HUDLS to any of these systems offers a general
and intuitive real space method to characterize the spectrum
of structural features, which is a fundamental step in under-
standing material properties.
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