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Induced permittivity increment of electrorheological fluids in an applied electric field in association
with chain formation: A Brownian dynamics simulation study
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We report Brownian dynamics simulation results for the relative permittivity of electrorheological (ER) fluids
in an applied electric field. The relative permittivity of an ER fluid can be calculated from the Clausius-Mosotti
(CM) equation in the small applied field limit. When a strong field is applied, however, the ER spheres are
organized into chains and assemblies of chains in which case the ER spheres are polarized not only by the
external field but by each other. This manifests itself in an enhanced dielectric response, e.g., in an increase in
the relative permittivity. The correction to the relative permittivity and the time dependence of this correction is
simulated on the basis of a model in which the ER particles are represented as polarizable spheres. In this model,
the spheres are also polarized by each other in addition to the applied field. Our results are qualitatively similar to
those obtained by Horváth and Szalai experimentally [Phys. Rev. E 86, 061403 (2012)]. We report characteristic
time constants obtained from biexponential fits that can be associated with the formation of pairs and short chains
as well as with the aggregation of chains. The electric field dependence of the induced dielectric increment
reveals the same qualitative behavior that experiments did: three regions with different slopes corresponding to
different aggregation processes are identified.
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I. INTRODUCTION

In electrorheological (ER) fluids [1], fine nonconducting
solid particles are suspended in an electrically insulating liq-
uid with the particles having larger relative permittivity than
the solvent. Then, an applied electric field induces polariza-
tion charges at the arising dielectric boundaries that can be
expressed as a multipole expansion with dipoles being the
dominant terms.

The interactions of these dipoles lead to a structural change
in the ER fluid known as the ER response. This structural
change is the aggregation of ER particles first into shorter,
then into longer chains due to the fact that the head-to-tail
position of two dipoles along the direction of the applied
field is a minimum-energy configuration. In the case of strong
applied fields, the chains form larger clusters, for example,
columnar structures.

This structural change results in changes in major physical
properties of the ER fluid. The externally controllable, fast,
and reversible change in viscosity, for example, makes ER
fluids a central component of various devices, such as brakes,
clutches, dampers, and valves [2,3].

Another physical quantity whose change can be relatively
easily tracked by measuring the change in the capacitance
of a measuring cell when the electric field is switched on is
the relative permittivity, ε. Several experimental studies have
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been reported for the nonlinear dielectric properties of ER
fluids [4–8]. Horváth and Szalai [9] have proposed a new
method that made the measurement of continuous changes in
the increments in permittivity possible. They determined the
field dependence of the change in dielectric permittivity,

�ε(E ) = ε(E ) − ε(E = 0), (1)

with t → ∞ and also the time dependence,

�ε(t ) = ε(t ) − ε(t = 0), (2)

where the electric field is switched on from 0 to E at t = 0.
The time dependence and electric field dependence are shown,
respectively, in Figs. 3 and 4 of Ref. [9].

They found that the time dependence can be described with
a biexponential fit

�ε(t ) = A(1 − e−t/τ1 ) + B(1 − e−t/τ2 ). (3)

They hypothesized that the time constant τ1 can be associated
with the process of formation of pairs (and, perhaps, short
chains) because τ1 is very similar to the characteristic time
of pair formation derived from a kinetic rate theory [10]. The
time constant τ2, on the other hand, corresponded heuristically
to the formation of long chains and their aggregation and
proved to be an order of magnitude larger than τ1, τ2 ≈ 10τ1.

In this paper, we utilize computer simulations to investi-
gate how change in the dielectric permittivity is associated
with structural changes (the formation of chains of various
lengths, and the aggregation of chains into columnar struc-
tures). Although several simulation studies have been reported
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for cluster formation [11–16], order parameters [10,14,17–
19], diffusion constant [11,14,20], pair distribution functions
[14,20], relaxation times [13,14,21,22], aggregation kinetics
[12], and stress under shear [10,20–23], we are not aware of
any paper addressing the dielectric properties of ER fluids.

