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Theory of structural relaxation in glass from the thermodynamics of irreversible processes

Karan Doss* and John C. Mauro †

Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA

(Received 7 March 2021; accepted 12 May 2021; published 9 June 2021)

This work proposes a fundamental thermodynamic description of structural relaxation in glasses by estab-
lishing a link between the Prony series solution to volume relaxation derived from the principles of irreversible
thermodynamics and asymmetric Lévy stable distribution of relaxation rates. Additionally, it is shown that the
bulk viscosity of glass, and not the shear viscosity, is the transport coefficient governing structural relaxation.
We also report the distribution of relaxation times and energy barrier heights underpinning stretched exponential
relaxation. It is proposed that this framework may be used for qualitative and quantitative descriptions of the
relaxation kinetics in glass.
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I. INTRODUCTION

The nature of glass and the glass transition is widely re-
garded as one of the most fascinating and important unsolved
problems at the cutting edge of condensed matter theory
[1–3]. The reverse kinetic process of the glass transition, viz.,
relaxation in liquids and glasses [4], also remains one of the
oldest, most thoroughly studied and yet unsolved problems
[3]. These problems are closely related, and modeling relax-
ation remains a nontrivial task owing to the noncrystalline,
nonequilibrium, and nonergodic nature of the glassy state,
whose properties are strongly governed by its temperature and
pressure histories [5–8]. Relaxation behavior is observed in
several processes of technological importance such as volume
relaxation (compaction) in liquid crystal displays that limit
the achievable pixel density, or the dependence of Rayleigh
scattering in optical fibers on the thermal history and relax-
ation of density fluctuations [9,10]. While stress relaxation
plays an important role in limiting ion exchange temperatures
during the processing of ion-exchanged glasses, structural re-
laxation has a large impact on the temporal stability of salient
properties of glass articles [11,12]. Both stress and structural
relaxation in fact reflect structural changes but a distinction
here has been made on the basis of disparate kinetics of the
two processes, defined as follows: (a) Stress relaxation refers
to the decay of stress within a material subjected to a mechan-
ical impulse in the form of a constant strain, and (b) structural
relaxation refers to the response of a material subjected to
a thermal impulse measured through observable changes in
the in the material’s properties (volume or density, refrac-
tive index, etc.) due to structural rearrangements over time
[12]. Structural relaxation as measured through changes in the
volume (or density) is of particular interest in this work and
therefore the process of volume relaxation (densification) will
be referred to as structural relaxation in this paper. In glasses
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and polymers, the relaxation of thermodynamic properties
that have been perturbed out of equilibrium spontaneously
relax towards equilibrium following a fat tailed distribution
given by the Kohlrausch-Williams-Watts (KWW) stretched
exponential function [13–16],

φ(t ) = exp

[
−

(
t

τk

)β∗]
(1)

where τk and β∗ are the characteristic relaxation time and the
dimensionless stretching exponent, respectively.

For stress relaxation experiments, the relaxation time is
linked to the shear viscosity through the Maxwell relation
[17],

ηs = G∞〈τ 〉 = G∞
τk

β∗ �

(
1

β∗

)
, (2)

where ηs is the shear viscosity, G∞ is the high frequency shear
modulus, and 〈τ 〉 is the average relaxation time. While 〈τ 〉
is generally referred to as the relaxation time in literature,
the relaxation times for stress and structural relaxation for
multicomponent glasses can be more than an order of mag-
nitude different from each other at the same temperatures.
Doss et al. [18] highlighted that this disparity in kinetics
could stem from structural relaxation being coupled to bulk
viscosity, which appears in the Navier-Stokes equation as the
coefficient to the divergence of velocity field of the fluid. This
was recently supported by an in-depth experimental study
on structural relaxation in lead metasilicates [19]. Early esti-
mates for bulk viscosity of glasses were reported by Rekhson
[20]. It was reported that the bulk viscosity of single- and
two- component systems was less than the shear viscosity
while the opposite was found to be true for multicomponent
systems. While shear viscosity, its temperature dependence,
and connection to relaxation behavior have been thoroughly
studied and modeled for decades now, there still exists a
dearth of bulk viscosity data for glassy materials. Prior dis-
cussions on bulk viscosity span studies related to acoustics
[21,22], molecular theories of fluids [23–26], or generalized
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hydrodynamics [27,28]. In fact, the elastic high frequency
response of fluids has even engendered elastic theories of the
glass transition and relaxation phenomena [29,30]. However,
there remains to be no explicit theoretical grounds for bulk
viscosity’s hypothesized connection to structural relaxation in
glass, which motivated the authors to pursue a theoretical ba-
sis in this regard. The proposed approach provides a concrete
rationale for pursuing further research on bulk viscosity as the
salient transport coefficient in structural relaxation of glasses
as it perspicuously decouples the kinetics of shear stress re-
laxation and volume relaxation, relating the latter to bulk
viscosity.

The physical significance of the stretching exponent, the
second parameter in Eq. (1) has been ascribed to the net-
work topology [16,31], as have many other properties of
glass [32–35] with the advent of topological constraint theory
[36,37]. Phillips [16], based on Grassberger and Procaccia’s
interpretation of the diffusion trap problem [38], hypothesized
that the stretching exponent is a function of the fractional
dimension of the diffusion process involving the diffusion
of “excitations” towards randomly distributed static “traps.”
Quantitatively, this is expressed as

β∗ = f d

f d + 2
, (3)

where d and f are the dimensionality of the space in which
diffusion is taking place and the fraction of activated re-
laxation pathways, respectively. Phillips [16], based on a
thorough literature survey of relaxation data, also proposed
“magic” values for β∗ at low temperatures which were re-
ported to be 3/5 for stress relaxation (d = 3 and f = 1)
and 3/7 for structural relaxation (d = 3 and f = 0.5). This
result has been experimentally confirmed [31,39], and points
to fundamentally different mechanisms governing the two re-
laxation phenomena as they appear to correspond to different
effective dimensionalities.

Aside from the aforementioned diffusion trap model, other
salient efforts in the pursuit of analytically deriving the
stretched exponential relaxation function include the Förster
direct-transfer model [40], a parallel channel relaxation model
that arose from studies of excitation transfers from donor
to static defects in condensed media, the hierarchically con-
strained dynamics model proposed Palmer et al. [41], a serial
relaxation model that supposes that relaxation occurs in stages
wherein the faster degrees of freedom must relax first (thereby
imposing a constraint on the slower degrees of freedom), and
the defect-diffusion model proposed by Glarum [42] which
suggests that migrating defects trigger the relaxation of frozen
dipoles in amorphous materials. These are by no measure the
only models and a quick literature survey is sure to yield
plenty of theoretical models that naturally give rise to the
stretched exponential. Unlike the more abstract diffusion trap
model, the aforementioned models are rooted in a physical
mechanism that describes the dynamics of a system relaxing
in response to a certain excitation. These models also intro-
duce a more palatable interpretation of the stretching exponent
(β∗) relative to the more abstraction notion of a “fraction of
relaxation pathways” discussed in the Phillips diffusion trap
model. Klafter and Shlesinger [43] very elegantly summa-
rized that the unifying feature within these different physical

models is the generation of a scale-invariant distribution of
relaxation times, whose exponent is inevitably related to β∗.
Another important conclusion, within the context of this work,
from the common underlying mathematical framework un-
derpinning these models is the equivalence of the resulting
relaxation function for parallel channel and serial relaxation
models.

There is, however, no connection between scale-invariant
distributions of relaxation times and a thermodynamic de-
scription of structural relaxation with the partial exception of
the random first order transition theory [44–46]. The statistical
mechanical theory describes supercooled liquids as consisting
of domains of glassy clusters whose fluctuations are entrop-
ically driven. It appears to predict the existence of spatial
scale invariance of cooperatively rearranging regions [47] at
relatively elevated temperatures (relative to the glass transition
temperature Tg) wherein anomalous particles of clusters relax
as stretched exponentials but yield perplexing exponential
tails [48] for the distribution of relaxation times. However, a
macroscopic thermodynamic description of this phenomenon
that is capable of making such a connection is missing, and the
authors believe that there is scope for establishing this through
the Prony series approximation to the stretched exponential
function.

