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Sex as information processing: Optimality and evolution
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The long-term growth rate of populations in varying environments quantifies the evolutionary value of process-
ing the information that biological individuals inherit from their ancestors and acquire from their environment.
Previous models were limited to asexual reproduction with inherited information coming from a single parent
with no recombination. We present a general extension to sexual reproduction and an analytical solution for
a particular but important case, the infinitesimal model of quantitative genetics which assumes traits to be
normally distributed. We study with this model the conditions under which sexual reproduction is advantageous
and can evolve in the context of autocorrelated or directionally varying environments, mutational biases, spatial
heterogeneities, and phenotypic plasticity. Our results generalize and unify previous analyses. We also examine
the proposal made by Geodakyan that the presence of two phenotypically distinct sexes permits an optimal
adaptation to varying environments. We verify that conditions exists where sexual dimorphism is adaptive but
find that its evolutionary value does not generally compensate for the twofold cost of males.
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I. INTRODUCTION

Evolution by natural selection relies on the presence of
variations which are generated and transmitted through mech-
anisms that are themselves subject to natural selection. This
raises the question of the optimality of these mechanisms in
relation to the constraints to which populations are subject.
This long-standing problem of population genetics [1–5] can
also be approached from the perspective of information theory
[6] by viewing the mechanisms for generating and transmit-
ting biological variations as information processing schemes
[7]. The simplest case, where the only source of informa-
tion is an environmental cue that is sensed and processed
to adapt an internal state, corresponds to a model proposed
by Kelly in the 1950s to demonstrate how Shannon’s theory
could be generalized to quantify the value of information [8].
His approach has been applied and extended to quantify the
value of biological information for populations of reproducing
individuals evolving in varying environments [7,9–11].

When accounting for inherited information, for differences
between individuals or for general forms of genotype-to-
phenotype maps, the value of biological information cannot
be reduced to the entropies originally introduced by Shannon.
Instead, differences in long-term growth rates obtained by
comparing populations that adopt different information pro-
cessing schemes provide an appropriate generalization [7].
This point of view clarifies the diverse modes of adaptation
and inheritance that biological organisms exhibit [12–16] and
leads to multiple analogies with problems and concepts from
nonequilibrium statistical physics [11,17–20].

With very few exceptions [21,22], this evolutionary per-
spective on information processing has been limited to models
of vertical inheritance, excluding any form of interaction

between members of a same generation. In particular, sex,
or genetic exchange, which is a major mode of information
transmission in the living world [23] has been left aside. The
goal of this article is to show how measures of biological in-
formation developed for asexual populations can be extended
to sexual populations. We present a general formalism and
apply it to solve analytically a central model of quantitative
genetics, the infinitesimal model [24]. We obtain two results.
First, we quantify the value of sexual reproduction over asex-
ual reproduction and thus revisit the long-standing question of
the conditions under which sexual reproduction may evolve
and be maintained. Second, we quantify the value of sex-
ual dimorphism and thus analyze quantitatively a proposal
made by Geodakyan according to which the presence of two
sexes permits an optimal adaptation to varying environments
[25,26].

The first question that we analyze, the conditions under
which sexual reproduction can emerge and be maintained, has
been extensively studied, although no definite solution is con-
sensually accepted [23,27–29]. In particular, the origin of the
most significant constraints is highly debated [30]. One class
of models takes environmental constraints to be determin-
ing. It includes notably the red-queen hypothesis [31], which
invokes rapidly varying selective pressures, and the tangled-
bank hypothesis [32], which invokes spatially heterogeneous
resources. Another class of models takes genetic constraints to
be determining. It includes notably Muller’s ratchet [33] and
Kondrachov’s hatchet models [34]. Our formalism integrates
both kinds of constraints and provides a new perspective on
previously known results [35]. In particular, by focusing on
the nature of the constraints rather than on their mechanism or
origin, it reconciles some of the alternative scenarios.
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The second question that we analyze pertains to the
twofold cost of males in dioecious populations, when assum-
ing that males and females are present at the same ratio.
Naïvely, if males were as fecund as females, the popula-
tion could double its number of offsprings per generation,
which, in terms of growth rate, corresponds to an additional
factor ln 2. This suggests that monoecious (hermaphroditic)
populations should have a systematic evolutionary advantage
over dioecious populations. To explain that many species have
nevertheless two distinct sexes, additional constraints are usu-
ally integrated, including sexual selection, intersexual food
competition or reproductive role division [36]. Alternatively,
Geodakyan proposed that two distinct sexes permits an opti-
mal processing of inherited information [25,26]. His proposal
rests on the assumption that females are developmentally
more plastic than males: when the environment changes, their
fertility is unaffected, irrespectively of their genotype, while
males survive only if they have the most adapted genotypes.
This strong selection on males is proposed to favor the in-
tegration of the environmental change into the genotypes of
the next generation while the weak selection on females miti-
gates the selection load. Whether the value of this information
processing scheme can exceed ln 2 and thus compensate for
the twofold cost of males has, to our knowledge, never been
investigated. Our formalism allows us to examine not only the
adaptive value of this scenario but also its potential to evolve.

II. MODEL

A. Modes of reproduction

We first reformulate a model of asexual reproduction
[7,12] before generalizing it to account for sexual reproduc-
tion in monoecious (single sex) and dioecious (two sexes)
populations.

1. Asexual reproduction

We assume that at each discrete generation t , a newly born
individual with genotype γ follows a life cycle consisting of
two steps (Fig. 1). First, it maturates and develops a phenotype
φ that leads it to either survive or die; the probability to
develop φ given γ is described by D�(φ|γ ) and the probability
to survive given φ and the state xt of the environment by
S(�|φ, xt ). Second, it reproduces into ξ � 0 offsprings, each
with a genotype γ ′ correlated to the genotype γ of its parent;
the probability to produce ξ offsprings is described by R�(ξ )
and the probability of γ ′ given γ by H�(γ ′|γ ). Individuals
die after reproduction and the next generation consists of the
newly born offsprings.

Assuming the population size to be large enough for
stochastic effects (genetic drift) to be negligible, the number
Nt (γ ) of individuals born at generation t with genotypes γ

and the number Mt (γ ) of those reaching maturation satisfy
the recursion

Mt (γ ) =
∫

dφ S(�|φ)D�(φ|γ , xt )Nt (γ ), (1)

Nt+1(γ ′) = k�

∫
dγ H�(γ ′|γ )Mt (γ ), (2)

FIG. 1. Life cycle of individuals in a representation borrowed
from information theory, where each “box” represents a communi-
cation channel, i.e., a conditional probability to generate the output
given the input(s) [7]. First is a maturation step, where an individual
with genotype γ acquires a phenotype φ through development and
is selected by the environment xt based on this phenotype to either
survive (σ = �) or die (σ = ×). Second, surviving individuals can
reproduce. In asexual reproduction, an individual with genotype γ�
produces ξ offsprings with genotype γ ′. In sexual reproduction, a
pair of individuals with genotypes γ�, γ� mate to generate ξ off-
springs with genotype γ ′.

where k� = ∫
dξR�(ξ )ξ is the mean number of offspring per

reproductive event.

2. Monoecious sexual reproduction

We first generalize to monoecious (hermaphroditic) sexual
reproduction where each individual mate with a randomly
chosen individual in the population to produce an average of
k� offsprings:

Mt (γ ) =
∫

dφ S(�|φ, xt )D�(φ|γ )Nt (γ ), (3)

Nt+1(γ ′) = k�

∫
dγ�dγ� H�(γ ′|γ�, γ�)

Mt (γ�)

Mt
Mt (γ�).

(4)

Here Mt = ∫
dγ Mt (γ ) so that Mt (γ�)/Mt represents the

probability for an individual with genotype γ� to mate with
an individual with genotype γ�. An offsprings inherits a
genotype γ ′ with probability H�(γ ′|γ�, γ�), which depends
a priori on the genotypes of the two parents, γ� and γ�. Writ-
ten in terms of the densities nt (γ ) = Nt (γ )/

∫
dγ Nt (γ ), this

recursion is central to several previous models of population
genetics [37–39] and, more recently, to physical models of
self-propelled particles with alignment interactions [40].

When comparing to the asexual case, we will consider
k� = k�, which assumes that each sexually reproducing
individual produces as many offsprings as an asexually re-
producing individual. A difference between k� and k� may,
however, be justified by the presence of intrinsic costs to
sexual reproduction, due for instance to the necessity to pro-
duce more gametes or to the difficulty of finding a mate. To
illustrate how our conclusions generalize to k� < k�, we will
also report results for k� = k�/2, which can be interpreted as a
cost dominated by the number of gametes that each individual
must produce, which is doubled in the sexual case.
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3. Dioecious sexual reproduction

To extend the formalism to dioecious sexual reproduction
where two sexes are present, we assume that fecundity is
limited by the number of females which choose their mate
at random within the population of mature males. Assuming
further that the sex of offsprings is chosen at random (sex-ratio
1/2), this leads to the recursion

M•,t (γ ) = 1

2

∫
dφ S(�|φ, xt )D•(φ|γ )Nt (γ ) (• = �,�),

(5)

Nt+1(γ ′) = k�

∫
dγ�dγ� H�(γ ′|γ�, γ�)

M�,t (γ�)

M�,t
M�,t (γ�),

(6)

where Nt (γ ) is as before the number of newly born individuals
with genotype γ at generation t , and M�,t (γ ) and M�,t (γ )
are, respectively, the number of mature females and males
with genotype γ , with M�,t = ∫

dγ�M�,t (γ�) reporting the
total number of maturate males. The ratio M�,t (γ�)/M�,t thus
corresponds to the probability for a male with genotype γ�
to be chosen by a female at generation t . We assume here
that females and males are subject to the same selective
pressure S(�|φ, xt ) but allow them to have different develop-
mental modes D�(φ|γ ) and D�(φ|γ ). Finally, the probability
H�(γ ′|γ�, γ�) for an offspring to inherit a genotype γ ′ de-
pends a priori on the two genotypes of the parents, γ� and
γ�. We will take by default k� = k� = k�. For monomorphic
sexes (D� = D�), Eqs. (5) and (6) are equivalent to Eqs. (3)
and (4) with k� = k�/2. For dimorphic sexes (D� �= D�), on
the other hand, the recursion defined by Eqs. (5) and (6) has, to
our knowledge, not been previously studied. In the following,
we analyze this recursion in the context of quantitative traits
where the different kernels are Gaussian but note that the
formalism is general and can also be applied to discrete traits
and other kernels.

B. Questions

The different modes of reproduction define different popu-
lation dynamics: does it lead one mode of reproduction to be
favored by natural selection? More specifically, as the answer
may depend on the genetic and environmental constraints to
which the populations are subject, we ask the following two
questions:

Q1: Under what conditions is sexual reproduction advanta-
geous over asexual reproduction?

Q2: Under what conditions is sexual dimorphism advanta-
geous in dioecious populations?

The first question has been extensively studied, although no
consensual solution has emerged [41]. The second question,
on the other hand, has to our knowledge not been exam-
ined mathematically. A particular challenge is known as the
twofold cost of males: in dioecious populations, males con-
stitute half of the population but do not contribute directly
to fecundity, in contrast to asexual or monoecious sexual
populations where every individual can potentially contribute.
This corresponds formally to the presence of a factor 1/2 in
Eq. (5) compared to Eq. (1) or Eq. (3). This problem is usually
presented in the context of Q1, when comparing dioecious

sexual reproduction with asexual reproduction [42] (assuming
no intrinsic cost of sex, i.e., k� = k�). It is, however, even
more acute in the context of Q2, when comparing dioecious
sexual reproduction with monoecious sexual reproduction, as
only a factor 1/2 differentiates the dynamics of monomorphic
dioecious populations from that of monoecious populations
(assuming here k� = k�).

