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Reverse order-disorder transition of Janus particles confined in two dimensions
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Janus particles with different patch sizes, confined to two dimensions, generate a series of patterns of interest
to the field of nanoscience. Here we observe reverse melting, where for some densities the system melts under
cooling. For a broad range of hydrophobic patch sizes (60◦ < θ0 < 90◦), a reentrant transition from solid to liquid
and then to an ordered phase emerges as temperature (T ) decreases due to the formation of rhombus chains at
low T . This reentrant phase has pseudo long-range orientational order but short-range translational order, similar
to a hexatic phase. Our work provides guidelines to study the melting and assembly of Janus particles in two
dimensions, as well as mechanisms to generate phases with specific symmetry.
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I. INTRODUCTION

Amphiphilic Janus particles, whose surfaces possess two
opposite physical and chemical properties, have many appli-
cations in catalysis, bioimaging, and sensing [1,2]. They have
both hydrophilic and hydrophobic domains on their surfaces.
When their hydrophobic patches contact each other (as shown
in Fig. 1), a short-range attractive potential takes place. Abun-
dant interesting phenomena induced by anisotropy of such
particles have been demonstrated, making it possible to study
the nontrivial effects in a controlled manner [3–7]. In two
dimensions (2D), by on-lattice simulations of close-packed
Janus particles [3,8–10] people have found dimers, trimers,
and rhombus chains depending on the patch size (θ0 < 90◦),
as illustrated with our simulations in Fig. 2. In such studies,
second-order phase transition for 60◦ < θ0 < 90◦ and contin-
uous crossovers for θ0 < 60◦ between different ordered and
disordered patterns were found [9,10]. Although molecular
dynamics simulations with fixed density and soft potential
were utilized to study melting for 60◦ < θ0 < 90◦ [11], 2D
melting of Janus particles remains largely unexplored due to
limitations of numerical methods. Mostly, 2D melting stud-
ies focus on the isotropic repulsive particle systems [12–18],
and the effect of short-range attraction remains controversial
[14,19–22].

In this work, with the event-chain Monte Carlo (ECMC)
algorithm [23], we study the 2D melting of Janus particles
by varying global area fraction η and temperature T . We
observe a reverse melting under cooling. Moreover, we find
a pattern-dependent phase behavior. For small patch size
θ0 < 60◦, the density boundaries of this coexistence converge
at low T , stabilizing the reverse melting under cooling. For
large patch size θ0 > 90◦, we find that particles can attract

*Present address: Department of Mechanical Engineering and Ma-
terials Science, Duke University, Durham, North Carolina 27708,
USA.

†Corresponding author: m-olvera@northwestern.edu

all six neighbors at low T , forming completely connected
clusters, as shown in Fig. 2(d). Therefore the phase diagram is
similar to the isotropic square-well particles [24–26], with an
additional isostructural solid-solid transition, and finally, two
coexistence regions merge into a liquid-(condensed) solid co-
existence at low T . In other words, following reverse melting
by cooling, the system finally nucleates into crystals coexist-
ing with liquid. For the intermediate patch size 60◦ < θ0 <

90◦, however, the phase diagram is complicated. A critical line
divides the ordered phase region on the T ∼ η diagram into
two ordered phases, as a result of the formation of rhombus
chains. The critical line ends by crossing the liquid-ordered
coexistence boundary, leading to a reentrance of an ordered
phase by further decreasing T after reverse melting. The reen-
trant ordered phase recovers the orientational order but fails
to recover the translational order, which leads to a symmetry
similar to hexatic phase in isotropic particle systems.

II. MODEL AND METHOD

A. Kern-Frenkel model

We use the Kern-Frenkel model [27] to describe the par-
ticles, as shown in Fig. 1. In this model, particles are treated
as hard spheres with diameter σ , decorated with spherical cap
patches. The director n̂ of a patch is a unit vector starting from
the center of the particle pointing to the center of the patch.
And the patch size θ0 is the angle between patch director and
any line connecting the center of the particle and the edge of
the patch. The interaction can be expressed as

U (r1, r2, n̂1, n̂2) = �(|r12|) f

(
r12 · n̂1

|r12| ; θ0

)
f

(
r21 · n̂2

|r21| ; θ0

)
,

(1)

where r12 = r2 − r1, and the radial component is given by the
square-well potential

�(r) =
⎧⎨
⎩

∞ ; r < σ

−ε ; σ � r < σ + δ

0 ; r � σ + δ.

