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Swarming patterns that emerge from the interaction of many mobile agents are a subject of great interest
in fields ranging from biology to physics and robotics. In some application areas, multiple swarms effectively
interact and collide, producing complex spatiotemporal patterns. Recent studies have begun to address swarm-
on-swarm dynamics, and in particular the scattering of two large, colliding swarms with nonlinear interactions.
To build on early numerical insights, we develop a self-propelled, rigid-body approximation that can be used to
predict the parameters under which colliding swarms are expected to form a milling state. Our analytical method
relies on the assumption that, upon collision, two swarms oscillate near a limit cycle, where each swarm rotates
around the other while maintaining an approximately constant and uniform density. Using this approach we are
able to predict the critical swarm-on-swarm interaction coupling, below which two colliding swarms merely
scatter, as a function of physical swarm parameters. We show that the critical coupling gives a lower bound for
all impact parameters, including head-on collision, and corresponds to a saddle-node bifurcation of a stable limit
cycle in the uniform, constant density approximation. Our results are tested and found to agree with both small

and large multiagent simulations.
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I. INTRODUCTION

Swarming occurs when spatiotemporal patterns and behav-
iors emerge from the interaction of large numbers of coupled
mobile systems, typically with fairly limited capabilities and
local dynamics. Examples have been discovered in nature
over many spatiotemporal scales from colonies of bacteria to
swarms of insects [1-4], flocks of birds [5—7], schools of fish
[8,9], crowds of people [10], and active-matter systems more
generally [11]. Understanding the principles behind swarm-
ing patterns and describing how they emerge from simple
models has been the subject of significant work in physics,
applied mathematics, and engineering sciences [12-24]. Par-
allel with this work, and because of the robustness, scalability,
and collective-problem solving capabilities of natural swarms,
much research has focused on designing and building swarms
of mobile robots with a large and ever expanding number of
platforms, as well as virtual and physical interaction mecha-
nisms [11,25-29]. Applications for such systems range from
exploration [26] to mapping [30], resource allocation [31-33],
and swarms for defense [34-36]

Since the overall cost of robotic systems has decreased
significantly in recent years, it has become possible to use
artificial swarms in the real world [26,27,37,38]. This intro-
duces the possibility of having multiple swarms occupying the
same physical space, resulting in mutual interactions and per-
turbations of one another’s dynamics [39]. As the potential for
such swarm-on-swarm interactions increases, a basic physical
understanding of how multiple swarms collide and merge
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becomes necessary. Recent work in swarm robotics and au-
tonomy has begun to address how swarms can be designed to
detect, herd, or capture another [40—42]. Yet, most approaches
are algorithmic and rely on simulation-based optimization,
and are thus lacking in basic physical and analytical insights.

Though much is known about the behaviors and stability of
single isolated swarms with physically inspired, nonlinear in-
teractions [43—47], much less is known about the intersecting
dynamics of multiple such swarms, even in the case where one
swarm is a single particle, as in predator-prey modeling [48].
Recent numerical studies have shown that when two flocking
swarms collide, the resulting dynamics typically appear as
a merging of the swarms into a single flock, milling as one
uniform swarm, or scattering into separate composite flocks
moving in different directions [39,49,50]. Though interesting,
a more detailed analytical understanding of how and when
these behaviors occur is needed, especially when designing
robotic swarm experiments for, e.g., swarm herding and cap-
ture [40—42], and controlling their outcomes.

To make progress, we consider a very well-known model of
swarming [43-46,51,52], consisting of mobile agents moving
under the influence of self-propulsion, nonlinear damping,
and pairwise interaction forces. In the absence of interactions,
each swarmer tends to a fixed speed, which balances its self-
propulsion and damping, but has no preferred direction [53].
A simple model that captures the basic physics is

i =l — BIELIE — 4 )0 U(r; =), (1)
J#i

where r; is the position-vector for the ith agent in two spatial
dimensions, «; is a self-propulsion constant, B is a damping
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constant, and ); is a coupling constant [43—47]. The total
number of swarming agents is N, and each agent has unit
mass. Beyond providing a basis for theoretical insights, Eq.(1)
has been implemented in experiments with several robotics
platforms including autonomous ground, surface, and aerial
vehicles [54-56].