Addressing these questions requires defining the “condi-
tions” and the nature of the possible “advantages” to which Q1
and Q2 refer. To this end, we adopt a simple parametrization
of the different components of the model and present specific
criteria for comparing populations differing by their reproduc-
tive or developmental modes.

C. Basic model

We consider the central model of quantitative genetics, the
infinitesimal model [24], where γ is a quantitative trait influ-
enced by a large number of genes. Through the central limit
theorem, this justifies to treat mutational and developmen-
tal noise as additive white Gaussian noise. The infinitesimal
model played historically a major role in resolving the contro-
versy between Mendelians and biometricians and continues
today to be a cornerstone of evolutionary biology as well as a
widely applied tool in plant and animal breeding [43]. As it is
amenable to analytical calculations in the context of varying
environments [11,12,35], it provides particularly insightful
results. We arrive at this model by making the following
assumptions:

(1) We describe development from a genotype (breeding
value) γ ∈ R to a phenotype φ ∈ R by the addition of nor-
mally distributed noise, φ = γ + ν with ν ∼ N (σ 2

D), where
ν ∼ N (σ 2

D) indicates that ν is drawn from a normal distribu-
tion with zero mean and variance σ 2

D. The variance σ 2
D, which

is sometimes referred to as the microenvironmental variance
in quantitative genetics, is here called the developmental vari-
ance to distinguish it from the (macro)environmental variance
σ 2

E introduced below. When it depends on the mode of re-
production and on the sex, we also denote it by σ 2

D,• with
• = �,�,�,� for, respectively, asexual, hermaphroditic, fe-
male, and male individuals.

(2) We consider a stabilizing selection of the form
S(�|φ, xt ) = e−(φ−xt )2/(2σ 2

S ) where xt defines the optimal phe-
notype at generation t and σ 2

S the stringency of selection.
(3) For asexual reproduction, we assume that the genotype

γ ′ of an offspring is related to the genotype γ of its parent
by γ ′ = γ + ν with ν ∼ N (σ 2

M ) where σ 2
M is a mutational

variance representing the effects of mutations.
(4) For sexual reproduction, we assume that the genotype

γ ′ of an offspring is related to the genotypes γ� and γ� of
its parents by γ ′ = (γ� + γ�)/2 + ν with ν ∼ N (σ 2

M + σ 2
R )

where σ 2
R is a segregational variance that accounts for the vari-

ation introduced by recombination, in addition to the variation
introduced by mutations.

Assuming a model for the process by which mutations
and recombination operate on alleles, the genetic parameters
σ 2

M and σ 2
R can be expressed in terms of more elementary

parameters (number of loci, mutation rate, etc.) [44]. Here, we
do not make any assumption on the underlying mechanisms
and treat σ 2

M and σ 2
R as fixed and independent parameters.
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As we will show that genetic variances are asymptotically
constant, this is formally equivalent to assuming that popu-
lations have fixed genetic variances, a key assumption of the
infinitesimal model of quantitative genetics. This is clearly
a strong assumption which requires particular conditions to
be justified mathematically [45] and whose applicability gen-
erally needs to be assessed through numerical simulations
[46,47]. We adopt it here but differ from the common practice
in quantitative genetics by parametrizing the model by σ 2

M and
σ 2

R instead of the associated genetic variances σ 2
� = Var(γ�)

and σ 2
�

= Var(γ�). As we show, this leads to a more general
and transparent interpretation of the results.

If Gσ 2 (x) = e−x2/(2σ 2 )/
√

2πσ 2 denotes a generic Gaussian
function, we thus make the following assumptions:

(i) D•(φ|γ ) = Gσ 2
D,•

(φ − γ ), (7)

(ii) S(�|φ, xt ) = (
2πσ 2

S

)1/2
Gσ 2

S
(φ − xt ), (8)

(iii) H�(γ ′|γ ) = Gσ 2
M

(γ ′ − γ ), (9)

(iv) H�(γ ′|γ�, γ�) = Gσ 2
M+σ 2

R

[
γ ′ − 1

2 (γ� + γ�)
]
, (10)

where • stands for either �,�, �, or�. Additionally, the initial
distribution of genotypes N0(γ ) is also assumed to be Gaus-
sian, which is sufficient to ensure that it remains Gaussian at
any subsequent time t > 0.

(5) Finally, we assume that the environment follows an
autoregressive process

xt = axt−1 + bt , bt ∼ N
[
(1 − a2)σ 2

E

]
(11)

or, equivalently,

P(xt |xt−1) = G(1−a2 )σ 2
E
(xt − axt−1). (12)

As E[xt xt+τ ] = σ 2
E aτ , the parameter a ∈ [0, 1[ encodes the

timescale of the environmental fluctuations (τE = −1/ ln a),
which is to be compared with the generation time (τ = 1),
corresponding to a = e−1 � 0.36. The parameter σ 2

E ∈
[0,∞[, on the other hand, encodes the variance of the fluctua-
tions, which is to be compared with the stringency of selection
σ 2

S ; an environmental change that kills 50% of a previously
perfectly adapted population thus corresponds to σ 2

E/σ 2
S =

2 ln 2 � 1.4. The environmental variance σ 2
E corresponds to

the scale of environmental fluctuations over multiple genera-
tions while (1 − a2)σ 2

E is the scale of these fluctuations over a
single generation.

We will examine several extensions of this basic model to
account for the evolution of heredity and development, for the
presence of spatial heterogeneities or of a mutational bias, and
for the possibility of plasticity. We will also examine the case
of directional selection where xt = ct + bt with c �= 0 and
bt ∼ N (σ 2

E ). Other environmental processes, such as random
walks or periodic processes, can also be examined in a similar
way [35].

D. Levels of analysis

In the simplest instance of the previous model, the condi-
tions to which the populations are subject comprise genetic
constraints, parametrized by σ 2

M, σ 2
R , and environmental con-

straints, parametrized by a, σ 2
E and σ 2

S . When now considering

the evolutionary advantage that different modes of develop-
ment or reproduction may confer, it is useful to distinguish
two levels of analysis:

L1: What is optimal for populations in the long term?
L2: What may effectively evolve under natural selection?
What is optimal at a population level may indeed not pos-

sibly or effectively result from natural selection.
A definition of optimality at the population-level (L1) is

provided by the long-term growth rate, which is formally
defined in the limit of an infinite number of generations by
	 = limt→∞(1/t ) ln Nt where Nt is the total population size
at generation t [7]. This growth rate corresponds to the geo-
metric mean of the instantaneous fitness, 	 = E[ln Nt/Nt−1],
which is well known to be the relevant quantity for large
populations in varying environments [48]. Crucially, it is the
quantity that quantifies the value of information in the context
of evolutionary dynamics [7]. In the long term (t → ∞),
populations following our models will either become extinct
or grow exponentially at a rate 	•, with • = �,�, or �
depending on the mode of reproduction. The population with
largest 	• is then considered optimal. We shall verify that
this criterion describes the outcome of competitions between
finite-size populations over a finite number of generations
when they are subject to a common total carrying capacity.
In such cases, the population that become fixed is most likely
the population with largest growth rate 	•. Formally, the two
questions Q1 and Q2 at level L1 therefore amount to com-
paring the growth rates of different populations subject to the
same constraints but differing by their mode of reproduction
(Q1) or their mode of development (Q2):

Q1/L1: What is the sign of 	� − 	� as a function of
σ 2

M, σ 2
R and a, σ 2

E , σ 2
S ?

Q2/L1: What values of the developmental variances σ 2
D,�,

σ 2
D,� optimize 	� as a function of these same parameters?

In particular, the twofold cost of males is overcome if
	� − 	� > ln 2 in the context of Q1 (as 	� = 	� − ln 2 if
sexes are monomorphic) and if 	� − 	� > 0 in the context
of Q2 (which necessarily requires dimorphism). More gen-
erally, 	� − 	� quantifies the value of sexual reproduction
over asexual reproduction and 	� − 	� the value of dioecy
over monoecy when comparing alternative ways to transmit
information between generations.

Addressing the two questions at level L2 requires us to aug-
ment the model with genotypic variables that are also subject
to mutations but control either the mode of reproduction (Q1)
or the mode of development (Q2), also known as modifier
genes [49]. Formally,

Q1/L2: What is the long-term dynamics of a gene ψ that
controls the probability for an individual to reproduce sexu-
ally, as a function of σ 2

M, σ 2
R and a, σ 2

E , σ 2
S ?

Q1/L2: What are the long-term dynamics of sex-specific
genes δ� and δ� that control the developmental variances σ 2

D,�

and σ 2
D,� as a function of these same parameters?

III. RESULTS

We obtain analytical formulas for the long-term growth
rates 	�,	�,	� as a function of the different pa-
rameters (Appendix A). These formula recapitulate and
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extend previous results [12,35]. The formulas depend
on the variances σ 2

D, σ 2
E , σ 2

M , σ 2
R only via the ratios

σ 2
D/σ 2

S , σ 2
E/σ 2

S , σ 2
M/σ 2

S , σ 2
R/σ 2

S , which implies that we can set
the stringency of selection to one (σ 2

S = 1) without loss of
generality. They also show that differences in growth rates
are independent on the mean number of offsprings when
considering k� = k� = k�, and we take this number to be
k� = k� = k� = 2 in the numerical simulations.

A. Genetic constraints and optimization

In contrast to the environmental parameters, the genetic
parameters σ 2

M , σ 2
R are potentially subject to evolution. Op-

timizing the growth rates over these two parameters, we find
that sexual reproduction neither provides an advantage nor a
disadvantage over asexual reproduction (Appendix A 4). From
this standpoint, sex can be adaptive only in the presence of
genetic constraints. In the following, we therefore treat σ 2

M and
σ 2

R as given genetic constraints, in addition to the environmen-
tal constraints. We will find, however, that the optimal value
of the mutational variance for asexual populations, which we
denote σ̂ 2

M , plays a particular role when comparing sexual and
asexual reproduction.

B. Sexual versus asexual reproduction: Optimality

As 	� − 	� quantifies the value of sexual monoecious
reproduction over asexual reproduction, the sign of 	� − 	�

indicates the environmental and mutational conditions under
which sexual monoecious reproduction confers a long-term
evolutionary advantage over asexual reproduction. Here we
assume σ 2

D = 0 and discuss in Sec. III F how a finite devel-
opmental variance (σ 2

D,� = σ 2
D,� > 0) changes quantitatively

but not qualitatively the results. We are then left with four
parameters, σ 2

M , σ 2
R , for the genetic constraints, and a, σ 2

E ,
for the environmental constraints. Displaying 	� − 	� as
a function of σ 2

M , σ 2
R for two representative values of a, σ 2

E
(1) a = 0.25, σ 2

E = 1 and (2) a = 0.75, σ 2
E = 1 [Fig. 2(a)]

reveals particular genetic and environmental conditions that
must be satisfied for sexual reproduction to be advantageous
over asexual reproduction [	� > 	� in red in Fig. 2(a)].

These conditions apply beyond the assumptions of infinite
population size and infinite number of generations that un-
derlie the calculations of the growth rates: they also decide
the outcome of a competition between asexually and sexually
reproducing populations after a finite number of generations
when the total population size is subject to an upper bound.
Starting from an equal mixture of asexual and sexual individ-
uals, numerical simulations (Appendix F) indeed show that
the mode of reproduction that becomes fixed is the one with
largest growth rate [Fig. 2(b)].