(2)
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FIG. 1. Schematic illustration of Janus particle and Kern-Frenkel
model.

Here f (x; θ0) is a Heaviside step function with shift cos θ0:

f (x; θ0) =
{

1 ; x > cos θ0

0 ; o.w.
(3)

In our simulations, we choose σ = 2 and δ = 0.04.

B. Method

The general dynamics of the ECMC [23] for a system with
only pairwise interactions are described briefly in this section.
Firstly, the Hamiltonian is divided into the following set of
terms:

H =
∑
i< j

∑
K

UK
i j (ri, r j ). (4)

Here i, j denote the indices of the particles, and K ∈
{HS,SW} denotes the type of interactions, where HS is
hard sphere repulsion and SW is anisotropic square-well
attraction, the definitions of which are in Appendix A. Each
event chain starts with a randomly picked (with equal chances)
particle as the first active particle. The active particle i moves
along the selected direction ê until it collides with another par-
ticle j with an interaction factor UK

i j . Then particle i becomes
inactive and stops moving, while j becomes the next active
particle. The event chain ends when the total displacement
reaches a specified constant lchain.

To describe this procedure, we assume the active particle
moves along direction ê with velocity 1. So the displacement
of the active particle equals the “time” it moves, which is
denoted by τ . Before the collision, the position of active
particle i is ri + êτ , where ri is the initial position of i.
The probability that the active particle i collides with par-
ticle j during infinitesimal time interval (τ, τ + dτ ) via a
factor UK

i j is

qK
i j (τ )dτ = max

{
βdUK

i j (ri + êτ, r j )

dτ
, 0

}
dτ, (5)

where β = 1/kBT , kB is the Boltzmann constant, and T is the
temperature. The collisions by different factors happen inde-
pendently. Therefore, in the computer simulation, we generate
random variables representing the collision time τK

i j for each
factor UK

i j associated with the active particle i. And we select
minimum τK

i j over all j and K as the next event time τi. The
active particle i jumps directly by τi, stops moving, and then

activates corresponding j as the next moving particle. For
an interaction UK

i j (ri, r j ), the event time τK
i j is subject to the

following distribution:

πK
i j (τ ) = exp (−QK

i j (τ ))qK
i j (τ ), (6)

where QK
i j (τ ) = ∫ τ

0 qK
i j (s)ds. To generate τK

i j , we need to use
the cumulative distribution function

FK
i j (τ ) =

∫ τ

0
πK

i j (ξ )dξ = 1 − exp
(−QK

i j (τ )
)
. (7)

If we treat FK
i j (τ ) as a function of a random variable τ ,

1 − FK
i j (τ ) will be also a random variable that is uniformly

distributed in the interval (0,1]. So we need to generate a
random variable r ∈ (0, 1] and solve the equation

QK
i j (τ ) = − ln r (8)

to get τK
i j . For each type of interaction, generating methods

of τK
i j can be found in Appendix A. In each loop, the moving

directions ê are selected along +x,+y,−x,−y, sequentially,
with lchain = L/2, where L is the size of the system in the
moving dimension.

The rotational degrees of freedom are updated in each loop
following the Metropolis Monte Carlo scheme. The directors
for two neighboring particles are decoupled in the pairwise
interaction. Therefore when we update the directors, the inter-
action behaves like a one-body potential. The most convenient
way to update these directors is the traditional Metropolis
Monte Carlo. That is, for a chosen particle i, a new patch
director n̂′

i is proposed first with uniform distribution on the
unit sphere, and we compute the energy change �Ei(n̂i → n̂′

i )
due to this rotation and accept this rotation with probability
min{1, exp(−β�Ei )}. Here the computation of �Ei can be
performed by only summing over the interactions with neigh-
boring particles of particle i. Due to the short-range property
of the interactions, this updating can be performed in parallel
by taking advantage of the cell list provided in our ECMC
code, as well as the check-board updating scheme [28]. We
used OPENMP to implement this update.

III. RESULTS AND DISCUSSION

A. The equation of state and the heat capacity

Large-scale simulations with 5122 = 262 144 particles
were performed. The pressure P can be calculated in a very
simple and precise way [23]:

βP = 4η

πσ 2

[
1 +

〈
1

lchain

∑
eventsinchain

ri j · ê

〉
chain

]
, (9)

where η = Nπσ 2

4A is the area fraction of the whole system, and
ri j is the position difference between the target particle j and
the active particle i at the event. The summation is over all the
events in one event chain, and the bracket is the average over
all the event chains. The instant P value defined in Eq. (9) and
potential energy E value are monitored to ensure equilibrium.