An example interaction potential that we consider in detail
is the Morse potential,

U(ry=Ce "' — e, 2)

a common model for soft-core interactions with local repul-
sion and attraction ranges, scaled as [ and 1, respectively
[46,51]. In the following, we assume that two interacting
swarms are subject to the same underlying physics, Eqs. (1)
and (2), but with different initial conditions and potentially
different control parameters. In particular, we assume that
within each swarm the parameters are homogeneous, e.g.,
a; € {aM, a@} and A; € (A, A?}, where the superscripts
(1) and (2) denote the first and second swarms, respectively.
The summation in Eq. (1) is taken over all agents (in both
swarms). However, by construction, each swarm will be ini-
tially separated by a large distance compared to the interaction
scales, / and 1, and the maximum distance between agents
within each swarm. Therefore, the interaction force an agent
feels will be at early times effectively confined to their own
swarm, given the exponential decay with distance implied by
Eq. (2). The assumption that the two swarms satisfy the same
basic physics makes sense if the swarms are composed of sim-
ilar agents, and should be a reasonable, baseline assumption
for the collision of swarms of simple, programmable mobile
robots.

II. COLLISION OF TWO FLOCKING SWARMS

As in [49,50], we are interested in the collision of two
flocking swarms composed of approximately equal num-
bers of agents. The swarms are each prepared at r=0 in
a flocking state with initial velocities and positions that
are a large distance from the collision region (D=50>
1, I, and the sizes of the flocks), such that rizdgl)—Df(

and i, = /o /B %if i € (1), and r;=d> +D/a® jaDx +
Ay ¥ and F; = —/a®/B % if i € (2). The internal flocking
coordinates, d?l) and dl(.z), represent local minimum en-
ergy configurations (LMECs), defined by — 3., 34,U (Id; —
d;|) = 0; Vi [57]. This property demonstrates one of the ad-
vantages of models like Eq. (1) for running robotic-swarm
experiments, since the relative configurations of flocks can be
directly controlled through the potential function. Note that
the speed of the ith agent is equal to /a;/B, which is the
condition that allows for flocking. Given this setup, the net
force on every agent is initially zero, a consequence of the
LMEC and the finite-range of interactions.

In general, in two spatial dimensions there are four initial
conditions that one can specify for the centers of each flock.
However, note that the speeds are fixed by the flocking condi-
tion, and the absolute positions do not matter, only the relative
distances, leaving two initial-condition parameters: the rela-
tive distance and velocity between the flocks. In this work,
however, we are interested in collisions that result in swarm

FIG. 1. Collision of two symmetric flocks. (a) Scattering digram
indicating the aggregate swarm state as a function of the distance
between the two flocks before collision, Ay, and the coupling A: scat-
tering (blue), milling (red), and merged flocking (green). The critical
coupling is specified with a dashed vertical line, and separates the
scattering and milling regions. (b) The same diagram for the collision
of two agents. (c) Four time snapshots for A=Ay, showing each
swarm with different colors: red squares and blue circles. Velocities
are drawn with arrows. Swarm parameters areax =1, 8=5,C=10/9,
[=0.75, and N =100. The swarms are initially separated by a large
distance 2D =100 for all simulations.

milling states, which have zero total linear momentum. As a
consequence, the flocks should be nearly aligned upon col-
lision, with small transverse velocities. In the nearly aligned
regime, the relevant initial-condition parameter is the distance
between the two flocks as they approach x=0, regardless of
the direction of their velocities. This distance is often called
the “impact parameter” in classical mechanics [58], and it
signifies the closest distance the two flocks would approach
in the absence of interaction forces. The impact parameter is
denoted Ay in our initial conditions.

