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Reconstructing an epigenetic landscape using a genetic pulling approach
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Cells use genetic switches to shift between alternate stable gene expression states, e.g., to adapt to new
environments or to follow a developmental pathway. Conceptually, these stable phenotypes can be considered as
attractive states on an epigenetic landscape with phenotypic changes being transitions between states. Measuring
these transitions is challenging because they are both very rare in the absence of appropriate signals and very
fast. As such, it has proved difficult to experimentally map the epigenetic landscapes that are widely believed to
underly developmental networks. Here, we introduce a nonequilibrium perturbation method to help reconstruct
a regulatory network’s epigenetic landscape. We derive the mathematical theory needed and then use the method
on simulated data to reconstruct the landscapes. Our results show that with a relatively small number of
perturbation experiments it is possible to recover an accurate representation of the true epigenetic landscape.
We propose that our theory provides a general method by which epigenetic landscapes can be studied. Finally,
our theory suggests that the total perturbation impulse required to induce a switch between metastable states is a
fundamental quantity in developmental dynamics.
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I. INTRODUCTION

The presence of many overlapping feedback-based circuits
within a cell’s regulatory network has been theorized to give
rise to a cellular epigenetic landscape (also called a phenotype
landscape) with many metastable states [1,2]. Fluctuations in
the cell’s state due to molecular noise [3–15] randomly drive
the cell along this epigenetic landscape bounded by the so-
called quasipotential barriers separating the metastable states
[16–18]. Most of the time the system dwells in the vicinity
of one of these metastable states undergoing small random
excursions about it. Occasionally, however, a rare, large fluc-
tuation can move the system from one basin of attraction (of
a metastable state) to another [19–32].

The stability of these phenotypic states, quantified by the
mean first passage time (MFPT) or mean switching time
(MST) to transition from one state to another solely via fluctu-
ations, is typically very long to ensure stable phenotypes [33],
and yet cells must transition quickly and deterministically
once the proper signal is received [34–37]. Such noise-driven
switches, using positive and negative feedback loops, regu-
late diverse decision-making processes including persistence
[38,39], bet-hedging [40,41], gradient decoding [42,43], dif-
ferentiation [44], phage infection [45], and resource sensing
[46–48].

In developmental processes, the regulatory network guides
a developing cell through a series of transitions by moving
from one metastable state to another along the quasipo-
tential landscape [49–51]. Stochastic fluctuations have been
observed to be involved in several developmental processes
[52] and developmental transitions may involve quick passage
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through a number of intermediate states [53]. Indeed, cellular
reprogramming under strong perturbations follows a barrier
crossing process along a one-dimensional order parameter
[54].

Using signals to guide a cell’s state artificially along an epi-
genetic landscape could open new avenues to treating disease
using induced pluripotent stem cells and must also underlie
natural differentiation processes [55,56]. A theory to describe
the work required to transition a cell between metastable states
would be valuable in developing detailed models of differ-
entiation networks and in designing differentiation protocols.
Yet, reconstructing the cellular epigenetic landscape of a real
biological phenotype from steady-state experimental data is
usually impossible due to the extreme rareness of the transi-
tions.

Here, we describe an approach for studying cellular de-
cision landscapes using perturbations. The idea is similar in
principle to single-molecule force spectroscopy studies of
protein-folding landscapes, allowing one to extract transi-
tion information from force-spectroscopy pulling experiments
[57,58]. By pulling a macromolecule or molecular complex
at a sufficient force, rare transitions in single molecules such
as ligand-receptor dissociation [59], unfolding of a protein
[60], or unzipping of nucleic acids [61] can be experimentally
observed. The authors in Refs. [57,58] have devised a theo-
retical method, in the framework of the Kramers theory, that
allows translating the distribution of rupture forces that can
be measured experimentally into the force-dependent lifetime
of the system. In our case, starting with a cellular regula-
tory network, we apply an external “force” or “pulling” to
perturb the network in the direction of the desired change.
Here, pulling can represent, e.g., adding a time-dependent
force to the protein’s expression rate, such that the system is
pushed closer to the switching barrier and can switch with
an increased probability. At this point, the statistics of the
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response of the system, i.e., the statistics of switching events
in the presence of such pulling force, are then used to infer
the topology of the landscape, which allows evaluating the
lifetime of the various metastable states.

To compute the response of the system to external pulling,
we employ a semiclassical approach in the spirit of the
Wentzel-Kramers-Brillouin (WKB) theory [27,31,62–66] in
order to treat the underlying chemical master equation de-
scribing the stochastic dynamics of the regulatory network.
This formalism allows us to transform the master equation
into a set of Hamilton equations which can be dealt with
analytically or numerically. We then solve these equations
under a prescribed external perturbation with given magni-
tude and duration and compute the change in the switching
probability due to the external pulling. Finally, we use our
semiclassical solution in a maximum likelihood framework to
infer the model’s parameters, which allows reconstructing the
epigenetic landscape of the network.

We present our method using two prototypical model sys-
tems: a one-dimensional (1D) system of a self-regulating
gene, and a two-dimensional (2D) system of mRNA-protein
positive feedback loop. We then discuss how our model can
be generalized to higher-dimensional systems.

II. SWITCHING IN THE ABSENCE OF AN EXTERNAL
PERTURBATION

Our starting point is an effective 1D model for the dynam-
ics of the protein of interest. It is assumed that the protein
is expressed and degraded according to the following set of
birth-death reactions:

n
�n−→ n + 1, n

Mn−−→ n − 1, (1)

where �n and Mn are the expression and degradation rates,
respectively, and n is the protein copy number.

Neglecting intrinsic noise, the mean number of proteins n̄
satisfies the following deterministic rate equation:

˙̄n = �n̄ − Mn̄. (2)

We are interested in a scenario where this rate equation has
(at least) three fixed points: n1 < n2 < n3, where n1 and n3

are stable fixed points corresponding to the low and high
phenotypes, while n2 is an intermediate unstable fixed point.
One model system that exhibits this property is a protein
that positively regulates itself—a self-regulating gene (SRG).
While our analysis below is done for generic �n and Mn, in
all our simulations we have chosen the birth and death rates to
satisfy

λ(q) = α0 + (1 − α0)
qh

qh + βh
, μ(q) = q. (3)

Here λ(q) = �n/N and μ(q) = Mn/N are rescaled expres-
sion and degradation rates, q = n/N is the protein density,
while N is the typical system size, assumed to be large, which
represents the typical protein copy number in the high state.
Furthermore, α0 is the rescaled baseline expression rate, h is
the Hill exponent, and β is the midpoint of the Hill function.
Figure S1 of the Supplemental Material [67] shows an exam-
ple of rate equation (2) using rates (3) when the system has
three fixed points.

