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Immune phase transition under steroid treatment
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The steroid hormone glucocorticoid (GC) is a well-known immunosuppressant that controls T-cell-mediated
adaptive immune response. In this work, we have developed a minimal kinetic network model of T-cell
regulation connecting relevant experimental and clinical studies to quantitatively understand the long-term
effects of GC on pro-inflammatory T-cell (Tpro) and anti-inflammatory T-cell (Tanti ) dynamics. Due to the
antagonistic relation between these two types of T cells, their long-term steady-state population ratio helps
us to characterize three classified immune regulations: (i) weak ([Tpro] > [Tanti]), (ii) strong ([Tpro] < [Tanti]),
and (iii) moderate ([Tpro] ∼ [Tanti]), holding the characteristic bistability. In addition to the differences in their
long-term steady-state outcome, each immune regulation shows distinct dynamical phases. In the presteady state,
a characteristic intermediate stationary phase is observed to develop only in the moderate regulation regime. In
the medicinal field, the resting time in this stationary phase is distinguished as a clinical latent period. GC
dose-dependent steady-state analysis shows an optimal level of GC to drive a phase transition from the weak
or autoimmune prone to the moderate regulation regime. Subsequently, the presteady state clinical latent period
tends to diverge near that optimal GC level where [Tpro] : [Tanti] is highly balanced. The GC-optimized elongated
stationary phase explains the rationale behind the requirement of long-term immune diagnostics, especially when
long-term GC-based chemotherapeutics and other immunosuppressive drugs are administrated. Moreover, our
study reveals GC sensitivity of clinical latent period, which might serve as an early warning signal in diagnosing
different immune phases and determining immune phasewise steroid treatment.
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I. INTRODUCTION

The dynamics of biological regulatory networks, their
adaptation under different environmental stresses, and how
they are misguided and diseased are all timely and relevant
global questions [1–4]. For instance, in the current pandemic
situation, our utmost focus lies on the human immune net-
work, which undertakes a cascade of cellular interaction and
biomolecular reactions to protect us against a universe of
pathogenic microbes. The human immune system is a highly
complex network where the immune cells are in continuous
interactions and clashes with foreign invaders/pathogens to
maintain a healthy state. One of the key targets of this immune
system is to distinguish between self-cells and non-self-cells.
In consideration of its way of operation, the immune response
has two interconnected arms in the form of two subsystems,
i.e., innate immunity and adaptive immunity. While the innate
immune system is a nonspecific type of defense mechanism
which is present in our body from the time of birth, adap-
tive immunity is a subsystem of the immune system which
comprises specialized, systemic cells but a slow pace re-
sponse process. Among different lymphocyte populations of
the adaptive immune system, although CD4+ T cells play
a significant role in the immune responses throughout the
defense mechanism against the pathogen, on the contrary,
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some pro-inflammatory CD4+ T cells often fail to distinguish
between self- and non-self-cells, causing some autoimmune
diseases and allergies. Among these CD4+ T cells, some
act as pro-inflammatory cells, others as anti-inflammatory
cells. The regulatory or anti-inflammatory T cells exert a
downregulation mechanism on the population of effector or
pro-inflammatory T cells to prevent auto-immunity [5–11].

The human body has a myriad of feedback loops and
mechanisms to balance the dynamic equilibrium of the cell
populations for the proper functionality of a healthy body.
Along with the regulatory anti-inflammatory T cell, sec-
osteroid hormonelike vitamin D and steroid hormonelike
glucocorticoid (GC) [12–19] also evolve to supplement its
immunomodulatory action. Vitamin D and GC both downreg-
ulate the pro-inflammatory T-cell population and upregulate
the anti-inflammatory T-cell population [1,2,4,12–14,20–22].
In our early study, we have developed a coarse-grained
but general kinetic model in an attempt to capture the im-
munomodulatory role of vitamin D to control the population
ratio between pro-inflammatory and anti-inflammatory T-cell
populations. We revealed a nonlinear effect of vitamin D
on T-cell regulation, which is an indirect result of antigen
presentation and subsequent production of pro-inflammatory
effector T cells [4]. In subsequent work, borrowing con-
cepts from equilibrium statistical mechanics, we introduced
a description of the immune response function in terms of
fluctuations in different subsets of T cells [3]. We found a
divergencelike growth near the coexistence line of distinct
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immune phases, which is a characteristic of dynamic phase
transition. A phase transition phenomenon, in general, is
coupled to an external perturbation. In our T-cell regulation
model, we are focused on deriving the GC dose dependence
of T-cell dynamics. Along with that, we also intend to draw
a phase diagram delineating different immune phases over a
sensitive order-parameter domain.

