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Improve it or lose it: Evolvability cost of competition for expression
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Expression level is known to be a strong determinant of a protein’s rate of evolution. But the converse can also
be true: evolutionary dynamics can affect expression levels of proteins. Having implications in both directions
fosters the possibility of an “improve it or lose it” feedback loop, where higher expressed systems are more likely
to improve and be expressed even higher, while those that are expressed less are eventually lost to drift. Using
a minimal model to study this in the context of a changing environment, we demonstrate that one unexpected
consequence of such a feedback loop is that a slow switch to a new environment can allow genotypes to reach
higher fitness sooner than a direct exposure to it.
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I. INTRODUCTION

The rates of protein evolution are affected by a multitude of
factors, including protein-protein interactions, stability-based
constraints, or dispensability [1–10]. However, the strongest
single determinate appears to be expression level [11,12].
For instance, substantial evidence suggests that lower-
expressed proteins are less protected from drift, whereas
highly expressed proteins are under stronger purifying selec-
tion [11–14].

Conversely, the expression level can itself be affected by
evolution, especially for proteins or pathways that are dis-
pensable or partially redundant. For example, a protein that
is disabled by a deleterious mutation becomes a metabolic
burden (or may be directly toxic), favoring a reduction in
expression.

Since partial redundancy is believed to be widespread [15],
this creates a theoretical possibility of a feedback loop. Con-
sider an organism with several partially substitutable systems
or pathways fulfilling a similar function; for example, several
metabolic pathways to satisfy its requirement for carbon, or
several sensing modalities to respond to environmental cues.
In these circumstances, it seems plausible that the systems
used more, being under a stronger selection pressure, would
be more likely to improve and be used even more. In contrast,
the lesser expressed systems could be more likely to deterio-
rate and be used even less (Fig. 1).

This process, effectively a “competition for expression”,
could be viewed as an extension of Savageau’s “use it or lose
it” principle and is conceptually similar to the generalist-to-
specialist transition of ecological specialization [16,17], but
is rarely discussed in an evolutionary context. One reason,
perhaps, is that this intuition appears to predict that highly
expressed proteins should evolve faster, the opposite of what
is observed empirically [11]. However, as we will show, the
consequences of such a feedback interaction are more nu-
anced.
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To do so, we illustrate the feedback loop of Fig. 1 in a
simple minimal model. For highly adapted systems depleted
for beneficial mutations, we find that the highest-expressed
proteins are still expected to evolve slowest, in full agreement
with the empirical observations. In contrast, for an evolu-
tionary process driven by strong adaptive mutations, e.g.,
following a strong environmental change, the sign of the cor-
relation between expression and evolutionary rate is predicted
to transiently invert. Moreover, at least in our model, the
consequences of the “improve it or lose it” feedback include
interesting qualitative effects, such as a loss of evolvability
caused by an environmental perturbation that is too strong. As
an example, we demonstrate how a gradual change to a new
environment can lead to a higher rate of fitness gain than direct
exposure.

II. MODEL AND CONTEXT

To study the “improve it or lose it” feedback loop, we
need an evolutionary model that explicitly includes a notion
of usage or expression. For this reason, we adopt the toolbox
model from Ref. [18], summarized in Fig. 2(a).

Briefly, we think of a genotype as encoding a set of K sys-
tems that can be used at different levels to optimize the fitness
of the organism in a given environment. Mathematically, we
represent the K systems as basis vectors {�gμ} (μ = 1, . . . , K)
and the environment as a target vector �E in an abstract L-
dimensional space (which can be interpreted as the phenotype
space [18]). The fitting problem can be written as

{aμ} = argmin
aμ�0

∥∥∥∥∥ �E −
∑

μ

aμ�gμ

∥∥∥∥∥, (1)

where the environment-dependent coefficients {aμ} can be
interpreted as the extent to which the organism relies on a
given system �gμ in �E . The quality of fit, which these {aμ}
optimize, can then be interpreted as the fitness of the genotype
G = {�gμ} in environment �E :