Once intrinsic noise is accounted for, these stable fixed
points become metastable, and noise-induced switching be-
tween n1 and n3 or vice versa, occurs. To account for intrinsic
noise, we write down the so-called chemical master equation
describing the dynamics of Pn(t ), the probability of finding n
proteins at time t :

Ṗn = �n−1Pn−1 + Mn+1Pn+1 − (�n + Mn)Pn. (4)

Let us first consider the case of switching in the absence of
external perturbations. Here, one can find an exact expression
for the mean switching time (MST), by computing the mean
time it takes the system to cross the unstable boundary starting
from a state with n proteins [68]. Since the resulting expres-
sion is highly cumbersome, throughout the text we instead
use the WKB method [62] to compute the MST, or switching
probability.

To set the stage for the WKB method, let us assume without
loss of generality that the system starts in the vicinity of
the low stable fixed point n1. Assuming the typical system’s
size is large, N � 1, the resulting MST is expected to be
exponentially long; see below. In this case, prior to switch-
ing the system enters a long-lived metastable state which is
centered about n1. Indeed, starting from any initial condition
n0 < n2, after a short O(1) relaxation time, the dynamics
of the probability distribution function can be shown to sat-
isfy the metastability ansatz: P(n � n2, t ) � π (n)e−t/τ , while∑

n>n2
P(n) = 1 − e−t/τ [62–66,69,70]. Here, τ is the MST,

π (n) is called the quasistationary distribution (QSD), which
determines the shape of the metastable state, and it is evident
that the probability of being at n > n2 is negligibly small at
times t � τ .

We now plug this ansatz into master equation (4), and
neglect the exponentially small term proportional to τ−1

(see below). Employing the WKB ansatz π (n) ≡ π (q) ∼
exp[−NS(q)] on the resulting quasistationary master equa-
tion, where S(q) is the action function, yields a stationary
Hamilton-Jacobi equation H (q, ∂qS) = 0, with the Hamilto-
nian being

H0(q, p) = (ep − 1)[λ(q) − e−pμ(q)]. (5)

Here p = ∂qS is called the momentum in analogy to classical
mechanics, while the subscript 0 stands for the unperturbed
case. To find the optimal path to switch—the path the sys-
tem takes with an overwhelmingly large probability during
a switching event [71,72]—we need to find a nontrivial het-
eroclinic trajectory, p0(q), connecting the saddles (q, p) =
(q1, 0) and (q2, 0), where q1 = n1/N and q2 = n2/N [62–66].
Equating H0 = 0 yields

p0(q) = ln [μ(q)/λ(q)]. (6)

Thus, the action function is found by integrating: S(q) =∫
p(q′)dq′. The MST between the low and high states can be

shown to satisfy in the leading order [62,64,65,70]

τlow→high ∼ eNS lh
0 , (7)

where S lh
0 = S(q2) − S(q1) = ∫ q2

q1
ln[μ(q)/λ(q)]dq is the

switching barrier between the low and high states, in the ab-
sence of an external force. Similarly, τhigh→low ∼ eNShl

0 , where
Shl

0 = S(q2) − S(q3) = ∫ q2

q3
ln[μ(q)/λ(q)]dq, is the switching
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barrier between the high and low states. For N � 1, these
MSTs are indeed exponentially large thus validating our a
priori metastability assumption (see Fig. S2 [67]). Note that,
in the unperturbed case, the prefactor of τ can be accurately
found as well [65,73].

In the following, rather than the MST, we will be interested
in computing P lh and Phl , the switching probabilities over
some time t � τ starting from the low to high and high to low
states, respectively. For example, starting from the vicinity
of n1, P lh is determined by the fraction of stochastic real-
izations of process (1) that cross n2 in a given time t out
of the total number of realizations. Using the metastability
ansatz, and demanding that the total probability be unity, we
have P lh = ∑

n>n2
P(n, t ) � 1 − e−t/τ � t/τ , where the last

approximation holds for t � τ ; that is, P lh is exponentially
small at t � τ . As a result, in the absence of external force,
and using a similar argument for the calculation of Phl , the
switching probabilities up to some arbitrary time t � τ satisfy
in the leading order

P lh ∼ τ−1
low→high ∼ e−NS lh

0 , Phl ∼ τ−1
high→low ∼ e−NShl

0 , (8)

where logarithmic corrections depending on the arbitrary time
t and the prefactor entering τ have been omitted.

III. SWITCHING IN THE PRESENCE OF AN EXTERNAL
PERTURBATION

Low-to-high switch. Let us begin by studying the case of
low to high switch in the presence of an external perturbation.
To do so, we add an external time-dependent force to the pro-
tein’s expression rate, �n → �n + φ(t ), where φ(t ) is applied
for a finite duration T such that

φ(t ) =
{

0, t < 0 or t > T,

F, 0 < t < T .
(9)

As shown in Fig. S3 [67], the result of this perturbation is
that the system is pushed nearer to the switching barrier and
with some increased probability can then switch to the high
state. The switching probability depends on both the force
F and duration T of the perturbation. Note that, in general,
the system does not need to relax to a new quasistationary
distribution during the perturbation. We now compute the
dependence of the change in the low to high switching barrier
S lh on F and T .

Given the time-dependent protocol φ(t ) [Eq. (9)] for the
change in the protein’s expression rate, one can perform a
similar WKB analysis as done above in the unperturbed case.
This yields two distinct Hamiltonians: the unperturbed Hamil-
tonian (5) before and after the external perturbation has been
applied, and the Hamiltonian during the perturbation with an
elevated expression rate:

Hp(q, p) = (ep − 1)[λ(q) + F − e−pμ(q)], (10)

where the subscript p stands for the perturbed case. Each
of the two Hamiltonians is an integral of motion on the
corresponding time interval. Here, the optimal switching path
[qop(t ), qop(t )] starts at the saddle point (q, p) = (q1, 0) well
before the perturbation has been applied, and ends at the
saddle point (q, p) = (q2, 0), well after the perturbation has
been applied. It can be found by matching three separate
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FIG. 1. Calculation of the optimal switching path for the self-
regulating gene. (a) Illustration of the optimal paths to switching
without (black) and with (blue) perturbation. The path segments
are labeled as pre-perturbation (pre), perturbation (pert), and post-
perturbation (post); see text. The top path shows low to high
switching and the bottom path shows high to low. The yellow areas
give the decrease in the switching barriers due to the perturbation. In
the low to high switch we have taken F = 0.15 and Ep = 0.01 such
that T = 1.1, whereas for the high to low we have taken F = 0.2 and
Ep = 0.005 such that T = 2.06. The other parameters are α0 = 0.2,
β = 0.562 and h = 4. (b) Plot of T − ∫

1/q̇ dq [see Eq. (12)] vs
Ep for the low to high switch under three different values of the
perturbation strength F : 0.15 (blue), 0.20 (orange), 0.25 (green).
Also shown are (c) momentum p vs coordinate q and (d) the action
S lh

0 vs perturbation time T for the same three F values.

trajectory segments: the pre-perturbation, perturbation, and
post-perturbation segments [see Fig. 1(a)] [74–76].