The Prony series often serves as an approximation to the
stretched exponential in applications such as modeling vis-
coelasticity [49] and the evolution of the nonequilibrium state
of a glass subjected to unique thermal histories [50,51]. The
latter application involves estimating the fictive temperature
(Tf ), a fictitious temperature at which the glassy state could
be mapped to an equivalent liquid. Broadly speaking, there
are three interpretations for the fictive temperature, viz., mi-
croscopic, macroscopic, and kinetic (refer to Ref. [52] for
definitions). Many attempts have been made to rigorously
quantify the fictive temperature through experimentally mea-
surable properties [53–55] in an attempt to standardize the
description of a nonequilibrium state with a single thermo-
dynamic state variable. However, it was famously shown by
Ritland [56] that a single fictive temperature was in essence
insufficient to accurately capture the nonequilibrium state
of a glass as one encountered crossover effects (such as
those shown in Fig. 1) when two glasses with identical fic-
tive temperatures are prepared through dissimilar thermal
histories. To this end, the kinetic interpretation of fictive
temperature, which purports that there exist multiple fic-
tive temperatures (partial fictive temperature components)
that represent different relaxation modes within the glass,
found great success within the glass community with re-
gard to relaxation modeling [49–51]. The Prony series in
this case arises from modeling the kinetic fictive temperature
as a linear superposition of partial fictive temperatures that
evolve as a set of coupled first order differential equations
[50,51].

Prony’s method, like the Fourier transform, is used to de-
compose a uniformly sampled time domain signal [M(t )] into
a sum of damped complex exponentials. The Prony series is
a homogenous solution to a linear differential equation, and
Prony’s method allows for the direct estimation of frequency,
damping, strength, and relative phase of modal components
in a signal [57]. The Prony series (for zero phase and positive
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FIG. 1. Solutions to Eq. (36) may result in nonmonotonic or
crossover type relaxation responses (solid red and dotted green
lines) in contrast with a monotonic stretched exponential de-
cay (dashed black line). Here, SER(τ, β∗) = exp[−(t/τ )β

∗
] where

SER stands for stretched exponential relaxation and x = v(t = 0)/
[v(t = 0) − v0].

system eigenvalues) is expressed as

M(t ) =
m∑

i=1

wie
−Ki (t /τk ), (4)

where wi and Ki (i = 1, 2, . . . , m) are the parameters of the
Prony series that may be optimized to fit such a time do-
main signal. For a stretched exponential function (M(t ) ∼
exp[−(t/τk )β

∗
]), an additional constraint of

∑
i wi = 1 is

imposed where wi are the amplitudes of the modal compo-
nents and Ki are the eigenvalues of the system which have
been normalized by a characteristic frequency λ∗ = 1/τk . The
state-of-the-art technique to model relaxation behavior and the
subsequent estimation of the isostructural viscosity considers
a weighted average of fictive temperature components (Tf ,i )
to estimate the fictive temperature [32]

Tf =
N∑

i=1

wiTf ,i, (5)

where wi are the weights obtained from Eq. (4). The fictive
temperature components evolve as a set of coupled first order
differential equations,

dTf ,i

dt
= − Tf ,i(t ) − T (t )

τi[Tf ,i(t ), T (t )]
, (6)

where the relaxation time of each component is τi = τk/Ki,
wherein Ki is obtained from Eq. (4). While there have been
some notable attempts to incorporate the concept of fictive
temperature into an irreversible thermodynamics framework
by Gupta and Moynihan [58,59], it still remains to be a purely
mathematically convenient way to model relaxation behavior

wherein the Prony series is used to fit the stretched exponential
function. To the best of the authors knowledge, there is still no
physical interpretation for the fitting parameters wi and Ki that
stems from a rigorous thermodynamic standpoint. However,
recent work by Mauro and Mauro [50] offers quantitative in-
sights that will form the basis of some of the results presented
here.

This paper addresses three important aspects of structural
relaxation, viz., (i) the role of bulk viscosity, as opposed
to shear viscosity governing the volume relaxation process
which would explain the departure of structural relaxation
times from relaxation times obtained using the Maxwell re-
lation through the isostructural viscosity, (ii) presenting a
thermodynamic basis for the kinetic interpretation of fictive
temperature, and (iii) presenting distributions of relaxation
times and energy barrier heights underpinning stretched ex-
ponential relaxation and discussing their implications for
microscopic theories for structural relaxation. The intention
with this work is to (i) build a firm theoretical foundation
upon which future experimental and computational relaxation
studies may be designed, (ii) offer insights into a poten-
tial microscopic theory of relaxation that is consistent with
the macroscopic thermodynamics presented here, and (iii)
implement the results presented here into physics based open-
source relaxation software such as RELAXPY [51] that can
model isostructural viscosity [55,60] of glasses subjected to
specific temperature paths.

The organization of the paper is as follows. Section II
introduces the general entropy balance equation derived from
conservation equations. Although these are well documented
results, the authors include this background knowledge be-
cause results from this section will be used in subsequent
sections. In Sec. III, symmetry principles are leveraged to
decouple entropy generation sources of dissimilar tensorial
character. This section cements the kinetic decoupling of shear
and bulk viscous flows. The subsequent Sec. IV discusses
the rate equations for structural relaxation and highlights the
relationship between bulk viscosity and structural relaxation.
Section V discusses the relationship between the Prony series
solution for the proposed rate equations and offers physical
insights into the fitting parameters of the Prony series. Sec-
tion VI discusses Lévy stable distributions that naturally arise
from the Prony series for stretched exponential relaxation and
presents distributions of relaxation times and energy barrier
heights. The paper ends with a brief discussion in Sec. VII
followed by concluding remarks in Sec. VIII.

II. CONSERVATION LAWS AND ENTROPY BALANCE

An irreversible thermodynamic description of a system
(whose properties are continuous functions of space and time)
is founded on a combination of the first and second laws
of thermodynamics, conservation of mass, and conservation
of momentum. The conservation laws have been discussed
systematically below and important results that pertain to the
discussion at hand have been presented here. The reader is
advised to refer to Ref. [61] for a more detailed discussion and
derivation of the conservation laws. Consider an n-component
system with “r” possible chemical reactions. The rate of
change of mass component “k” within a volume V is given
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by ∫
V

∂ρk

∂t
dV = −

∫



ρkvk · d� +
r∑

j=1

∫
V

νk jJjdV , (7)

where ρk is the density of component k (mass per unit vol-
ume), d� is the vector with magnitude d
 normal to the
surface counted positive pointing outward (inside to outside),
vk is the velocity of component k, and νk jJj is the production
(mass) of component k in the jth reaction. The first term
accounts for the net flow of k into volume V and the second
term accounts for the total production of k inside the volume
element V. The νk j term normalized by the molar mass of k is
proportional to the stoichiometric coefficient of k in reaction
j such that it is positive if k is a product (right hand side
of a chemical equation) and negative if k is a reactant (left
hand side of a chemical equation). The mass balance condition
necessitates that

∑
k νk j = 0. The rate of reaction Jj has units

of mass per unit volume per unit time. Applying Gauss’ law
to Eq. (7), one obtains the following expression:

∂ρk

∂t
= −∇ · (ρkvk ) +

r∑
j=1

ν jkJj (k = 1, 2, . . . , n). (8)

Summing Eq. (8) over k one obtains

∂ρ

∂t
+ ∇(ρv) = 0, (9)

where the density ρ = ∑
k ρk and the barycentric velocity v =∑

k ρkvk/ρ. Then one may define the mass fraction of k as
ck = ρk/ρ with associated diffusion flow of k, Jk = ρk (v −
vk ) with respect to the barycentric motion in order to obtain
the following equation for the generation of k within a volume
V:

ρ
dck

dt
= −∇ · Jk +

r∑
j=1

νk jJj . (10)

It follows from the definitions of v and Jk that∑
k

Jk = 0, (11)

which would imply that only n − 1 of the n diffusion flows
are independent. Additionally, it may be shown that Eq. (9) is
equivalent to