To envision a multidimensional phase diagram distinguish-
ing different immune phases in the field of immunology is a
relatively new concept compared to its wide range of appli-
cability in physical chemistry, engineering, mineralogy, and
materials science [23–26]. On the other hand, the framework
of mathematical models dealing with cellular dynamics that
drive the crossover from one phase to the other has long
been one of the major topics in cell biology. In such studies,
microbial cell growth dynamics are monitored under different
environmental conditions. In the case of bacterial cell growth,
the environmental drivers are oxygen, pH, temperature, or
availability of nutrients, to name a few [27]. In a labora-
tory, under optimal conditions, a canonical microbial growth
curve follows essentially four different phases: (i) lag phase,
(ii) log phase, (iii) stationary phase, and (iv) death phase. The
exponentially growing log phase has led to the development of
several growth laws, while an emerging stationary phase is ob-
served to halt the growth under critical environmental stress.
Once cells enter the stationary phase, a certain time span is
generally required to recover growth after the condition tends
to renormalize [28–30].

In recent times, the dynamical pattern of CD4+ T-cell
counts of HIV-infected individuals has been monitored to
follow the disease progression. For clinicians, CD4+ T-cell
count and viral levels in the plasma are the key markers to
navigate the disease progression. Also, in such cases, after an
acute infection period (2–10 weeks), CD4+ T cells enter a
stationary phase clinically termed as a “clinical latent phase.”
This is an apparent near-normal asymptomatic phase, where
viral load drops dramatically. However, in this phase, HIV
is continuously infecting new cells and actively replicating.
After a long asymptomatic period (more than 15 years as evi-
denced), the virus enters into a resurrection phase and eventu-
ally gets out of control to destroy the remaining cells [31,32].
A very recent kinetic model has attempted to characterize the
role of GC on the immune system and antitumor immune
response over a 30-day period under a constrained GC sup-
ply [33]. However, several early clinical reports suggest that
most immunosuppressive and chemotherapeutic GC-based
drugs at their high dose have a long-term (in terms of years)
effect rather, and the adverse effect(s) of these drugs may arise
even long after the treatment has stopped [34–36]. From the
above cases, it is evident that long-term immune dynamics
under GC administration need to be studied.

GC drugs have been used in the field of medicine for
more than 65 years. Though there are several classes of
cost-effective synthetic GCs, dexamethasone (dex) is the
most widely used because of its higher binding affinity
to GC receptors (GRs) than natural cortisol; additionally,
it has minimal mineralocorticoid activity. However, it is
much more potent and has a longer duration of action as
compared to other synthetic GCs like prednisolone and pred-
nisone [37–40]. GC exerts their primary anti-inflammatory