How to make sense of the phase diagrams of Fig. 2(a)?
As a function of σ 2

M, σ 2
R , we have in the most general case

four regimes, separated by two threshold functions σ 2
R (σ 2

M )
at which 	� = 	� [Fig. 3(b)]. Remarkably, one of these
threshold functions, which we denote σ 2

G, is independent of
the environmental conditions and given by (Appendix B 1)

σ 2
G = σ 2

M

4

[√
1 + 4

σ 2
S + σ 2

D

σ 2
M

− 1

]
. (13)

(c)

a = 0.75, σ2
E = 1a = 0.25, σ2

E = 1 a = 0, σ2
E =

c = 0.1

σ2
M

σ2
R

σ2
R

σ2
R

σ2
M σ2

M

(1) (2)

Λ − Λ

N /(N + N )

ψ

(a)

(b)

FIG. 2. Genetic conditions under which monoecious sexual re-
production is advantageous over asexual reproduction for two
environments differing by the timescale τE = −1/ ln a of their
fluctuations. (a) Difference 	� − 	� between the growth rates
of sexual and asexual populations. Values of (σ 2

M , σ 2
R ) in red

represent conditions under which sex is advantageous (see Ap-
pendix A 3 for the contribution of the mutational load). 	� <

	� for large σ 2
R in both (1) and (2), and additionally for small

σ 2
M and σ 2

R in (2). (b) Fraction N�/(N� + N�) of sexually re-
producing individuals after T = 250 generations when starting
from an initial population with an equal proportion of sexually
and asexually reproducing individuals (N� = N� at t = 0). The
simulations are performed under conditions where the total popu-
lation size is maintained to N = N� + N� = 250 and where each
mature individual has k = 2 offsprings, and the results corre-
spond to averages over 100 independent simulations (Appendix F).
(c) Mean value of the modifier gene ψ that controls the probability
to reproduce sexually in a model where this probability is subject to
evolution, following Eq. (14). The results are averages over 100 repli-
cate simulations starting from N = 250 individuals with γ = 0 and
ψ = 0, and ending after t = 250 generations with a total population
size maintained to N = 250. For the smallest values of σ 2

M and σ 2
R ,

no difference is observed (in white) and evolving towards one mode
of reproduction or the other requires a larger number of generations
(Appendix G 1). Although (a)–(c) represent different quantities ob-
tained under different assumptions, a remarkable overlap is apparent
between the conditions under which sexual reproduction is optimal
in the long run (a), overcompetes asexually reproducing populations
after a finite number of generations (b), and evolves (c).

This value has a simple interpretation: it is the value of the
segregation variance σ 2

R for which the variance of trait γ in
the population (the genetic variance) is the same for asexu-
ally and sexually reproducing populations (Appendix B 1). It
also corresponds to the value of the segregation variance σ 2

R
under a Gaussian allelic approximation where γ arises from
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(a) (b)
σ2

C

σ2
G

σ̂2
M

σ2
E

a σ2
M

σ2
R

σ̂2
M(1) (2)

FIG. 3. (a) Optimal mutational variance σ̂ 2
M for asexually re-

producing populations as a function of (a, σ 2
E ). The conditions (1)

and (2) of Fig. 2 are indicated by crosses. When σ 2
E < 2(1 − a)/

(1 + a), we have σ̂ 2
M = 0 (white region). This condition corresponds

to environmental fluctuations of sufficiently small amplitude σ 2
E

but also, less intuitively, of sufficiently small temporal correlations
τE = −1/ ln a. Informally, trying to keep up with a rapidly varying
environment through random variations incurs a large mutational
load that can make preferable the maintenance of a fixed trait γ = 0
around which the optimal trait fluctuates. (b) Thresholds σ 2

G (ascend-
ing, in blue) and σ 2

C (descending, in red) separating the different
regimes, here represented for the environmental conditions (2) of
Fig. 2. The threshold σ 2

G is, however, independent of the environmen-
tal conditions. The two curves meet at the value σ̂ 2

M of σ 2
M represented

in (a) (black dotted line). When σ̂ 2
M = 0, the threshold σ 2

C in red is
effectively absent, as illustrated by the environmental conditions (1)
of Fig. 2 (see also Appendix G 2 for the dependence on the stringency
of selection σ 2

S ).

a large number of alleles, γ = ∑L
i=1 γi, with each γi assumed

to be normally distributed in the population [44] (Appendix
B 2); in this model, the equivalence between genetic variances
of asexually and sexually reproducing populations is in fact
valid at any generation, beyond any steady-state assumption
(Appendix B 2).

An equivalence of genetic variances is a sufficient but non
necessary condition for the growth rates 	� and 	� to be
the same. The second threshold function σ 2

C corresponds to
another solution, which exists only under some conditions,
including condition (2) of Fig. 2 but not condition (1). It
crosses σ 2

G at a particular value σ̂ 2
M of σ 2

M that has a simple
interpretation: it is the value of σ 2

M that optimizes the growth
rate of asexual populations under the same environmental
conditions. When σ 2

R < σ 2
G, σ 2

C sharply decreases at a value
of σ 2

M only slightly above σ̂ 2
M . This may be interpreted as

follows: sexual reproduction effectively decreases the muta-
tional variance σ 2

M , which is beneficial when σ 2
M > σ̂ 2

M but
detrimental when σ 2

M < σ̂ 2
M . In the limit σ 2

R → 0, this reduc-
tion of variance may be interpreted as a form of blending
inheritance. The value of σ̂ 2

M depends on environmental pa-
rameters [Fig. 3(a)]. Remarkably, for sufficiently moderately
varying environments, defined by σ 2

E < 2(1 − a)/(1 + a), we
have σ̂ 2

M = 0 and sexual reproduction is therefore advanta-
geous whenever σ 2

R < σ 2
G, irrespective of the value of σ 2

M .
This is illustrated by condition (1) of Fig. 2, which is thus
representative of a large class of environmental conditions.

Our results are directly comparable to those of
Charlesworth [35] who analyzed an equivalent model using
a different parametrization and under the assumption that
the genetic variance of sexual populations is larger, which
corresponds to restricting to σ 2

R > σ 2
G.

We assumed so far k� = k�. Taking instead k� = k�/2,
which corresponds to an intrinsic twofold cost of sex, the
conditions for sexual reproduction to be advantageous over
asexual reproduction are more stringent. We find that sex can
be favored only in one of the four regimes described defined
in Fig. 3(b): when σ 2

G < σ 2
R < σ 2

C , provided σ 2
E is sufficiently

large (Appendix G 3). As populations are prone to extinction
in largely varying environments, an additional condition is
that each female produces in average a sufficiently large num-
ber k� of offsprings (Appendix G 4).

C. Sexual versus asexual reproduction: Evolution

Optimality of a trait at the population level is generally
not sufficient to ensure that it may effectively evolve. To
study this question, we generalize our basic model to include
a genetic factor ψ that controls how individuals reproduce.
Specifically, we assume that an individual with genotype ψ

reproduces sexually with a probability P(ψ ) by mating with
a randomly chosen individual, and asexually otherwise. We
further assume the modifier gene ψ to be transmitted through
the females and subject to the same mutational variance σ 2

M
as γ . This corresponds to leaving Eq. (3) unchanged but
replacing Eq. (4) by

Nt+1(γ ′, ψ ′)

= k
∫

dγ�dψ�

{
P(ψ�)

∫
dγ�dψ�H�(γ ′|γ�, γ�)

× Mt (γ�, ψ�)

Mt
+ [1 − P(ψ�)]H�(γ ′|γ�)

}

× H�(ψ ′|ψ�)Mt (γ�, ψ�). (14)

We take P(ψ ) = 1/(1 + e−ψ ) so as to map ψ ∈ R into
P(ψ ) ∈ [0, 1] through a simple monotonic function that per-
mits the evolution towards P(ψ ) � 0 or P(ψ ) � 1 when
ψ takes large absolute values. The results indicate that
sexual reproduction typically evolves whenever sexual re-
production is advantageous [Fig. 2(c)]. The conclusions
derived from a comparison between long-term growth rates
can therefore be obtained as the result of an evolutionary
process.

D. Dioecy and sexual dimorphism: Optimality

Dioecy opens the possibility of an asymmetry between the
sexes. In our model, the two sexes share a common distribu-
tion of genotypes γ but may display different phenotypes as
a result of different developmental variances σ 2

D,� and σ 2
D,�.

To investigate whether a phenotypic dimorphism may confer
an evolutionary advantage, we optimize the long-term growth
rate 	� over the two sex-specific developmental variances
σ 2

D,� and σ 2
D,� in a context where all other parameters are

fixed. We find that environmental conditions indeed exists
under which a dimorphism is advantageous [Fig. 4(a)]. These
conditions take a particularly simple form in the limit of
small genetic variations, σ 2

M + σ 2
R 
 σ 2

S , where a nonzero
female developmental variance σ̂ 2

D,� = σ 2
E − σ 2

S is advanta-
geous when the variance of the environmental fluctuations is
large (σ 2

E > σ 2
S ) while a nonzero male developmental variance
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∞
σ2

E

a

σ2
E

σ2
E

σ2
E

a

σ̂2
D,

σ̂2
D,

σ2
D,

σ2
D,

(b)(a)

FIG. 4. (a) Optimal female and male developmental variances
as a function of environmental conditions (a, σ 2

E ) for dioecious
populations with σ 2

M + σ 2
R = 10−2. In the limit σ 2

M + σ 2
R → 0, σ̂ 2

D,�

is nonzero when σ 2
E > σ 2

S (with here σ 2
S = 1) and σ̂ 2

D,� when a <

1/3, in which case it is in fact infinite. (b) Evolutionary results of
numerical simulations over T = 250 generations with populations
of size N = 250 where the developmental variances are subject to
evolution, following Eq. (15). The gray points for large values of σ 2

E

correspond to cases where more than 10% of the 100 populations that
were independently simulated became extinct. The results for 〈σ 2

D,�〉
reflect here the initial conditions, which correspond to σ 2

D,• = 1
(Appendix G 6). They are also contingent to the mode of transmis-
sion of the modifier genes (Appendix G 7).

σ 2
D,� = ∞ is advantageous when the timescale of the environ-

mental fluctuations is short (a < 1/3).
The selective pressure on the two developmental vari-

ances is, however, on different scales as 	�(σ 2
D,�, σ

2
D,�) �

	0(σ 2
D,�) + 	1(σ 2

D,�, σ
2
D,�)(σ 2

M + σ 2
R )/σ 2

S when σ 2
M + σ 2

R 

σ 2

S (Appendix A 5 b). Consequently, the selective pressure
on male developmental variances is much weaker than the
selective pressure on female developmental variances. Be-
sides, an infinite developmental variance (σ̂ 2

D,� = ∞) is

conceivable only in populations of infinite size. With finite
populations, an upper bound on σ 2

D,� arises from the need
to maintain a sufficient number N�,min of surviving males at
each generation, which takes the form σ 2

D,� 
 N2
�,min when

σ 2
M + σ 2

R 
 σ 2
S (Appendix C). All together, an asymmetry

between the two sexes is not only present in the optimal values
of their developmental variances but also in the strength of the
selective pressure to which these developmental variances are
subject.

Because the contribution of σ 2
D,� to the growth rate

	�(σ 2
D,�, σ

2
D,�) is of order σ 2

M + σ 2
R , the growth rate of dioe-

cious populations with optimal developmental variances σ̂ 2
D,�

and σ̂ 2
D,�, does not exceed significantly the growth rate of

monoecious populations with optimal developmental vari-
ance σ̂ 2

D,� (Appendix G 5). For the basic model introduced
in Sec. II C, we therefore reach the conclusion that sexual
dimorphism is not sufficient to overcome the twofold cost of
males that dioecious populations incur compared to monoe-
cious populations. As we show below, this twofold cost can
be overcome when the model includes a mutational bias or
directional selection (Sec. III G).

Finally, we may question the assumption that the segre-
gation variance takes a fixed value σ 2

R independent of the
developmental variances. Under the Gaussian allelic model,
for instance, σ 2

R = σ 2
G, and Eq. (13) can be generalized to

show that σ 2
G depends on σ 2

D,� and σ 2
D,� (Appendix B 2). Re-

peating the analysis under this assumption leads, however, to
similar results, indicating that the adaptive advantage of sex-
ual dimorphism is robust to the exact form that the segregation
variance σ 2

R takes (Appendix G 5).