1

v

dv

dt
= ∇ · v, (12)

where v = ρ−1 is the specific volume.
Conservation of energy implies that the total energy con-

tent within an arbitrary volume V in the system will change
if there is an influx (or outflux) of energy through its
boundary 
,

d

dt

∫
V

ρedV =
∫

V

∂ρe

∂t
dV = −

∫



Je · d�, (13)

where Je is the total energy flux per unit surface per unit time
and e is the total specific energy (energy per unit mass) which
consists of contributions from the specific kinetic energy
(v2/2), specific potential energy (ψ), and specific internal

energy (u),

e = 1
2 v2 + ψ + u. (14)

From these equations, one may derive an equation for the
first law of thermodynamics of the form

du

dt
= dq

dt
− p

dv

dt
− v�̃ : ∇v + v

∑
k

Jk · Fk, (15)

where dq is the heat added per unit mass and

ρ
dq

dt
= −∇ · Jq, (16)

where Jq is the heat flow. Fk = −∇ψk is the is the force
per unit mass exerted on chemical component k and contains
contributions from external forces and possible long-range
interactions in the system. No nonconservative forces have
been taken into account, i.e., Fk is a conservative force derived
from a potential ψk such that ∂ψk/∂t = 0. The terms p and
�̃ come from the decomposition of the total pressure tensor
P = pI3 + �̃, where p is the scalar hydrostatic part and �̃

is a viscous stress tensor. P is thought to result from short
range interactions between particles of the system. The tensor
notation “:” corresponds to the Frobenius inner product of two
tensors.

The change in entropy (dS) may be written as a sum of
entropy supplied to a system by its surroundings (deS) and
the entropy produced inside the system (diS),

dS = deS + diS, (17)

wherein the second law of thermodynamics necessitates that
diS > 0 for irreversible processes and deS = δQ/T for a
closed system. For an arbitrary system volume V, the follow-
ing relation must be valid:∫

V

(
∂ρs

∂t
+ ∇ · Js,tot − σ

)
dV = 0, (18)

where s is the entropy per unit mass, Js,tot is the total entropy
flow per unit area per unit time, and σ � 0 is the entropy
source strength or entropy production per unit volume per
unit time. The first term in Eq. (18) arises from the time rate
of change of the total entropy, the second term arises from
deS/dt , and the third term from diS/dt . Equation (18) can now
be rewritten as

ρ
ds

dt
= −∇ · Js + σ, (19)

where the entropy flux, Js = Js,tot − ρsv. Equation (19) is the
desired form of the entropy balance equation.

III. CURIE SYMMETRY PRINCIPLE AND ENTROPY
GENERATION EQUATION FOR ISOTROPIC MEDIA

To relate the conservation equations to the rate of change
of entropy per unit mass, one considers s = s(u, v, ck ) so as to
write the total differential of s using the Gibbs relation,

T ds = du + pdv −
n∑

k=1

μkdck, (20)

where p is the equilibrium pressure and μk is the chemical
potential for component k which is a partial specific Gibbs
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function. Assuming local equilibrium wherein Eq. (20) is
valid for a small mass element followed along its center of
gravity motion yields

T
ds

dt
= du

dt
+ p

dv

dt
−

n∑
k=1

μk
dck

dt
. (21)

Equation (21) is thought to be valid for systems near equi-
librium and microscopic considerations for certain systems
allow for deriving the limits of validity of this equation. Plug-
ging in Eqs. (10), (15), and (16) into Eq. (21), one obtains the
explicit form of entropy balance equation,

ρ
ds

dt
= −∇ ·

(
Jq − ∑

k μkJk

T

)
− 1

T 2
Jq · ∇T − 1

T

∑
k

Jk

·
[
T ∇

(μk

T

)
− Fk

]
− 1

T
�̃ : ∇v − 1

T

r∑
j=1

JjA j, (22)

where the chemical affinity Aj = ∑n
k=1 νk jμk .

Comparing Eq. (22) with Eq. (19) and using the relation

J′
q = Jq −

n∑
k=1

hkJk, (23)

where hk is the partial specific enthalpy of component k, the
expression for the entropy flux is

Js = 1

T

(
Jq −

∑
k

μkJk

)
, (24)

and for the entropy production is

σ = − 1

T 2
J′

q · ∇T

− 1

T

∑
k

Jk · {T (∇μk )T − Fk}

− 1

T
�̃ : ∇v − 1

T

r∑
j=1

JjA j, (25)

where hk is the partial specific enthalpy of component k. How-
ever, in order to observe the influence of symmetry properties
on the phenomenological equations, the entropy production
equation must be modified appropriately. The symmetric vis-
cous pressure tensor (�̃) is further decomposed to

�̃ = �I3 + •
�, (26)

where � = (1/3)Tr(�̃), Tr(�̇) = 0, and the gradient of ve-
locity is expressed as

∇v = 1
3∇ · vI3 + (

•∇ v)s + (
•∇ v)a, (27)

where
•∇ v is a matrix containing only off-diagonal elements

of the gradient of the barycentric velocity. A superscript “s”
indicates the symmetric part and “a” indicates the antisym-
metric part of the matrix. Then the following expression is
obtained:

�̃ : ∇v = •
� : (

•∇ v)s + �∇ · v. (28)

Substituting Eq. (28) into Eq. (25),

σ = − 1

T 2
J′

q · ∇T − 1

T

∑
k

Jk · {T (∇μk )T − Fk}

− 1

T

•
� : (

•∇ v)s − �

T
∇ · v − 1

T

r∑
j=1

JjA j . (29)

Therefore, the total contribution of viscous phenomena
to the entropy production has been split into shear and di-
latational contributions. Additionally, the entropy production
equation is expressed as the sum of products of a flux and a
conjugate thermodynamic driving force. The entropy produc-
tion expression also consists of fluxes and forces of different
tensorial character, which have specific implications on the
coupling between various fluxes when the symmetry of the
system is taken into consideration. In fact, according to the
Curie symmetry principle, fluxes of different tensorial char-
acter do not couple to forces of dissimilar tensorial character.
This is because not all tensors behave the same under oper-
ations of reflections and rotations, which has the implication
that the kinetic coefficients coupling the dissimilar flux-force
pairs reduce to zero when their coordinates are transformed
through reflections and rotations. Therefore, the entropy pro-
duction is split up into three distinct sources of generation:
(a) the scalar processes of bulk viscous flow, chemical re-
actions, and their cross effects; (b) viscous flow under shear
deformation; and (c) vectoral phenomena of heat conduction,
diffusion, and their cross effects. Since the process of volume
relaxation does not consist of macroscopic concentration gra-
dients, applied shear stresses, and thermal gradients, the only
source of entropy generation is then related to the processes of
bulk viscous flow, chemical reactions, and their cross effects:

σ0 = −�

T
∇ · v − 1

T

r∑
j=1

JjA j . (30)

Plugging in Eq. (12) into Eq. (30) gives the required result,

σ0 = −�

T

1

v

dv

dt
− 1

T

r∑
j=1

JjA j . (31)

IV. PHENOMENOLOGICAL EQUATIONS FOR
STRUCTURAL RELAXATION

AND BULK VISCOSITY

Knowing that symmetry considerations decouple all other
cross effects from the process of bulk viscous flow and chem-
ical reactions, one may proceed to select thermodynamic
variables in the near equilibrium description to achieve the
target entropy production equation (31) as well as associated
phenomenological rate equations describing the relaxation of
volume and mass fractions of various chemical species in the
system. In essence, the proposition is to model structural re-
laxation as a process wherein salient structural units undergo
transformations that result in volume changes (i.e., they are
kinetically coupled to the volume and each other). Variables
αi are selected such that they represent departure of specific
extensive properties from their equilibrium supercooled liquid
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values (marked with superscript “0”),

α1 = v − v0,

α2 = c1 − c1
0,

...