FIG. 1. Coarse-grained model of the adaptive immune response
in the presence of GC. (a) There are five primary elements in our
system that include pathogen or self-cell containing the antigen:
CD4+ naïve T cell, anti-inflammatory T cell, pro-inflammatory T
cell, and glucocorticoid. The overall interaction among these five
elements is presented in the network. Perturbation from the pathogen
in the body leads to the activation of naïve T cells to mature
into pro-inflammatory and anti-inflammatory T cells. Mature pro-
inflammatory T cells cause the killing of pathogens or self-cells
containing the antigen. Further, the mature pro-inflammatory T cells
and anti-inflammatory T cells have a role in the self-regulation
process of inducing naïve T cells to produce more of themselves,
respectively. To control the overexplosion of pro-inflammatory T
cells which is a exaggerated immune response, anti-inflammatory T
cells and GC cause downregulation pro-inflammatory T cells. In the
given flowchart, the green arrows stand for the upregulation process,
red arrows for the inhibition process, and the black arrow represents
conversion processes. (b) It represents the population balance of pro-
inflammatory T cell (Tpro ) and anti-inflammatory T cell (Tanti ) across
the three regulations: weak (Tpro > Tanti ), moderate (Tpro ∼ Tanti ), and
strong (Tpro < Tanti ).

and immunosuppressive effects on both innate and adaptive
immune responses [18,19]. It has been reported in various
experimental findings that GC mediates the inhibition in the
maturation process of the dendritic cell (DC) via downregula-
tion of CD80/86, CD1a, MHC class II, and reduced cytokine
synthesis, including IL-12 and TNFα [37,39,41]. In the work
of Cook et al., they have reported large-scale depletion of
lymphocyte, particularly CD4+ T cells and CD8+ T cells,
but a significant increase in the activation and proliferation
of regulatory T cell or anti-inflammatory T cell by increasing
expression of both Ki67 and ICOS, contributing to their im-
mune suppressive activity. Moreover, they have also recorded
changes in the dendritic cell (DC) subtypes population; a
similar phenomenon has also been observed in various other
in vivo and in silico models [18,33,42–44].

In this current study, to understand the immunomodulatory
role of steroids, we have taken into consideration synthetic
glucocorticoids, dex-mediated immune phase transition of
adaptive immune response mainly on the CD4+ cell (pro-
inflammatory cells and anti-inflammatory T cells). We have
developed an interaction-based kinetic scheme, which is de-
picted in Fig. 1 to portray the direct and indirect effects of GC
on the immune system.
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II. MODEL AND METHOD

The present kinetic immune-network model is developed
based on several early experimental and mathematical model
studies. Our immune system is comprised of complex and
diverse network modules that accompany many participants
in terms of immune system cells, which are strongly coupled
with each other resulting in synergistic interaction for the
maintenance of a healthy physiological condition [1,2,45].
To understand such complex interactions among different
immune cells, pathogens, and also to characterize the im-
munomodulatory role of glucocorticoid (GC), we need to
develop a simple modeling pathway that can be interpreted
and explained. To understand the correlation among these
different immunological interactions of diverse cell types and
pathogens, we have to look carefully at how the cells are
coupled and how the immunomodulator affects their overall
interaction.

A. Development of the reaction network model of CD4+
T-cell regulation with and without GC

After careful filtration of all the essential and most impor-
tant elements, we develop a simpler and refined correlation
among the various elements of the immune system, which is
presented in Fig. 1. Once the developed network appears to be
simple and effective enough, a system of coupled differential
equations is used to model the system.

The important elements considered in our coarse-grained
model are the following: (i) pathogen/antigen/self-antigen, (ii)
naïve T cell (precursor T cell), (iii) pro-inflammatory T cell,
(iv) anti-inflammatory T cell, and (v) synthetic glucocorticoid
(dexamethasone).

To create a simple albeit effective model of these CD4+ T
cells’ regulation and modulation, we perform model analyses
based on CD4+ T-cell activation, deactivation, and regulation,
following some in vivo and in silico results discussed below.

(I) We have grouped all the CD4+ T cells which
cause inflammation and allergic response by downregulation
of pathogens; those CD4+ T cells are tagged as pro-
inflammatory T cells, which include Th 1, Th 2, Th 17,
Th 9, Th 22, and TFH. On the other hand, we grouped
all inflammation suppressing or downregulating the role of
pro-inflammatory T cells as anti-inflammatory T cells, which
include Th3 and Treg. Both anti-inflammatory T cells and pro-
inflammatory T cells are the lineages of CD4+ T cells [10,46–
53].