The matching conditions at times t = 0 and t = T are pro-
vided by the continuity of the functions q(t ) and p(t ) [77]. The
pre- and post-perturbation segments must have a zero energy,
E = 0, so they are parts of the original zero-energy trajectory,
p0(q); see Eq. (6). Yet, for the perturbation segment, the en-
ergy E = Ep is nonzero and a priori unknown. It parametrizes
the intersection points qp

1 and qp
2 between the unperturbed

zero-energy line p0(q) [Eq. (6)] and the perturbed path, pp(q)
[74–76]. The latter is the solution of Hp(q, p) = Ep, yielding

pp(q) = ln{[B +
√

B2 − 4AC]/(2A)}, (11)

where A, B, and C are functions of q and satisfy A = λ(q) +
F , B = λ(q) + F + μ(q) + Ep, and C = μ(q).

To determine the energy Ep, we demand that the duration
of the perturbation be T [74–76]. Thus, we have

T =
∫ T

0
dt =

∫ qp
2 (Ep)

qp
1 (Ep)

dq

q̇[q, pp(q, Ep)]
, (12)
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where qp
1,2(Ep) are the intersection points between the unper-

turbed p0(q) and perturbed pp(q) trajectories, and q̇(q, p) =
dq/dt is given by Hamilton’s equation q̇ = ∂Hp/∂ p =
[λ(q) + F ]ep − μ(q)e−p, where we have used Eq. (10).
Therefore, plugging pp(q) from Eq. (11) into q̇, Eq. (12)
becomes

T =
∫ qp

2 (Ep)

qp
1 (Ep)

(
B2 − 4AC

)−1/2
dq, (13)

where A, B, and C are given below Eq. (11). Finally, us-
ing the fact that the action satisfies S = ∫ ∞

−∞{pop(t )q̇op(t ) −
H[qop(t ), pop(t ), t]}dt [78,79], and recalling that dS =
(∂S/∂t )dt + (∂S/∂q)dq, we arrive at the perturbed switching
barrier from the low to high states:

S lh = S lh
0 −

∫ qp
2 (Ep)

qp
1 (Ep)

[p0(q) − pp(q, Ep)]dq − EpT, (14)

where Ep = Ep(F, T ) can be found from Eq. (13), S lh
0 =∫ q2

q1
p0(q)dq is the unperturbed switching barrier from the low

to high states, and we have used the fact that
∫ T

0 Hpdt = EpT .
Note that, for the birth and death rates of the SRG model

(3), Eq. (13) has no closed form solution. To study the switch-
ing behavior under such perturbation, we first numerically
evaluate the integral equation to find the matching Ep [see
Fig. 1(b)]. Given a numerical value for Ep, we then use
Eq. (14) to calculate the perturbed action [Figs. 1(c) and 1(d)].
Finally, we use Eq. (8) to calculate the perturbed switching
probability P lh.

To check our theory, we compared the theoretical depen-
dence of P lh on F and T against Monte Carlo simulations
[80]. We calculated P lh for a range of F values for three dif-
ferent perturbation times T . Because we are trying to develop
a theory that is directly relatable to biological experiments, the
F values were limited such that P lh > 1 × 10−6. Detecting a
cell phenotype with a frequency of one per million cells is at
the limit of feasibility using flow cytometry techniques. We
also limited the comparison to P lh < 1 × 10−2, above which
the switching barrier S lh starts to become low enough such
that the WKB approximation is invalidated [65]. Figure 2(a)
shows excellent agreement between theory and numerics.

Finally, our result for the switching probability in the after-
math of an external perturbation [Eq. (14)] can be simplified in
three particular limits: (i) close to the bifurcation limit, where
the low and intermediate fixed points merge and the switching
barrier vanishes, (ii) for weak external force, F � 1, and (iii)
in the case of h → ∞, i.e, a very steep regulatory function.
Close to the bifurcation limit, we find that S lh depends only
on the impulse of the perturbation, FT (see Discussion and
Appendix A); in the case of weak force, we show that the
increase in the switching probability is exponential in F (see
Appendix B); while in the limit of h → ∞, where the ex-
pression rate is given by a Heaviside step function, we find
an explicit expression for S lh as function of F and T (see
Appendix C).

High-to-low switch. We now turn to the case of switching
from the high to low states in the presence of an external
perturbation. Here, switching can be driven, e.g., by increas-
ing the protein’s degradation rate, μ(n) → μ(n)[1 + φ(t )],
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FIG. 2. Change in the switching probability with perturbation.
(a) Change in switching probability vs perturbation strength F for the
low to high switch. Symbols and lines give numerical and theoretical
values, respectively. A constant prefactor of 0.15 was used with the
theory. Data are shown for three values of the perturbation time T :
0.5 (blue ×), 0.75 (orange ◦), 1.0 (green 
). (b) Change in switching
probability vs perturbation strength for the high to low switch with
perturbation times 0.75 (blue ×), 1.0 (orange ◦), and 1.5 (green 
),
and a prefactor of 0.2. (c), (d) Switching probabilities in the β vs h
plane for the low to high switch (c) and the high to low switch (d).

where φ(t ) is given by Eq. (9), which yields the perturbed
Hamiltonian

Hp(q, p) = (ep − 1)[λ(q) − e−pμ(q)(1 + F )]. (15)

As a result, the intersection points qp
2 and qp

3 are now de-
termined by equating p0(q) from Eq. (6) with the perturbed
path pp(q), given by Eq. (11), with A = λ(q), B = λ(q) +
μ(q)(1 + F ) + Ep, and C = μ(q)(1 + F ).

To find Ep, we use Eq. (15) to write Hamilton’s equa-
tion q̇ = ∂Hp/∂ p = λ(q)ep − μ(q)(1 + F )e−p. Replacing the
lower integration limit of Eq. (12) by qp

3 (Ep), we find

T =
∫ qp

3 (Ep)

qp
2 (Ep)

(B2 − 4AC)−1/2dq, (16)

where A, B, and C are given below Eq. (15), and we have
swapped the integration limits such that the integrand is posi-
tive. Finally, the switching barrier from the high to low states
is given by Eq. (14) upon replacing the lower integration limit
by qp

3 (Ep), and S lh
0 by Shl

0 .
Figure 2(b) shows a comparison of the perturbed high to

low switching probabilities from Monte Carlo simulations
with Phl calculated using the above action along with Eq. (8).
They are again in excellent agreement.

Notably, in all of our calculations we have assumed a
square pulse. Yet, such a pulse is practically impossible
to realize experimentally. Instead, one expects experimental
signals to be noisy, and to gradually rise and drop slowly
rather than instantaneously. Nevertheless, we claim that the
exact form of the pulse will not change the above results
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qualitatively. For example if instead of an instantaneous rise
and drop we have a linear rise in the pulse up to some maximal
value, and a linear drop back to the original value, one can
use the same mathematical formalism as above. Indeed, in
this case the optimal path will be comprised of five segments
rather than three: a pre- and post-perturbation segment, a per-
turbed segment, and two segments with intermediate values of
force corresponding to the average force value in the regimes
of linear increase and decrease of the pulse.

IV. INFERENCE OF THE EPIGENETIC LANDSCAPE

We now proceed to our main idea, which is to use our
theoretical formalism to infer the epigenetic landscape of a
regulatory network, given experimental data of the network’s
response to external perturbations. The goal is to find the set
of parameters for the regulatory network that best recapitulate
the observed responses. We first set out to determine the
feasibility of inferring the parameters from the perturbation
data.