The equation of state (EOS) curves P(η) for θ0 =
58◦ (θ0 < 60◦), θ0 = 80◦ (60◦ < θ0 < 90◦), θ0 = 100◦ (θ0 >

90◦), and isotropic particles (θ0 = 180◦) are plotted in Fig. 3.
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FIG. 2. Ground states at close-packed regime. Solid lines are bonds connecting two neighboring particles if their patches attract each other.
The defects are marked by dotted curves. (a) θ0 < 30◦, dimers. Defects are isolated particles, which do not attract any particle. (b) 30◦ < θ0 <

60◦, trimers. Defects are mainly single-strained chains. (c) 60◦ < θ0 < 90◦, rhombus chains. Defects are the ends of chains and imperfect
rhombus. (d) θ0 > 90◦, completely connected clusters.

Plateaus are seen in these curves, which are clear character-
istics of the Mayer-Wood loop [29] of a first-order transition.
For θ0 > 90◦ [Figs. 3(c) and 3(d)], the metastable states in the
simulations cause multiple pressure values at the same total
area fraction value η, depending on the initial configuration.
We can see two plateaus at low temperatures, where the first
ones (low η) are the liquid-ordered phase transitions and the
second ones (high η) are the solid-solid transitions. At suffi-
ciently low T , P becomes flat at a wide region, corresponding
to liquid-condensed solid coexistence. By checking the EOS
and snapshots directly (representative snapshots are shown
in Figs. 9 and 10), we are able to determine the boundaries
of the different phases. Figures 3(e) and 3(f) show the en-
larged plot of the pressure P versus η−1 = A/(NA0) curves
for T = ε/(5kB) and T = ε/(8kB), respectively, for differ-
ent system sizes N . As depicted in these figures, the curves
are not monotonic. Theoretically, the peak and the valley in

the Mayer-Wood region get sharper as the system size N
gets smaller, which is an effect of interfacial energy [17,18].
However, in our simulations the difference between various N
is not detectable due to statistical fluctuations: This demon-
strates that N is sufficiently large in order to exclude the
finite-size effect in this first-order transition. The T → ∞
case is shown as blue dotted curves in all the figures as
a reference, which has a flat region between η0 = 0.7 and
η1 = 0.718, identical to the result of hard disks [17], verifying
our code.

The constant volume heat capacities are computed in the
following way:

CV = kBβ2[〈E2〉 − 〈E〉2]. (10)

The constant volume heat capacity per particle with re-
spect to temperature, CV (T )/(kBN ), shows a smooth peak
in the ordered phase for θ0 = 58◦ [θ0 < 60◦, see Fig. 4(a)],
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FIG. 3. Equation of state P(η) for (a) θ0 = 58◦ (θ0 < 60◦), (b) θ0 = 80◦(60◦ < θ0 < 90◦), (c) θ0 = 100◦(θ0 > 90◦), and (d) isotropic
particles θ0 = 180◦. For (a), (b), dashed lines connect lower (upper) boundaries of coexistence. For (c), (d) the off-curve points with the
same symbols are the values measured in the simulation with different initial configurations. Multiple values at the same densities are
caused by hysteresis. (e), (f) Enlarged equation of state P(η−1) at different system sizes for θ = 80◦ at (e) T = ε/(5kB ) and (f) T = ε/(8kB )
[corresponding to two curves in (b)].

FIG. 4. Constant volume heat capacities (per volume) CV (T )/(kBN ) for (a) θ0 = 58◦ and (b) θ0 = 80◦ at different area fractions η and
system sizes N .
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FIG. 5. Phase diagrams for (a) θ0 = 58◦, (b) θ0 = 80◦ (c) θ0 = 100◦, and (d) isotropic particles (θ0 = 180◦). The shadow zones represent
coexistence. The green dotted curve in (b) is a critical line. In the blue dotted zone, short-range translational order and (pseudo) long-range
orientational order are observed. For (c), (d), the critical points and triple points are labeled. The y axis is broken to show the condition of
T = ∞. The solid arrows in (a) and (b), together with the colored dots on them, represent the annealing process in Fig. 11. The blue stars
represent systems in the snapshots in this article: 1© Fig. 6(a), 2© Fig. 7, 3© Fig. 6(b), 4© Fig. 9, and 5© Fig. 10.

indicating no phase transition in the dense region. On the other
hand, sharp peaks are observed in the ordered phase region
for θ0 = 80◦ [60◦ < θ0 < 90◦, see Fig. 4(b)], and the peaks
get sharper as the system size increases, strongly indicating
second-order phase transitions. We also measure the CV curve
for the case η = 0.78 and θ0 = 80◦. This curve has big statis-
tical fluctuations due to insufficient sampling and is close to
the curve of η = 0.84 in Fig. 4 (see Appendix D).