F (G, �E ) = − min
aμ�0

∥∥∥∥∥ �E −
∑

μ

aμ�gμ

∥∥∥∥∥. (2)
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FIG. 1. The “improve it or lose it” feedback loop. In this
schematic, x, y, and z are partially substitutable systems fulfilling
a similar function (e.g., metabolic pathways for alternative sources
of carbon). Adaptive mutations in the highest-used system x have
stronger fitness effects than y, z (arrow 1). The stronger selection
pressure makes system x more likely to mutate and improve (arrow
2). This improvement in x allows the organism to rely on it even more
(arrow 3), completing the loop.

In Ref. [18], the coefficients {aμ} are called “expression lev-
els”; however, conceptually, they correspond more closely to
the intuitive notion of “usage.” Indeed, a larger aμ in this
model corresponds to a system whose deletion would have
a stronger fitness effect, rather than one present in a larger
copy number (although in practice, the two properties are, of

FIG. 2. A context to study the “improve it or lose it” feedback
loop. (a) In the toolbox model, a genotype is a matrix representing
the available “systems” an organism can (linearly) combine to ap-
proximate the optimal phenotype required by the environment, �E .
The coefficients of the best approximation are interpreted as usage
levels aμ, serving as a proxy for expression. Matrix elements are
chosen to be binary (0 or 1) so that mutations in the evolutionary
process can be implemented as bit flips. (b) Fitness trajectories of
initially random genotypes evolving under �E1 before switching to �E2

a distance �E away. We choose to study the feedback loop and its
consequences during the early-time dynamics after switching (gray
region).

course, correlated [8]). Throughout this work, we refer to {aμ}
as usage coefficients.

For simplicity in simulating evolution within this model,
we assume that mutations are rare and selection is strong,
so that we need only track the evolutionary trajectory of a
single genotype [19]. In each simulation step, we enumerate
all beneficial point mutations of the current genotype by per-
forming all single bit flips of the genotype matrix. We then
pick one of these mutations as the first to rise to fixation; in
this parameter regime, selection considers only beneficial mu-
tations, and fixation probability is proportional to a mutation’s
fitness effect. We note that, when evaluating the fitness of
mutants, the usage coefficients are optimized for the mutated
genotype, and thus typically differ from those of the parent.
This corresponds to the assumption that the evolution of {aμ}
occurs on a much faster timescale than evolution of system
vectors {�gμ} (a separation of timescales; see the Supplemental
Material [20] for more discussion).

Figure 2(b) shows an example of fitness dynamics of ran-
dom initial genotypes first exposed to a random environment
�E1 and then to a different random environment �E2. The feed-
back loop we will describe is already present during the
early-time dynamics of evolution in �E1; however, we choose to
focus on the time period that follows the environment switch
(shaded gray region). This will allow us to use the difference
between the two environments, �E = ‖ �E2 − �E1‖ as a natural
control parameter [see the Supplemental Material [20] for
parametrization of environment pairs ( �E1, �E2)].

In what follows, we use �E vectors of unit length so that
fitness is constrained to −1 � F � 0. We fix L = 40 and vary
K , and consider genotype matrices with binary values, 0 or
1, initialized randomly with probability p = 0.5 of being 1.
Since environments are represented by unit vectors with posi-
tive components, �E is confined to the range �E ∈ [0,

√
2].

We will show that �E controls the strength of the feedback
loop, with stronger changes in environment (large �E ) induc-
ing stronger feedback.