(II) As these immune cells are in continuous interaction
and clash with foreign invaders and/or pathogens to maintain
a healthy state, we can say that there is a continuous predator-
prey tussle between the pro-inflammatory T cell (effector T
cell) and the pathogen, the pro-inflammatory T cell being
the predator and on the other end the pathogen being the
prey [9,54,55].

(III) Upon perturbation from pathogens and/or tissue
trauma, pattern recognition receptors detect cytokine-induced
danger signals. These cytokines induce the production of more
of themselves through various biological pathways, which
result in the amplification of inflammation. In other words,
they play a role in self-activation by inducing naïve T cells
to produce more of themselves. This phenomenon has been

observed in various studies where it has been suggested that
the pro-inflammatory cytokines produced from mature acti-
vated CD4+ T cells induce the production of more of itself
through various biological pathways [20,67,68]. The differ-
entiation of naive cells to mature T cells takes place in the
presence of particular cytokines or chemokines; these ma-
ture T cells(Th1, Th2, Th17) themselves also produce these
cytokines or chemokines(IFNγ , IL4, Thl7), leading to self-
amplification of each of them respectively [56]. From the
mathematical model of Jolly and co-workers [57] this self-
activation or self-regulation phenomenon is also observed. GC
plays a crucial role in such a situation. Being the immunosup-
pressant, it down-regulates the exaggerated immune response
by causing inhibition of many pro-inflammatory cytokines
expressions, which includes the granulocyte-macrophage
colony-stimulating factor (GM-CSF), interferon-γ (IFNγ ),
TNF, IL-4, IL-5, IL13, IL-9, and IL-17. However, GC also
controls the production of cytokine at the post-transcriptional
level. It decreases the half-life of TNF mRNA by upregulating
tristetraprolin. In this way, GC exerts its anti-inflammatory
and immunosuppressive effects on the adaptive immune re-
sponse. Early studies have reported large-scale depletion
of lymphocytes, particularly on CD4+ T cells. However,
they have also noted a significant increase in the activation
and proliferation of anti-inflammatory T cells by increasing
expression, contributing to their immune suppressive activ-
ity [18–20,37,42–44,58,59].

(IV) Glucocorticoid (GC) has a modulatory effect on
the population of CD4+ T cells (anti-inflammatory T cells
and pro-inflammatory T cells). GC downregulates the pro-
inflammatory T cell, i.e., effector T cell population, and on
the other hand, it upregulates the anti-inflammatory T-cell
population. GC aids in maintaining a perfect balance between
these T-cell populations to maintain the homeostasis of the
body [20,33].

In the present context, we analyze the following set of bi-
ological transformations. Most of them are catalytic reactions
in terms of upregulation or downregulation.

A. The initial step is the elimination of the pathogen by
pro-inflammatory T cells,

P (pathogen) + Tpro(pro − inflammatory T cell)

→ Pkilled + Tpro. (R1)

B. Further pathogenic contact and/or pro-inflammatory T-
cell contact promotes the maturation of naïve (precursor) T
cells into mature pro-inflammatory T cells,

TNa (naive T cell) + P (pathogen) → Tpro + P, (R2)

TNa + Tpro → Tpro (self − regulation). (R3)

C. Similarly, pathogenic contact and/or anti-inflammatory
T-cell contact promote the maturation of naïve (precursor) T
cells into mature anti-inflammatory T cells,

TNa + P → Tanti (anti − inflammatory T cell) + P, (R4)

TNa + Tanti → Tanti (self − regulation). (R5)
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D. Both anti-inflammatory T cells and active Glucocor-
ticoid (GC*) can downregulate the pro-inflammatory T cell
either by making pro-inflammatory T cells pathogen insensi-
tive and/or by decreasing the pro-inflammatory T cell count,

Tpro + GC∗ → T Killed
pro + GC∗, (R6)

Tpro + Tanti → T Killed
pro + Tanti. (R7)

E. On the other hand, GC upregulates the production of
anti-inflammatory T cells,

TNa + GC∗ → Tanti + GC∗. (R8)

B. Kinetic equations quantifying the reaction network dynamics

Now, some essential additional presumptions we set before
writing the kinetic equations:

(i) For pathogen and naïve T cells, each has a birth rate,
which contains influx and proliferation rates, and a death rate
similar to the decay, which incorporates a scenario of natural
cell death. The death rate of all the components is linear with
its concentration.