B. Phase diagram

With the aforementioned analyses, we obtain the phase
diagrams as shown in Fig. 5. The blue solid curve indicates
the upper bound of a pure liquid phase, denoted by L, and
the yellow solid curve indicates the lower bound of a pure
ordered phase, denoted by O. Here O may include subphases
which possess different symmetries or orders. The shadow re-
gion between these two curves denotes the L − O coexistence
region.

For case (a) θ0 < 60◦, as shown in Fig. 5(a), the L − O co-
existence region converges to a constant value as T decreases.
This stability is due to the fact that clusters induced by attrac-
tions reach a constant size when T → 0 (see Appendix C for
cluster size analysis). These clusters are mainly dimers (θ0 <

30◦, and cluster size is 2) or trimers (30◦ < θ0 < 60◦, and
cluster size is 3), with some thermal excited single-strained
chains [Figs. 2(a) and 2(b)]. As T → 0, the single-strained
chains will disappear since they have higher energies. There-
fore the compression process of the system at extremely low
T is equivalent to compressing hard dimers/trimers, leading
to converged P(η) curve at low T .

In contrast, for θ0 > 60◦, the L − O coexistence boundaries
diverge as T → 0 due to the fact that the clusters grow rapidly
as T → 0 (for definition of cluster size, see Appendix C).
Specifically, for case (b) 60◦ < θ0 < 90◦ [Fig. 5(b)], the O
phase is divided into two subphases by a critical line (the
green dotted curve): The plastic ordered phase OP with disor-
dered patch directions [Fig. 6(a)] and OR phase, where patch
directions are ordered and assemble into long clusters, that is,
the rhombus chains [see Fig. 6(b)]. This critical line ends by
crossing the L − O coexistence upper boundary at η′(≈0.78)
and T ′(≈0.179ε/kB). Below T ′ the two L − O coexistence
boundaries shift to lower η values quickly, indicating that pure
OR phase can go to rather low densities at very low T . On
the critical line, the critical temperature increases monotoni-
cally with η. At the highest total area fraction we measured,
η = 0.88, the critical temperature is about 0.22ε/kB, consis-
tent with the result of on-lattice simulations of close-packed
systems (η = 0.91, T ≈ 0.26ε/kB) in trends [9]. In Figs. 6
and 7, we list different snapshots for global area fraction
η = 0.73 at different temperatures. For Fig. 6(a) the system
is at high temperature (T = ε/kB, corresponding to star 1©
in Fig. 5), whereas for Fig. 6(b) it is at low temperature
(T = ε/12kB, corresponding to star 3© in Fig. 5). These two
systems are ordered phases with different orders and symme-
tries, which is explained in Sec. III D. For Fig. 7, the system is
at an intermediate temperature (T = ε/5kB, corresponding to
star 2© in Fig. 5), which is a coexistence between L phase and
OP phase (or its premelting hexatic phase). Figure 8 shows
snapshots of Fig. 7 at different loops when the system is
close to the equilibrium state, where two phases approach a
well-separated state.
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FIG. 6. Snapshot at area fraction η = 0.73. (a) An OP phase (T = ε/kB, corresponding to the star 1© in Fig. 5). (b) An OR phase (T =
ε/12kB, corresponding to the star 3© in Fig. 5). In the big pictures, blue, red, and green dots are seven-, five-, and eightfold disclinations,
respectively. For other particles, colors represent orientation of ψ6, as shown in the color wheel. Blue lines represent the attractive interactions.
Circles mark isolated dislocations. The insets are details of the dashed windows. (c) Orientational correlation functions g6 in log scale. Solid
curves are OR phase at T = ε/(12kB ), 1© η = 0.72, 2© η = 0.76, 3© η = 0.8, and dotted curves are OP phase at T = ε/kB, 4© η = 0.73, 5©
η = 0.8. (d) Translational correlation functions gχ (r) in log scale. Solid curves are OR phase at T = ε/(12kB ), 1© η = 0.72, 2© η = 0.74, 3©
η = 0.76, 4© η = 0.78, 5© η = 0.8, and dotted curves are OP phase at T = ε/kB, 6© η = 0.73, 7© η = 0.8.