αn+1 = cn − cn
0, (32)

where the mass fractions ck are specifically the mass frac-
tions of salient structural and superstructural units that are
involved in the relaxation process. The explicit definition of
these structural units is intentionally generic as the precise
meaning depends on the type of glass chemistry one is in-
terested in characterizing and there may be arbitrarily many
salient structures. This has been discussed in more detail at
the end of this section in the context of atomic level stress.
The Gibbs relation in Eq. (20) is used to derive driving forces
that correspond to fluxes in αi type variables,

X1 = ∂�s

∂α1
= Pi

T
− P0

T
= −�

T
,

X2 = ∂�s

∂α2
= −

(
μ1

T
− μ1

0

T

)
= −�μ1

T
,

...

Xn+1 = ∂�s

∂αn+1
= −

(
μn

T
− μn

0

T

)
= −�μn

T
, (33)

where Pi is the initial pressure and �, the mean normal stress,
is taken to be positive when compressive. The corresponding
entropy generation per unit volume given by the sum of prod-
ucts of fluxes and affinities per unit volume is

ρ
d�s

dt
= −�

T

1

v

dv

dt
−

n∑
k=1

ρ
dck

dt

�μk

T
. (34)

Inserting Eq. (10) into Eq. (34) and comparing with
Eq. (19), one obtains the same entropy source term as in
Eq. (31), noting that −∇ · Js = ∑n

k=1 μkT −1∇ · Jk in the ab-
sence of temperature gradients based on Eq. (24). Further,
the fluxes (dαi/dt) may be expressed as the sum of products
of kinetic coefficients [Lim(i, m = 1, 2, . . . , n + 1)] and their
corresponding affinities [Xm(m = 1, 2, . . . , n + 1)],

dαi

dt
=

n+1∑
m=1

LimXm. (35)

However, an alternative expression exists where the fluxes
may be expressed as the sum of products of phenomeno-
logical coefficients [Mim(i, m = 1, 2, . . . , n + 1)] and their
corresponding αi

′s,

dαi

dt
= −

n+1∑
m=1

Mimαm, (36)

where the elements [Lim(i, m = 1, 2, . . . , n + 1)] of the ki-
netic coefficient matrix (L) are related to the elements
[Mim(i, m = 1, 2, . . . , n + 1)] of the phenomenological coef-
ficient matrix (M) as

Lim =
n+1∑
m=1

Mimg̃mi. (37)

Here, g̃mi(m, i = 1, 2, . . . , n + 1) are the elements of G−1,
the right inverse of G, where G is the matrix of sec-
ond derivatives of the entropy difference (�S) between the
nonequilibrium and equilibrium states with respect to the α

variables. According to Onsager’s reciprocal relations, L is
symmetric in addition to being positive definite. Similarly, G
and its inverse are symmetric and positive definite matrices.
Therefore, one may infer that the phenomenological coeffi-
cient matrix M = L × G is positive definite. Therefore, all of
the eigenvalues (λm) of M are positive and correspond to the
inverse of a relaxation time (τm = λm

−1).
The relationship between structural relaxation and bulk

viscosity will be examined next. Rearranging Eq. (35) for
i = 1 and multiplying both sides of the equation by ρ,

� = −
(

T

ρL11

)
1

v

dv

dt
−

n∑
k=1

(
L1(k+1)

L11

)
�μk, (38)

which is merely another phenomenological realization of the
scalar processes of bulk viscous flow, chemical reactions, and
their cross effects based on Eq. (34). Additionally, it is known
that the volumetric strain rate ε̇v = v−1(dv/dt ), and the bulk
viscosity ηv = T (ρL11)−1 wherein the dependence on specific
volume is negligible for small strains which is certainly the
case for structural relaxation in glasses. In fact, Ref. [61]
[Eq. (17) in Sec. V] presents Eq. (38) in a similar manner but
with no dependence of ηv on v. Incorporating these definitions
and rearranging the terms in Eq. (38) gives

� +
n∑

k=1

(
L1(k+1)

L11

)
�μk = −ηv ε̇v. (39)

One can infer from Eq. (39) that there is an internal stress
Pint generated by chemical potential differences of salient
structural and superstructural units between the nonequilib-
rium glassy state and the supercooled liquid state. Therefore,
in the absence of an applied mean hydrostatic stress (i.e.,
� = 0) the relaxation will solely be driven by the structural
transformations within the glass. This is exactly the scenario
encountered in isothermal-isobaric laboratory volume relax-
ation studies, and therefore the nonequilibrium bulk viscosity
for a glass whose volume exhibits stretched exponential relax-
ation in such an experiment can be estimated using the bulk
analog of the Maxwell relation,

ηV,neq = τk

β∗ �

(
1

β∗

)
(K∞,neq − K0,neq ) = − (� + Pint )

ε̇v

, (40)

where K∞ is the instantaneous bulk modulus, K0 is the in-
verse of the compressibility of the system (or the static
bulk modulus), � = 0, and the “neq” subscript refers to the
nonequilibrium property of the glass. Other scenarios where
this theoretical framework may be corroborated by exper-
imental results are indenter experiments [62] or relaxation
studies involving pressure quenched glasses [6–8] wherein
hydrostatic stress fields are imposed on the system. The
mean normal stress will be nonzero and must be accounted
for when considering bulk viscosity calculations in these
scenarios.

The bulk viscosity is assumed to be constant in Eq. (39)
but it is known that the viscosity relaxes during the relaxation
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process. Ideally one must incorporate the time dependence of
the driving forces and (or) kinetic coefficients in Eqs. (35)
or (36) and solve the equations accordingly. However, the
determination of the nonequilibrium bulk viscosity can be
resolved in the current framework as follows. If the system
is allowed to relax starting at time t = 0 and is then instan-
taneously quenched, t = t1, freezing in all of the structural
information, the new bulk viscosity at t1 can be calculated
by bringing the temperature back to the original experimental
temperature and letting the system relax to equilibrium. The
initial conditions for the second time the system is relaxed will
contain the modified chemical potentials [Eq. (39)] that corre-
spond to a change in the driving force for relaxation. Once the
system has relaxed, the bulk viscosity at t1 can be calculated
using Eq. (40). For a system that relaxes monotonically as a
stretched exponential one can deduce that the viscosity mea-
sured at each point in time will monotonically increase as the
system relaxes. Additionally, once the system has completely
equilibrated, the bulk viscosity of the supercooled liquid
can only be calculated by imposing an external hydrostatic
stress since there are no internal driving forces generating
stress.

The concept of structural units introducing internal stresses
in a glass is not unfounded with regard to its microscopic
origins. Atomic level stress has seen extensive work dating
back nearly three decades, and an excellent survey of atomic
level stress in the context of glass has been published by
Egami [63] (and references therein). Atomic level stress is
defined as a first order local response in energy to an affine
strain and is merely a reflection of the disequilibrium of atoms
with respect to their local environment. A recent molecu-
lar dynamics study on sodium silicates by Song et al. [64]
presents an excellent case study because the authors reported
a power law relationship between the magnitude of internal
stress developed per atom and the cooling rate. The pre-
dominant stress was hydrostatic in nature which is in good
agreement with what is being proposed in this work; the
specific salient structural units were found to be topologically
over constrained small (<6 membered) rings that experienced
internal stress and were driven to grow in size in order to
relax the stress. More broadly it was proposed that volumet-
ric strain energy arises from radial misfit in nondirectionally
bonded glasses (with high coordination numbers) and from
angular misfits in glasses with highly directional bonds (with
low coordination numbers). These points merely reinforce the
authors’ selection of the “structural and superstructural units”
terminology as the underlying structural transformations are
specific to the chemistry of the glass under consideration. It
is merely a term used in lieu of a well-developed, widely
accepted and chemistry-agnostic microscopic mechanism that
quantifies such local excitations in energy.