(ii) All the rate parameters are assumed to be constant as
obtained from both in silico and in vivo models and experi-
ments, but it may vary from system to system (i.e., here person
to person).

(iii) To scale the unit, here we assume that in the absence
of a pathogen, 100 (average number of T cells present in 100
nl of a blood sample) naïve T cells [60] pre-exist, which corre-
sponds to a concentration of 0.000 001 66 nmol/l; an elaborate
calculation is described in Appendix B.

(iv) The migration of T cells is assumed to be under
the influence of chemotaxis, where the diffusion is much
faster in comparison to random cell motility [61]. In order
to quantitatively compare the diffusion-controlled rates of
T-cell interaction with that of the experimental rates which
we have considered in our model, the diffusion-controlled
rate constant has been calculated, and a kinetic comparison
has also been made. The diffusion-controlled rate calculation
has been performed, accounting for the effective diffusion
coefficient (∼67 μm2/min [62,63]) of CD4+ T cells and its
average diameter of ∼10 μm [64,65]. It has been observed
that the diffusion-controlled rates of T-cell interactions are
much faster (rate constant is of the order of 107 nM−1 day−1)
than the experimental rates that we considered in our model. A
detailed calculation has been done in Appendix B. However,
the range of rate constants for any T-cell mediated bimolecular
reactions in our model lies between 0.1 and 100 nM−1 day−1.
Thus, we have ignored the diffusion-controlled rate terms con-
sidering the reaction-controlled rates holding the rate-limiting
behavior in our kinetic model.

The above recombination, annihilation, and catalytic re-
actions lead to the following set of coupled equations. The
equations are size extensive. However, the size extensibil-
ity is the critical robustness of our model. Here, we have
employed a deterministic approach; that is, these sets of cou-
pled reaction equations are solved in a deterministic way.
It is important to note here that there exists a huge variety
of modeling approaches spanning the range of complexity

[3,33,57,63,66–71]. As the present study deals with a com-
plex network of intricated cellular interactions in the immune
network perturbed by steroid drugs, in this study, we have
adopted a simple reaction-equation-based chemical dynamics
approach reducing the complexity scale based on the afore-
mentioned careful assumptions.

C. Development of two generic models to assess GC-induced
reaction network dynamics

In this study, we have modeled the effects of GC on
different subsets of immune cells considering two different
modes of GC’s intake. (i) model I: In this model, along with
external administration of GC, we have taken into account nat-
ural cellular production GC maintaining its pharmacokinetic
characteristics. Here, GC-induced pro-inflammatory T-cell in-
hibition is linearly dependent on GC concentration following
an early treatment [4]. (ii) Model II: GC mediated inhibition
was done by applying a saturation function of GC concen-
tration as used by Yakimchuk in a very recent work [33].
Here, one-time external intake of the lower dose of GC and
its exponential decay has been considered for comparison
purposes.

1. Model I

In model I, initially, we have considered a system free of
GCs to get a better understanding of the immune response in
the absence of any drug. Coupled differential equations for the
system in the absence of GCs are shown in Appendix A. Five
coupled ODEs of model I in the presence of GC are presented
below.