III. THE TOOLBOX MODEL EXHIBITS THE “IMPROVE
IT OR LOSE IT” FEEDBACK

Figure 3(a) depicts a representative trajectory of the “im-
prove it or lose it” feedback realized in the toolbox model.
The panel shows the dynamics of usage coefficients after a
genotype with K = 5 systems, preadapted to some environ-
ment �E1, was switched to a different environment �E2, with
�E = 1 (random environment pairs with a given �E were
generated as described in the Supplemental Material [20]).
Note that, after each mutation, the usage coefficients are reop-
timized according to Eq. (1) and thus change discontinuously
(see the Supplemental Material [20] and Ref. [18]); however,
these steps are typically small, creating an illusion of smooth
dynamics. We see that strong adaptive mutations initially
concentrate in the two systems with highest usage (frequent
redder dots). As they mutate, they also rise in usage, aμ. In
contrast, the lower-used systems decrease in usage and mutate
only rarely, with relatively weak fitness effects (bluer dots).

Although the details of these dynamics are shaped by
Eq. (2) and are of course model-dependent, on a qualitative
level the instability driving a subset of usage coefficients up
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FIG. 3. The toolbox model exhibits the feedback loop. (a) An example of evolutionary dynamics of usage coefficients after a genotype
adapted to a random environment E1 is switched to another random environment E2 with �E ≡ | �E1 − �E2| = 1. Despite similar usage initially,
by t = 100 only two of K = 5 systems remain in use. Dots mark the systems in which a beneficial mutation arose, color indicates fitness effect
(red is strongest). In panels (b)–(d), we examine the statistics of usage dynamics and mutation effects within the first three time steps of 20
trajectories in 15 random environment pairs with the same �E = 1. Inset pictograms refer to feedback steps as shown in Fig. 1. (b) Fitness
effects of all available mutations in each system versus system usage. Dark and light gray points are beneficial and neutral or deleterious
mutations, respectively. Higher-used systems possess stronger fitness effects. (c) Probability of a system to mutate, plotted against its usage
rank (ascending order). At early times (black bars), higher used systems are more likely to mutate. As the strong beneficial mutations in
highest-used systems are depleted, the probability of mutating shifts towards lower used systems (white bars). (d) Distribution of change in
usage of a system that just mutated (blue) or a system that failed to mutate (red) at a particular simulation step. The difference in means of
these conditional probability distributions, s, quantifies the strength of the feedback loop. (e) The strength of the feedback loop s is controlled
by the magnitude of environmental change �E . Error bars represent one standard deviation (SD) over 300 replicates.

at the expense of others can be directly traced to the feedback
loop summarized in Fig. 1, as we will now show.

First, agreeing with the intuitive notion of {aμ} as “usage,”
systems with higher aμ tend to harbor stronger fitness effects.
To see this in our model, we plot the fitness effects of all avail-
able mutations within the first few simulation steps against the
usage coefficient of the system where they occur [Fig. 3(b)].
As expected, both beneficial (dark gray) and deleterious (light
gray) mutations are stronger in systems that have a higher
usage coefficient aμ.

As a result, higher-used systems are more likely to mutate,
because mutations with a larger fitness effect are more likely
to escape drift and fix in the population [21]. The black bars
in Fig. 3(c) show the early-time probability of each system to
mutate, plotted against its usage rank.

Finally, Fig. 3(d) shows the distribution of usage changes,
defined as the difference in usage δaμ before and after a
simulation step, over the same early time period as described
above. Whenever a system mutates, its usage typically in-
creases [Fig. 3(d), blue]. In contrast, the systems that did
not mutate at that particular timestep typically drop in us-
age [Fig. 3(d), red]. In our model, this also is ultimately a
consequence of Eq. (2), but it is not the model that justifies
this behavior. Rather, it is this behavior that justifies using
the model, making it appropriate for studying the feedback
loop that this behavior induces. In summary, Figs. 3(b)–
3(d) demonstrate all three arrows from Fig. 1 at play in our
model.

Since a greater separation between the distributions of
Fig. 3(d) would entail stronger feedback, we can use the
difference in the mean of these conditional distributions, de-
noted as s, as a measure of the feedback strength. Figure 3(e)
demonstrates that, as expected, the feedback becomes stronger
(increasing log s) as the change in environment becomes more
severe.