The field dependence revealed three regimes with differ-
ent slopes of the �ε versus E function (Fig. 4 of Ref. [9]).
Horváth and Szalai hypothesized that at low electric fields
(below a threshold value E1) the induced dipoles are not strong
enough to generate chain formation and �ε increases with E ,
because the probability of the ER spheres approaching each
other becomes larger. Above E1, chain formation begins with
a large slope, because the parts of a chain can find one another
more easily at large electric fields. Above the threshold value
Eh, the chains start to form columnar structures. This process
is less accelerated by the large electric field, because chains
can also repulse each other when they are not in the appropri-
ate mutual configuration with respect to each other. Here, we
support this hypothesis with computer simulation results.

II. MODELS AND METHODS

The ER fluid is modeled as monodisperse dielectric
spheres of relative permittivity εin inside the sphere immersed
in a carrier liquid of relative permittivity εout. The radius of the
spheres is R, while their diameter is d = 2R. If an electric field
E is applied on the sphere, a polarization charge density is
induced on the surface of the sphere that can be approximated
with an ideal point dipole placed in the center of the sphere
computed as [24]

μ = 4πε0

(
εin − εout

εin + 2εout

)
R3E = αE, (4)

where

α = 4πε0

(
εin − εout

εin + 2εout

)
R3 (5)

is the particle polarizability, E = |E|, and ε0 is the permittivity
of vacuum. If it is further assumed that the characteristic time
of the rearrangement of the surface charge during the move-
ment of the particles is much smaller than the characteristic
time of the rotation of the ER particles, the μ dipole always
points in the direction of E even if the sphere rotates.

If we take a system of N particles at positions {r j}, the
electric field exerted on dipole i by dipole j is

E j (ri ) = 1

4πε0

3ni j (ni j · μ j ) − μ j

r3
i j

, (6)

where ri j = |ri j | and ni j = ri j/ri j with ri j = ri − r j .
In Eq. (4), the electric field at ri is a sum of the applied

field, Eappl (points to the z direction), and the electric field
produced by all the other dipoles, E(ri ) = ∑

j �= j E j (ri ). The
total dipole moment

μtot
i = αEappl + αE(ri ) = μ

appl
i + μ

part
i (7)

is then induced by these two components and is split into
the terms μ

appl
i and μ

part
i accordingly. The dipole moment

μ
appl
i induced by the applied field is constant, while the dipole

moment μ
part
i induced by all the other ER particles needs to

be calculated by an iterative procedure [25].
In the rheological literature, it is usual to ignore the polar-

ization of the particles by each other (μpart
i = 0). There are,

however, important exceptions [17,23,26–31]. In this work,
we present the full self-consistent solution of Eqs. (6) and (7).

If we introduce the force exerted on dipole μi by dipole μ j

(irrespective of whether they are induced by E appl or by other
particles),

fdip
i j (ri j,μi,μ j ) = −(μi · ∇i )E j (ri )

= 1

4πε0

1

r4
i j

{3[μi(ni j · μ j ) + μ j (ni j · μi )

+ ni j (μi · μ j )]−15ni j (ni j · μi )(ni j · μ j )},
(8)

we can express the force exerted on dipole μ
appl
i by dipole

μ
appl
j as

fappl
i j = fdip

i j

(
ri j,μ

appl
i ,μ

appl
j

)
(9)

and the force exerted on dipole μ
appl
i by dipole μ

part
j as

fpart
i j = fdip

i j

(
ri j,μ

appl
i ,μ

part
j

)
. (10)

The finite size of the ER particles is taken into account
with a short-range repulsive core potential for which the
cut and shifted Lennard-Jones (LJ) potential, also known as
the Weeks-Chandler-Anderson (WCA) potential, is used. The
WCA force is defined as

fWCA
i j (ri j ) =

{
fLJ
i j (ri j ) if ri j < rc,

0 if ri j > rc,
(11)

where

fLJ
i j (ri j ) = 24εLJ

[
2

(
d

ri j

)12

−
(

d

ri j

)6]ri j

r2
i j

(12)

is the LJ force (rc = 21/6d is the cutoff distance at the mini-
mum of the LJ potential).

The trajectories of the particles can be computed from
Langevin’s equations of motion [32]

m
dvi(t )

dt
= Fi(ri(t )) − mγ vi(t ) + Ri(t ), (13)

where

Fi =
∑

j

(
fWCA
i j + fappl

i j + fpart
i j

)
(14)

is the systematic force, −mγ vi(t ) is the frictional force, Ri(t )
is the random force, and ri, vi, m, and γ are the position, the
velocity, the mass, and the friction coefficient of particle i,
respectively. The friction coefficient can be computed from
Stokes’ law as γ = 3πηd/m.