V. THERMODYNAMIC BASIS FOR THE KINETIC
INTERPRETATION OF FICTIVE TEMPERATURE

In this section the solutions to the rate equations will be
discussed and a relationship between this solution and the
Prony series will be established. The solution to the system
of coupled first order differential equations [Eq. (36)] takes

the form

αi(t ) =
n+1∑
m=1

cmx(m)
i e−λmt , (41)

where cm’s are constants, x(m)
i is the ith element of the

mth eigenvector (x(m)) of the phenomenological coefficient
matrix M, and λm is the mth eigenvalue of M. After account-
ing for temporal boundary values [α1(t = 0) = v(t = 0) − v0

and α1(t → ∞) = 0] and introducing a characteristic relax-
ation rate λ∗ = 1/τk in the exponent, one arrives at the
following solution:

φ(t ) = v(t ) − v0

v(t = 0) − v0
=

n+1∑
m=1

wme−(λm/λ∗ )(t /τk ), (42)

which is a weighted sum of exponentials with individual re-
laxation times τm = 1/λm and weights

wm = cmx(m)
1∑n+1

m=1 cmx(m)
1

. (43)

For Eq. (42) to be expressed as a Prony series represen-
tation, we will have to impose the additional constraint that
cmx(m)

1 > 0 ∀m. If there are values of cmx(m)
1 < 0, the sum-

mation in Eq. (41) for i = 1 will have to be partitioned into
a difference of two sums and renormalized [using Eq. (43)]
so as to obtain the difference of two weighted Prony series
representations,

φ(t ) = v(t ) − v0

v(t = 0) − v0

= v(t = 0)

v(t = 0) − v0

k1∑
p=1

wp
+e−(λ+

p /λ∗
+ )(t/τ+

k
)

− v0

v(t = 0) − v0

k2∑
p=1

wp
−e−(λ−

p /λ∗
− )(t/τ−

k ). (44)

This will account for multiple distinct relaxation modes,
compressed exponential relaxation [65], and nonmonotonic
relaxation behavior. Nonmonotonic and monotonic relaxation
behavior are therefore solely governed by the properties of the
phenomenological coefficient matrix and the initial conditions
of the problem (which is governed by the thermal history).
Some of the possible scenarios are illustrated in Fig. 1
assuming that each Prony series approximates a stretched
exponential. The authors propose that Eqs. (7)–(44) present
a formal thermodynamic theory for structural relaxation, and
the solution to the set of coupled first order differential
equations directly yield a Prony series, thus cementing the
thermodynamic origin of the Prony series to model nonex-
ponential structural relaxation. However, we would like to
re-emphasize here that the solutions presented in Eqs. (42)–
(44) can result in a whole host of relaxation responses and
aren’t necessarily limited to a stretched exponential.

One is therefore compelled to consider the implications
of the specific case for which all of the wm

′s are positive
[Eq. (42)]. The kinetic coefficient matrix is positive definite
implying that all of the eigenvalues are real and positive;
however, this does not imply that the first element in all of
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FIG. 2. (a) 12-term Prony series optimized to a stretched exponential by Mauro and Mauro [50] for different values of the stretching
exponent. The optimized weights as a function of the exponents appear to follow an uncharacterized probability mass function with a unimodal
peak on a semilogarithmic axis. (b) The tails of this mass function exhibit power law scaling over two decades of normalized frequencies and
(inset) the magnitude of the slopes of lines on a double-logarithmic plot are linearly related to the stretching exponent.

the eigenvalue vectors are positive. Therefore, all of the wm
′s

are positive only when x(m)
1 and corresponding cm do not have

opposing signs. If c denotes the vector of constants cm, X
is the matrix containing column vectors of eigenvectors x(m),
and α0 is the vector containing the initial values of αi

′s, then
Eq. (41) would imply that c = X−1α0. Therefore, the sign of
the constants is sensitive to the initial conditions in addition
to the eigenvectors of the phenomenological coefficient ma-
trix M. This imposes very specific constraints on the initial
concentrations of structural and superstructural units as well
as their kinetics in order to achieve nonexponential relaxation!
In the high temperature regime, the stability of structural and
superstructural units will be extremely low and therefore their
interconversion nonexistent. This will result in a single ordi-
nary differential equation governing the relaxation response.
Therefore, the high temperature response will be a simple ex-
ponential, i.e., β∗(T ) → 1 and τk (T ) = 1/M11(T ). Since the
nature of the relaxation response in the intermediate tempera-
ture range is governed by the temperature dependence of the
phenomenological coefficients and the initial concentrations
of structural units which are system specific, the temperature
dependence of β∗ cannot be characterized with certainty in
this temperature range assuming the response is going to be a
stretched exponential.

Further insights may be drawn from the results of fitting a
12-term Prony series [50] that has been illustrated in Fig. 2.
The parameters were optimized to fit the stretched exponen-
tial function and it was found that the weights wi plotted as
a function of the exponents Ki yielded a particular type of
scaling law for different values of stretching exponents. On
further inspection one observes that the tails [wi(Ki > 100)]
of the plot (apart from the farthest point on the right) scale
as a power law with slopes proportional to the stretching

exponent itself. In fact, one of the main results from Ref. [50],
illustrated in Fig. 2, shows that the Prony series converges
to a stretched exponential only under specific values for the
weights wi and exponents Ki. It is also worth noting that the
normalization constraint on wi (i.e., �iwi = 1) implies that
it may be interpreted as a probability mass function. Why
must this be the case and is it of any physical significance? Is
this scale-invariance symmetry in the optimized Prony series
weights related to the aforementioned constraints imposed
on the initial condition of structural and superstructural units
and their kinetics? The following section will establish a link
between the optimized parameters of the Prony series and
the discrete and continuous analogs of a family of statistical
distributions known as Lévy Stable distributions [66], which
describe the underlying distribution of relaxation rates for a
stretched exponential response. Relevant information regard-
ing these distributions will be elucidated as the discussions
unfold, however, it is recommended that the reader revert to
the enclosed references for more information and insights.

Before moving on to this discussion, however, it is vi-
tal to establish a more physical understanding of the Prony
series. A simple interpretation of the Prony series will be
presented here in the context of a relaxation experiment. Con-
sider a relaxation experiment being performed on a system
possessing a characteristic relaxation time τk and correspond-
ing characteristic relaxation rate λ∗ = 1/τk . This experiment
is being conducted in the frequency domain wherein one is
observing (making measurements of) the system at discrete,
integral multiples (n = 0, 1, . . . m) of some fixed observa-
tion frequency λobs, as one does in spectroscopy experiments
[67–69]. Realistically, m and λobs must be finite and λobs has
the additional constraint that it cannot be close to zero (static
condition, corresponding to an infinite observation time for
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any n). It is assumed that the system has a continuous distri-
bution of relaxation rates w(λ) supported on the positive half
of the real line which is uniquely determined by the energy
landscape of the system at a given temperature. To scale the
sampling frequency for a relaxation experiment, the distri-
bution of relaxation rates is normalized such that w(λ) →
w(λ/λ∗). Therefore, for a given distribution of relaxation
rates and experimental sampling frequencies, one obtains the
sampled, discretized distribution of relaxation rates given by

wd (λ/λ∗) =
m∑

n=0

w(λ/λ∗)δ(λ/λ∗ − nλobs/λ
∗), (45)

where δ(x) is defined as the Dirac delta function of an ar-
gument x. Taking the Laplace transform on both sides, one
obtains the normalized time domain response of the relaxing
system,

Wd (t/τk ) = L{wd (λ/λ∗)} =
m∑

n=0

w(nλobs/λ
∗)e−(t /τk )(nλobs/λ∗ ).