Depending on the value of Ay and the coupling strength,
the two flocks typically scatter or mill. In the former the
swarms leave the collision region in separate flocking states
with perturbed velocities. In the latter they form a milling state
(MS), and circulate around a stationary center of mass [59].
To guide our analysis, we perform numerical experiments
for different values of Ay and A, and determine which final
state the swarms relax to. Figure 1(a) shows such an example,
final-scattering diagram for the collision of symmetric flocks
with equal parameters. The final swarm states are specified
with blue and red for scattering and milling, respectively; the
green portions indicate the formation of a combined flocking
state, which is comparatively infrequent for the parameters
shown (and decreases in frequency as N — 00). The scattering
diagram is built by integrating Eq. (1) from the initial separa-
tion until well after collision, t =1500. For a fixed value of
Ay, A is swept from 0.01 to 0.35 in increments of 0.0017.
Similarly, Ay is swept from O to 7.5 in steps of 0.1. For each
value of Ay and A, if the center of mass (CM) of both swarms
is stationary, the point is colored red. If the two CMs continue
to separate after collision, the point is colored blue. If the CMs
are not stationary but remain a fixed distance apart, the point
is colored green.
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In general, predicting the complete scattering diagrams
for such swarm collisions is a very hard nonlinear dynamics
problem, since ultimately one must address whether or not a
certain set of initial conditions in a high-dimensional phase
space falls within the basin of attraction for a given final state.
This kind of question does not typically have a systematic
answer, particularly for high-dimensional nonlinear systems,
apart from simply doing many numerical simulations. For
instance, if the collisions are head on (Ay=0), then A =0.19
in order for a MS to form. On the other hand, if Ay is much
larger than the attractive length scale (1), then the coupling
must be similarly large; e.g., if Ay=7, then 1 20.35 [keep in
mind that swarms can very much collide even if Ay is larger
than the nominal sizes of the flocks, since Fig. 1(a) shows
red regions for sufficiently large couplings]. Hence, whether
or not a MS is formed clearly depends on initial conditions:
different Ay have different, nongeneric, transition couplings.
However, between the two limits we find a unique critical
value Anin, designated with a white box and dashed line in
Fig. 1(a), which is the smallest coupling needed to form a MS,
over all impact parameters, Ay. For reference, this value is
Amin =0.13, or approximately 0.7 times the head-on-collision
value in Fig. 1(a).

What the critical point might mean, in general, can be
understood by first studying the scattering-diagram for a sim-
ple two-agent system, shown in Fig. 1(b). Note that the two
diagrams are qualitatively very similar despite the signifi-
cant difference in the number of agents. Even in the simple
two-agent case, it is not clear that the scattering diagram
can be derived without resorting to simulations. However,
it is possible to show that the MS corresponds to a stable
limit-cycle oscillation that is born in a generic saddle-node
(SN) bifurcation, exactly at the point where the red region
first emerges as we sweep the coupling in Fig. 1(b) (see
Appendix A). Crucially, the SN bifurcation is independent
of the impact-parameters Ay, and in fact gives a rigorous
lower bound for the transition coupling for all impact pa-
rameters in the system. Building on this bifurcation insight
we focus on Api, in this work, because it is generic, in
that it depends on the physical parameters of the swarm
and not on initial conditions, and it gives a lower-bound
for head-on collisions and all other collision distances Ay.
Just as in the two-agent case, we will show that A, corre-
sponds to the birth of stable bound-state oscillations of two
flocks, and therefore we can do a first-principles calculation to
approximate it.

In order to visualize collisions that result in milling in
many-agent swarms, we show four time snapshots in Fig. 1(c)
when A=MAn,. Agents in the two swarms are drawn with
different colors, and their velocities shown with arrows. In
the first snapshot (upper left), the swarms approach collision
with configurations and velocities identical to those specified
in the first paragraph of this section, namely, the LMEC with
constant velocity. In the second snapshot (upper right) the
swarms rotate around each other with a constantly changing
heading, roughly uniform velocity distribution, and a config-
uration approximately equal to the LMEC. Over time each
swarm’s density elongates in the direction of rotation (third
snapshot, lower left), as the velocity distribution becomes less
homogeneous. Finally, on long timesscales the two swarms
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FIG. 2. Uniform constant density approxima-
tion for flocking states (UCDA). (a) Fraction of
agents a distance r from the flock’s center for C=

1.0 (red squares), 1.1 (blue circles), 1.25 (green diamonds) when
[=0.75, where C is the repulsive-force strength with length scale /.
The dashed, solid, and dotted lines indicate UCDA predictions from
solving Eq. (3). The inlet panel shows an example flocking state with
the UCDA boundary drawn in black for C=1.1. (b) Flocking state
boundary, R=max{r}, from simulations: (/=0.85, magenta X’s),
(I=0.75, blue circles), (/ =0.60, green diamonds) and (/=0.50,
red squares) compared to UCDA predictions shown with lines near
each series. Other swarm parameters are « =1, B=5, A=2, and
N;=100.

blend into one and form a MS with agents from each uni-
formly distributed across the whole.