E. Dioecy and sexual dimorphism: Evolution

To analyze whether sexual dimorphism may evolve despite
the reserves that we made, we augment the model to include
two modifier genes δ� and δ� that control developmental vari-
ances of each sex specifically. This corresponds to recursions
of the form

M•,t (γ , δ�, δ�) = 1

2

∫
dφS(�|φ, xt )D(φ|γ , δ•)Nt (γ , δ�, δ�) (• = �,�),

Nt+1(γ ′, δ′�, δ′�) = k
∫ ∏

•=�,�
dγ•dδ�• dδ�• H (δ′•|δ•

�, δ
•
�)H�(γ ′|γ�, γ�)

M�,t
(
γ�, δ

�

�
, δ�

�

)
M�,t

M�,t
(
γ�, δ

�
�, δ

�
�

)
, (15)

where D(φ|γ , δ•)=Geδ• (φ − γ ), i.e., σ 2
D,�=eδ� and σ 2

D,�=eδ� ,
a choice made to map δ• ∈ R into σ 2

D,• ∈ R+ through
a simple monotonic function, with the possibility
to easily obtain σ 2

D,• � 0 when δ• takes negative
values.

Assuming that the modifiers are transmitted through the
females, as we did in Eq. (14), corresponds to H (δ′•|δ•

�, δ
•
�

) =
H�(δ′•|δ•

�), in which case we indeed observe the evolution
of sexual dimorphism [Fig. 4(b)]. While the developmental
variances of females reach values conform to the optima de-
rived from the optimization of 	�, this is not the case for the
developmental variances of males, which are strongly depen-

dent on initial conditions, consistent with a very weak selec-
tive pressure (Appendix G 6). Besides, the results depend on
the mode by which the modifier genes are transmitted. Assum-
ing that they are subject to recombination, H (δ′•|δ•

�, δ
•
�

) =
H�(δ′•|δ•

�, δ
•
�

), or that they are separately inherited for each
sex, H (δ′•|δ•

�, δ
•
�

) = H�(δ′•|δ•
• ), leads to monomorphic pop-

ulations (Appendix G 7). We may interpret these results as a
consequence of sexual selection counteracting selection at the
population level. Transmitting modifiers through the females
is indeed special in this respect, as males at one generation do
not inherit any direct information from males of the previous
generation.
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σ2
M

σ2
R

σ2
M

σ2
R

(b)(a)
σ2

D = 0

σ2
D = 1

σ2
D = 10

FIG. 5. (a) Extension of Fig. 3(b) to different values of devel-
opmental variances σ 2

D. The blue ascending curve corresponds to
σ 2

G, the value of the segregation variance σ 2
R above which sexual

populations have larger genetic variance than asexual populations.
The red descending curve corresponds to σ 2

C , such that sex is ad-
vantageous when σ 2

G < σ 2
R < σ 2

C or σ 2
C < σ 2

R < σ 2
G. Full lines are for

σ 2
D/σ 2

S = 0 as in Fig. 3(b), dashed lines for σ 2
D/σ 2

S = 1 and dotted
lines for σ 2

D/σ 2
S = 10. When σ 2

D/σ 2
S = 10, we have σ 2

C → −∞ and
the corresponding line is therefore absent, as in case (1) of Fig. 2.
(b) Similar to (a) but for a directionally varying environment with
c = 0.1, a = 0, σ 2

E = 0. The curves for σ 2
G, which do not depend

on the environment, are identical to (a). The curves for σ 2
C , on the

other hand, are shifted to larger values with increasing developmental
variances σ 2

D. Additionally, there are now conditions for which a
twofold cost for sex is overcome (	� > 	� + ln 2), corresponding
to values of σ 2

M on the left side of the green curves in the top left of
the graph.

F. Developmental noise and spatial heterogeneities

For simplicity, we compared so far sexual and asexual re-
production in the absence of developmental noise. Assuming
instead a finite and common developmental variance σ 2

D,� =
σ 2

D,� shifts the boundaries between the different regimes
[Fig. 5(a)]: the value of σ 2

G increases, as indicated by Eq. (13),
while the value of σ 2

C decreases.
A larger developmental variance may result from spatial

environmental heterogeneities. For instance, we may con-
sider that differences in local environments contribute to the
developmental variance, σ 2

D,tot = σ 2
D + σ 2

D,loc, or that differ-
ent local environments are associated with different optimal
phenotypes yt defining the selective pressure S(�|φ, yt ). If
these locally optimal phenotypes yt are distributed normally
around a mean optimal value xt with variance σ 2

E ,loc, the two
points of view are equivalent and formally amount to redefin-
ing the developmental variance σ 2

D by σ 2
D + σ 2

D,loc + σ 2
E ,loc

(Appendix D). Whether spatial heterogeneities favor sex has
thus no simple general answer but depends on the values of
the genetic parameters σ 2

M, σ 2
R .

G. Mutational biases and directional selection

We assumed mutations to be on average neutral but the
model can be extended to analyze cases where their aver-
age effect is cM �= 0. This corresponds to generalizing (iii)
to γ ′ = γ + ν + cM and (iv) to γ ′ = (γ� + γ�)/2 + ν + cM .
Formally, this is equivalent to introducing a systematic drift
cE in the environment, i.e., to generalize (v) to xt+1 = axt +
bt + cEt . The growth rates of the models that include cM and
cE depend indeed on these parameters only via the combina-
tion c = cE − cM . The genetic or environmental origin of this
particular constraint is therefore irrelevant.

Models with c �= 0 are in many respects similar to models
with c = 0 but a large value of a (Fig. 5 and Appendices G 3,
G 4, G 5, and G 8). This is not surprising, as the parameters
a > 1/3 and c > 0 similarly induce cross-generation environ-
mental correlations. Two differences are nevertheless worth
mentioning: the twofold cost of sex is overcome in a larger
range of conditions (Appendix G 3) and larger developmental
variances increase σ 2

C [Fig. 5(b)]. These results recapitu-
late the conclusions of Charlesworth [35] who compared
autocorrelated (a > 0, c = 0) and directed (a = 0, c > 0)
environments in the regime σ 2

R > σ 2
G and found that the

twofold cost of sex can be overcome only with directed en-
vironments. Additionally, we find here that the twofold cost
of dioecy relative to monoecy can in principle be overcome
under a sufficient mutational bias or/and directed selection
(Appendices G 9 and G 10). This corresponds, however, to
situations where the mean number k of offsprings per repro-
ductive event must be sufficiently large for the population to
escape extinction (	 > 0, Appendices G 4 and G 10). This
motivates an extension of the model to include phenotypic
plasticity, which defines a generic mechanism by which the
probability of extinction can be reduced.

H. Phenotypic plasticity

One impediment to the evolution of dioecy through sexual
dimorphism is the cost incurred by males, whose surviving
fraction may be very small (Appendix G 10). Phenotypic plas-
ticity can alleviate this effect without comprising the benefit
of sexual dimorphism at the population level.

We assumed indeed that development from γ to φ was
independent of the environment but the model can be ex-
tended to include forms of phenotypic plasticity where φ also
depends on xt . For instance, we may consider that φ = (1 −
κ )γ + κxt + ν with a reaction norm κ ∈ [0, 1] and, as before,
a developmental noise ν ∼ N (σ 2

D). The absence of plasticity
that we assumed so far corresponds to the particular case
κ = 0 (see Appendix E 2 for a generalization to nonconvex
combinations of γ and xt ).

Growth rates are trivially optimized by taking κ = 1 and
σ 2

D = 0, which effectively eliminates any effect of natural
selection since φ = xt . Constraints are expected to prevent
this optimum to be reached. One may for instance assume
that φ = (1 − κ )γ + κyt + ν where the local environment
yt experienced by an individual during development is only
partially correlated to the selective pressure, e.g., yt = xt + ν

with ν ∼ N (σ 2
L ), or subject to a delay, e.g., yt = xt−τ with

τ > 0. Growth rates can be obtained analytically in these
cases but a simpler constraint is to assume that nonzero
reaction norms κ > 0 have a direct selective cost, which
corresponds to multiplying S(�|φ, xt ) by a factor C(κ ) < 1
that is a decreasing function of κ [50]. This case can for-
mally be mapped onto the basic model with an effective
developmental variance that depends on κ (Appendix E 1).
Optimizing and evolving plasticity is therefore similar to opti-
mizing and evolving developmental variances. For instance, in
the dioecious case where the sexes may have different reaction
norms κ� and κ�, we find that in autoregressive environments
κ� has no incidence on the growth rate while κ� effec-
tively reduces σ 2

E by a factor (1 − κ�)2 (Appendix E 2). The
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optimal plasticity is then dimorphic, with κ̂� taking arbitrary
values and κ̂� setting a balance between large values of κ that
minimize the effect of natural selection and small values of
κ that maximize C(κ�). Finally, we note that while plastic
and nonplastic populations can be equivalent at the geno-
typic level, they are generally very different at the phenotypic
level, and display in particular different phenotypic variances
(Appendix E 3). In particular, plasticity allows for higher sur-
vival during maturation, with no loss at all in the extreme limit
of perfect plasticity.

IV. DISCUSSION

We studied a model of sexually reproducing population
that generalizes previous models of information process-
ing in asexual populations subject to varying environments
[7,9,10,12,13]. The long-term growth rates that we calcu-
late quantify the value of sexual reproduction and sexual
dimorphism as schemes for transmitting information between
generations. In particular, they identify genetic and environ-
mental conditions under which sexual reproduction and sexual
dimorphism are optimal and may evolve. The Gaussian model
that we solve analytically corresponds to the infinitesimal
model of quantitative genetics, which applies to complex
traits under the influence of many genes. This model plays
a fundamental role in population genetics [24], similarly to
the Gaussian channel in information theory [51]. Our general
framework, however, is not restricted to this model and can
also be applied to models with discrete traits.

In the Gaussian context, our comparison of sexual and
asexual reproductions mirrors an analysis by Charlesworth
[35], who similarly studied the environmental conditions un-
der which sexual reproduction can be adaptive. Our results
are consistent, showing that a steadily changing environment
is most favorable. We differ, however, in our parametrization
of the model and in our interpretation of some of the results.
Charlesworth compared populations with given variance of
the trait in the population (given genetic variances) assuming
that sexual reproduction leads to higher genetic variance. We
parametrize the mechanisms generating mutations and recom-
bination by two more elementary parameters, a mutational
variance σ 2

M and a segregation variance σ 2
R , from which we

derive both the genetic variance and the long-term growth rate
(fitness) of the population. We find that sexual reproduction
leads to higher genetic variance only for sufficiently large σ 2

R ,
namely σ 2

R > σ 2
G where σ 2

G is given by Eq. (13), independently
of environmental variations. As a function of the two genetic
parameters σ 2

M, σ 2
R , we therefore obtain in the most general

case four phases (Fig. 2), defined on one hand by whether
sexual reproduction increases the genetic variance, which is
independent of environmental conditions, and, on the other
hand, by whether this increase is beneficial, which depends
on the environmental conditions.

The advantage of sexual reproduction may thus be at-
tributed to its ability to purge deleterious mutations either
because it reduces variations, which can be beneficial when
the mutational variance is too high, or because it increases
them, which can be beneficial in presence of a mutational bias.
The difference is significant: the first case is akin to the reduc-
tion of diversity attributed to blending inheritance while the

second corresponds to recombination breaking down negative
linkage disequilbrium [34,52]. Similarly, varying environ-
ments may favor sexual reproduction either for providing
more beneficial variations or for reducing detrimental varia-
tions. This second case is, maybe counterintuitively, relevant
when environments vary rapidly, as for instance in presence
of coevolving pathogens [53].