The rapid evolution of highly used systems [Fig. 3(c)]
may seem to be at odds with experimental work showing
that highly expressed proteins evolve slowest [11]. However,
the mechanism described here is fully compatible with the
explanations previously proposed for this experimental re-
sult. The effect shown in Fig. 3(b) (higher used systems
have stronger fitness effects) applies to both beneficial and
deleterious mutations. For early stages of adaptation driven
by beneficial mutations (as considered here), this means the
most-used systems will evolve first. However, at later stages,
as beneficial mutations are depleted, the same argument dic-
tates that the most-used systems become the most protected
and evolve slowest. We demonstrate the presence of this effect
by replotting the per-system mutation probabilities at a later
time [Fig. 3(c), white bars]; the probability of mutating begins
to shift from higher used to lesser used systems. This result
therefore predicts that the negative correlation between ex-
pression and evolution rate observed in [11] should transiently
invert following a change in environment. If additional fac-
tors like interaction and stability constraints on evolutionary
rates are considered, our framework predicts that the negative
correlation would at least weaken, with the size of the effect
controlled by the magnitude of the environmental change. En-
couragingly, this transient weakening in negative correlation
between expression and evolutionary rate is consistent with
recent analysis of evolutionary rates in yeast [22].

IV. THE COST TO EVOLVABILITY

Intuitively, one might expect that the competition for usage
mediated by the “improve it or lose it” feedback loop may be
detrimental for the organism, since it effectively reduces the
number of systems it has available. Implementing this effect
in a simple model allows us to make this intuition precise. We
will see that, at least in our model, the feedback loop exhibited
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FIG. 4. Higher evolvability from slow exposure than direct exposure. (a) Fitness, evaluated in environment �E2, of genotypes that are either
directly exposed (DE) to �E2 at t = 0 (blue trace) or slowly exposed (SE) to �E2 over a time τ = 100 according to the protocol defined in Eq. (3)
(red trace). Each trace shows mean ±1 SD (shading) of 20 replicate trajectories of genotypes with K = 4 systems in a random environment pair
with �E = 1.4. Colored dots highlight that slow exposure leads to higher long-term fitness, despite slower fitness gain initially. The relative
improvement in fitness, �F̃ , is measured at an arbitrarily late time point t∗ = 400 (see the Supplemental Material [20] Fig. S3C for later t∗).
(b) Heatmap of the long-term relative fitness improvement, �F̃ . Contour lines show �F̃ can be predicted by the feedback loop strength s
and the number of initially inactive systems K0 (see panel e). Here and in the remaining panels, results are averages over 20 trajectories in 15
random environment pairs with varying �E . (c) Heatmap of �Kact, the average difference in number of active systems (aμ > 10−3) between
the SE and DE protocols at t = τ . Contour lines show it is predicted by the product sK0; see panel (d). (d) �Kact, the increased number of
active systems at t = τ , is predicted by sK0, measured at trajectory start. (e) The long-term fitness improvement �F̃ at t = t∗ is predicted by
sK0/K , measured at trajectory start.

above reduces the adaptive potential of the genotype, and
mitigating its effects can allow for faster adaptation.

For this, we compare the fitness trajectories of geno-
types evolving in conditions that exacerbate the feedback and
those that weaken it. Specifically, starting from a genotype
preadapted to �E1, we compare two ways of adapting it to a
new, strongly different environment �E2: either by exposing
it to �E2 directly (as discussed above), or by changing the
environment from �E1 to �E2 slowly (on a timescale that is
slow compared to mutation fixation). By avoiding large en-
vironment jumps, we expect the gradual switch to weaken the
feedback loop. The question we ask is which exposure proto-
col will ultimately lead to higher fitness in the environment of
interest, �E2.