In order to predict the critical coupling, Ay, our approach
is to find an analytical description of the collision dynamics
that is applicable for the first two snapshots in Fig. 1(c), where
two approximately constant-density flocks approach, and then
rotate around a common center. Our conjecture is that if such
rotations are approximately stable, then a MS occurs upon
collision (and vice versa). Though we will analyze two-flock
collisions in this way assuming Eq. (2), our method should
be applicable to a broader range of second-order dynamical
swarms given position-dependent, nonlinear interactions with
finite attractive and repulsive length scales.

A. Uniform constant density approximation

First, we would like to find a low-dimensional approxi-
mation for the flocking state dynamics. A clue comes from
Fig. 2(a), which plots the fraction of agents at a given distance
r from the CM of a single moving flock for different values of
the repulsion strength, C. We can see that the radial distribu-
tion is approximately linear in r. Moreover, since the potential
is radial, we expect the steady-state angular distribution to be
uniform; the inset panel shows an example flocking state with
such a spatial distribution of agents. Together, these imply a
roughly uniform density in the flocking state, p=N;/wR>,
where R is the maximum radius and N; is the number of
agents in flock (1). Given the uniform-density assumption, the
predicted fraction of agents at a given r is f(r)=2rAr/R?,
where Ar is the bin size used to plot the distribution. This
prediction is drawn with lines for comparison in Fig. 2(a).
Note that the actual distribution is not quite linear in r; the
uniform density approximation predicts both more and fewer
agents near the flock’s boundary than is actually observed,
depending on the value of C. This suggests a straightforward
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improvement in the accuracy of our calculations (that follow):
input the exact density function.

Assuming a uniform density, we can describe a flock in
general by the position of its center, the velocity, and the
boundary radius R. In particular, every agent, including those
on the boundary, move with constant speed, +/c/f8, where o
is the self-propulsion constant for the flock. A self-consistent
formula can be derived for R, and used to compute it, by satis-
fying force balance on the boundary. For example, consider an
agent with d; =R X. The x component of the interaction force
must be zero,

2 ! C R 2 2
0= / f <_e—1«/ I4+u*—2ucos¢p __ e—R«/ l+u~—2ucosq>>
o Jo \!

ucos¢p — 1
1+ u?—2ucos¢

udude , 3)

where u = r/R. Note that the y component of the force is triv-
ially zero due to the uniform-angular distribution of agents.
Comparisons between simulations and numerical solutions to
Eq .(3) are shown in Fig. 2(b) for a range of control parame-
ters, and indicate good agreement. Because of this agreement,
and its relative simplicity, we continue our analysis assuming
a uniform steady state density of agents in a flock.

Next, we can approximate the initial collision dynamics of
the flocks by assuming that the uniform density configuration
remains constant within each flock, with a boundary given by
Eq. (3). Namely, the rigid-body collision model that we will
analyze below is of two interacting, constant-density disks
composed of self-propelled agents. Consider two representa-
tive agents positioned at the center of each swarm, r')(¢) and
r(t). If we directly apply Eq. (1), it is easy to check that the
interaction forces on agents positioned at r'() and r® (),
due only to agents within the same flock, vanish, given the
assumed uniform angular distribution of agents within each
flock. If agents away from the center of flock (1) have coor-
dinates r; =1 + rcos ¢k + rsin ¢F, then the interaction

force on an agent at r'") from flock (1) is
2 R
=/ / <%e"/l )—N"d’d¢(cos¢x+51n¢y)
o Jo
4)

Hence, the nonzero contributions to the interaction sums in
Eq. (1) for r(¢) and r®(¢) only come from the other flock,
since the interaction force from their own flocks cancel. More-
over, the interaction force from the opposing flock is felt
gradually as the two swarms approach, because of the finite-
range interactions and the initially large separation between
the flocks. To find the nonzero contribution, we simply need
to integrate the interaction force over a constant-density disk
of radius R, centered on the opposing swarm’s center, r®(t)
or r'V(¢), respectively. If we assume that the two swarms are
equally sized, each with N/2 agents, directly applying Eq. (1)
for r'V(¢) and r®(¢) gives

Iy
#D = o Y Vea®,

— BIEVPIED — r;R),  (5a)

2
i = [o® — BIFQPE? — Ng(r“),r@);R), (5b)

£, r 1. R)

/271/ r® +d—-r® rdrd¢
ATCEE BT

" (%e_rlz)+d_ru)|/1_e_r(z>+d_r(”>’ (50)
d=rcos¢ R + rsing§, Gd

where d is an internal-coordinate inside the constant-density
disk centered at r®(z) or rV(¢), respectively. Equations (3)—
(5d) constitute the rigid-body dynamical system that we call
the uniform constant density approximation (UCDA) [60].
The integrals in Eq. (5¢) can be evaluated using, e.g., the
trapezoid rule. Our next step is to study stable oscillations
of r'V(t) and r®(¢) in the UCDA and compare to swarm
collision dynamics.