To solve this stochastic differential equation, we use the
GJF-2GJ version [33] of a collection of algorithms proposed
by Grønbech-Jensen and Farago [33–35]:

vn+ 1
2 = avn− 1

2 +
√

b�t

m
f n +

√
b

2m
(Rn − Rn+1), (15)

rn+1 = rn +
√

bvn+ 1
2 �t, (16)

062608-2



INDUCED PERMITTIVITY INCREMENT OF … PHYSICAL REVIEW E 103, 062608 (2021)

TABLE I. Reduced quantities defined with T , d , m or with T , d ,
ρin.

Quantity Reduced quantity

Time t∗ = t
√

kT/md2 = t
√

6kT/πρind5

Distance r∗ = r/d
Density ρ∗ = ρd3

Velocity v∗ = v
√

m/kT = v
√

πρind3/6kT
Energy u∗ = u/kT
Force F ∗ = Fd/kT
Electric field E∗ = E

√
4πε0d3/kT

Dipole moment μ∗ = μ/
√

4πε0kT d3

Polarizability α∗ = α/4πε0d3

Friction coefficient γ ∗ = γ
√

md2/kT = γ
√

ρind5/6kT

where rn = r(t n) is any position coordinate of any parti-
cle, vn = v(tn) is any velocity coordinate of any particle,
t n = n�t is the time in the nth time step, �t is the time
step, a = (1 − γ�t/2)/(1 + γ�t/2), b = (1)/(1 + γ�t/2),
tn+ 1

2
= tn + �t/2, and tn− 1

2
= tn − �t/2. The discrete time

noise, Rn, is a random Gaussian number with properties
〈Rn〉 = 0 and 〈RmRn〉 = 2kT γ m�tδmn, with δmn being the
Kronecker delta.

The Brownian dynamics simulations have been performed
in a cubic simulation cell using periodic boundary conditions.
The ensemble can be considered canonical because V and
N are fixed, while the temperature is also constant because
the system is thermostated by the Langevin integrator via
the fluctuation-dissipation theorem. The dipolar interactions
were truncated at the half of the cell width. The system size
dependence has been analyzed in our previous work [36].

III. RESULTS AND DISCUSSION

In this work, we use reduced units that are collected in
Table I. They express physical quantities as dimensionless
numbers obtained by dividing a quantity in a physical unit by
a unit quantity, r∗ = r/d , for example. In addition to T and d ,
we can use either m or ρin (mass density of the ER particles) to
define the reduced quantities, because the mass depends on ρin

and d through m = ρind3π/6. The diffusion constant in the
high coupling limit can be expressed by Einstein’s relation:
D = kT/mγ . The square of the reduced dipole moment

(μ∗)2 = μ2/4πε0d3

kT
(17)

is an important parameter because it relates the ordering effect
of the dipolar energy to the disordering effect of thermal mo-
tion. It is proportional to the λ parameter used in the literature.
If (μ∗)2 is large, the dipolar interactions are strong enough to
induce chain formation, while if it is small, thermal motion
prevents chain formation.

In this work, our main goal is to study the dielectric re-
sponse of the ER fluid and to analyze the relationship of this
response to chain formation in the system. The relative per-
mittivity of an ER fluid can be computed from the corrected
Clausius-Mosotti (CM) equation, which can be derived from

a polarization formula [37]:

ε − 1

ε + 2
= 1

3ε0

〈P〉
E appl

, (18)

where P is the polarization density obtained from the sum
of the dipoles μappl = αE appl induced directly by the external
field and the average dipole moment 〈μpart〉 induced by other
particles:

〈P〉 = Nμappl + N〈μpart〉
V

= ρμappl

(
1 + 〈μpart〉

μappl

)
, (19)

where V is the considered volume and N is the number of par-
ticles in it. Equations (4), (18), and (19) result in the corrected
CM equation

ε − 1

ε + 2
= αρ

3ε0

(
1 + 〈μpart〉

μappl

)
, (20)

where ρ = N/V is the number density, and the correction
factor 〈μpart〉/μappl is the average induced dipole due to other
particles normalized by the dipole due to the external field.
The quantity 〈μpart〉 is directly provided by the simulations.
We have investigated the correction to the CM equation in the
case of nonpolar fluids (e.g., carbon dioxide) by Monte Carlo
simulations [38].