For the SRG, two key parameters that control the shape
of the landscape are β, which influences the barrier position,
and h, which influences the landscape steepness. We desired
to know to what extent these two parameters could be inde-
pendently distinguished using only the switching probability.
To this end, we used our theory to calculate the dependence
of P lh and Phl on β and h. As can be seen in Figs. 2(c) and
2(d), when switching either from low to high or from high to
low, β and h can be changed simultaneously to maintain the
same switching probability. This corresponds, e.g., to moving
the barrier position closer to the starting state while increasing
the height of the barrier. Yet, by considering switching in
both directions simultaneously, both β and h are uniquely
constrained, and there is only one pair (β, h) consistent with
both the low to high and high to low pulling.

To perform parameter inference we adopted a maximum
likelihood approach. To generate synthetic experimental data
we performed Monte Carlo simulations of the stochastic pro-
cess (1), and measured for various values of F and T the
number of realizations k, out of m total realizations, that
switched phenotypes after some designated time. For all of
our simulations we used m = 1 × 106. Given the switching
probability P for each realization, and assuming that the
sequence of “experiments” or numerical realizations is inde-
pendent and identically distributed, the probability P(k) that
exactly k realizations out of m switch is given by a binomial
distribution

P(k) =
(

m

k

)
Pk (1 − P )m−k . (17)

The likelihood of parameters θ producing the observed
data k given all of the various experimental F and T condi-
tions is then given by the product of all P(k) values,

L(θ |k) =
∏

{Ti,Fj }
Pθ (ki, j ) =

∏
i, j

(
m

ki, j

)
Pki, j

θ (1 − Pθ )m−ki, j ,

(18)
where i and j denote the indices of the current values of T and
F , and ki, j denotes the number of realizations that switched
given that T = Ti and F = Fj . Note that the likelihood func-
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FIG. 3. Log-likelihood function for inference of model parame-
ters. Top: The likelihood in the N vs α0 plane where other parameters
are fixed to their MLE. Bottom: The same for the β vs h plane. The
white × symbols show the MLE and the white ◦ symbols show the
true parameter values. The likelihood function is computed based on
the data presented in Fig. 2.

tion in Eq. (18) includes both low to high and high to low
pulling experiments.

Importantly, the probability of success P is given by
Eq. (8); as we have shown, it depends, in addition to T and
F , on the parameters θ defining the birth and death rates.
By maximizing the likelihood function L, we find the most
probable parameter set for the birth and death rates �n and
Mn, given the perturbation data.

We used the synthetic data set shown in Figs. 2(a) and
2(b) along with Eq. (18) to infer the maximum likelihood
estimate (MLE) for the three model parameters N , β, and h.
We assume that α0 can be obtained directly from experimental
measurement of the ratio of the stable fixed points. Again, we
used only F and T values with 1 × 10−6 < P < 1 × 10−2,
which amounted to ∼35 experimental conditions combined
from both switching directions. Figure 3 and Fig. S8 [67]
show the likelihood distribution resulting from the inference.
The MLE was N = 1554, β = 0.5718, and h = 3.492, which
was in excellent agreement with the true parameter values of
N = 1500, β = 0.5715, and h = 3.5.
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FIG. 4. Comparison of actual and inferred probability distribu-
tions for the self-regulating gene. (a) The actual (solid blue) and
inferred (dashed orange) PDFs for the low state, where X denotes
the protein copy number. (b) The same for the high state. The model
parameters were N = 1500, α0 = 0.2, β = 0.5715 and h = 3.5 (a),
(b) and h = 3.65 (c), (d).

Because the WKB is a logarithmic theory, there is a preex-
ponent in Eq. (8) that must be estimated in order to compute
the absolute value of P . Typically, in a WKB theory this
prefactor is obtained from fitting the functional dependence of
the theory to the data. Here, we took the approach of obtaining
the prefactor for both P lh and Phl directly from the likelihood
estimation. We maximized likelihood over a range of prefac-
tors and then used the set with the highest likelihood for all
remaining calculations (see Fig. S4 [67]). Comparison of the
theory with optimized prefactors and parameters to the true
parameters shows that the optimization leads to a moderate
increase in likelihood while maintaining the excellent fits vs
T and F (see Figs. S12(a) and S12(b) [67]).

Finally, we used the MLE parameters to reconstruct the
stationary probability density function (PDF) that corresponds
to the epigenetic landscape. Figures 4(a) and 4(b) show a com-
parison of the inferred and true PDFs, which we calculated
for a given set of parameters using an enhanced sampling
technique [81]. The agreement is again excellent and shows
that by using only ∼35 perturbation data points we are able
to successfully reconstruct the epigenetic landscape of the
model.

To further test our ability to use the theory to infer the net-
work’s PDF, we tested several other SRG parameter sets with
increasing switching barrier heights (see Figs. S4–S12 [67]).
Figures 4(c) and 4(d) show that for h = 3.65 a greater dis-
crepancy appears between the inferred and actual landscapes,
with ∼5% error in the height of the switching barrier. As the
switching barrier continues to increase so does the estimated
error (Fig. S13 [67]). For h = 4.0 the error is ∼10% of the bar-
rier height. However, at this value of h the MST is ∼1017 (see
Fig. (S2) [67]). At these very long switching times, emanating
from the large landscape steepness, additional perturbation

points with P < 1 × 10−6 may be necessary to accurately
infer landscapes with a smaller error margin.

V. ONE-STATE mRNA-PROTEIN MODEL

The unperturbed case. Above, we used the SRG as a
basis to infer the landscape of a 1D switch. To see how our
method can be generalized to higher-dimensional systems, we
now repeat the calculations done above for a 2D system: the
one-state mRNA-protein model with positive feedback that
displays bistability. We explicitly account for mRNA noise,
which has been shown to greatly affect the switching proper-
ties in genetic circuits [27].

We consider a one-state gene-expression model where
transcription depends on the protein copy number via posi-
tive feedback. The deterministic rate equation describing the
dynamics of the average numbers of mRNA and proteins,
respectively denoted by m̄ and n̄, satisfies

˙̄m = �n̄/b − γ m̄, ˙̄n = γ bm̄ − n̄. (19)

Here, γ � 1 is the mRNA degradation rate (relevant, e.g., for
bacterial systems [15]), γ b is the protein translation rate, such
that b is the burst size (the number of proteins created from
a single instance of mRNA), and all rates are rescaled by the
protein’s degradation rate or cell division rate. Furthermore,
�n̄ is a sigmoid-like function that ensures bistability (see Fig.
S14 [67]). By choosing the mRNA transcription rate to be
�n̄/b, we made sure that the fixed points of the protein satisfy
�n̄ = n̄, which coincide with those of Eq. (2) for the SRG,
upon choosing Mn̄ = n̄.