B. Stable oscillations

Stable oscillations in the UCDA come in the form of
circular-orbit limit cycles where both flocks oscillate around
a common center with the same frequency, a fixed phase
difference, and different amplitudes in general. We can com-
pute the parameters for such limit cycles by substituting
the ansatz r(V(t) = A; cos(wt)X + A, sin(wt )y and r(r) =
Ay cos(wt + y)X + Ay sin(wt + )y into Egs. (5a)—(5d). The
result is the following four root equations satisfying F; = 0 for
ie{l,2,3,4}:

LON
F=—-Aw + —Ex, (6a)
AN
P, = —Aw[a" — A0’ + &y,
(6b)
LON
F = —Aywsin y[a(z) - ,BAga)z] + Ay’ cosy + 7 &,
(6¢)
LON
Fy = Aywcos y[a® — BASw? ]| + Arw® siny + &,
(6d)
with
gx _ /27‘[ /R A2 cosy + rCOS¢ _Al (Ee,dﬂ . eid),
o Jo d l
rdrdg
X R (6e)
6 = /271 /R Az siny + rsin¢ (96701/1 _ eid) rdrdqb’
o Jo d l TR?
(61)
d =+/(Arcosy +rcos¢ — A1) + (Aysiny + rsing)>.
(62)

Solutions to Egs. (6a)—(6d) for L = [A}, A;, ¥, @] can be
shown to exactly match limit cycles within the UCDA; more
importantly, they agree with the transient oscillations for col-
lisions in the full system, Egs. (1) and (2). For example,

062602-4



CRITICAL TRANSITION FOR COLLIDING SWARMS

PHYSICAL REVIEW E 103, 062602 (2021)

FIG. 3. Collision dynamics resulting in milling. (a) Center-of-
mass trajectories for two colliding swarms when A = An,, shown
with solid blue and dashed red lines. Arrows give the direction of mo-
tion. The dashed black line indicates the bifurcating limit cycle in the
uniform constant density approximation. Other swarm parameters
area =1,8=5,1=0.75, N =100, and C = 1.0. The inset panel
shows the corresponding trajectory for A = 2A . (b) Maximum x
coordinate reached by the center of mass of the rightward moving
(blue) flock when A = Ap,. Simulation results are shown with blue
circles for / = 0.75, green diamonds for / = 0.6, and red squares
for I = 0.5. Limit-cycle predictions from Egs. (6a)—(6d) and (7)
are drawn with lines near each series. Other swarm parameters are
a=1,8=5,and N = 200.

Fig. 3(a) shows CM trajectories in red and blue for two col-
liding swarms when A = A;,. We can see that the trajectories
approach the UCDA limit cycle, shown with a black dashed
line, before slowly decaying into the origin. The critical case
can be contrasted to couplings above the critical value, e.g.,
A = 2Amin shown in the inset panel, where the two collid-
ing flocks rapidly decay into the MS. Using this picture as
a basis, the maximum rotation radius during collisions can
be compared directly to limit-cycle radii predictions from
Egs. (6a)—(6f). In Fig. 3(b) we plot such a comparison using
the maximum horizontal distance reached by the CM of the
rightward moving flock (as a proxy for the collision radius).
UCDA predictions and simulations quantitatively agree fairly
well over a broad range of parameter values. Qualitatively,
as the repulsive-force constant C increases, the two swarms
oscillate at larger distances from each other upon collision,
particularly for larger values of the repulsion scale, /. This
increase in rotation distance, A, is accompanied by a decrease
in rotation frequency, @ ~ Al_l.

Next, we can consider stability. When control parameters
are changed (one at a time), stable limit cycles satisfy-
ing Egs. (6a)—(6f) disappear generically through saddle-node
bifurcations (SNs). As stated previously in Sec. II, a post-
collision MS in the full system, Eqgs. (1) and (2), is not
expected to form unless stable limit cycles exist, and hence
Amin can be approximated by the SN value in the UCDA.
We can find a general condition to determine Ay, at the SN
through the following.