(46)

Substituting z = e(t/tk )(λobs/λ
∗ ) into Eq. (46), in the limit

m → ∞, one obtains the unilateral z transform of the distri-
bution of relaxation rates [w(λ/λ∗)],

Wd (z) =
∞∑

n=0

w(nλobs/λ
∗)z−n, (47)

which is known to be the discrete analog of the Laplace
transform. Again, Eq. (46) may be modified in the limit m →
∞ with infinitely small increments in observation frequency
[�(λ/λ∗) → 0] to obtain the Laplace transform of w(λ/λ∗)
that yields the time domain response of the relaxing system,

W (t/τk ) = lim
�(λ/λ∗ )→0

Wd (t/τk )�(λ/λ∗)

=
∫ ∞

0
w(λ/λ∗)e−(t /τk )(λ/λ∗ )d (λ/λ∗). (48)

One may modify the index in Eq. (46) from n to j =
1, 2, . . . , m such that w j (Kj ) corresponds to some Kj =
nλ/λ∗, i = 1, 2, . . . , m to obtain a Prony series with m terms,

M(t ) =
m∑

j=1

w j (Kj )e
−Kj (t /τk ). (49)

Therefore, the Prony series is interpreted as a discrete
version of a Laplace transform of a distribution of nondi-
mensional (normalized) relaxation rates that is subject to
experimental observation time constraints. For 0 � M(t ) � 1,
we normalize the weights such that � jw j (Kj ) = 1 is in-
terpreted as a probability mass function of nondimensional
relaxation rates, Kj . Referring to the equations presented in
the thermodynamic model, these Kj

′s are related to the eigen-
values of the phenomenological coefficient matrix and it is
proposed that the weights w j , composed of the eigenvec-
tors and initial conditions, are functions of the eigenvalues.
The eigenvalues of the kinetic coefficient represent the char-
acteristic rate (and therefore timescale) of salient structural
transformations during the relaxation process.

VI. DISTRIBUTION OF RELAXATION RATES,
RELAXATION TIMES, AND ENERGY

BARRIER HEIGHTS

Now consider a stretched exponential time domain re-
sponse on the left hand side of Eq. (48). This corresponds to
a case where there are a large number (m → ∞) of structures
and superstructures whose concentrations evolve in time and
are kinetically coupled to the volume. Additionally, the in-
crements in observation frequency are infinitesimally small,
which is to say that we are interested in deriving the con-
tinuous distribution of relaxation rates (a probability density
function) underlying the stretched exponential response. This
will lead to the following Laplace transform of relaxation
rates:

φ(t ) = exp

[
−

(
t

τk

)β∗]

=
∫ ∞

0
w(λ/λ∗) exp

(
− λ

λ∗
t

τk

)
d (λ/λ∗). (50)

Then, w(λ/λ∗) can be obtained through the Bromwich in-
tegral (inverse Laplace transform) of the stretched exponential
function,

w(λ/λ∗) = 1

2π i

∫ i∞

−i∞
e−(t /τk )β

∗
e(λ/λ∗ )(t /τk )d (t/τk ). (51)

Changing the variable to u = −i(t/τk ) allows one to ex-
press w(λ/λ∗) as a Fourier transform,

w(λ/λ∗) = lβ∗ (λ/λ∗) = 1

2π

∫ ∞

−∞
e−(iu)β

∗
ei(λ/λ∗ )udu. (52)

The resulting integral in Eq. (52) does not have a simple
analytical solution but has been shown to be in the domain
of attraction of an asymmetric Lévy (α stable) distribution
[70–74] for β∗ ∈ (0, 1] denoted lβ∗ (λ/λ∗). Lévy stable dis-
tributions do not possess simple analytical distributions but
have a well-defined characteristic function. This family of dis-
tributions is commonly encountered in multiscale phenomena
and enjoys the property of power-law tails (fractal like scaling
[75,76]) with tails that decay as lβ∗ (x) ∼ x−β∗−1. This has
been illustrated in Fig. 5 in the Appendix. They also possess
the property of stability under addition, which is to say that a
random variable given by the sum of independent identically
distributed random variables drawn from a stable distribution
will be stably distributed [77] and is therefore a generalization
of the central limit theorem. Detailed descriptions of stable
distributions and their applications have been discussed in
Refs. [77–80], and specific applications to the physics of re-
laxation may be found in Refs. [70,71,73,81]. For the discrete
analog of these distributions, Refs. [82–84] served as primary
references for this work and they are usually encountered in
the context of scale-free networks [85].

Stable distributions are characterized by four parameters,
viz., the first shape parameter β∗ ∈ (0, 2] (usually denoted
α in the literature, hence the name α-stable distributions),
second shape parameter β ∈ [−1, 1], scale parameter γ ∈
(0,∞), and location parameter δ ∈ (−∞,∞). The second
shape parameter determines the asymmetry of the distribution,
i.e., the distribution is a symmetric stable distribution for
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FIG. 3. (a) Asymmetric Lévy stable distributions for select shape parameters (stretching exponent) (β∗), and (b) The corresponding Laplace
transforms the distributions (solid-colored lines). The stretched exponential function has also been plotted for all the shape parameters (dashed
black lines) to show that the Laplace transforms of the distributions are almost identical to the function itself. The dotted arrows labeled “β∗ ↓”
indicate the direction of decreasing β∗ in both figures.

β = 0, completely asymmetric with a left tail for β = −1, and
completely asymmetric with a right tail for β = 1. As men-
tioned above, the value of β∗ is capped at 1 for the asymmetric
case. Lévy stable distributions have a well-defined character-
istic function but do not possess simple analytical expressions
for probability densities with the exception of the Gaussian
distribution for β∗ = 2(β = 0) and the Cauchy distribution
for β∗ = 1(β = 0).

Subsequently, we will use the notation l (β∗, β, γ , δ) to
refer to a general Lévy stable distribution with shape pa-
rameter β∗ and lβ∗ (λ/λ∗) will be used as a shorthand to
refer to the asymmetric Lévy distributions with right tails
i.e., l (β∗, β = 1, γ , δ). Stable distribution parameters for a
range 0.4 < β∗ < 0.96 were fit using Eqs. (50)–(52) using a
nonlinear least squares fitting function in MATLAB. The details
of the parametrization as well as specific libraries (including
equivalent libraries in Python such as Ref. [86]) used have
been provided in the Appendix. The optimized value of the
shape parameter is referred to as α. Upon optimizing the
parameters of the distribution, one finds that the condition
α = β∗ shows a slight deviation. This is discussed in more
detail in the Appendix. These distributions and their Laplace
transforms have been plotted in Fig. 3.

Owing to the relationship between the Lévy stable laws
and the weights of the Prony series, one could expect to find
qualitative similarities between the two. The qualitative sim-
ilarities between the discrete and continuous cases are quite
clear for β∗ = 3/7, 1/2, and 3/5. However, there are certain
systematic differences that need to be pointed out. In the dis-
crete case one observes that the normalized frequencies (Ki )
appear to be the same at higher frequencies for different values
of β∗, and one only begins to notice a systematic shift at lower
Ki values as β∗ decreases. This implies that the optimized

values for observation frequency are being weighted to longer
observation times for processes that relax with lower β∗ val-
ues. This shift towards lower values of normalized frequency
is more apparent in the continuous case and is determined
by the decrease in the location parameter δ of the Lévy sta-
ble distribution with a decrease in β∗. Another anomaly in
the wi values for the discrete case is the characteristic jump
in the highest frequency value. This does not appear in the
continuous case and this may be ascribed to the fact that the
continuous distribution has a finite probability at very high
frequencies owing to the fat tails of the distributions. This
must be compensated for in the case of the optimized Prony
series and is done by increasing the weight given to the fastest
observation frequency.

The question of the distribution of relaxation times for
stretched exponential relaxation is of importance to mod-
eling relaxation as well as gathering structural insights
on microscopic mechanisms that generate these distribu-
tions when applied to specific glass chemistries. When
it is known that a random variable λ̃ (representing the
nondimensional relaxation rates, λ/λ∗) is related to the ran-
dom variable τ̃ (representing the nondimensional relaxation
times, τ/τk) as τ̃ = λ̃−1, and that λ̃ is distributed as λ̃ ∼
lβ∗ (λ/λ∗), the distribution of relaxation times can then be
derived,

P(τ/τk ) = 1

2π (τ/τk )2

∫ ∞

−∞
e−(iu)β

∗
ei(τ/τk )−1udu

= (τ/τk )−2lβ∗ [(τ/τk )−1]. (53)

The details of the derivation for the distribution of re-
laxation rates and energy barrier heights have been included
in the Appendix. The distribution of relaxation times has
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FIG. 4. (a) Distribution of relaxation times for select values of shape parameter (stretching exponent) β∗. It is seen that the left tails scale as
power laws P(τ̃ ) ∼ τ̃−(1−β∗ ). (b) The distribution of energy barrier heights for select values of shape parameter (stretching exponent) β∗. The
dotted arrow labeled “β∗ ↓” indicates that β∗ decreases (values indicated in the legend) as the peak of the distrubution decreases and width of
the distribution increases.

been illustrated in Fig. 4(a). It is seen that the mass of these
distributions starts out centered around the characteristic re-
laxation time τk in the high temperature limit of β∗ → 1,
implying a single relaxation time. The mass is then transferred
over to the left tails of the distribution increasing nonexponen-
tiality wherein the tails scale as a power law P(τ̃ ) ∼ τ̃−(1−β∗ ),
indicative of a transition to self-similar dynamics. This is
equivalent to the distribution derived by Montroll and Bendler
[Eq. (51d) in Ref. [81]] and the distribution derived by Richert
and Richert [Eq. (8) in Ref. [87]] for the special case of
βintr → 1.