For case (c) θ0 > 90◦ [Figs. 5(c) and 5(d)], apart from
the L − O transitions bounded by blue and yellow solid
lines, there is another coexistence region, bounded by green
and red solid lines, between the expanded solid phase OE

and condensed solid phase OC . The difference between OE

and OC is that in OC most particles attract six neighbors,
whereas in OE they cannot (see Fig. 9, which corresponds to
star 4© in Fig. 5). As a result, OC is more compact. This solid-
solid transition has been predicted specifically for isotropic
particles [θ0 = 180◦, see Fig. 5(d)] in Refs. [24,25]. Below the
critical temperature Tc and above the triple point temperature
T3, the solid phase O is split into OE and OC . For T < T3, two
coexistence regions merge into one and become a coexistence
between liquid L and condense solid OC , preempting OE , and
the upper density bound of liquid phase drops downwards
quickly (see Fig. 10, which corresponds to star 5© in Fig. 5).

C. Reverse melting

In the phase diagrams, the L − O coexistence (or L − OP,
L − OE , for different θ0) boundaries shift toward higher η as
T decreases from very high T . This means that if we cool
a solid system at some specific density (e.g., η = 0.72) with
constant volume restriction, it melts or partially melts. This
counterintuitive reverse-melting behavior observed here is
qualitatively in agreement with the prediction in Refs. [24,25],
where small-scale simulations were performed for isotropic

particles. Since this trend starts continuously from pure hard
disks systems (T → ∞), we can infer that it is an effect of the
competition between entropy and short-range attractions. At
very high T , the attractive interaction is negligible, so the rigid
repulsion dominates, resulting in entropy-driven crystalliza-
tion where particles are not necessarily compact. For example,
at area fraction η∗ = 0.72, the average distance between parti-
cles is d∗ ≈ 1.12σ > σ + δ, even though it is already a solid
phase. As T decreases from a very high value, particles get
closer to attract each other to lower the energy. To compen-
sate the total area constraint, the system breaks into small
compact domains (with ∼102 particles) by forming percolated
disclination networks, which are called grain boundaries [16].
Each domain has a homogeneous ψ6 orientation, as shown in
Fig. 7(c). Here ψ6 is defined as

ψk
6 = 1

Nk

Nk∑
l=1

exp(6iφkl ) (11)

for particle k, with the average over all the neighbors of
particle l , and φkl is the angle between a reference direction
and the bond connecting k and l , Nk is the number of neigh-
boring particles, and neighboring relation is built by Voronoi
construction. In Fig. 8 we list the snapshots of a coexistence
system at different simulation steps. In the first column it
is shown that the coexistence boundaries are flexible. In the
second column it is shown that the grain boundaries are flex-
ible and evolving rapidly during the simulation. In the third
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FIG. 7. Snapshot of a coexistence for θ0 = 80◦, at T = ε/(5kB ),
with global area fraction η = 0.73. This figure corresponds to the
star 2© in Fig. 5. (a) Coarse-grained local η(x) colors map. The liquid
phase (L) with local η ≈ 0.725 coexists with an ordered phase with
local η ≈ 0.775. (b) Enlarged snapshot of ordered phase OP. Blue
and red dots are the seven- and fivefold disclinations. The colors
of other particles are the orientation of ψ6. Circles mark isolated
dislocations. (c) Enlarged snapshot of liquid phase L.

column it is shown that the particles are moving instead of
oscillating around their equilibrium position. The flexibility
of grain boundaries and coexistence boundaries, as well as
the diffusion of particles, suggest that the melt phase is not
a polycrystal.

In Fig. 11 we show structure factor maps S(q) with η∗ =
0.72 at different T for θ0 = 58◦ and θ0 = 80◦, respectively.
The positions of these systems in the phase diagram (Fig. 5
(a-b)) are marked by different colored dots along the solid
arrows. We can see that, for both cases, the S(q) maps grad-
ually lose their sixfold symmetry by cooling from high T ,
as a result of reverse melting. Specifically, for θ0 = 58◦, the
loss of sixfold symmetry is stable with T decreases. However,
a nontrivial phase behavior was observed for θ0 = 80◦, i.e.,
the sixfold symmetry is recovered eventually, indicating a
reentrance of ordered phase (OR), as a result of the formation
of long rhombus chains at low T .