Using the defined vector components F specified in
Egs. (6a)-(6d), we compute the derivatives of F with respect
to the limit-cycle parameters, L. At the SN the Jacobian ma-
trix J, defined as J,,,,, = dF,,/dL,, has

det J(L; Amin) = 0. (7

/@/'/

@

FIG. 4. Critical coupling for forming milling states upon colli-
sion. (a) Symmetric parameter collisions for « = 1 (blue) and @ = 2
(red): N = 10 (squares), N = 20 (diamonds), N = 40 (circles), and
N =100 (triangles). Green stars denote o = 1 and magenta X’s
denote o = 2, when 40 agents collide with 60. (b) Asymmetric
collisions for C = 10/9 in which "’ = 1. Blue points indicate equal
numbers in each flock: N = 20 (diamonds), N = 40 (circles), and
N = 100 (triangles). Green stars denote collisions between 40 agents
with o = 1 and 60 agents with «®. Solid and dashed lines indicate
theoretical predictions for (a) and (b), respectively from solving Egs.
(6a)—(6d) and (7). Other swarm parameters are 8 = 5 and [ = 0.75.

Combining Eq. (7) with Egs. (6a)—(6d) gives a total of five
root equations for the approximate critical coupling and asso-
ciated limit cycle.

In practice, if we consider symmetric collisions or asym-
metry in the o’s only (as we do in the remainder), the above
results simplify. For example, in the case of symmetric colli-
sions the relevant branch of stable limit cycles have A} = Aj,
y =m,and w = /o /B /A|. Moreover, the symmetric critical
coupling predicts a scaling collapse (see Appendix B for
derivation and further details):

200 A2/2”/R 2rdrdg Ge ' — e
MBSy Sy AR d

|: (2A; — rcos¢)?
X|l———

d2

(241 — rcos ¢)? l%e’d/l —e o
— y %e*d/’—e*d , ()

where the right-hand side is a function of the pairwise-
interaction parameters only. Equation (8) is similar in
structure to an escape velocity equation, e.g., from a fixed
potential well:

v2/2 — NaminVerr(C, 1) = 0, )

where v is the speed of each flock and V.(C, /) quantifies the
strength of the potential between agents (see Appendix B). As
a consequence, if the potential forces and number of agents are
held constant, flocks moving twice as fast require four times
the coupling in order to be captured in a MS. Similarly, flocks
with twice as many agents must fly V2 times faster in order
to escape forming a MS.

Comparisons between Ay, from simulations of the full
discrete-particle system Eq. (1), and the above predictions
from Egs. (7) and(6a)—(6d), are shown in Fig. 4; Ay, was
measured by building final-scattering diagrams like Fig. 1(a)
for each parameter value. For these theory-simulation com-
parisons, note that the parameters «, N, and C are swept over
a large range. In the left subplot (a), we show results for
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collisions with symmetric parameters. As demonstrated with
Egs. (8) and (9) our predicted scaling collapse holds. Quali-
tatively, the critical coupling increases monotonically with C,
implying that the stronger the strength of repulsion, the larger
the coupling needs to be in order for colliding swarms to form
a MS. Also, note that our UCDA predictions are fairly robust
to heterogeneities in the numbers in each flock, particularly
for smaller values of C/I — 1; predictions remain accurate for
number asymmetries in the flocks as large as 20%.

On the other hand, in Fig. 4(b) we compare the measured
Amin and predictions as a function of asymmetry in the self-
propulsion force constant for different N’s. The first swarm
has o) = 1, while '® is varied. Contrary to the symmetric
case the scaling collapse disappears, apart from N. Moreover,
the branch of stable limit cycles with equal radii A;=A;
disappears in a cusp bifurcation [the solid-black line in in
Fig. 4(b) vanishes for a® >1.5]. Above the cusp point, the
upper branch of SNs corresponds to stable limit cycles where
A| <Aj and y =—m /2, shown with a dashed black line in the
lower left corner of Fig. 4(b). Interestingly, we can see that
for larger values of a® —a! the critical coupling is nearly
linear in the difference, meaning that if one flock doubles its
speed, then the coupling needed to form a MS is expected to
quadruple; again, a consequence of the flock speed equaling
/o /. Finally, note that as in (a) predictions remain accurate
for a significant range of differences in the numbers in each
flock.