In the low-field-strength limit, the original CM equation is
recovered (the correction factor is zero), because formally an
ensemble of ER particles corresponds to an ensemble of non-
polar but polarizable molecules. The CM equation is based on
the Lorentz formula [39] for the internal field, and it ignores
the fact that a particle is also polarized by other particles, not
only by the external field [40]:

The number of particles is fixed at N = 256 in our simula-
tions. This number proved to be sufficient on the basis of the
system size analysis provided in our previous study [36].

The value of the reduced friction coefficient is fixed at
γ ∗ = 100. This value made simulations feasible, because the
system developed relatively fast at the fixed value of the time
step �t∗ = 0.005. The effect of larger values of γ ∗ that are
more characteristic of typical ER fluids is analyzed in our
previous work [36]. The reduced density is fixed at ρ∗ = 0.05.
The parameters that we change are the reduced electric field
E∗ and the reduced polarizability α∗.

To characterize time dependence, we show values of block
averages (denoted by 〈· · · 〉b) for various physical quantities as
functions of t∗. In this work, we performed Mb = 5000 time
steps in a block. We performed M0 = 50 000 time steps (20
blocks) in the absence of an applied electric field (E appl = 0),
after which the electric field is instantaneously switched on.
Then we performed ME = 450 000 time steps (180 blocks) in
the presence of a constant applied field.

Such a cycle was started over and done several times and
averaged to smooth out noise. When we start a cycle over,
we restart from a freshly generated initial configuration in
a completely disordered state without chains. This way, the
subsequent periods are independent and can be averaged.

Figure 1 shows the time dependence of �ε for α∗ = 0.03
(the curves for other values of α∗ are similar). The numbers
near the curves indicate the values of the reduced electric
field, E∗. This figure corresponds to Fig. 3 of Horváth and
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FIG. 1. Time dependence of �ε for α∗ = 0.03. The symbols
with error bars are simulated data. The error bars have been
computed from the variance of the data in the consecutive and in-
dependent periods. The lines are biexponential fits [Eq. (3)]. The
numbers near the curves indicate the values of the reduced electric
field, E∗. The inset shows the experimental data of Horváth and
Szalai [9] for comparison. The numbers in the inset indicate electric
field strengths in MV/m.

Szalai [9], whose data are reproduced in the inset of Fig. 1 for
qualitative comparison.

Direct quantitative comparison with the experimental data
is problematic (see the end of this section), mainly because
the ER fluid studied by Horváth and Szalai is polydisperse.
They considered nanosized (10–20 nm) silica (SiO2) parti-
cles dispersed in silicone oils (polydimethylsiloxane) with
different dynamic viscosities (0.34 and 0.97 Pa s). Qualitative
comparison, however, is possible. By fitting a biexponential to
our simulated data [Eq. (3)], we obtain the characteristic times
(in reduced units) shown in Fig. 2. Panel (a) shows the data as
functions of E∗ for different values of α∗.

This figure implies that a larger electric field is needed
to achieve smaller τ ∗ values (faster processes) in the case of
smaller α∗ values. This is obvious, because the important pa-
rameter from the point of view of the dipolar interactions is the
induced dipole that is α∗E∗. Therefore, if we plot τ ∗

1 and τ ∗
2

as functions of α∗E∗, we obtain a scaling behavior: the curves
for different α∗ values collapse onto a single curve [Fig. 2(b)].
This scaling behavior also applies for the time dependence
of the normalized �ε; if we plot �ε(t∗)/�ε(t∗ → ∞) as
a function of t∗ for a fixed value of α∗E∗ but for different
combinations of α∗ and E∗, the curves collapse onto a single
one.

This figure also shows that τ ∗
2 is an order of magnitude

larger than τ ∗
1 in agreement with the predictions of Hass et al.

[14] as well as with the experiments of Ly et al. [42] and
Horváth and Szalai [9].

The qualitative behavior of the τ1 versus E function is also
similar to the experimental behavior as seen from a compar-
ison to the data in Table I of Horváth and Szalai [9] that are
reproduced in the inset of Fig. 2(b).