An additional value of using the mutational variance σ 2
M

and the segregation variance σ 2
R as parameters is the con-

nection that it allows with the problem of optimal mutation
rate in asexual populations, where the key parameter is σ 2

M .
The optimal mutational variance σ̂ 2

M in this problem, which
depends on the fluctuations of the environment, defines indeed
the point at which the four phases meet (Fig. 3). Defining
parameters for the genetic mechanisms also leads us to notice
that a mutational bias has formally the same implications
as a directional bias. This is important as the presence of a
systematic bias towards deleterious mutation may represent
a more generic constraint than a steadily moving environ-
ment. The relevance of this constraint for the evolution of
sex has, however, been only recently stressed [54]. Our ap-
proach also suggests that the opposition that is often made
between constraints of environmental or genetical origin may
be misguided, as constraints of same origin may be of very
different nature (e.g., mutational variance versus mutational
bias) while constraints of different origin may be of same
nature (e.g., directional selection and mutational bias). A ge-
netic constraint at the level of the mutational variance appears,
however, essential for sexual reproduction to possibly confer
any adaptive advantage.

Our model also formalizes and rigorously examines the
possibility that sexual dimorphism may be adaptive in
changing environments. This possibility was proposed by
Geodakyan [25,26] but, to our knowledge, not previously
examined mathematically. Under this hypothesis, females are
more plastic or more subject to developmental noise than
males, which permits an efficient integration of environmen-
tal information while preserving fecundity: the integration
of information is performed by the males, whose pheno-
types faithfully represent their genotypes while females are
protected from direct elimination through selection by ex-
pressing phenotypes more loosely related to their genotypes.
The environmental information obtained by males then flows
to females in the next generation. This separation of roles
in information processing has been asserted to be enough to
overcome the twofold cost of dioecy with respect to monoecy,
thus providing an adaptive explanation for the ubiquitous
presence of two sexes. By quantifying the value of this infor-
mation scheme, our model shows that sexual dimorphism can
indeed confer an adaptive advantage but that its evolution is
subject to several limitations. Within our model, Geodakyan’s
scenario is therefore theoretically possible but only under
specific conditions that make it unlikely to provide a generic
explanation for the evolution of sexual dimorphism. Whether
our conclusions hold in more realistic generalization of our
model remains, however, to be examined.

While integrating different environmental and genetic
constraints and accounting for some forms of spatial hetero-
geneities and phenotypic plasticity, our model indeed rests
on strongly simplifying assumptions and cannot pretend to
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summarize the full range of factors that have been considered
to play a role in the evolution of sex [41,52]. A strong assump-
tion is that recombination can be described by a Gaussian
model with fixed segregation variance σ 2

R . This assumption,
which is known as the infinitesimal model, can be justified
when the traits arise from the additive contribution of a large
number of alleles, each contributing by an infinitesimal effect
[45]. Numerical simulations of models with a finite number
of alleles show that sexual reproduction can lead to an in-
creasing genetic variance [46,47,55]. While in contradiction
with the infinitesimal model, these studies nevertheless concur
in finding that directional selection, and therefore mutational
biases, are favorable to sexual reproduction, as the underlying
mechanism precisely rests on a larger genetic variance.

By extending to sexual reproduction the quantification of
biological information, our work invites an extension of the
explanations of biological diversity [12–16] and the formal
analogies [7,9,10,12,17–20,56,57] previously developed for
asexual populations. For instance, it would be interesting to
generalize the formulation and interpretation of the models in
terms of lineages to sexual populations whose genealogies are

not tree-like [58–60]. Our work also motivates generalizations
to account for other forms of horizontal transmission of infor-
mation between individuals.
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APPENDIX A: GROWTH RATES ��,��,��

We consider here the basic model with an environment
following xt+1 = axt + bt + ct with bt ∼ N [(1 − a2)σ 2

E ].

1. Analytical formulas

The growth rates 	• for asexual (• = �), monoecious
(• = �) and dioecious (• = �) reproduction involve the same
function L defined by

L
(
α•, η•, a, σ 2

E

/
σ 2

S , c
) = 1

2
ln(η•α•) − η•α•

[
(1 − a)

(1 − aα•)(1 + α•)

σ 2
E

σ 2
S

+ c2

2(1 − a)2(1 − α•)2

]
. (A1)

The parameters α• and η• are expressed in terms of the
following variables, defined for • = �,�,�,�:

η• = σ 2
S

σ 2
S + σ 2

D,•
, β• = σ 2

H,•
σ 2

S + σ 2
D,•

, (A2)

where σ 2
H,� = σ 2

M while σ 2
H,• = σ 2

M + σ 2
R for • = �,�,�.

For asexual reproduction, 	� = ln k + L(α�, η�,
a, σ 2

E/σ 2
S , c) with

α� = 2 + β� − √
β�(4 + β�)

2
. (A3)

For monoecious reproduction, 	� = ln k + L(α�, η�,

a, σ 2
E/σ 2

S , c) with

α� =
3 + 2β� −

√
1 + 12β� + 4β2

�

2
. (A4)

For dioecious reproduction, 	� = ln(k/2) + L(α�, η�,

a, σ 2
E/σ 2

S , c) with

α� = 1

2
(α� + α�), α� = 1

1 + β�/(1 − α�/2)
,

α� = 1

1 + β�/(1 − α�/2)
, η� = α�

α�
η�, (A5)

where α� is given implicitly as the solution of a cubic
equation.

2. Derivation of the formulas for ��,��,��

The solution makes use of the identity

lim
t→∞E[(ut − xt )

2] = 2(1 − a)σ 2
E

(1 − aα)(1 + α)
+ c2

(1 − a)2(1 − α)2
,

(A6)

which holds for ut and xt satisfying ut+1 = αut + (1 − α)xt

and xt+1 = axt + bt + ct with bt ∼ N ((1 − a2)σ 2
E ).

a Maturation

Let n•,t (γ ) = N•,t (γ )/N•,t and m•,t (γ ) = M•,t (γ )/M•,t
where N•,t = ∫

dγ N•,t (γ ) and M•,t = ∫
dγ M•,t (γ ) are the

total numbers of immature and mature individuals at gener-
ation t for • = �,�,�,�. We make the Ansätze

n•,t (γ ) = Gς2•,t
(γ − u•,t ), m•,t (γ ) = G�2•,t

(γ − v•,t ). (A7)

Given D•(φ|γ ) = Gσ 2
D,•

(γ − xt ) and S(�|φ, xt ) = (2πσ 2
S )1/2

Gσ 2
S
(φ − xt ), we have

m•,t (γ ) = 1

W•,t

∫
dφS(�|φ, xt )D•(γ |xt )n•,t (γ ) (A8)

with

W•,t = (
2πσ 2

S

)1/2
Gσ 2

S +σ 2
D,•+ς2•,t

(u•,t − xt ), (A9)

v•,t = α•,t u•,t + (1 − α•,t )xt , (A10)

�2
•,t = α•,tς2

•,t , (A11)

α•,t = σ 2
S + σ 2

D,•
σ 2

S + σ 2
D,• + ς2•,t

. (A12)
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b Asexual reproduction

nt+1,�(γ ′)=k−1W −1
�,t

∫
dγ H�(γ ′|γ )m�,t (γ ) with H�(γ ′|γ )=

Gσ 2
H,�

(γ ′ − γ ) so we have

u�,t+1 = v�,t , (A13)

ς2
�,t+1 = �2

�,t + σ 2
H,�. (A14)

The genetic variance ς2
�,t reaches a fixed point ς2

� =
σ 2

H,�/(1 − α�) with α� given by

α� = σ 2
S + σ 2

�

σ 2
S + σ 2

� + σ 2
H,�/(1 − α�)

. (A15)

This is a quadratic equation for α� whose solution is given by
Eq. (A3). We have

	� = ln k + lim
t→∞E[ln W�,t ]

= ln k + 1

2
ln

σ 2
S

σ 2
S + σ 2

� + ς2
�

− 1

2

limt→∞ E[(u�,t − xt )2]

σ 2
S + σ 2

� + ς2
�

.

(A16)

Using Eq. (A6), this leads to 	� = ln k + L(α�, η�, a,

σ 2
E/σ 2

S , c).

c Monoecious sexual reproduction

nt+1,�(γ ′)=k−1W −1
�,t

∫
dγ H�(γ ′|γ�, γ�)m�,t (γ�)m�,t (γ�)

with H�(γ ′|γ�, γ�) = Gσ 2
H

[γ ′ − (γ� + γ�)/2] so we have

u�,t+1 = v�,t , (A17)

ς2
�,t+1 = �2

�,t/2 + σ 2
H,�. (A18)

The genetic variance ς2
�,t reaches a fixed point ς2

�
= σ 2

H,�/

(1 − α�/2) with α� given by

α� = σ 2
S + σ 2

�

σ 2
S + σ 2

�
+ σ 2

H,�
/(1 − α�/2)

. (A19)

This is a quadratic equation for α� whose solution is given by
Eq. (A4). We have

	� = ln k + lim
t→∞E[ln W�,t ]

= ln k + 1

2
ln

σ 2
S

σ 2
S + σ 2

�
+ ς2

�

− 1

2

limt→∞ E[(u�,t − xt )2]

σ 2
S + σ 2

�
+ ς2

�

,

(A20)

which using Eq. (A6) leads to 	� = ln k + L(α�, η�, a,

σ 2
E/σ 2

S , c).

d Sexual reproduction

nt+1,�(γ ′)=k−1W −1
�,t

∫
dγ H�(γ ′|γ�, γ�)m�,t (γ�)m�,t (γ�)

with H�(γ ′|γ�, γ�) = Gσ 2
H

[γ ′ − (γ� + γ�)/2] so we have

u�,t+1 = (v�,t + v�,t )/2, (A21)

ς2
�,t+1 = (

�2
�,t + �2

�,t

)/
4 + σ 2

H,�, (A22)

where σ 2
H,� = σ 2

M + σ 2
R . The genetic variance ς2

�,t reaches a
fixed point ς2

� = σ 2
H,�/(1 − α�/2) with α� given by

α� = 1

2
(α� + α�), (A23)

α� = σ 2
S + σ 2

D,�

σ 2
S + σ 2

D,� + σ 2
H,�/(1 − α�/2)

, (A24)

α� = σ 2
S + σ 2

D,�

σ 2
S + σ 2

D,�
+ σ 2

H,�/(1 − α�/2)
. (A25)

This is a cubic equation for α�. We have

	� = ln
k

2
+ lim

t→∞E[ln W�,t ]

= ln
k

2
+ 1

2
ln

σ 2
S

σ 2
S + σ 2

D,� + ς2
�

− 1

2

limt→∞ E[(u�,t − xt )2]

σ 2
S + σ 2

D,� + ς2
�

, (A26)

which using Eq. (A6) leads to 	� = ln(k/2) + L(α�, η�, a,

σ 2
E/σ 2

S , c).

3. Mutational load

As seen in Eqs. (A16), (A20), and (A26), the growth rate
is generally the sum of three terms,

	• = ln k• + 1

2
ln

σ 2
S

σ 2
S + σ 2• + ς2•

+ L•, (A27)

where

L• = −1

2

limt→∞ E[(u•,t − xt )2]

σ 2
S + σ 2• + ς2•

(A28)

reports the cost due to the lag between the mean trait u•,t and
the optimal trait xt , which is called the mutational load. We
show in Fig. 6 how it contributes to the results of Fig. 2(a).

4. Joint optimization over mutational, segregational,
and developmental variances

Here we show that if we optimize over all the internal
parameters that are in principle subject to evolution, namely,
σ 2

M , σ 2
R , and σ 2

D, then asexual and sexual reproductions lead to
identical growth rates. Any difference must therefore rely on
constraints on these parameters.