II1. DISCUSSION

To summarize, in this work we studied the collision of
two swarms with nonlinear interactions, and focused in par-
ticular on predicting when such swarms would combine to
form a mill. Unlike the full final-scattering diagram—which
depends on whether or not a particular set of initial con-
ditions falls within the high-dimensional basin of attraction
for milling, a hard problem in general—we concentrated on
predicting the minimum coupling needed to sustain a mill
after the collision of two flocks. By noticing that colliding
swarms, which eventually form a mill, initially rotate around
a common center with an approximately constant density, we
were able to transform the question of a critical coupling into
determining the stability of limit-cycle states within a rigid-
body approximation. This approach produced predictions that
only depended on physical swarm parameters, and provided
a lower bound on the critical coupling for arbitrary impact
parameters in nearly aligned collisions. For example, in the
case of symmetric flocks with equal numbers and physical
parameters, the scatter-mill transition point was similar to
an escape-velocity condition in which the critical coupling
scaled with the squared-speed of each flock, and inversely
with the number of agents in each flock. Our bifurcation
analysis agreed well with many-agent simulations.

Though our analysis dealt directly with soft-core inter-
acting swarms, the basic approach could be extended to a
broader range of models, as long as the forces between agents
in Eq. (1) have a finite range. For instance, the results pre-
sented are similar for other choices of potential functions,
which quantify the interaction between two agents, e.g., elas-
tic interactions mediated through a network topology with an

exponentially decaying coupling [61]. In terms of quantita-
tive improvement in the calculation of the critical coupling,
one straightforward approach would be to move beyond the
uniform-density assumption, and replace the formulas in Secs.
IT A and IIB with an exact steady-state density for flocking
states given an arbitrary choice of potential functions. As
pointed out in Sec. IT A, the UCDA works well, particularly
for predicting the the sizes of flocks, but can both over- and
under-predict the density of agents near a flock’s boundary
(see Fig. 2). Instead of assuming that upon collision agents
maintain their relative configuration inside a flock, one can
build an expansion in terms of the relative velocity of, e.g.,
the ith agent with respect to the flock’s average, v; = (v) + §v;,
and keep the lowest order in §v;(¢). Similar to the approach
here, one can then try to analyze the stability of bound-state
oscillations of two flocks that include the averaged dynam-
ics and fluctuations around it, as in [62]. We also note that
many other dynamical models of swarming, such as velocity-
consensus models [63], produce flocking states that have a
steady-state density of agents; we hypothesize that our anal-
ysis in terms of a critical coupling, slowly varying flocking
densities, and bound-state oscillations may carry over to such
models as well.

Beyond these generalizations, one can develop a similar
approach for a broader range of swarm collision problems,
since it is well known that systems like Eq. (1) produce col-
lective motion states other than flocking. For instance, one
can develop an analogous dynamical system for analyzing
the stability of collisions between different collective-motion
states, such as flocks colliding with mills. Typically, milling
states also have a steady-state density of agents, even though
individuals perform complex rotations around a stationary
center [43,44,46,51,52]. Here again, we believe our approach
could prove useful.

In terms of applications, recent work in understanding the
physics of swarm robotics and autonomy has begun to address
how one swarm can detect, capture, redirect, or otherwise de-
fend itself against another [40-42]. Most current approaches,
however, are primarily algorithmic, and lack basic physical
and analytical insights. It is to this deficit that this work is
in part addressed. In particular, our work fits nicely into the
robotic swarm capture and redirect problem, since the critical
coupling sets a general divide in parameter space between
scattering and milling swarms. For the collision of swarms
of mobile robots, issues of noise, delay, and topology natu-
rally arise, which are not included in this analysis. On small
timescales we expect noise on Eq. (1) to generate fluctuations
in a flock’s heading direction with a quasistationary probabil-
ity distribution of agents in the comoving frame, which has a
larger boundary than predicted by Eq. (3). In the presence of
noise, it is this distribution which would replace the density
in the formulas in Secs. IIA and IIB. We point out that,
since noise will inevitably cause drift in real collisions, our
lower-bound stability result becomes perhaps more useful,
not less, since the exact collision distance Ay cannot be con-
trolled deterministically. On longer timescales the two flocks
will lose agents, one by one, in a process that is similar
to noise-induced escape; the escape of individual agents is
much more likely in flocks with finite-range interactions than
switching, since the latter requires a collective-fluctuation of
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many agents simultaneously [64]. In Fig. 4 we show that our
critical-coupling results are fairly robust to modest variations
in the number of agents within each flock, and hence we do not
expect the noise-induced loss of agents to significantly change
our results. On the other hand, the effect of delay in swarming
dynamics can produce stable oscillations in the center of mass
of a swarm [53]. In fact, simulation results similar to those
shown in Fig. 1 have suggested that time-delayed interactions
tend to expand the red region, effectively reducing the critical
coupling at which bound-state oscillations become stable [50].
Finally, communication topology significantly affects robotic
swarming dynamics, for instance, generating new kinds of
hybrid motion states and transitions. However, mean-field
techniques that properly account for topology, yet are similar
to those deployed here, have been shown to provide quantita-
tively accurate insights on the role of topology in determining
swarm dynamics [61,65]. Future robotics experiments, similar
to [29,54,55], will be used to further test and expand our
analysis in these and other scenarios.