Corresponding five kinetic equations for GC regulation:

d p

dt
= σp − kpTproP − mpP, (1)

dTNa

dt
= σNa − kr pTNaP − kraTNaP − kproTNaTpro

− kantiTNaTanti − kaG∗G∗TNa − mNaTNa, (2)

dTpro

dt
= kr pTNaP + kproTNaTpro − kpaTproTanti

− kpG∗G∗Tpro − mproTpro, (3)

dTanti

dt
= kraTNaP + kantiTNaTanti + kaG∗G∗TNa − mantiTanti,

(4)

dG∗

dt
= σG∗ − kabsKbG∗ − mG∗G∗. (5)

2. Model II: Replacing the rate equation of GC
by a saturation function

Here, we have followed the method as described by
Yakimchuk [33] to reduce the number of coupled differential
equations by considering the concentration change of GC with
time using a saturation function. Here also, our kinetic scheme
is the same as written in the above method part, while only
the activated GC concentrations are replaced by a saturation
function that takes into account the decay rate of GC. Hence,
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GC’s pharmacokinetics has not been included here. However,
the usage of the saturation function has some limitations. It
is restricted only to the lower values of the GC dose so as to
capture all three regulation regimes. The following expression
[1 − exp(−G*)] tends to 1, with an increase in GC dose that
is when exp(−G*) tends to 0. It leaves us with a saturated
system. Once it is saturated, a further increase in the GC dose
will have a null effect on the overall system.

Glucocorticoid saturation function (G):

G = ki(1 − e−G∗
), ki = inhibition rate for a particular

immune cell type,

G = ka(1 − e−G∗
), ka = activation rate for a particular

immune cell type.

G∗ = initial glucocorticoid concentration

Coupled ODE for our system accounting for glucocorticoid
concentration as saturation function:

d p

dt
= σp − kpTproP − mpP, (6)

dTNa

dt
= σNa − kr pTNaP − kraTNaP − kproTNaTpro

− kantiTNaTanti − kaG∗ (1 − e−G∗
)TNa − mNaTNa, (7)

dTpro

dt
= kr pTNaP + kproTNaTpro − kpaTproTanti

− kpG∗ (1 − e−G∗
)Tpro − mproTpro, (8)

dTanti

dt
= kraTNaP + kantiTNaTanti + kaG∗ (1 − e−G∗

)TNa

− mantiTanti, (9)

P → Pathogen,

TNa → naive T cell,

Tpro → pro − inflammatory T cell,

Tanti → anti − inflammatory T cell,

G∗ → glucocorticoid.

D. Parameter estimation, steady-state, stability,
and bifurcation analysis

In order to solve these five coupled differential equations
by a deterministic approach, we need to estimate the pa-
rameter values associated with these equations. However, the
determination of accurate values of all parameters is quite
daunting as the rate constants depend on several other factors
and differ from one species to another, therefore there is no
universality of the rate constants. To overcome this problem,
we employ diverse approaches for the determination of the
rate constants. For some of the cases in which the rate constant
has either been reported in the literature or can be calculated
from the literature, we have used that value from the liter-
ature. In some cases, where the order of magnitude of the

rate constants has been reported in the literature, that order is
taken as the parameter value. The values of parameters taken
for solving the coupled differential equations are listed in Ta-
ble I. Here we have used the same formalism as developed by
Fouchet et al. to obtain and estimate the parameter values [71].

The concentration of naïve T cells is calculated to be
1.66 × 10–6 nmol/L in the absence of any antigen or pathogen
for detailed calculation (see Appendix B). Moreover, these
naïve T cells have a turnover of 1% per day. The concentration
of the pathogen has also been normalized by setting the birth
and death rates of the pathogen to the same value. This is done
so that at the steady state, the concentration of the pathogen
will be 1. The decay rates of both pro-inflammatory and anti-
inflammatory T cells are arbitrarily set to the same value, 0.1,
as they account for the proliferation and death rate altogether
for both subsets of T cells. So, setting them to the same value
leads to mutual compensation, and thus equilibrium is not
affected much by their values. Apart from birth rates and
death rates, other rate constants are taken from various lit-
erature [33,71–74], whose detailed estimations are explained
in Appendix B, which also includes related pharmacokinetic
rates of glucocorticoid (dex).