Taking without loss of generality σ 2
S = 1 and k = 1, we

have

sup
σ 2

H ,σ 2
�

	�

(
σ 2

H , σ 2
� , a, σ 2

E , c
)

= sup
σ 2

H ,σ 2
�

	�

(
σ 2

H , σ 2
�, a, σ 2

E

)
= sup

(α,η)∈[0,1]2

L
(
α, η, a, σ 2

E , c
)

(A29)

since 	• = L(α•, η•, a, σ 2
E ) for • = � and • = � where in

both cases η• spans [0,1] when varying σ 2
D,• in [0,∞[ and,

given σ 2
D,•, α• spans [0,1] when varying σ 2

H . Besides, the
optimal values σ̂ 2

� and σ̂ 2
�

are identical. The values of α̂� and
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a = 0.75, σ2
E = 1a = 0.25, σ2

E = 1 a = 0, σ2
E = 0

c = 0.1c = 0 c = 0

σ2
R

σ2
R

Λ − Λ

(1) (2) (3)

σ2
M σ2

M σ2
M

L − L

(a)

(b)

FIG. 6. (a) As in Fig. 2(a), difference 	� − 	� between the
growth rate of sexual and asexual populations as a function of
the mutational variance σ 2

M and the segregation variance σ 2
R for

three different dynamics of the environment. (b) Contribution of
the mutational load L� − L� defined in Eq. (A28) to the difference
	� − 	�, showing in particular that it does not explain the results in
condition (1).

α̂� are also identical, which corresponds to values of optimal
of σ 2

H that generally differ but are nonzero for the same range
of environmental parameters (σ 2

H = σ 2
M in the asexual case

and σ 2
H = σ 2

M + σ 2
R in the sexual case).

Similarly,

sup
σ 2

H ,σ 2
D,�,σ

2
D,�

	�

(
σ 2

H , σ 2
D,�, σ

2
D,�, a, σ 2

E , c
)

= sup
(α,η)∈[0,1]2

L
(
α, η, a, σ 2

E , c
) − ln 2 (A30)

since η� spans [0,1] when varying σ 2
D,�, σ

2
D,� in [0,∞[2 at

any value of σ 2
H and α� spans [0,1] when varying σ 2

H in
[0,∞[ at any value of σ 2

D,�, σ
2
D,�. The environments in which

σ 2
H , σ 2

D,�, σ
2
D,� can be nonzero is again identical to the asex-

ual case but now the maximum can be reached for several
values of the variables. The main difference with the sexual
and monoecious cases is, however, the term − ln 2, which
corresponds to the twofold cost of males.

5. Scaling limit σ2
M + σ2

R → 0

a Scaling limit of the growth rates �•

Let σ 2
H = σ 2

M in the asexual case and σ 2
H = σ 2

M + σ 2
R in the

sexual case. The limit σ 2
H → 0 corresponds to the limit α →

1. Taking ε = 1 − α as small parameter we have L(α = 1 −
ε, η, a, σ 2

E , c) = L0(ε, η, a, σ 2
E , c) + o(ε) with

L0
(
ε, η, a, σ 2

E , c
) = 1

2

(
ln η − ησ 2

E

)
− 1

2

(
1 − 1

2

1 + a

1 − a
ησ 2

E

)
ε

− 1

2
η

c2

(1 − a)2
(1 − ε)ε−2. (A31)

This quantity diverges when ε → 0 if c > 0 which corre-
sponds to the fact that a finite mutational variance is necessary

to cope with a systematically changing environments. Only
if c scales with εr and r � 2 is it possible to sustain such a
change with a vanishing mutational variance, a situation that
may arise if c is a mutational bias that itself vanishes with the
rate of mutations.

ε has different scalings with σ 2
M and σ 2

R depending on the
mode of reproduction:

ε� ∼ η
1/2
� σM , (A32)

ε� ∼ 2η�
(
σ 2

M + σ 2
R

)
, (A33)

ε� ∼ (η� + η�)
(
σ 2

M + σ 2
R

)
. (A34)

b Scaling limit of the difference �� − ��

In this limit, σ 2
G ∼ η

1/2
�

σM/2 so 	� > 	� if σ 2
R ∼ σ

q
M

with q < 2 and 	� < 	� if σ 2
R ∼ σ

q
M with q > 2. For c = 0,

the sign of 1 − (1/2)(1 + a)/(1 − a)ησ 2
E also matters, which

corresponds to the condition for σ̂ 2
M = 0 and the qualitative

difference between conditions (1) and (2) in Fig. 2.

c Scaling limit of the optimal developmental variances σ2
D,�

and σ2
D,� when c = 0

For • = � and c = 0, we have

	� � 1

2

(
ln η� − η�σ

2
E

) − ln 2 − 1

2

[(
1 − η�σ

2
E

)
(η� − η�)

+
(

1 − 1

2

1 + a

1 − a
η�σ

2
E

)
(η� + η�)

]
σ 2

H . (A35)

To leading order in σ 2
H , 	� depends on η� but not on η�

with the optimal value σ̂ 2
D,� = max(0, σ 2

E − 1). To first order
in σ 2

H , ∂	�/∂η�(η̂�) = −(1 − 3a) min(1, σ 2
E )σ 2

H/[4(1 − a)]
so σ̂ 2

D,� = 0 if a > 1/3 and σ̂ 2
D,� = ∞ if a < 1/3. Effectively,

what is needed in this second case is η�σ 2
H 
 1 or σ 2

H 

1 + σ 2

D,�, which does not necessarily requires σ 2
D,� to be very

large when σ 2
H is small. Finally, we note that 	̂� − 	̂� =

	̂� − 	̂� = − ln 2 when σ 2
H = 0.

d Scaling limit σ2
M + σ2

R → 0 when a = 0, σ2
E = 0 but c �= 0

When σ 2
H = σ 2

M + σ 2
R is small relative to σ 2

S = 1, and
a = 0, σ 2

E = 0, we have

	� � 1

2
ln η� − c2

8η�σ 4
H

, (A36)

	� � 1

2
ln η� − η�c2

2(η� + η�)2σ 4
H

− ln 2. (A37)

Since η• = 1/(1 + σ 2
D,•) ∈]0, 1], the maximum of 	� is

achieved for σ̂ 2
D,� = 0 and the maximum of 	� relative to

σ 2
D,� for σ̂ 2

D,� = 0. The maximum of 	� relative to σ 2
D,�

is, on the other hand, nontrivial when c is sufficiently large
(Appendix G 10), and scales with c as σ̂ 2

D,� ∼ c2/σ 4
H . More

generally, all quantities depend on c and σ 2
H via the c/σ 2

H
with for instance the fraction of surviving males scaling as
M�/N� ∼ e−c2/σ 4

H .
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e Scaling limit of σ̂2
M when c → 0

The value of σ 2
M that optimize 	� is never zero when c > 0,

but it decreases sharply as c → 0. When a = 0 and σ 2
E = 0,

we have indeed 	� = (1/2) ln(η�α�) − η�α�c2/[2(1 − α)2]
with α� ∼ 1 − η

1/2
� σM when σ 2

M 
 σ 2
S , so that

	� � 1

2
ln η� − 1

2
η

1/2
� σM − c2

2σ 2
M

. (A38)

The optimum is for σ̂ 2
M = (4c2/η�)2/3 showing that σ̂ 2

M de-
creases with c as c4/3.

APPENDIX B: THRESHOLD VALUES
OF THE SEGREGATION VARIANCE

1. Formula for σ2
G

A sufficient (but non-necessary) condition for having
	� = 	� when σ 2

D,� = σ 2
D,� is that α� = α�. Given β� =

(σ 2
M + σ 2

R )/(σ 2
S + σ 2

D) = β� + σ 2
R/(σ 2

S + σ 2
D), this equation

can be solved in σ 2
R to obtain

σ 2
G = σ 2

M

4

[√
1 + 4

σ 2
S + σ 2

D

σ 2
M

− 1

]
. (B1)

When σ 2
R = σ 2

G, it follows from Eq. (A12) that the asexual and
sexual populations have identical genetic variances: ς2

� = ς2
�

.

2. Gaussian allelic approximation

One way to achieve σ 2
R = σ 2

G is to assume an infinitesimal
model where γ = ∑L

i=1 γ i where L is the number of loci and
γ i the contribution of the allele at locus i. Starting from two
parents with alleles γ i

� and γ i
�

, the process of recombination
is assumed to lead to offspring with alleles γ i

� such that γ i
� =

γ i
� or γ i

� = γ i
�

independently for each i with probability 1/2
(Mendelian sampling).

This prescription is sufficient to conclude that E[γ�] =
(γ� + γ�)/2 where the expectation is relative to Mendelian
sampling conditionally to the values of γ� and γ�. For
each locus i, we have indeed E[γ i

�] = (1/2)γ i
� + (1/2)γ i

�
and

therefore E[γ�] = E[
∑

i γ
i
�] = ∑

i E[γ i
�] = (γ� + γ�)/2.

It is not sufficient, however, to derive the segregation vari-
ance σ 2

R = Var[γ�] = E[γ 2
� ] − E[γ�]2. We have indeed

E
[(

γ i
� − E

[
γ i
�

])2] = 1

2

(
γ i
� − γ i

� + γ i
�

2

)2

+ 1

2

(
γ i
� − γ i

� + γ i
�

2

)2

=
(
γ i
� − γ i

�

)2

4
(B2)

and therefore

E[
(
γ� − E[γ�]

)2
] = E

[(∑
i

(
γ i
� − E

[
γ i
�

]))2]

=
∑

i

E
[(

γ i
� − E

[
γ i
�

])2]

=
∑

i

(
γ i
� − γ i

�

)2

4
, (B3)

where we use the assumption that alleles are sampled inde-
pendently.

Here we need the variance of the distribution of alleles,
and not just its mean, to conclude. Let σ 2

�,� and σ 2
�,� be these

variances, i.e., σ 2
�,• = 1

L

∑
i(γ

i
• − γ•)2 for • = �,�. Then

E[(γ� − E[γ�])2] = 1

4

∑
i

(
γ i
� − γ i

�

)2

= L

4

[
(γ� − γ�)2 + σ 2

�,� + σ 2
�,�

]
. (B4)

We can proceed by making the additional assumption that
alleles are themselves distributed normally independently of
each other (the Gaussian allelic approximation). If the dis-
tribution of parental genotypes in the population of mature
individual is itself Gaussian with variances �2

�,t and �2
�,t

(which are identical in the monoecious case), as in our model,
then the central limit theorem constrains the variance of the
alleles σ 2

�,� and σ 2
�,� to be respectively σ 2

�,� = L�2
�,t and σ 2

�,� =
L�2

�,t . In the limit L → ∞, we then have the simple result

σ 2
R = �2

�,t + �2
�,t

4
. (B5)

The variances �•,t are given in Eq. (A11) by

�2
•,t = α•,tς2

•,t = σ 2
S + σ 2

D,•
σ 2

S + σ 2
D,• + ς2•,t

ς2
•,t . (B6)

In the particular case of monoecious populations, this corre-
sponds to

σ 2
R = 1

2

σ 2
S + σ 2

D,�

σ 2
S + σ 2

D,�
+ ς2

�,t

ς2
�,t . (B7)

Comparing asexually reproducing and monoecious popula-
tions with same developmental variance σ 2

D,� = σ 2
D,�, we have

therefore the two recursions

ς2
�,t+1 = σ 2

S + σ 2
D

σ 2
S + σ 2

D + ς2•,t
ς2

•,t + σ 2
M , (B8)

ς2
�,t+1 = 1

2

σ 2
S + σ 2

D

σ 2
S + σ 2

D + ς2•,t
ς2

•,t + σ 2
M + σ 2

R , (B9)

which are strictly identical at any generation t when σ 2
R is

given by Eq. (B7). In particular, in t → ∞ limit we obtain
again ς2

� = ς2
�

.