ACKNOWLEDGMENTS

JH. and IB.S. were supported by U.S. Naval
Research Laboratory funding (N0001419WX00055), by
the Office of Naval Research (N0001419WXO01166 and
N0001419WX01322), and by the Naval Innovative Science
and Engineering program. T.E. was supported through the
U.S. Naval Research Laboratory’s Jerome and Isabella Karle
Distinguished Scholar Fellowship.

APPENDIX A: TWO-AGENT MILLING

In the simple two-agent case, we can calculate when the
red milling region in Fig. 1(b) first emerges without resorting
to approximations. When the two agents have equal param-
eters, milling consists of a circular-orbit limit cycle with
r'D(#)=acos(wt)& + asin(wt)y and r® () =—a cos(wt )& —
a sin(wt )y. Substituting this ansatz into Egs. (1) and (2) gives
the following relation for the limit-cycle amplitude a:
0= % + £672a/l _o

Bra 1

The limit cycle disappears at a SN bifurcation correspond-
ing to a critical amplitude, a*. Applying the zero-determinant
condition, Eq. (7), results in

(AL)

%8—211*/1 _ e—2a*
0=—2a"+ (A2)

672a*/l _ 872a* :

~lle)

Note that a* only depends on C and [/: a*(C, [). Finally, com-

bining Eqgs. (A1) and (A2) gives the critical coupling
o

ﬂa*[%eﬂa*ﬂ _ 67211*] :

(A3)

Amin =

For reference, in Fig. 1(b) Anin = 5.476, which agrees with
the Eq. (A3) solution Ay, = 5.473, within the resolution of
the simulations.

Note that A, gives a lower bound for the scatter-mill
transitions implied in Fig. 1(b) for every Ay, since scattering
cannot produce milling if no milling solution is locally stable.

APPENDIX B: SYMMETRIC COLLISION SCALING

In this section we further discuss the derivation and scaling
of Eq. (8). As described in Sec. IIB, a stable limit cycle
exists within the UCDA for two flocks with equal parameters
o, B,C, 1, A, and N, as long A > Apiy. In this symmetric case,
the limit cycle has amplitude(s) A; =A, and relative phase
y =m. Applying Eqgs. (6a)—(6d) results in the following two
relations:

AN
Aw? = — €A1 C D), (B1)

Alw® = a/B. (B2)

Note that the function &,(A;, C, 1) does not depend on the
flock boundary, R, explicitly since R(C,[) is determined by
Eq. (3). Eliminating @ from Eqgs. (B1) and (B2) gives

2 2
2 AEALC D),

N (B3)

where we have used the velocity for the flocking state v> =
o/B.

Next, the general saddle-node condition, Eq. (7), reduces
to setting a single derivative of Eq. (B3) equal to zero,

3
0=—A &@ALCD.
a,

(B4)

Solving Eq. (B4) for A; gives the critical amplitude A¥, which
only depends on C and [, or Aj(C,[). Finally, combining
Eq. (B3), evaluated at the critical point, with Eq. (B4) results
in the following expression equivalent to Egs. (8) and (9):

202
)‘minN

= AJ(C, DE(AT(C, ), C, D). (B5)

Equation (B5) implies that v?/ApinN is a function only
of the interaction-force constants, C and [, and hence Ap;, ~
2
v°/N.
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