An example of this comparison is shown in Fig. 4(a).
The red curve shows fitness (in the environment of interest
�E2) for genotypes evolving under the slow-exposure protocol,
implemented by linearly relaxing the environment vector from
�E1 to �E2 over a time τ :

�E (t ) =

⎧⎪⎨
⎪⎩

normalize
[ �E2 + τ − t

τ
( �E1 − �E2)

]
if t < τ

�E2 if t � τ

(3)

(the environment vector in our model is always normalized to
unit length). The τ we use is large relative to the typical time
between mutations [τ = 100; compare to Fig. 3(a)]. The red
curve FSE(t ) (slow exposure) is to be compared to the blue
curve FDE(t ) (direct exposure), showing fitness of the same
initial genotypes evolving directly in �E2.

The vertical dashed line at t = τ marks the timepoint
where the “red genotypes” evolving under the slow-switching
protocol are finally exposed to �E2 for the first time. It is
therefore not surprising that they are less fit than the “blue
genotypes,” who have been evolving in �E2 from the start
(FSE(τ ) < FDE(τ ); red curve below the blue). However, while

more fit, the blue genotypes are manifestly less evolvable:
From t = τ onwards, both red and blue curves document
evolution in the same environment �E2, but the red curve gains
fitness much faster, and overtakes the blue.

To quantify the strength of this effect, we consider the rela-
tive improvement of fitness provided by the smooth protocol,
compared to direct exposure:

�F̃ (t∗) ≡ FSE(t∗) − FDE(t∗)

|FDE(t∗)| . (4)

While initially negative, in the example of Fig. 4(a) this
quantity becomes positive at a later time. To demonstrate the
robustness of this observation, Fig. 4(b) shows �F̃ (t∗) for a
range of K and �E , computed at an arbitrary late timepoint
t∗ = 400 (see the Supplemental Material [20] Fig. S3C for
�F̃ at a later value of t∗). We see that, at large �E , the slow-
switching protocol consistently outperforms direct exposure,
and more so as K increases. While the scenario of an organ-
ism possessing K = 7 competing systems fulfilling a similar
function is arguably unrealistic, we note that the effect is
already present at K = 2. (For the purposes of illustration, the
example in Fig. 4(a) used K = 4 and a dramatic environment
change �E = 1.4, when the effect is strongest.) Note that, for
simplicity, in Fig. 4(b) our slow exposure protocol (3) used the
same value of the relaxation time τ = 100 for all K and �E ;
optimizing over this parameter and the observation timepoint
t∗ could of course render the effect stronger.

The origin of this effect is the “improve it or lose it”
instability affecting the genotypes undergoing an abrupt envi-
ronment switch, effectively leaving them with fewer systems.
To confirm this, we record the average number KDE

act , KSE
act of

“active” systems (usage aμ > 0.001) observed at time t =
τ under both protocols. As expected, a slow environment
change leaves more systems active; the difference �Kact ≡
KSE

act − KDE
act is shown in Fig. 4(c) and exhibits a trend similar to

Fig. 4(b). Since unused systems harbor weak mutations only
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[cf. Fig. 3(b)], a genotype with few active systems finds itself
on a fitness plateau, and its rate of fitness gain is reduced.

Finally, we can quantitatively relate both effects to the
strength of the feedback loop as defined above. To start, we
focus on the increase in the number of active systems �Kact

in Fig. 4(c). Denote K0 the number of inactive systems at
time t = 0 (immediately after the environment switch; usage
aμ < 0.001). This is the number of systems that the slow-
exposure protocol could conceivably “rescue.” One expects
�Kact to scale with K0, and if our argument is correct, it should
also scale with the strength of the feedback loop s. Indeed,
we find �Kact to be predicted by the product sK0 [Fig. 4(d)].
The availability of these additional systems translates into ad-
ditional adaptive opportunities and ultimately a higher fitness.
In a strongly epistatic model like ours, the exact relationship to
the long-term fitness is hard to predict. Nevertheless, it is rea-
sonable to expect the fractional effect on fitness �F̃ to at least
correlate with the fractional effect on the number of active
systems �Kact/K . If so, then �F̃ should correlate with sK0/K ,
an expectation confirmed in Fig. 4(e). Given the approximate
nature of this argument, the correlation observed in Fig. 4(e) is
in fact surprisingly good. For convenience, the same sK0 and
sK0/K data, Gaussian smoothed for visualization purposes,
are shown as contour lines superimposed on the heatmaps of
Figs. 4(b) and 4(c). It is worth emphasizing that our definition
of the feedback strength s is computed from the statistics of
the first three mutations, which take only t ∼ 7 ± 5 to occur;
and K0 is similarly measured at the very start of the trajectory.
Nevertheless, at least in our model, these early-time proper-
ties are predictive of the long-term evolutionary outcome at
t∗ = 400.