To find the switching probability we write down the master
equation describing the dynamics of Pm,n, the probability of
finding m mRNA molecules and n proteins:

Ṗm,n = [�n/b](Pm−1,n − Pm,n) + γ bm(Pm,n−1 − Pm,n)

+ γ [(m + 1)Pm+1,n − mPm,n] + (n + 1)Pm,n+1

− nPm,n. (20)

Following the SRG calculations above, we use the metastable
ansatz Pm,n = πm,ne−t/τ in Eq. (20), and employ the WKB
approximation, πm,n = π (x, y) = e−NS(x,y). Here S(x, y) is the
action, N � 1 is the typical protein copy number at the
high state, and x = m/N and y = n/N are the mRNA and
protein concentrations, respectively. This yields a stationary
Hamilton-Jacobi equation H (x, y, ∂xS, ∂yS) = 0 with Hamil-
tonian [70,82]

H = y(e−py − 1) + γ bx(epy − 1) + γ x(e−px − 1)

+ λ(y)

b
(epx − 1), (21)

where px = ∂xS and py = ∂yS are the mRNA and protein
associated momenta, respectively, and λ(y) = �(y)/N .

The switching path from the low to high states (or vice
versa) corresponds to a heteroclinic trajectory of Hamil-
tonian (21) connecting the saddle points (x, y, px, py) =
(ylow/(γ b), ylow, 0, 0) and (yhigh/(γ b), yhigh, 0, 0) in the 4D
phase space; it can be found by solving the Hamilton
equations ẋ = ∂px H , ẏ = ∂py H , ṗx = −∂xH , and ṗy = −∂yH ,
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which read

ẋ = [λ(y)/b]epx − γ xe−px ,

ṗx = γ b(1 − epy ) + γ (1 − e−px ),

ẏ = γ bxepy − ye−py ,

ṗy = 1 − e−py + [λ′(y)/b](1 − epx ). (22)

While a numerical solution can be found for any set of pa-
rameters, in order to make analytical progress we consider
the limit where the mRNA lifetime is short compared to
that of the protein, γ � 1, which holds, e.g., in bacteria.
In this limit, the mRNA concentration and momentum, x(t )
and px(t ), instantaneously equilibrate to some (slowly vary-
ing) functions of y and py [83]. Putting ẋ = ṗx = 0 in the
first two of Eqs. (22), we obtain e−px = b(1 − epy ) + 1 and
x = [λ(y)/(γ b)]/[b(1 − epy ) + 1]2. Using these relations in
Hamiltonian (21) we arrive at a reduced Hamiltonian for y
and py only. Denoting y ≡ q and py ≡ p, the effective 1D
Hamiltonian reads [70,82]

H0 = q(e−p − 1) − λ(q)
1 − ep

b(1 − ep) + 1
, (23)

where the subscript 0 denotes the unperturbed case. This
Hamiltonian effectively accounts for the fact that the proteins
are produced in geometrically distributed bursts with mean b,
which in turn asymptotically accounts for the mRNA noise
when γ � 1. This Hamiltonian is our starting point for treat-
ing this system under external perturbation, and serves as the
unperturbed Hamiltonian, similarly as Hamiltonian (5). Note
that, as done for the SRG model above, using this unperturbed
Hamiltonian [Eq. (23)], one can find the unperturbed action
which yields the PDF, Pm,n, and MST, in the absence of exter-
nal perturbation; see Figs. S15 and S16 [67].

The perturbed case. We now repeat the calculations done
for the SRG in the perturbed case. Note that here, instead of
perturbing the protein’s expression and degradation rates, we
perturb those of the mRNA. While both cases can be studied
theoretically, we desired to study the impact of transcriptional
perturbations as being more closely aligned with existing ex-
perimental techniques.

We start by perturbing the mRNA’s transcription rate
�n → �n + φ(t ), where φ(t ) is given by Eq. (9). As before,
the optimal path is made of three segments: an unperturbed
segment before the onset of perturbation, a perturbed segment
while the perturbation is applied, and an unperturbed segment
after the perturbation has terminated. The unperturbed seg-
ment is found by equating Hamiltonian (23) to zero,

p0(q) = ln{[(b + 1)q]/[bq + λ(q)]}. (24)

The perturbed segment can be found by using Hamiltonian
(23) with the perturbed transcription rate

Hp(q, p) = q(e−p − 1) − [λ(q) + F ]
1 − ep

b(1 − ep) + 1
, (25)

and equating it to Ep; here the subscript p stands for perturba-
tion. The resulting perturbed segment reads

pp(q) = ln{[B +
√

B2 − 4AC]/(2A)}, (26)

where A = λ(q) + F + b(Ep + q), B = Ep(b + 1) + λ(q) +
F + q(1 + 2b), and C = (1 + b)q. To determine the energy
Ep, we use Eq. (12) with q̇ found from Hamiltonian (25). By
doing so, condition (12) becomes

T =
∫ qp

2 (Ep)

qp
1 (Ep)

2A + b
(
2A − B − √

B2 − 4AC
)

2A
√

B2 − 4AC
dq. (27)

Finally, the action is given by Eq. (14) with Ep from
Eq. (27), while S lh

0 = ∫ q2

q1
p0(q)dq is the unperturbed action

from the low to high states, and p0(q) is taken from Eq. (24).
Next, we perturb the degradation rate of the mRNA such

that γ m becomes γ (1 + F )m. As a result, after some algebra
the perturbed Hamiltonian becomes

Hp(q, p) = q(e−p − 1) − λ(q)
1 − ep

b(1 − ep) + 1 + F
. (28)

Equating Hp(q, p) = Ep, the perturbed segment yields

pp(q) = ln{[B −
√

B2 − 4AC]/(2A)}, (29)

where A = λ(q) + b(Ep + q), B = Ep(1 + b + F ) + λ(q) +
q(1 + 2b + F ), and C = q(1 + b + F ). To determine the en-
ergy Ep, we use Eq. (12) with q̇ found from Hamiltonian (28).
By doing so, condition (12) becomes

T =
∫ qp

3 (Ep)

qp
2 (Ep)

2A(1 + F ) + b(2A − B + √
B2 − 4AC)

2A
√

B2 − 4AC
dq,

(30)
where we have swapped the integration limits such that the in-
tegrand is positive. Finally, the action is given by Eq. (14) with
Ep from Eq. (30), while Shl

0 = ∫ q2

q3
p0(q)dq is the unperturbed

action from the high to low states.
To test the mRNA-protein model, we again ran sets of

Monte Carlo simulations to calculate the dependence of P lh

and Phl on F for five values of T with b = 4. We then
performed MLE estimation from these data, see Figs. S18 and
S23 [67]. Figures 5(a) and 5(b) show an excellent agreement
between the simulations and theory with the MLE parameters.
Likewise, the reconstructed PDFs shown in Figs. 6(a) and 6(b)
are in good agreement with the actual PDFs.

Finally, we wanted to study the impact of increasing the
barrier height while maintaining the position of the fixed
points. To this end, we varied b in a range of 1–5 (Figs. S17–
S28 [67]). For parameter sets with longer switching times
the low F region is not well sampled [Figs. 5(c) and 5(d)],
which leads to an increased error in the predicted switching
barrier [Figs. 6(c) and 6(d)]. With b = 1 and a switching time
of 1 × 1020 the relative error in the barrier height is ∼20%.
As with the SRG, these errors could be reduced by including
lower probability events in the MLE.