The potential energy (or enthalpy) landscape description
of glassy dynamics has been abundantly useful in modeling
glassy systems and there is still much to gather from the
topography of landscapes for glasses [2,52,88–90]. The kinet-
ics of transitioning from one inherent structure to another is
governed by the energy barrier height between two inherent
structures, and the dynamics of the system in general will be
governed by the distribution of energy barrier heights that the
system samples at a given temperature and pressure. The dis-
tribution of inherent structure enthalpies has been shown to be
Gaussian in glassy selenium for example [91], but the distribu-
tion of barrier heights has been assumed to be Gaussian [44] in
theoretical models in the past, and in this light would be rather
useful to quantify. A previous attempt at deriving a continuous
distribution of energy barrier heights for stretched exponential
relaxation was carried out by Liebovitch et al. [74] wherein an
expression for the distribution of reaction rates was produced
but was not explicitly extended to energy barrier distributions.
Here an explicit expression for the distribution of energy bar-
rier heights (that may be sampled for a given β∗) relative to a
characteristic barrier �E∗ is derived assuming the validity of

the Boltzmann factor for the transition rate from one arbitrary
state on the landscape to another,

λ = ν0 exp

(
− �E

kBT

)
, (54)

where ν0 is an attempt frequency, kB is the Boltzmann con-
stant, and �E is the activation barrier (or potential energy, or
enthalpy barrier) the system must overcome to transition from
one state to another. Therefore, knowing the distribution of the
random variable λ̃ and that the relationship between λ̃ and the
random variable for the nondimensional energy barrier height
Ẽ is Ẽ = − ln(λ̃),

Ẽ = (�E − �E∗)

kBT
. (55)

Here �E∗ is the barrier height associated with the charac-
teristic frequency λ∗ in the context of Eq. (54). The following
distribution for Ẽ is then derived:

P

(
�E − �E∗

kBT

)
= exp

(
−�E − �E∗

kBT

)
lβ∗

[
exp

(
−�E − �E∗

kBT

)]
. (56)

The distribution has been illustrated for different values
of β∗ in Fig. 4(b). Again, the mass of the distribution of
barrier heights is heavily centered around Ẽ = 0 indicating
that there is only a single barrier in the Debye relaxation limit.
The distribution then broadens asymmetrically with increas-
ing nonexponentiality.
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VII. DISCUSSION

A general microscopic theory of relaxation has been a
longstanding problem in condensed matter physics. The con-
nection between structural relaxation and bulk viscous flow
has been addressed in a macroscopic sense, and for the case
of stretched exponential relaxation, the unequivocal presence
of temporal self-similarity is highlighted. However, how does
one use this information to synthesize a general microscopic
theory for relaxation in glassy systems that is consistent across
a wide range of temperatures over which nonexponential re-
laxation persists? Numerous computational and experimental
investigations have been carried out to characterize the nature
of cooperatively rearranging regions in glasses, a term pop-
ularized by the Adam-Gibbs (AG) [92] model for viscosity.
Additionally, the nature and length scale of dynamic het-
erogeneities in supercooled liquids has received tremendous
attention [93]. A particularly relevant result in the cited stud-
ies is the presence of self-similar (fractal) clusters spanning
a range of glassy systems such as two-dimensional binary
Lennard-Jones supercooled liquids near the glass transition
[94], organic glass formers and hard sphere systems [95],
self-organized two-dimensional lattice based models intended
to study self-organized phases in covalent glasses [96], and
in networks of distorted icosahedra of CuZr metallic glasses
[97]. With the ubiquitous presence of spatial scale invariance
symmetry in these glass forming systems above and below the
glass transition temperature, one is compelled to hypothesize
a link between spatial and temporal scale invariance in these
systems.

The topological characterization of glasses [37] provides
a level of abstraction that may uniquely poise one to study
glasses as a class of networks with emergent spatial scale
invariance properties dictated by their temperature (and
pressure) dependence of topology. The recent advances in
topological characterization of driving forces for relaxation
[64,98], a statistical mechanics framework for characterizing
the topological fluctuations spearheaded by Kirchner et al.
[99], and statistical mechanical modeling of specific glass
chemistries to characterize superstructural units [100] when
coupled with classical diffusion limited based models for
stretched exponential relaxation [16] may offer a link between
the spatial and temporal scale-invariance symmetries dis-
cussed here. The thermodynamic framework presented here
already alludes to reactions that may very well be diffusion
limited, but in an abstract “diffusion of excitations” sense as
originally purported by Phillips. The thermodynamic charac-
terization and quantification of such excitations will be critical
in this regard. One must also take into account the emergence
of fast β-relaxation modes [39] below the glass transition
temperature. The presence of scale-invariant distribution of
relaxation times compels one to ponder the implications of
this invariance to scale on stretched exponential β relax-
ation, especially since the same lower limit of β∗ = 3/7 was
reported for room temperature relaxation in Ref. [39]. Re-
garding the slower α-relaxation regime, the paper contains
validation for using volume-relaxation data to estimate bulk
viscosity, which is quite sparse for glasses. The authors hope
that this work engenders further investigation of the tem-
perature dependence of bulk viscosity for glass. Outside of

volume relaxation experiments, the requirement of specialized
high-pressure equipment precludes the measurement of this
transport coefficient for glasses and there appears to be scope
for innovation in this regard.

VIII. CONCLUSIONS

In conclusion, the authors would like to leave the reader
with the following take-aways from this work:

(i) The processes of shear and bulk flow are markedly
different sources of entropy generation in isotropic media that
will correspond to disparities in the kinetics of the two pro-
cesses. Samples under a combination of shear and hydrostatic
loads will exhibit contributions from both processes.

(ii) The kinetics of the two processes are expected to be
different under conditions, where there is a disparity between
the configurational degrees of freedom that contribute to shear
and dilatational strains.

(iii) The underlying driving forces for structural relaxation
stem from internal hydrostatic stresses that are generated by
chemical potential differences between the equilibrium and
nonequilibrium mass fractions of structures and superstruc-
tures that are kinetically coupled to the volume. These will
drive the volume relaxation even in the absence of an applied
mean normal stress.

(iv) A formal thermodynamic basis has been presented for
the Prony series representation of the stretched exponential
function in glasses with physical meaning ascribed to the
weights (or modal amplitudes) of the series thus cementing
the validity of the kinetic interpretation of fictive temperature.