V. DISCUSSION

In this work, we used a minimal model to explore a pos-
sible feedback loop between the usage of a system and its
rate of evolution. Within this model, we demonstrated that
this feedback loop is particularly pronounced after strong
shifts in the selecting environment and can negatively impact
evolvability (future fitness gain). In particular, we described a
mechanism by which a slow switch to a new environment can
allow the genotypes to reach higher fitness sooner than a direct
exposure to it. Interestingly, this effect is reminiscent of recent
results from the Evolthon crowdsourcing effort, which found
that when yeast and E. coli populations are slowly exposed
to cold temperatures they attain higher fitness than those that
undergo a direct exposure [23].

A situation where exposure to a different environment E ′
can help evolve better fitness in E than a direct exposure
to E itself is not, in itself, novel. One well-established sce-
nario for this to occur is the crossing of fitness valleys (or
plateaus): much like an enzyme that catalyzes a reaction by
stabilizing the reaction transition state, a transient exposure
to E ′ can facilitate reaching a higher fitness peak by enabling
prerequisite mutations that would otherwise be unfavorable

(or neutral) [24,25]. However, the scenario described here is
particularly interesting because the fitness plateau is not an
idiosyncratic property of a particular landscape, but emerges
through evolution itself. Fitness landscapes of evolved sys-
tems are themselves shaped by evolution [26,27], and at least
in our model, the feedback mechanism we described generi-
cally induces a fitness plateau following a sufficiently strong
environmental change.

To focus on this effect, our proof-of-principle model ig-
nored many other factors contributing to rates of protein
evolution. In any realistic scenario, the feedback interaction
we described will only be a part of a larger picture. Never-
theless, our analysis predicts that the empirically observed
negative correlation between expression and evolution rate
would transiently weaken following a change in environment
�E , and this weakening should be more pronounced for
stronger �E . We expect this effect to be more evident if
other constraints not included in our model are weakened,
following, for example, a genome duplication event [22].

It is worth stressing that we considered beneficial muta-
tions only. Clearly, if deleterious mutations were included,
our feedback loop would become even stronger: in addition
to the effect described, the lesser-used systems would also
be less protected from drift [28–30]. This observation could
then be seen as the traditional manifestation of the “use it or
lose it” principle; in particular, the problem of maintaining
redundancy in the face of drift has been extensively dis-
cussed [31]. Focusing on beneficial mutations only, and thus
explicitly excluding any drift-dependent effects, allows us to
highlight a novel aspect. Unlike the discussion of Ref. [31],
here no system is ever fully redundant, and all remain under
selection. Nevertheless, some are progressively lost even in
the absence of deleterious mutations—simply because the
beneficial mutations preferentially target the systems used
more, and those that fail to improve become obsolete. This
mechanism is clearly analogous to the Red Queen effect [32]
(to remain useful, a system must keep improving), except here
it applies to an effective competition for expression. In this
way, the loss of evolvability described in Fig. 4 can be seen as
a form of a conflict of levels of selection [33]: the competitive
dynamics between lower-level entities (the K “systems” in
our model) lead to negative consequences for the organism as
a whole—a decline of phenotypic flexibility and evolvability
due to a reduction of the effective K . On a related note, while
our model considered K as a fixed parameter, it could easily
be extended to allow for system loss and duplication events.

All simulations were performed in MATLAB (Mathworks,
Inc.). The associated code, data, and scripts to reproduce all
figures in this work are available at Mendeley Data [34].
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