VI. DISCUSSION

A. Generic models

We would now like to apply our methodology to arbitrar-
ily complex networks, not only the simple models discussed
above. A good example in this realm is the genetic toggle
switch where two proteins negatively regulate each other
using additional transcription factors [84–86]. While a gen-
eralization to higher-dimensional systems is highly nontrivial,
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FIG. 5. Perturbation effect on the mRNA-protein model.
(a) Change in switching probability vs perturbation strength F for
the low to high switch with b = 4. Symbols and lines give numerical
and theoretical values, respectively. Theoretical values were calcu-
lated using the maximum likelihood parameter estimates. Data are
shown for five values of the perturbation time T : 0.35 (blue ×), 0.5
(orange ◦), 0.75 (green 
), 1.0 (red ∇), 2.0 (purple +). (b) Change in
switching probability vs F for the high to low switch with T = 1.0
(blue ×), 1.5 (orange ◦), 2.25 (green 
), 3.0 (red ∇), 4.5 (purple +).
(c), (d) As above except for b = 3.

in what follows we will attempt to lay the theoretical grounds
for such a generalization.

Let us consider a gene-regulatory network with M species,
n = (nA, nB, . . . , nM ), describing, e.g., M different proteins
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FIG. 6. Comparison of actual and inferred probability distribu-
tions for the mRNA-protein model. (a) The actual (solid blue) and
inferred (dashed orange) PDFs for the low state with b = 4. (b) The
same for the high state. (c), (d) The same as (a,b) except for b = 3.

that regulate each other, where nA, nB, . . . , nM denote the copy
numbers of the various proteins A, B, . . . , M. It is our aim to
find an effective landscape for the protein of interest, say A. In
general, the production of A is regulated by all other proteins
including A, while the degradation takes the usual form

nA
φ(nA,nB,...,nM )−−−−−−−−→ nA + 1, nA

nA−→ nA − 1, (31)

where φ(nA, nB, . . . , nM ) is a function of all proteins or tran-
scription factors in the circuit including A. We seek to infer an
effective birth or production rate φ̃(nA), which is a 1D projec-
tion of the M-dimensional production rate φ(nA, nB, . . . , nM ).
This will allow to effectively describe the dynamics of protein
A, and to infer the same marginal PDF of A obtained in the
M-dimensional case. Moreover, this will allow one to find the
quasipotential landscape of A and the relative stability of its
phenotypes.

Previously, when the regulatory network was known, we
have used the master equation to account for demographic
noise. Here, since we have an effective birth-death process for
A, and the relation between the drift and diffusion is a priori
unknown, we will instead describe the stochastic dynamics of
A by a Langevin equation:

q̇ = f (q) +
√

D(q)/Nη(t ). (32)

Here, q = nA/N is the density of A, and N is its typical copy
number in the high state. Moreover, f (q) = φ̃(nA)/N − q and
D(q) are the effective drift and diffusion functions, see below,
while η(t ) is a delta-correlated normal random variable with
mean 0 and variance 1/dt .

In Eq. (32) both f (q) and D(q) are unknown and need
to be found from perturbation experiments, as done above.
As we are interested in bistable systems, f (q) has to be (at
least) a cubic polynomial, to give rise to three fixed points
at the deterministic level. We will assume for concreteness
that the production rate is given by a Hill function such
that: f (q) = α0 + (1 − α0)qh/(qh + βh) − q. Naturally, other
functional forms for f (q) are possible as long as they yield
three fixed points.

Choosing a diffusion function is more intricate. In general,
when a master equation is approximated by the van-Kampen
system size expansion, one finds that the diffusion func-
tion D(q) entering the resulting Fokker-Planck (or Langevin)
equation satisfies D(q) = λ(q) + μ(q) [68,70], where λ(q)
and μ(q) are the birth and death rates, respectively. Since a
bistable system is obtained when f (q) = λ(q) − μ(q) is (at
least) a cubic polynomial, we argue that taking D(q) as a cubic
polynomial D(q) = D0 + D1q + D2q2 + D3q3 should suffice
to describe the effective noise in generic systems. In simpler
cases, see below, a lower-order polynomial may also suffice.

For example, applying the van Kampen system size expan-
sion on the SRG model, master equation (4) becomes [68]

∂P(q, t )

∂t
= − ∂

∂q
[ f (q)P(q, t )] + 1

2N

∂2

∂q2
[D(q)P(q, t )], (33)

where f (q) and D(q) are defined above, and λ(q) and μ(q)
are defined in Eq. (3). The zero-current, stationary solution of
this Fokker-Planck equation reads [68,70]

P(n) � A exp

[
N

∫
q

2 f (q)

D(q)
dq

]
, (34)
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FIG. 7. Comparison between the exact and approximated dif-
fusion functions and probability distributions for the SRG model.
(a) The diffusion function obtained from a van-Kampen system size
expansion (red line) as a function of q = n/N , compared with its
linear fit (blue line). (b) The PDF given by Eq. (34) (red line) as
a function of n compared with the approximated PDF (blue line)
computed with the linear diffusion function. Here, parameters were
α0 = 0.1, β = 0.5, h = 3, and N = 100, such that the fixed points
satisfy q1 � 0.11, q2 � 0.39, and q3 � 0.85.

where to remind the reader, n = Nq is the protein copy
number, and A is a normalization constant, such that∫ ∞

0 P(n)dn = 1 [87]. Now, let us observe what happens when
we replace D(q) by a simple polynomial. In Fig. 7(a) shown is
a comparison between the diffusion function, D(q) = λ(q) +
μ(q), and a linear fit, D(q) = 2q. The fact that the curves
agree well is not surprising, as in the vicinity of the fixed
points, λ(q) = μ(q) = q, and thus D(q) � 2q. In Fig. 7(b) we
compare the PDF, given by Eq. (34), with the approximated
PDF, obtained by substituting D(q) = 2q in Eq. (34). As one
can see, even a linear approximation of D(q) yields a decent
agreement between the PDFs. As explained above, for generic
systems we argue that a cubic polynomial should suffice in
order to accurately capture the switching landscape.

Now, as done above, we propose to use perturbation exper-
iments to infer the effective 1D drift and diffusion functions,
using the MLE. To do so, we can either add a temporary
perturbation of magnitude F and duration T to the production
rate of A, or increase its degradation rate by a factor of (1 + F )
as before. The problem is that if we apply a force in an
experiment, involving all proteins A, B, . . . , M, it is not at
all clear how this force is projected onto the 1D space we
are interested in. To continue, we can denote by F the 1D
projection of the force F applied in the M-dimensional space,
such that F = ψ (F ), where ψ is some unknown function.
In simple cases, for which the projection of the switching
trajectory from an M-dimensional to a 1D space does not
include multiple crossings of the switching barrier, we expect
the function ψ to be monotone increasing with F and unique.
However, for generic systems this is not the case, and finding
ψ is expected to be more involved, requiring a significant
theoretical and numerical effort.