The purpose of this study is to look into the black box
and to see how the dielectric behavior observed in experiment
and simulation is related to the structural changes occurring in

(a)

(b)

FIG. 2. The characteristic times τ1 and τ2 (the latter is larger by
an order of magnitude) as functions of (a) E∗ and (b) α∗E∗ for vari-
ous values of α∗. The inset shows the experimental data of Horváth
and Szalai [9] (from their Table I) for the two different values of
the viscosity they considered (black and red refer to η = 0.34 and
0.97 Pa s, respectively). The error bars of τ1 and τ2 estimated from
the Levenberg-Marquardt algorithm [41] are within the size of the
symbols.

the ER fluid as the electric field is increased. These structural
changes can be monitored via various physical quantities such
as the diffusion constant, the dipolar energy, and the average
chain length. Therefore, we plot the equilibrium values of
these quantities (along with �ε) as functions of the field
strength, E∗, in Fig. 3. The equilibrium value of a quantity can
be obtained either by running a long simulation and throwing
the equilibration period away, or by substituting t → ∞ into
the biexponential. We have chosen the second option. Figure 1
shows the fitted functions. The R2 coefficient of the fitting
is generally above 0.99, and the residuals (data not shown)
decrease to zero as t → ∞. These imply that the equilibrium
values obtained this way are trustable.

The equilibrium values of �ε as functions of E∗ are shown
in the bottom-left panel of Fig. 3. Also, the curve for α∗ =
0.03 is reproduced in Fig. 4 along with the experimental data
in the insets. The qualitative agreement of the simulations
and experimental data is apparent. The behavior of our curve
follows the behavior of the experimental curve in the respect
that there is an initial stage with a small slope. When the
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FIG. 3. The equilibrium (t → ∞) values of the one-particle dipolar energy, (udip )∗ (top-left panel), the diffusion constant, D∗ (top-right
panel), the induced permittivity increment, �ε (bottom-left panel), and the average chain length, sav (bottom-right panel), for various values of
α∗. The vertical dashed lines indicate the E∗

h field strengths at which the regions with different slopes meet (see Fig. 4 for more explanation).
The error bars are those computed at t∗ = 4500 from the variance of the values in the periods. The error bars for (udip )∗ and �ε are within the
size of the symbols.

electric field is larger than a threshold value (E1), pairs and
short chains start to form, and the curve in the interval between
E1 and the next threshold value Eh has a larger slope. Above

FIG. 4. The equilibrium (t → ∞) value of �ε as a function of
E∗ for α∗ = 0.03. The inset shows the experimental data from Fig. 4
of Horváth and Szalai [9]. The inset of the inset shows the results for
small E∗. The solid blue lines indicate the slopes, while dashed blue
lines indicate the crosses of the solid lines defining the threshold field
strengths E1 and Eh.

Eh, the chains spanning the simulation cell start to aggregate
with a smaller slope of the �ε versus E∗ function.

One notable difference between the simulation and experi-
mental results is that E1 is much smaller relative to Eh in the
experiment than in the model. This is valid for all α∗ values
studied. The reason for this is not clear, but the results may be
system-sized and density-dependent. It is also possible that
the large-particle fraction of the experimental polydisperse
system can form clusters at lower fields than the average-
sized particles, an effect that is absent in our monodisperse
model. The Eh value, however, appears to be a relatively
well-defined point separating two characteristic regions with
different slopes, so we indicate the E∗

h values with vertical
dashed lines in all the panels of Fig. 3.

Note that the �ε(E∗) function exhibits a steep nonlinear
increase at large E∗ values. This is the result of the strong
dipolar attraction overriding the repulsion of the WCA poten-
tial. The overlapping spheres lead to stronger particle-particle
polarization. We consider this behavior an artifact of the
model.

Next, let us see how the behavior of the other physical
quantities correlates with the behavior of �ε. The one-particle
dipolar energy, (udip)∗, does not exhibit the behavior of the
three (small-large-small) slopes (top-left panel of Fig. 3). It
decreases with increasing E∗ at a continuously increasing rate.
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The explanation is that the dipolar energy depends chiefly
on the interactions inside the chains. If we increase E∗, the
dipoles become larger, and also their interactions. Clustering
of chains does not seriously influence this dependence.