(v) The underlying dynamics may be attributed to inherent
symmetry of self-similarity observed in myriad experimental
and simulation studies of dynamic heterogeneities in glass
forming supercooled liquids.
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APPENDIX

1. Lévy stable distributions and their parametrization

The asymmetric Lévy stable distribution naturally arises
when we consider the case when a stretched exponen-
tial regression to equilibrium arises from multiple ex-
ponential relaxations with a distribution of relaxation
rates,

exp

[
−

(
t

τk

)β∗]
=

∫ ∞

0
lβ∗ (λ/λ∗) exp

(
− λ

λ∗
t

τk

)
d (λ/λ∗),

(A1)
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FIG. 5. Power law tails of the Lévy distribution (right tails of
asymmetric distributions have been illustrated here) scale as lβ∗ (x) ∼
x−(1+β∗ ) as shown in the inset figure.

where β∗ is the stretching exponent, τk is the characteris-
tic relaxation time, λ is the relaxation rate, and λ∗ is the
characteristic relaxation rate. The resulting distribution of
nondimensional relaxation rates is given by the integral

lβ∗ (λ/λ∗) = 1

2π

∫ ∞

−∞
e−(iu)β∗

ei(λ/λ∗ )udu. (A2)

The integral in Eq. (A2) does not have a simple analytical
solution but has been shown to be in the domain of attraction
of an asymmetric Lévy (α stable) distribution [70–74] for
β∗ ∈ (0, 1] denoted lβ∗(λ/λ∗). Lévy stable distributions do
not possess simple analytical distributions but have a well-
defined characteristic function. Lévy stable distributions must
not be confused with the Lévy distribution which is a special
case of the stable distribution. This family of distributions is
commonly encountered in multiscale phenomena, and enjoys
the property of power-law tails (fractal like scaling [75,76])
as illustrated in Fig. 5. These distributions also possess the
property of stability under addition, which is to say that a
random variable given by the sum of independent identically
distributed random variables drawn from a stable distribution
will be stably distributed [77] and this constitutes the gener-
alization of the central limit theorem. Detailed descriptions of
stable distributions and their applications have been discussed
in Refs. [77–80], and specific applications to the physics of re-
laxation may be found in Refs. [70,71,73,81]. For the discrete
analog of these distributions, Refs. [82–84] served as primary
references for this work and they are usually encountered in
the context of scale-free networks [85].

Stable distributions are characterized by four parameters,
viz., the first shape parameter β∗ ∈ (0, 2] (usually denoted
α in the literature, hence the name α-stable distributions),
second shape parameter β ∈ [−1, 1], scale parameter γ ∈
(0,∞), and location parameter δ ∈ (−∞,∞). The second

shape parameter determines the asymmetry of the distribution,
i.e., the distribution is a symmetric stable distribution for
β = 0, completely asymmetric with a left tail for β = −1, and
completely asymmetric with a right tail for β = 1. As men-
tioned above, the value of β∗ is capped at 1 for the asymmetric
case. Lévy stable distributions have a well-defined character-
istic function but do not possess simple analytical expressions
for probability densities with the exception of the Gaussian
distribution for β∗ = 2(β = 0) and the Cauchy distribution
for β∗ = 1(β = 0).

In practice, we have found that the numerical evaluation of
such integrals or equivalent summations were computation-
ally intensive and unstable at higher values. However, MATLAB

possesses a stable distribution function that evaluates the value
of the distribution function given the values of the parameters.
The integral in Eq. (A2) was evaluated over a limited range
and the data were used to fit the stable distribution parameters
for a range 0.4 < β∗ < 0.96 in MATLAB using a nonlinear
least squares function. Additionally, polynomial fits for each
of the parameters as a function of β∗ were identified so that
the parameter values may be interpolated for nonparametrized
values of β∗ in the interval [0.4, 0.96]. In practice, the shape
parameter that is obtained when fit to data from Eq. (A2)
(which we will denote as α) deviates slightly from β∗ used
in Eq. (A2). In theory, they are expected to be equal, but we
attribute this small difference to minor numerical errors. The
polynomial equations obtained from regression for the stable
distribution parameters are

α = 0.1555β∗3 − 0.29882 + 1.1447β∗,

β = 1,

γ = −3.3282β∗2 + 5.3476β∗ − 0.38,

δ = 3.5278β∗4 − 7.9012β∗ + 4.5135β∗2

+ 0.0003β∗ + 0.0037. (A3)

Finally we note that there is an equivalent Python package
that has been developed to handle calculations related to stable
distributions [86], but we had to forego using this because
of documented issues with fitting distributions below shape
parameters of 0.5.

2. Distribution of relaxation times and energy barrier heights

The probability that the random variable τ̃ , a nondi-
mensional relaxation time, lies between in the interval
[(τ/τk ), (τ/τk ) + d (τ/τk )] is

Pr [(τ/τk ) < τ̃ < (τ/τk ) + d (τ/τk )] = P(τ/τk )d (τ/τk ), (A4)

where P(τ/τk ) is the probability density function (PDF) of
relaxation times. In this section, we are tasked with deriving
P(τ/τk ) given that τ̃ = λ̃−1, where λ̃ is a random variable that
represents the nondimensional relaxation rate and is known
to be distributed as an asymmetric Lévy stable distribution
defined as

lβ∗ (λ/λ∗) = 1

2π

∫ ∞

−∞
e−(iu)β

∗
ei(λ/λ∗ )udu, (A5)
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where

Pr[(λ/λ∗) < λ̃ < (λ/λ∗) + d (λ/λ∗)] = lβ∗ (λ/λ∗)d (λ/λ∗).

The corresponding cumulative distribution (CDF) function
is given by integrating Eq. (A5),

Fβ∗ (λ̃ � λ/λ∗) = 1

2π

∫ λ/λ∗

0

∫ ∞

−∞
e−(iu)β

∗
ei(λ/λ∗ )udud (λ/λ∗),

Fβ∗ (λ̃ � λ/λ∗) = 1

2π

∫ ∞

−∞
(iu)−1e−(iu)β

∗
(ei(λ/λ∗ )u − 1)du.

(A6)

We now turn our attention to the CDF of τ̃ given by F (τ̃ �
τ/τk ). Knowing the relationship between τ̃ and λ̃ we can infer
that

F (τ̃ � τ/τk ) = F [λ̃ � (τ/τk )−1],

F (τ̃ � τ/τk ) = 1 − Fβ∗ [λ̃ � (τ/τk )−1]. (A7)

Therefore, P(τ/τk ) is the derivative of Eq. (A7) with re-
spect to (τ/τk ),

P(τ/τk ) = − d

d (τ/τk )
Fβ∗ [λ̃ � (τ/τk )−1]

= − 1

2π

d

d (τ/τk )

×
{∫ ∞

−∞
(iu)−1e−(iu)β

∗
(ei(τ/τk )−1u − 1)du

}
,

(A8)

yielding the following PDF for the distribution of relaxation
times:

P(τ/τk ) = 1

2π (τ/τk )2

∫ ∞

−∞
e−(iu)β

∗
ei(τ/τk )−1udu

= (τ/τk )−2lβ∗ [(τ/τk )−1]. (A9)

Similarly, we may derive the PDF of sampled energy bar-
rier heights on an energy landscape by assuming that the
transition rate (or relaxation rate) λ associated with an energy

barrier �E of transitioning from one state to another in phase
space is given by

λ = ν0 exp

(
− �E

kBT

)
, (A10)

where ν0 is an attempt frequency, kB is the Boltzmann con-
stant, and T is the absolute temperature. Here it is assumed
that the system is sampling a particular distribution of energy
barrier heights at a given temperature and the resulting struc-
tural changes are distributed over a range of relaxation times.
Now accounting for the characteristic relaxation rate, we may
derive an expression for the nondimensional relaxation rate,

λ

λ∗ = exp

(
− (�E − �E∗)

kBT

)
. (A11)

We now treat the absolute value of the term within the
exponential as a random variable Ẽ and from Eq. (A11), its
relationship with λ̃ is

Ẽ = − ln
(
λ̃
)
. (A12)

In a similar fashion as in Eq. (A7), we infer that

F

(
Ẽ � (�E − �E∗)

kBT

)
= F

[
λ̃ � exp

(
− (�E − �E∗)

kBT

)]
,

F

(
Ẽ � (�E − �E∗)

kBT

)
= 1 − Fβ∗

[
λ̃ � exp

(
− (�E − �E∗)

kBT

)]
. (A13)

Following a similar procedure as in Eq. (A8) we arrive
at the following PDF for the distribution of sampled energy
barrier heights:

P

(
�E − �E∗

kBT

)
= exp

(
−�E − �E∗

kBT

)
lβ∗

×
[

exp

(
−�E − �E∗

kBT

)]
. (A14)

It is worth noting that this distribution is approximately a
power law distribution truncated by an exponential decay.
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