APPENDIX C: FINITE POPULATION SIZE EFFECTS
ON MALE PHENOTYPIC VARIANCES

For asexual and hermaphroditic population the growth rate
	• with • = �,� can be written as 	• = ln k + K• where

K• = lim
t→∞E

[
ln

M•,t
N•,t−1

]

= 1

2
ln ρ• − ρ•

[
(1 − a)

(1 − aα•)(1 + α•)

σ 2
E

σ 2
S

+ c2

2(1 − a)2(1 − α•)2

]
(C1)
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(a)

(b)

ψ

ψ

T

T

(2) σ2
R = σ2

M = 10−2

(1) σ2
R = σ2

M = 5.10−2

FIG. 7. Figure 2(c) is the result of numerical simulations where
the population size is N = 250 and the number of generations is
T = 250. When increasing these numbers, the mean value of modi-
fier, 〈ψ〉, takes larger absolute values. (a) Condition (1) of Fig. 2(c) at
σ 2

R = σ 2
M = 5.10−2. (b) Condition (2) of Fig. 2(c) for σ 2

R = σ 2
M =

10−2. These values correspond to white zones in Fig. 2(c) where no
selection is apparent. Here we see that considering a larger number
of generations makes 〈ψ〉 larger in the first case and smaller in the
second case, consistent with predictions based on 	� − 	�. As in
Fig. 2(c), these results are averages over 100 simulations. Unsurpris-
ingly, they are more stochastic for smaller population size.

and where M•,t/N•,t−1 represents the fraction of surviving
individuals of type • at generation t ,

M•,t

N•,t−1
=

∫
dγ dφ

∫
dφ S(�|φ, xt )D•(φ|γ )n•,t−1(γ ). (C2)

For dioecious populations, the growth rate 	� is controlled
by the fraction of surviving females, 	� = ln(k/2) + K�

where

K� = lim
t→∞E

[
ln

M�,t

N�,t−1

]

= 1

2
ln ρ� − ρ�

[
(1 − a)

(1 − aα�)(1 + α�)

σ 2
E

σ 2
S

+ c2

2(1 − a)2(1 − α�)2

]
. (C3)

The fraction of surviving males, on the other hand, does not
enter explicitly into the growth rate 	� but we can similarly
define and compute

K� = lim
t→∞E

[
ln

M�,t

N�,t−1

]

= 1

2
ln ρ� − ρ�

[
(1 − a)

(1 − aα�)(1 + α�)

σ 2
E

σ 2
S

+ c2

2(1 − a)2(1 − α�)2

]
(C4)

σ2
M

σ2
R

σ2
M σ2

M

a = 0.25, c = 0 a = 0.75, c = 0 a = 0, c = 0.1

σ2
E = 1

σ2
E = 5

σ2
E = 1

σ2
E = 5 σ2

E = 5

σ2
M

σ2
R

σ2
M σ2

M

(a)

(b)

σ2
E = 0

σ2
M

σ2
R

σ2
M σ2

M

a = 0.25, c = 0 a = 0.75, c = 0 a = 0, c = 0.1

σ2
E = 1

σ2
E = 5

σ2
E = 1

σ2
E = 5 σ2

E = 5

σ2
M

σ2
R

σ2
M σ2

M

(c)

(d)

σ2
E = 0

σ2
D = 0

σ2
D = 10

FIG. 8. For different environmental conditions indicated on the
top, values of σ 2

M , σ 2
R for which 	� < 	� in blue (for large σ 2

M and
large σ 2

R ), 	� < 	� < 	� in red (for large σ 2
M and small σ 2

R ) and
	� < 	� in yellow (for small σ 2

M and intermediate values of σ 2
R ),

given that we always have 	� = 	� − ln 2. The yellow regions thus
correspond to genetic and environmental constraints under which
the twofold cost of dioecy is overcome. (a) Same three conditions
as in Fig. 2. (c) With σ 2

D = 10 instead of σ 2
D = 0. (b) Correspond-

ing conditions with σ 2
E = 5 and σ 2

D = 0. (d) With σ 2
D = 10. The

twofold cost of sex is possibly overcome only when σ 2
G < σ 2

R < σ 2
C

(see also Fig. 10).

with

ρ� = σ 2
S

σ 2
S + σ 2

D,�
+ σ 2

H

/
(1 − α�/2)

. (C5)

K� controls the typical number of surviving males, which
is eK•N if N is the typical total number of newly born males. A
necessary condition for the population to survive is therefore
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σ2
M

σ2
R

σ2
M

σ2
R

(b)(a)

σ2
S = 1

σ2
S = 10

σ2
S = 0.1

FIG. 9. (a) Extension of Fig. 3(b) to different values of the
stringency of selection σ 2

S (for σ 2
D = 0). The blue ascending curve

corresponds to σ 2
G, the value of the segregation variance σ 2

R above
which sexual populations have larger genetic variance than asexual
populations. The red descending curve corresponds to σ 2

C , such that
sex is advantageous when σ 2

G < σ 2
R < σ 2

C or σ 2
C < σ 2

R < σ 2
G. The

different styles of line correspond to different values of σ 2
S : full line

for σ 2
S = 10, dashed line for σ 2

S = 1, and dotted line for σ 2
S = 0.1.

(b) Similar to A but for a directionally varying environment with
c = 0.1, a = 0, σ 2

E = 0. The curves for σ 2
G, which do not depend

on the environment, are identical to (a). The curves for σ 2
C , on the

other hand, differ. Additionally, there are now conditions for which
a twofold cost for sex is overcome (	� > 	� + ln 2), corresponding
to values of σ 2

M on the left side of the green curves in the top left of
the graph.

K� > − ln N , which imposes an upper bound on σ 2
D,� since

K� → −∞ when σ 2
D,� → 0.

In the limit σ 2
H → 0 and c = 0, we have, with σ 2

S = 1,

K• � −1

2

[
ln

(
1 + σ 2

D,•
) + σ 2

E

1 + σ 2
D,•

]
(C6)

for • = �,�,�,�. Assuming further σ 2
D,• 
 σ 2

E , K• �
− ln σD,• and the condition K� > − ln N becomes σD,� <

N , or equivalently. Given the assumption σ 2
D,� 
 σ 2

E , this
bounds applies whenever N 
 σE . The phenotypic variance
of male is limited by population size with a quadratic scaling:
σ 2

D,�/σ 2
S < N2.

APPENDIX D: SPATIAL HETEROGENEITIES

We consider two types of spatial heterogeneities that we
show to be equivalent. First, we allow differences in local
environments to contribute to the developmental variance,
σ 2

D,tot = σ 2
D + σ 2

D,loc. Second, we allow different local envi-
ronments, associated with different optimal phenotypes yt ,
to enter into the selection S(�|φ, yt ), where we assume that
these locally optimal phenotypes yt are distributed normally
around a mean optimal value xt with variance σ 2

E ,loc.
In absence of spatial heterogeneities, we have Mt (γ ) =

S̃(γ , xt )Nt (γ ) with an effective selection given by

S̃(γ , xt ) = (
2πσ 2

S

)1/2
Gσ 2

S +σ 2
D
(γ − xt ). (D1)

In presence of spatial heterogeneities, with S(�|φ, yt ) =
(2πσ 2

S )1/2Gσ 2
S
(φ − yt ), yt ∼ N (xt , σ

2
E ,loc) and D(φ|γ ) =

Gσ 2
D+σ 2

D,loc
(φ − γ ), the effective selection becomes

S̃(γ , xt ) =
∫

dyt Gσ 2
E ,loc

(yt − xt )
∫

dφS(�|φ, yt )D(φ|γ )

= (
2πσ 2

S

)1/2
Gσ 2

S +σ 2
D+σ 2

D,loc+σ 2
E ,loc

(γ − xt ). (D2)

(a)

(b)

σ2
E

a c

σ2
E

σ2
E

a c

σ2
E

σ2
M = 0 σ2

M = 10−3

σ̃2
R

Λ̃

FIG. 10. (a) Smallest values of σ 2
R , denoted σ̃ 2

R , at which the
twofold cost of sex is overcome, i.e., 	� − 	� = 	� − 	� − ln 2 >

0, as a function of (a, σ 2
E ) for c = 0 when σ 2

M = 0 (left) and as
a function of (c, σ 2

E ) for a = 0 when σ 2
M = 10−3. Environmental

conditions for which the twofold cost is not overcome for any value
of σ 2

R are indicated in white. (b) Values of 	� for the corresponding
value of σ 2

R , denoted 	̃� = 	�(σ 2
R = σ̃ 2

R ) (in gray in the bottom left
side of the graphs when undefined). Negative 	̃�, in blue (covering
all but a small range of parameters), correspond to situations where
extinction is nearly certain. Here the mean number of offspring is
taken to be k = 2. A larger value of k, which corresponds to adding
ln(k/2) to 	̃�, would widen the conditions under which survival is
possible.

Introducing σ 2
D,loc or σ 2

E ,loc is therefore formally equivalent to
increasing the value of σ 2

D.

APPENDIX E: PLASTICITY

1. Mapping of models with plasticity onto models
without plasticity

Models where D(φ|γ , xt ) = Gσ 2
D
[φ − (1 − κ )γ − κxt ] at a

cost C(κ ) can formally be mapped onto the basic model by
noting that the effective selection on genotypes S̃(γ , xt ) in
Eq. (D1) becomes

S̃(γ , xt ) =
∫

dφ C(κ )S(�|φ, xt )D(φ|γ , xt )

= (
2πσ 2

S

)1/2 C(κ )

1 − κ
G σ2

D+σ2
S

(1−κ )2

(γ − xt ). (E1)

The model with phenotypic plasticity is therefore formally
equivalent to the basic model with effective parameters

σ̃ 2
D = σ 2

D + [1 − C(κ )2]σ 2
S

(1 − κ )2
, σ̃ 2

S = C(κ )2

(1 − κ )2
σ 2

S . (E2)

2. Dioecy with plasticity

Generalizing for c = 0 the derivation of 	� for dioe-
cious reproduction to developmental kernels D(φ•|γ•, xt ) =
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Gσ 2
D,•

(φ• − λ•γ• − κ•xt ) for • = �,�, we obtain

	� = ln
k

2
+ 1

2
ln(η�α�)

− λ2
�η�α�

2

[(
ζ 2
�+ζ 2

�

)
(1+aα�)−2ζ�ζ�(a + α�)

]
(1 − aα�)(1 + α�)(1 − α�)

σ 2
E

σ 2
S

(E3)
with as before

α� = 1

2
(α� + α�), α• = 1

1 + β•/(1 − α�/2)
,

η� = α�

α�
η� (E4)

but

β• = λ2
•σ

2
H

σ 2
S + σ 2

D,•
, η• = σ 2

S

σ 2
S + σ 2

D,•
(E5)

and

ζ� = 1

2
(ζ� + ζ�) + 1

2
α�(ζ� − ζ�), ζ• = 1 − κ•

λ•
(E6)

for • = �,�.
When phenotypes are convex combinations of the geno-

type and the environment, i.e., λ• + κ• = 1, we have ζ• = 1
for • = �,�,� and Eq. (E3) becomes

	� = ln
k

2
+ 1

2
ln(η�α�) − λ2

�η�α�(1 − α�)

(1 − aα�)(1 + α�)

σ 2
E

σ 2
S

= ln
k

2
+ L

(
α�, η�, a, λ2

�σ
2
E/σ 2

S

)
, (E7)

which depends on λ� but not on λ�. Besides, the results of
optimizing with respect to σ 2

D,� and σ 2
D,� are obtained from

the case without plasticity by rescaling of σ 2
E .