D. The reentrant OR phase and its loss of translational order

As mentioned in the previous section, for 60◦ < θ < 90◦,
the system finally recovers the sixfold symmetry, which cor-

FIG. 8. Snapshots of coexistence between liquid L (blue) phase
and ordered OP (red) phases at different simulation steps. Here θ0 =
80◦, at T = ε/(5kB ), and global area fraction is η = 0.73. This figure
shows the same system with Fig. 7. First column: Coarse-grained
local η(x) colors map. Second column: Enlarged snapshot of liquid
phase L in the black windows in the first column. Third column:
Enlarged snapshots of green windows in the second column. In the
third column, we mark a selected particle with a big green dot in
each snapshot. The trace of this particle is draw as green solid curve.
The “loop 0” is selected after sufficient long MC simulation when
the system gets close to equilibrium.

responds to a reentrance to OR phase. For such reentrant OR

phases, we observed a large number of isolated dislocations
[see Fig. 6(b)], which indicates loss of translational order.
Here, a dislocation is defined as a pair of fivefold and seven-
fold nearest neighbor disclinations [13,14]. The translational
order parameter χ is defined as

χk = exp(iq0 · xk ) (12)

on particle k, with first Bragg peaks q0. The value of q0

is determined by finding the q value with maximum S(q)
numerically. In Fig. 6(d), the correlation functions of χ , gχ ,
decay exponentially at low T = ε/12kB in 0.72 � η � 0.78,
whereas for high T = ε/kB, it decays with power law. The
result shows that for such systems, the translational order is
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FIG. 9. Isostructural solid-solid transition of system with θ0 =
100◦, T = ε/(3.4kB ), and global area fraction η = 0.84. This fig-
ure corresponds to star 4© in Fig. 5. (a) Density profile. Colors
represent density. (b) ψ6 maps of the enlarged two-phase interface.
Colors of particles are the orientation of ψ6, which are explained
in the color wheel. Blue, red, and green dots are seven-, five-, and
eightfold disclinations, respectively. Blue lines correspond to bonds,
which represent the attractive interactions. We can see that both the
expanded OE phase and dense OC phase share the same sixfold
hexagonal structure but with different densities and different bond
connectivities. The density difference comes from the strength of
the attractive connection. (c), (d) Enlarged snapshots of OC and OE

phases, respectively. The details of patched particles are shown.

lost by cooling, even though the orientational order ψ6 is
recovered, as shown in Fig. 6(c).

This reverse order-disorder transition by cooling can be
explained by the formation of rhombus chains. The rhombus
chains compact particles along their longitudinal direction and
grow either along their original directions or turn ±60◦ from
their original directions [see Fig. 12(a) and Fig. 12(b)]. This
selectivity of growing direction promotes sixfold rotational
symmetry even at low η, resulting in reentrance to the ordered
phase OR, with (pseudo) long-range orientational order ψ6.
On the other hand, the loose alignments and flexibility of
rhombus chains [see Fig. 12(c)] generate more dislocations
[see Fig. 6(b)], breaking the transitional order χ of the OR

phase at low η. The flexibilities are supported by the bending
of the rhombus chains at the expense of energy or entropy.
Bending within 2θ0 − 120◦ does not change the energy, but
such bending is entropically unfavorable, since it restricts the
solid angle of pivot particle’s free rotation. In this case, strong
attraction leads to the loss of translational order, in contrast to

FIG. 10. Liquid-condensed solid (L-OC) coexistence of system
with θ0 = 100◦, T = ε/(3.5kB ), η = 0.73. This figure corresponds to
star 5© in Fig. 5. (a) Density profile. Colors represent density. (b) ψ6

maps of the enlarged two-phase interface. Colors of particles are
the orientation of ψ6, which are explained in the color wheel. Blue,
red, and green dots are seven-, five-, and eightfold disclinations,
respectively. Blue lines are bonds which represent the attractive inter-
actions. (c), (d) Enlarged snapshots of L and OC phases, respectively.
The details of patched particles are shown. At sufficient low T , the
phase transition of systems with θ0 > 90◦ is between liquid and
condensed solid OC phase directly. The defects of OC are vacancies,
and no free dislocations are observed.

other attractive systems where strong attraction promotes the
long-range order.

In Fig. 5(b), the subregion of OR where systems have short-
range translational order is marked with blue dots. If systems
are compressed (at constant temperature) to the close-packed
regime, the translational order recovers. In Fig. 6(d) this trend
is shown. At T = ε/(12kB) and η = 0.8, gχ decays in power
law, in contrast with the lower density case (η < 0.78) where
gχ decays exponentially. It is unclear within our simulation
whether or not this change of order is a phase transition.