The diffusion constant is calculated as the slope of the
mean-square displacement (MSD) as a function of time:

D(tb) = 〈r2(t )〉b

6�tb
, (21)

where tb is the time at the beginning of a block, and �tb =
Mb�t is the length of the block. This way, D is characteristic
of a block, and time dependence can be studied. D∗ decreases
as E∗ increases, as shown in Fig. 3 (top-right panel). The
ER particles lose their mobilities as they are organized into
chainlike and columnar structures. The behavior of D∗ fol-
lows the behavior of �ε. Its value starts with the E∗ → 0
limit (0.01), breaks down around E1, and decreases steeply
as longer chains are formed at higher E∗ values. Around Eh,
the chains aggregate, D∗ decreases at a lower rate, and it
saturates into a very small but nonzero value. At large E∗,
the spheres move together with their chains that have much
smaller mobility than the single spheres.

These results are closely related to the anomalous diffusion
behavior of dipolar chains that has been studied theoreti-
cally and experimentally [43–45]. Those studies imply that
the diffusion of chains is reduced compared to the case
in the absence of chains. The degree of reduction is related
to the average length of the chains.

The average chain length, sav, is computed by identifying
the number of chains of length s, ns, for every configuration,
taking the average

sav =
∑

s sns∑
s ns

, (22)

and then averaging over configurations in a block. Chain
length s is measured in the number of particles in the chain.
Two particles are defined to be in the same chain if their
distance is smaller than 1.2d . The choice of 1.2 does not in-
fluence our qualitative conclusions for the dynamics of chain
formation. Other definitions of chains were analyzed in our
previous study [46].

The average chain length starts to increase only above the
first threshold value, E∗

1 . Above the second threshold value,
E∗

h , the average length of chains reaches the value s ≈ 18 that
corresponds to a chain spanning the simulation cell whose
length is L ≈ 17.23d .

As the electric field is increased further well above E∗
h ,

the average number of chains also increases and eventually
reaches a limiting value of 64. At large electric fields charac-
teristically four clusters of chains are formed, each containing
on average 64 spheres, but this is just an average. There is
thermal motion, so values different from 64 may occur, but the
average seems solid. Thermal motion at strong field strengths
mainly means the translational motion of chains in the lateral
(x, y) plane and rotation of chains about the axes of the chains.
Also, the four clusters of chains do not aggregate further. At
high electric fields, the repulsion between these clusters seems
to prevent further aggregation. This finding, however, is also
density-dependent.

It is of interest to look into the black box even deeper to
see how these average chain length values come about. This is
done in Fig. 5, in which we show chain length distributions, ns,
radial distribution functions, g(r), and snapshots. The electric
field strength increases from top to bottom. The values are
chosen to show the phases in Figs. 3 and 4. We show results
for a value below E∗

1 , around E∗
1 , between E∗

1 and E∗
h , around

E∗
h , and above E∗

h .
As E∗ increases, the chain length distributions show the

increased probability of longer chains. The snapshots clearly
show these chains that are also indicated by peaks in the g(r)
functions.

For E∗ = 33.33 (below E∗
1 ), the system is practically a

homogeneous isotropic gaslike fluid regarding the ER par-
ticles. For E∗ = 52.7 (around E∗

1 ), pair formation and, to
some degree, the formation of short chains are present. For
E∗ = 57.74 (between E∗

1 and E∗
h ), even longer chains and,

accordingly, more peaks in g(r) appear.
When we reach E∗

h (E∗ = 66.67), chains spanning the sim-
ulation cell are clearly present, as indicated by the peak at
s = 18 in the ns function. This chain is more stabilized by the
periodic boundary conditions in our cubic simulation cell of
length L ≈ 17.23d compared to other chains. In our previous
study [36], we analyzed this behavior in detail.

For even larger electric field strength (E∗ = 78.17), we
find another peak at s = 36 that corresponds to two chains
stuck together. Chains are straighter, and the peaks in g(r) are
more pronounced. Also, the ns function is more noisy than at
lower electric field strengths, which indicates that the system
is “more frozen” or “less fluid.” The evolution of the system is
determined by the movements of the much less mobile chains
instead of the movements of individual particles and short
chains.