More generally, in the limit of small σ 2
H → 0 where α =

1 − ε, we have to first order in ε(
ζ 2
� + ζ 2

�

)
(1 + aα�) − 2ζ�ζ�(a + α�) � 2(1 − a)ζ 2

� ε, (E8)

which is independent on λ�, κ� even if considering λ� + κ� �=
1 and λ� + κ� �= 1.

3. Phenotypic nonequivalence

The mapping of Eq. (E2) conceals an important difference
at the phenotypic level where we have, prior to selection,
given Nt (γ ) ∝ Gς2

t
(γ − ut ),

�t (φ) =
∫

dγ D(φ|γ )Nt (γ )

∝ Gσ 2
D+(1−κ )2ς2

t
[φ − κxt − (1 − κ )ut ], (E9)

and, after selection,

�′
t (φ) ∝ S(�|φ, xt )�t (φ)

∝ G(σ−2
S +σ−2

D,t )−1

(
φ − κσ 2

S + σ 2
D,t

σ 2
S + σ 2

D,t

xt

− (1 − κ )
σ 2

S

σ 2
S + σ 2

D,t

ut

)
, (E10)

− ln 2

+ ln 2
0

− ln 2

− ln 2 + 0.05

σ = 0 σ = σ σ = 0 σ = σ(b)(a)

σ

σ

σ

σ

σ

σ

σ̂

σ̂

Λ̂ − Λ̂ Λ̂ − Λ̂

σ̂

σ̂

a a c c

FIG. 11. (a) Extension of Fig. 4(a), which corresponds here to
the graphs on the left where σ 2

M + σ 2
R = 10−2, which formally is

equivalent to σ 2
M = 10−2 and σ 2

R = 0, to the case where σ 2
M = 10−2

and σ 2
R = σ 2

G, where σ 2
G depends on σ 2

� and σ 2
� as indicated in

Appendix B 2. The third row reports 	̂� − 	̂�, the difference of
growth rates between dioecious and monoecious populations when
optimizing over the developmental variance. This difference is never
very far from − ln 2, its value in absence of dimorphism. (b) Similar
to (a) but as a function of (c, σ 2

E ) for a = 0 instead of as function of
(a, σ 2

E ) for c = 0, where c can be interpreted either as a drift of the
environment or a mutational bias (Sec. III G). Note the difference of
scale compared to (a). Most significantly, 	̂� − 	̂� can take positive
values for sufficiently c, indicating that the twofold cost of males can
be overcome through sexual dimorphism.

where σ 2
D,t = σ 2

D + (1 − κ )2ς2
t . So even though the genetic

variances may be identical, the phenotypic variances σ 2
� =

(σ−2
S + σ−2

D,t )−1 differ depending on the presence or absence
of plasticity. For pure plasticity (κ = 1, σ 2

D = 0) we have
σ 2

� = (σ−2
S + ς−2

t )−1 while for pure noise (κ = 0, σ 2
D > 0)

we have σ 2
� = (σ−2

S + σ−2
D )−1. This is important for empirical

interpretation. Although the increase of pure plasticity is for-
mally equivalent to the increase of pure noise, the more plastic
sex has the narrower phenotypic distribution, while the more
noisy sex has the broader spread of the observed trait.

APPENDIX F: NUMERICAL SIMULATIONS

1. Principles of the simulations for the basic model

The analytical formulas for the growth rates can be com-
pared to the results of numerical simulations with populations
of finite size N over a finite number T of generations. In these
simulations, the population P•,t of newly born individuals of
type • at generation t is described by a list of N genotypes
[γ1, . . . , γN ], which are arbitrarily taken to be γi = 0 in the
initial population (t = 0). Given xt−1, the simulation consists
in the iteration of four steps:

1. Environmental update: xt = axt−1 + b + ct with b ∼
N [(1 − a2)σ 2

E ]
2. Selection: P ′

•,t , W•,t = S[P•,t ]
3. Reproduction: Ot , Wt = R[P ′

t ]
4. Normalization: the N elements of P•,t+1 are drawn at

random with replacement from Ot

The selection step 2 is similar in all cases: for each
γ ∈ P•,t , a phenotype is computed as φ = γ + ν where ν ∼
N (σ 2

D,•) and γ is included in the list of surviving individuals
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(a)

(b)

FIG. 12. Evolution of the modifiers δ� and δ� when considering
different modes of transmission and different initial conditions, here
illustrated for a = 0.5 and σ 2

E = 1. H (δ′•|δ•
�, δ

•
�) = H�(δ′•|δ•

�, δ
•
�)

assumes that the modifiers δ• are subject to recombination,
H (δ′•|δ•

�, δ
•
�) = H�(δ′•|δ•

• ) that they are inherited separately by each
sex, and H (δ′•|δ•

�, δ
•
�) = H�(δ′•|δ•

�) that they are inherited through
the females exclusively [as in Fig. 4(b)]. (a) Starting from δ� =
δ� = 0 as in Fig. 4(b), which corresponds to the graphs in the last
column. Note the difference of scale on the y-axis in the panels of the
first column compared to the others. (b) Starting from δ� = δ� = 1,
we obtain similar results except for the graph on the bottom right,
where, in average over 100 independent simulations, the results es-
sentially reflect the initial conditions. The error bars indicate standard
deviations over 100 independent simulations and the different colors
correspond to different total population sizes.

P ′
•,t with probability S(�|φ, xt ). W•,t reports the fraction of

surviving individuals.
The reproduction step 3 depends on whether the population

reproduces asexually or sexually and, in the second case,
whether it is monoecious or dioecious.

(b)(a)

FIG. 13. Extension of Fig. 4 to different modes of transmis-
sion of the modifiers. H (δ′•|δ•

�, δ
•
�) = H�(δ′•|δ•

�, δ
•
�) assumes that

the modifiers δ• are subject to recombination, H (δ′•|δ•
�, δ

•
�) =

H�(δ′•|δ•
• ) that they are inherited separately by each sex, and

H (δ′•|δ•
�, δ

•
�) = H�(δ′•|δ•

�) that they are inherited through the fe-
males exclusively [as in Fig. 4(b)]. Only in the later case do we
observe sexual dimorphism. Note that these results depend on the
initial conditions are shown in Fig. 12.

(c)

(a)

(b)

FIG. 14. Extension of Fig. 2 to a third environmental condition
where the environment is systematically drifting, xt+1 = ct with
c = 0.1. This condition (3) is similar to condition (2). In this case,
however, the population may become extinct, which is indicated
in gray (bottom left corner). In (a), the criterion for extinction is
max(	�, 	�) < 0. In (b) and (c), it corresponds to cases where more
than 10% of the 100 simulations over which the results are averaged
ended up in extinction, i.e., no individual survived after maturation
despite a number of newly born individuals maintained to a fixed
value, here N = 250.

For asexual populations, the population P ′
t consists of P ′

�,t
obtained in step 2 and Wt = W�,t . Each γ� ∈ P ′

�,t produces
k = 2 offsprings in Ot with genotype γ ′ = γ� + ν where ν ∼
N (σ 2

M ).
For monoecious populations, the population P ′

t consists
of P ′

�,tt
and Wt = W�,t . Each γ� ∈ P ′

�,t produces k = 2 off-
springs in Ot with genotype γ ′ = (γ� + γ�)/2 + ν where γ�
is chosen at random in P ′

�,t and where ν ∼ N (σ 2
M + σ 2

R ).
For dioecious populations, P ′

t consists of both P ′
�,t and

P ′
�,t and Wt = W�,t . Each γ� ∈ P ′

�,t produces an offspring in
Ot with genotype γ ′ = (γ� + γ�)/2 + ν where γ� is chosen
at random in P ′

�,t and where ν ∼ N (σ 2
M + σ 2

R ).
Selection may lead to the elimination of all individuals, in

which case the simulation is stopped. When this is not the
case, the growth rate is estimated as 	 = (

∑T
t=1 ln Wt )/T to

which a factor ln 2 is subtracted for dioecious populations to
take into account the fact that the total population size is 2N
and not N in this case. The values of 	 obtained in this way
are consistent with the analytical formulas.

2. Competitions between populations

When competing two populations with different param-
eters, for instance an asexually and a sexually reproducing
population as in Fig. 2(b), we perform independently for
each population the step 2 and 3 and then draw the N mem-
bers of the new generation from the joint set of offsprings
O(1)

t ∪ O(2)
t . We then report the fraction of individuals from

the first population at the end of the simulation.
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FIG. 15. Optimal mode of reproduction when optimizing over
developmental variances as a function of c and σ 2

R for three values
of σ 2

M indicated on the top and a = 0, σ 2
E = 0 (note the differences

of scales on the x-axes). As in Fig. 10, blue (as in the top left corner)
indicates that asexual reproduction is optimal, red (as in the bottom
left corner) that it is monoecious sexual reproduction and yellow (as
in the bottom right corner) that it is dioecious sexual reproduction.
For large values of c, the twofold cost of males is therefore overcome
both relative to asexuality and to monoecy.

3. Numerical simulations with modifiers

With the modifiers ψ or δ�, δ�, the genotype of each in-
dividual becomes multidimensional but the same principles
apply.

APPENDIX G: ADDITIONAL RESULTS

1. Extension of Fig. 2(c) to different population sizes
and numbers of generations

Results extending Fig. 2(c) to different population sizes
and numbers of generations of are shown in Fig. 7.

2. Varying the stringency of selection σ2
S

Results are presented by default for σ 2
S = 1. Generaliza-

tions to σ 2
S �= 1 are obtained by multiplying all variances by

σ 2
S . We show in Fig. 9 how this changes the results of Fig. 3.

3. Conditions to overcome the twofold cost of dioecy

Conditions for which the twofold of dioecy is overcome are
shown in Fig. 8.

4. Requirements on σ2
R to overcome the twofold cost of sex

The minimal values of σ 2
R at which the twofold cost of sex

is overcome are shown in Fig. 10.

5. Evolution of sexual dimorphism under different models
for the segregation variance

Results extending Fig. 4(a) to different values of σ 2
M and

σ 2
R are shown in Fig. 11.

(a)

(b)

(c)

FIG. 16. Sexual dimorphism for c > 0, a = 0, σ 2
E = 0 and three

different values of the mutational and segregation variances indicated
on the top. (a) Optimal growth rates for monoecious (top curve for
small c in green) and dioecious (bottom curve for small c in blue)
populations as a function of c. The optimization is here performed
on the developmental variances. (b) Optimal female developmental
variances σ̂ 2

D,�. In contrast, the optimal developmental variances for
monoecious populations and for males in dioecious populations are
trivial: σ̂ 2

D,� = 0 and σ̂ 2
D,� = 0 for any value of c (Appendix A 5 d).

(c) Mean fraction of males reaching maturation at each generation.
Note that this fraction is very small for values of c at which dioecy
is advantageous over monoecy [blue curve above the green curve
in (a)]. Populations whose size is not significantly larger than the
inverse of this ratio may be considered nonviable. Finally, note that in
the limit, σ 2

M + σ 2
R → 0, the different quantities depend c and σ 2

M +
σ 2

R only via c/(σ 2
M + σ 2

R ), which explains that the three graphs differ
almost only by the scale on their x-axis (Appendix A 5 d).

6. Role of initial conditions in the evolution
of sexual dimorphism

Results extending Fig. 4(b) to different initial conditions
are shown in Fig. 12.

7. Evolution of sexual dimorphism under different modes
of transmission of the modifiers

Results extending Fig. 4 to different modes of transmission
of the modifiers are shown in Fig. 13.

8. Extension of Fig. 2 to directional selection

Results extending Fig. 2 to an environment that is system-
atically drifting are shown in Fig. 14.

9. Optimal mode of reproduction when optimizing
over developmental variances

Results on the optimal mode of reproduction when opti-
mizing over developmental variances are shown in Fig. 15.

10. Sexual dimorphism under directional selection

Results on the optimal degree of sexual dimorphism in
directional environments are shown in Fig. 16.
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