Assuming for a moment that the effective 1D force is
known, we can continue as in the simple cases discussed
above. Using the WKB ansatz π (q) ∼ e−NS(q) in the (station-
ary version of the) Fokker-Planck equation (33), to leading
order in N � 1 one arrives at a stationary Hamilton-Jacobi
equation with an unperturbed Hamiltonian:

H0(q, p) = p[ f (q) + pD(q)/2], (35)

where p = dS/dq is the conjugate momentum. As a re-
sult, the unperturbed optimal path, p0(q), satisfies p0(x) =
−2 f (q)/D(q), which allows finding the action barrier as be-
fore, both from the low to high and from high to low states;
see text below Eq. (6).

At this point, we can repeat the calculations done above in
the perturbed case, by taking λ(q) → λ(q) + F and μ(q) →
μ(q)(1 + F ). This allows finding the perturbed action barrier,
both from the low to high and from high to low states, which
then allows one, using multiple switching experiments and the
MLE, to extract the parameters defining f (q) and D(q). How-
ever, we have not yet determined how the effective 1D force F
depends on the original pulling force F , and thus applying this
theory to realistic experiments remains far from being trivial.
A possible way to study this functional dependence is to look
at the 1D projection of deterministic trajectories of the full
M-dimensional system upon applying a constant force for a
finite duration. Here, understanding, e.g., the influence of the
perturbation on the relaxation dynamics near a fixed point,
or other dynamical properties, may allow one to get insight
into how F depends on F . Yet, we leave this task to a future
publication.

B. Dependence of switching probability on impulse

In physical terms FT represents the total impulse we apply
to the system, which is equal to the force exerted on a par-
ticle multiplied by the duration of the force. In a mechanical
system, when a constant force F is applied on a particle for
a duration T in the direction of the particle’s momentum, in
the absence of dissipation or heat production, the particle’s
momentum is increased by FT . This increase is independent
of F or T separately; that is, applying a small force for a long
duration is equivalent to applying a large force for a short
duration.

This relationship is exactly what we observe for small
impulses in our system. Figure 8 shows the change in the
switching barrier, e.g., between the low and high states, 
S ≡
S lh − S lh

0 as a function of total impulse FT . One can see
that for low FT the change in the switching barrier depends
linearly on the product FT and not on F or T separately. How-
ever, as the impulse increases, the change in the switching
barrier is no longer a unique function of FT . As the impulse
duration T is increased (high FT with low F ) not all of the
impulse results in a reduction in the switching barrier. This
discrepancy indicates that there is some sort of dissipation or
uncontrolled heat or entropy production in the system.

In contrast, when the system is near bifurcation we do
expect the change in action to be a unique function of FT .
In Appendix A we derive a simple analytical expression for
the dependence of the switching barrier on FT close to the
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FIG. 8. Dependence of change in the switching barrier on im-
pulse. Distribution of the perturbed switching barrier 
S = S lh −
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0 vs the total applied impulse FT for the SRG model. Each symbol
represents a perturbation with a different F , which is given by the
color. The solid line shows the bifurcation theory given in Eq. (A8).

bifurcation limit. As can be seen in Fig. S29 [67], the effect of
the perturbation depends only on the product FT in this case.

Even though the switching barrier is a unique function
of FT close to bifurcation, see Eq. (A8), we can see that
the change in switching barrier is linear with FT only at
low impulse. Defining the efficiency of inducing a switch by
the change in the switching barrier divided by the impulse,

S/(FT ), from Eq. (A8) we see that the efficiency decreases
with FT . That is, the process of inducing a switch becomes
less efficient as FT is increased, while efficiency is maxi-
mized for weak impulses with vanishingly small dissipation.

C. Role of perturbation energy Ep

What is the physical meaning of the perturbation energy
Ep which appears throughout our derivation? Mathematically,
it is determined by a complicated function of the force F
and its duration T . However, looking at the result close to
bifurcation (see Appendix A), the energy Ep can be written as
Ep = E0[1 − (FT )2/4], where E0 is the maximal value of Ep

which is obtained as F and/or T vanish. Plugging this result
into Eq. (A8), and substituting FT = 2

√
1 − Ep/E0, we find

that for small impulses 
S/S0 ∼ √
E0 − Ep. This indicates

that, in analogy to quantum mechanics, given a quasipotential
landscape S(q), E0 − Ep can be viewed as the “energy excess”
the particle receives to cross the switching barrier of height
E0. As a result, for Ep = E0, the switching barrier remains
unchanged (corresponding to F = 0 and/or T = 0), while
for Ep = 0, the energy excess is maximal corresponding to
the absence of a switching barrier, leading to instantaneous
switching.

VII. CONCLUSION

Here, we have introduced a theory for describing the ef-
fect of nonequilibrium perturbations on biological regulatory
networks with metastable states, i.e., epigenetic networks.
Our theory can be used to infer the epigenetic landscape
of a regulatory network by fitting a model using a series
of perturbations of varying strength. The shape of the land-
scape is mapped out and reconstructed from the perturbation

responses. The data needed for the fitting are purposely cho-
sen to be reasonable biological observables.

The principle of such an experiment would be to apply a
genetic or biochemical perturbation to the network, such as
by introducing an inducible gene using transfection and/or
silencing expression using siRNA. A response is measured
as a function of the strength and duration of the perturba-
tion. Unlike other theories that relate switching dynamics to
fluctuations along the epigenetic landscape, our theory does
not require detailed time-lapse imaging to collect data. One
simply needs to record the fraction of cells that switch phe-
notypes at some time in the future after the perturbation.
Such data can be quickly collected for millions of cells using
flow cytometry. Using the response data the parameters of a
regulatory model can be inferred and the epigenetic landscape
can be numerically reconstructed. Our method, therefore, has
great potential to be used to help decipher complex biological
developmental trajectories.

Our theory also provides insights into the fundamental
physics of how various signals induce state transitions in cells.
As more complex cellular reprogramming is undertaken, it
will become increasingly important to model how cells can
be induced to make transitions between states. The impulse
that we identified in our theory is one way to measure the
work required to change phenotypic states. Further theoret-
ical advances will be required to extend our understanding
of important developmental techniques such as creation of
induced pluripotent stem cells and cell reprogramming and
differentiation.
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APPENDIX A: BIFURCATION LIMIT

In this section we show how the results derived for the SRG
can be drastically simplified close to the bifurcation limit,
where the stable and unstable fixed points merge. Without loss
of generality, our analysis below will focus on the low to high
switch, namely from q1 to q3, where the analysis of the high
to low switch is identical.

Let us denote ε ≡ (q2 − q1)/2 � 1, such that 2ε is the
distance between the two fixed points. Let us also denote
by qm = (q1 + q2)/2 the midpoint between the stable and
unstable fixed points. As a result, we can write q1 = qm − ε

and q2 = qm + ε. It has been shown in previous works that,
in problems of switching between metastable states, close to
bifurcation the momentum p scales as ε2 [65,66]. As a result,
it is convenient to rescale the coordinate and momentum as
follows:

q̃ = (q − qm)/ε, p̃ = p/ε2, (A1)
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where q̃, p̃ are O(1). Note, that the fixed points in the rescaled
coordinate become q̃1 = −1 and q̃2 = 1.