Systems of isotropic particles can have a hexatic phase,
with no translational order χ while keeping orientational order
ψ6. The hexatic phase is accompanied by the emergence of
isolated dislocations. In the O phase region of L − O coexis-
tences [except for L − OR coexistence, see Fig. 7(b)], as well
as the OE region of OE − OC coexistences for θ0 > 90◦ [see
Fig. 9(b)], isolated dislocations are always observed. Since
such dislocations are at low density, it requires larger-scale
simulations to verify the possibility of a hexatic phase before
the first-order transition to liquid L or condensed solid OC .
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FIG. 11. Structural factor maps S(q) for θ0 = 58◦(up) and θ0 =
80◦(down) at η = 0.72 and different T . These systems correspond to
different colored dots along the solid arrows in Fig. 5.

FIG. 12. Schematic illustration of growing direction of rhombus
chains. The black lines are original directions, the red lines are new
growing directions. (a) the chain grows along the original direc-
tion, (b) the chain turns 60 degrees from the original direction, (c)
the chain bends from the original direction, with the pivot particle
marked.

IV. CONCLUSION

In conclusion, rich types of transitions are found with a
simple Kern-Frenkel model and the hybrid ECMC. Moreover,
reverse order-disorder transitions are identified, including a
reverse melting for all patch sizes, and a reverse translational
order loss for 60◦ < θ0 < 90◦. The results can be experimen-
tally verified using narrow-disperse attractive Janus colloids
when particles are rigid and the attractions are short and sensi-
tive to temperature. Our study provides a better understanding
of the phase behavior of such Janus particle systems and offers
guidelines in experimental design to achieve certain thermal
and electrical transport properties and for applications such as
tunable optical sensing devices.
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APPENDIX A: EVENT TIME COMPUTATION

For simplicity, we divide the Kern-Frenkel interaction U
into two parts: Hard sphere interactions UHS and directional
square-well interaction USW , i.e., U = UHS + USW . The
hard sphere interactions UHS can be written as

UHS (r) =
{∞ ; r < σ

0 ; r � σ
(A1)

and directional square-well interaction USW is

USW (r1, r2, n̂1, n̂2)

= �(|r12|) f

(
r12 · n̂1

|r12| ; θ0

)
f

(
r21 · n̂2

|r21| ; θ0

)
, (A2)

where

�(r) =
{−ε ; r < σ + δ

0 ; r � σ + δ.
(A3)

We treat them as different factors in the ECMC, meaning that
UHS and USW generate collision events independently. Since
these two terms do not cancel each other, this decomposition
does not change the total event rate; therefore the performance
would be the same as the merged factor implementation.

1. Event time of hard spheres

For hard sphere interaction UHS , it is easy to implement its
event-time generator. Suppose particle 1 is moving along the
x axis. The shortest distance between particle 1 and particle 2
is d =

√
�y2 + �z2. Here, �y = y2 − y1 and �z = z2 − z1.

Note that we need to wrap �y within [−Ly/2, Ly/2] and so as
�z. Before computing the event time, we wrap �x = x2 − x1

into (0, Lx ). We limit the legal event time to be less than Lx.
(1) If d > σ , collision will not happen, and the program

returns a big value (like 2Lx) as the event time.
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(2) If d < σ , the event time is determined as �x −√
σ 2 − d2. Note that the result is deterministic. The reason for

this deterministic event time is because the potential is either
0 or ∞, and the solution of Eq. (8) is always at the position
where particles start to contact each other.

2. Event time of directional square-well potential

The event-time generator for directional square-well poten-
tial USW is shown in the following. We can obtain

(1) Time interval where particle 1 is attracted to particle 2
by isotropic square well:

ISW = [�x −
√

(σ + δ)2 − d2,�x +
√

(σ + δ)2 − d2].
(A4)

Here � = x2 − x1 and we do not wrap it first, but when we
compute d , �y and �z are wrapped, �y ∈ [−Ly/2, Ly/2] and
�z ∈ [−Lz/2, Lz/2].

(2) Time interval I1 where angle 〈n̂1, dr〉 is smaller than
θ0. This interval can be obtained by solving the inequality
(r12−sn̂)·n̂1
|r12−n̂s| � cos θ0, which can be reduced to a one-variable

quadratic inequality of s. Note that when computing this in-
terval, we do not consider the periodic images in the x axis.