If we increase the electric field even further (E∗ = 149.07),
the chains aggregate into columnlike structures. The resulting
ns and g(r) profiles are even more noisy and not very mean-
ingful, so we show only snapshots in Fig. 6.

Finally, we briefly consider the possibility of a quantita-
tive comparison with the experimental results. If we accept
the hypothesis that the meaning of Eh is the same in the
model and in the experiment (it is a cornerstone), we can
estimate the particle diameter, d , that brings the simulation
and the experimental data into correspondence. If we take
the value of Eh = 1.18 MV/m from Fig. 4 of Ref. [9] and
relate it to the E∗

h values depicted from Fig. 3 (E∗
h = 52.5, 72,

107 for α∗ = 0.02, 0.03, and 0.04, respectively), we obtain
the values d = 673, 517, and 418 nm for α∗ = 0.02, 0.03,
and 0.04, respectively. These values are much larger than
the 10–20 nm values specified in the paper of Horváth and
Szalai [9].

We can explain this in different ways. First, the ER
particles provided by the manufacturer are polydisperse, as
opposed to our model, which includes particles of the same
size. Also, it was observed in the experiments that the particles
tend to stick together forming larger particles, resulting in
a larger effective diameter. Water content that may increase
polarizability cannot be excluded. In any case, the values
10–20 nm are so small that using them in a simulation (by
transforming them to the corresponding reduced units) does
not result in any kind of chain formation. For these reasons,
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FIG. 5. Equilibrium limits of the chain length distribution, ns (left), and radial distribution functions, g(r∗) (right), for α∗ = 0.03. The
curves are obtained by averaging over 10 blocks at the end of ME simulation periods and averaging over periods. Snapshots are shown in the
middle in front and top view. The electric field strength increases from top to bottom.

we regard the diameters calculated and reported here as more
realistic than the 10–20 nm values.

FIG. 6. Snapshots for a very large electric field, E∗ = 149.07, for
α∗ = 0.03.

It is also possible to correspond the τ ∗
1 value depicted

from Fig. 2 (τ ∗
1 ≈ 68.5 for α∗ = 0.03) to the experimental

τ1 value depicted from the inset of Fig. 2(b) (τ1 ≈ 0.38 s for
viscosity 0.97 Pa s). The resulting diameter is d ≈ 2470 nm.
The reason for these large values is that our reduced friction
coefficient is small (γ ∗ = 100). Because we can extrapolate
to larger values of γ ∗ (see Fig. 6 of our previous work [36]),
we can provide the estimation that by increasing γ ∗ by two
orders of magnitude, the resulting diameter decreases by about
one order of magnitude. Changing γ ∗ does not change the
equilibrium value of sav and �ε, it only influences how fast
the system converges to these values.

To relate t∗ to t and E∗ to E in Figs. 1, 2, and 4, we collect
the unit values E0 = E/E∗ and t0 = t/t∗ in Table II for three
representative values of the particle diameter: d = 517 and
2467 nm obtained from the procedures of relating Eh to E∗

h
and τ1 to τ ∗

1 , respectively, and a value in between (1000 nm).
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TABLE II. Unit values of the electric field strength and particle
diameter, E0 = E/E∗ and t0 = t/t∗, respectively, for different values
of d on the basis of Table I (T = 298.15 K and ρin = 2650 kg/m3).

d (nm) E0 (MV m−1) t0 (s)

516 0.016 0.00011
1000 0.0061 0.00058
2467 0.0016 0.0055

IV. CONCLUSIONS

We performed Brownian dynamics simulations for ER
fluids by taking the cross-polarization among particles into
account in a self-consistent way, and we computed the
induced dielectric increment, �ε, as a function of time af-
ter the applied field is switched on and as a function of
field strength at the equilibrium limit. Particle-particle po-
larization is essential for computing �ε, which is a very
useful quantity because it can be measured easily and it
can be obtained from simulations with a small statistical
error.

Our results are in qualitative agreement with the experi-
mental results of Horváth and Szalai [9], and the computed
data are related to structural features in terms of energy, diffu-

sion constant, average chain length, chain length distribution,
radial distribution functions, and snapshots. The hypotheses
about the correlations between dielectric properties and struc-
tural features put forward by Horváth and Szalai have been
confirmed by our calculations.

The data that support the findings of this study are available
within the article.
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