We further denote R(q) = λ(q) − μ(q), such that in
the absence of external forcing the mean-field rate
equation becomes q̇ = R(q). Since R(q) can be ap-
proximated by a parabola in the regime q1 < q < q2,
we have R(q) � (R/2)(q − q1)(q − q2) � (R/2)ε2(q̃2 − 1),
where R ≡ R′′(qm) is a positive constant. Therefore, at the
midpoint R(q = qm) = −(R/2)ε2 is negative, and R′(qm) =
0, since the parabola has a minimum at q = qm. Using these
results, and denoting by D ≡ λ(qm) + μ(qm), we now expand
the time-dependent Hamiltonian [Eq. (10) with F replaced by
φ(t )] up to O(ε4) in the vicinity of q = qm and p = 0. This
results in

H (p, q, t ) � p̃φ(t )ε2 + p̃

{
p̃

2
[D + φ(t )] + R

2

(
q̃2 − 1

)}
ε4,

(A2)
where we have expanded e±p � 1 ± ε2 p̃ + (ε4/2) p̃2, and
have also expanded λ(q) and μ(q) around q = qm, up to
second order in ε.

In the absence of external force, φ(t ) = 0, the unperturbed
optimal path satisfies H = 0, which yields the unperturbed
trajectory

p̃0(q) = R(1 − q̃2)/D. (A3)

In the presence of an external force, φ(t ) = F , the perturbed
Hamiltonian becomes in the leading order

Hp = p̃Fε2, (A4)

independent of q̃. Thus, equating Hp = Ep yields the per-
turbed optimal path, which becomes constant here:

p̃(q) = Ep/(Fε2) = Ẽp/F, (A5)

where we have defined the rescaled energy Ẽp = Ep/ε
2.

Equating the unperturbed and perturbed optimal paths,
Eqs. (A3) and (A5), we find the intersection points q̃p

1,2 to be
q̃p

1 = −q̃p
2 = −[1 − ẼpD/(FR)]1/2.

Let us now find the rescaled energy given the duration of
the external perturbation T . Using Eqs. (12) and (A4), and the
fact that q̇ = ∂Hp/∂ p = F , we have

T = 1

F

∫ qp
2 (Ep)

qp
1 (Ep)

dq = 2ε

F
q̃p

2 , (A6)

from which we can extract Ep as a function of T :

Ẽp = (FR)/D[1 − (FT̃ /2)2], (A7)

where T̃ = T/ε. Note that the result is valid as long as T̃ �
2/F , which means that T � 2ε/F . The is because when the
system is close to bifurcation a very small force, F ∼ ε, is
sufficient to cause a deterministic switch. Therefore, if F ∼ ε,
we have T = O(1). Also note that, by using Eq. (A7), the in-
tersection points become q̃p

1,2 = ∓FT̃ /2; here, at the maximal
value of T̃ = 2/F we obtain Ep = 0, since q̃p

1,2 = q1,2 = ∓1
(i.e., the unperturbed and perturbed fixed points coincide).

Having found the perturbation energy, the correction to the
switching barrier is given by Eq. (14). Transforming to the
rescaled coordinate and momentum, using Eqs. (A3), (A5),

and (A7), and using the definition of T̃ , we finally have

S lh = S lh
0

{
1 − 3FT̃

4

[
1 − (FT̃ )2

12

]}
, (A8)

where S lh
0 = 4Rε3/(3D), and the result is valid as long as

FT̃ < 2. Figure S29 [67] shows a comparison of Eq. (A8) and
the full theory when the system is near bifurcation. Note that,
as T̃ approaches 2/F , action (A8) approaches zero, which
invalidates the WKB theory. The latter is valid as long as
NS � 1, which limits the duration and/or magnitude of the
external force.

APPENDIX B: WEAK NOISE LIMIT

In this section we derive the switching barrier under a weak
external perturbation. Here, one must have a long perturbation
duration; otherwise the effect is negligible. We will henceforth
assume for simplicity that Ep = 0, corresponding to a long
perturbation duration; see below.

When Ep = 0, the perturbed and unperturbed optimal paths
for switching intersect at q1 and q2, such that qp

1,2 = q1,2.
Therefore, putting Ep = 0 and expanding in F � 1, the per-
turbed optimal path (11) becomes

pp(q) � ln [μ(q)/λ(q)] − F/λ(q) = p0(q) − F/λ(q). (B1)

As a result, using Eq. (14), and the fact that Ep � 0, the
correction to the switching barrier in the case of weak force
drastically simplifies and becomes

S lh = S lh
0 − F

∫ q2

q1

dq

λ(q)
. (B2)

Note that in this case the duration of the external perturbation
is simply given by T = ∫ q2

q1
dq/q̇, where q̇ = λ(q) − μ(q) is

the unperturbed rate equation.

APPENDIX C: HEAVISIDE STEP FUNCTION

In this section we consider the case of a translation rate
with a very large Hill exponent in Eq. (3). In the limit h → ∞
the translation rate becomes a step function,

λ(q) = α0 + (1 − α0)�(q − β ), (C1)

where �(z) is the Heaviside step function. In this case, the
mean-field rate equation has three fixed points: q1 = α0, q2 =
β, and q3 = 1, where q1 and q3 are stable, while q2 is unstable.

Let us begin by computing the correction to the switching
barrier from the low to high states. Here the unperturbed
switching barrier satisfies S lh

0 = α0 − β + β ln(β/α0) [31].
Going along the same lines as above, we can compute the
unperturbed and perturbed optimal paths for switching using
Eqs. (6) and (11), as well as the intersection points between
these paths, which satisfy qp

1 = (Ep + F )α0/F and qp
2 = β.

In this case, one can explicitly find Ep using the expression
for q̇ and Eq. (13). The result is

Ep(F, T ) = Fβ

eT (F + α0) − F
− e−T F. (C2)
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Using this result and Eq. (14), the correction to the switching
barrier from the low to high states is

S lh = S lh
0 + F (1 − e−T )

+ β{T − ln[eT (1 + F/α0) − F/α0]}. (C3)

We now move to compute the correction to the switching
barrier from the high to low states. Here the unperturbed
switching barrier satisfies Shl

0 = 1 − β + β ln β. Going along
the same lines as above, we can compute the unperturbed and
perturbed optimal paths for switching using Eqs. (6) and (11)
as well as the intersection points between these paths, which
satisfy qp

3 = 1 − Ep/F and qp
2 = β. In this case, one can also

explicitly find Ep using the expression for q̇ and Eq. (12) with
the lower integration limit replaced by qp

3 (Ep). The result is

Ep(F, T ) = F [e−(F+1)T F + 1 − (F + 1)β]

e(F+1)T + F
. (C4)

Using this result and Eq. (14), the correction to the switching
barrier from the high to low states is

Shl = S lh
0 + (F + 1)T β

+ F

F + 1
[e−(F+1)T − 1] + β ln

[
F + 1

e(F+1)T + F

]
. (C5)
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