(3) Time interval I2 where the angle 〈n̂2, dr〉 is smaller
than θ0. This can be also obtained similarly as described in 2.

Then we can define I = ISW ∩ I1 ∩ I2, which is the attrac-
tive region. Here, I is composed of many disjoint intervals
I = [s1, s∗

1] ∪ [s2, s∗
2] · · · ∪ [sn, s∗

n]. In these intervals, the up-
per bound is wrapped within [0, Lx]. That is, if s∗

i > Lx, make
si ← si − Lx and s∗

i ← s∗
i − Lx; if s∗

i < 0, make si ← si + Lx

and s∗
i ← s∗

i + Lx. Then we sort them according to the value
of s∗

i in ascending order. Next, we generate a random variable
r and compute ε∗ = − ln(r).

(1) If ε∗ > nε or I = ∅, particles 1 and 2 will not collide
within the time window [0, Lx], so the program returns a big
value (such as 2Lx).

(2) Or else, if (n − 1)ε < ε∗ < nε, the program returns s∗
n.

Implementation in our C++ code has been optimized for
such a generator.

APPENDIX B: PRESSURE COMPUTATION

The pressure is computed based on the virial theorem [23]:

βP = 4η

πσ 2

[
1 − β

4N

∑
i

∑
j: j �=i

〈ri j · Fi j〉
]
, (B1)

where ri j = r j − ri, Fi j = −∇ri jU (ri j, n̂i, n̂ j ), and 〈...〉 is the
ensemble average. η is the area fraction of hard spheres, β =
1/(kBT ), and N is the number of particles. Obviously, Fi j =
−F ji. For isotropic systems, 〈ri j · Fi j〉 = 〈xi jF x

i j〉 + 〈yi jF
y

i j〉 =
2〈(ri j · ê)(Fi j · ê)〉, where ê is a unit vector in an arbitrary
direction. So we can rewrite Eq. (B1) as

βP = 4η

πσ 2

[
1 − 1

2N

∑
i

∑
j: j �=i

〈(ri j · ê)(βFi j · ê)〉
]
. (B2)

Suppose the active particle i is moving along a direction ê,
then the event rate for i to collide with particle j is qi j =
(−βFi j · ê)+. The virial formula can be interpreted in terms

FIG. 13. Cluster sizes.

of ECMC:

βP = 4η

πσ 2

[
1 − 1

N

∑
i

∑
j: j �=i

〈(−ri j · ê)(−βFi j · ê)+〉
]

= 4η

πσ 2

[
1 + 1

N

∑
i

∑
j: j �=i

〈(ri j · ê)qi j〉
]
. (B3)

This equation can be explained in terms of ECMC:

βP = 4η

πσ 2

[
1 +

〈 1

lchain

∑
eventsinchain

ri j · ê
〉
chain

]
. (B4)

APPENDIX C: CLUSTER SIZE

To understand the phase behavior in this work, we analyze
the clustering of the particles. In this context, if two neigh-
boring particles are attracted when their patches contact, we
say that they are connected by a bond. Two particles are in the
same cluster if they can reach each other by a path of bonds.
The size of a cluster is the number of particles inside this
cluster. And the average cluster size of a system is defined
as follows: For a randomly chosen particle, the average size

FIG. 14. Constant volume heat capacity per particle [CV /(NkB )]
vs temperature T for θ0 = 80◦ at η = 0.78.
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of the cluster containing this particle. Suppose the number of
clusters with size s is Ns, then the average cluster size is

S =
∑

s s2Ns∑
s sNs

. (C1)

The average cluster size for θ0 = 20◦, θ0 = 58◦, and θ0 = 80◦
are shown in Fig. 13.

We can see that for θ0 < 30◦ (θ0 = 20◦), the average
cluster size is up to 2. And for 30◦ < θ0 < 60◦, the av-
erage cluster size is around 3, and there is no significant

increase with temperature decreases. For 60◦ < θ0 < 90◦,
the average cluster size increases significantly with reducing
temperature.

APPENDIX D: HEAT CAPACITIES FOR θ0 < 90◦

We show a heat capacity plot for θ0 = 80◦ at η = 0.78 in
Fig. 14. Because it takes a long time to get a smoother result,
the statistical fluctuations in the plot are not reduced yet. But
it is obvious that there is a sharp peak on each curve around
T ≈ 0.179ε/kB.
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