We have also done a steady-state and stability analysis of
the system. A detailed description is shown in Appendix C.

Bifurcation diagrams were plotted using MATLAB-based
software MATCONT to simulate the immune system network
of five coupled ODEs of model I in the presence of GC.

E. Classification of T-cell regulation

Based on our early study [3,4], we have classified T-cell
regulation into the following three groups: (i) weak regula-
tion, where the concentration of pro-inflammatory T cells is
very high and the concentration of anti-inflammatory T cells
is low, which results in a lowered number of the pathogen;
in this phase the immune system is autoimmune prone;
(ii) strong regulation, where pro-inflammatory T-cell concen-
tration is low, which is a result of higher concentration of
anti-inflammatory T cells leading to high pathogen popula-
tion; this can be an immunocompromised condition, where
our body is prone to disease; and (iii) moderate regulation,
where the concentration ratio of pro- and anti-inflammatory T
cells is balanced and the immune system holds the character-
istics of bistability.

III. RESULTS AND DISCUSSION

Immunosuppressive drugs are unavoidably correlated with
an increased risk of immunocompromised conditions with
infection and malignancy. Several studies reported that GC
concentration is directly proportional to the growth and
enhancement of anti-inflammatory T-cell populations, and
alongside, GC suppresses pro-inflammatory T cells. Thus,
the dynamics of T-cell populations are very sensitive to the
dose of GC [4,37,42,75,76]. Hence, an optimal level of GC
administration is essential for the proper functioning of the
human body.

Our immune system is a dynamic network encompass-
ing numerous events with a parameter space that may vary
from individual to individual. We have accounted for these
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TABLE I. Basic parameter values (*time duration is taken as days).

Si No. Parameter Symbol Value Units

1 Reproduction rate of pathogen σp 1 nM/day
2 Rate of pathogen killing by pro-inflammatory T cells kp 102 1/(nM day)
3 Death rate of pathogen mp 1 1/day
4 Birth rate of naïve T cell σNa 1 nM/day

Death rate of naïve T cell mNa 0.01 1/day
6 Rate of differentiation of naïve T cell to pro-inflammatory T cell

which is induced by pathogen
kr p 1.01 1/(nM day)

7 Rate of differentiation of naïve T cell to pro-inflammatory T cell
which is induced by pro-inflammatory T cell itself (auto catalytic)

kpro variable 1/(nM day)

8 Rate of differentiation of naïve T cell to anti-inflammatory T cell
which is induced by anti-inflammatory T cell itself (autocatalytic)

kanti 10−1 1/(nM day)

9 Rate of differentiation of naïve T cell to anti- inflammatory T cell
which is induced by pathogen

kra 1.01 1/(nM day)

10 Rate of inhibition of pro-inflammatory T cell by anti-
inflammatory T cell

kpa 102 1/(nM day)

11 Rate of decay of pro-inflammatory T cell mpro 0.1 1/day
12 Rate of decay of anti-inflammatory T cell manti 0.1 1/day
13 Production rate of glucocorticoid σG∗ 1.872 nM/day
14 Rate of inhibition of pro-inflammatory T cell by active

Glucocorticoid (dex)
kpG∗ 0.57 1/(nM day)

15 Rate of anti-inflammatory T-cell reactivation by active
glucocorticoid (dex)

kaG∗ 1.0483 1/(nM day)

16 Absorption rate of glucocorticoid (dex) kabs 102.857 1/day
17 Bioavailability of glucocorticoid (dex) kb 0.75 unitless
18 Rate of decay of glucocorticoid (dex) mG∗ 0.415 1/day

events through coupled kinetic rate equations where we have
included the values of rate constants and initial pre-existing
concentrations of naїve T-cells and GC concentrations as ini-
tial inputs. In some instances, a rate constant or a set of rate
constants may show higher sensitivity and variability com-
pared to other rate constants. This can be considered as a
person-based diversity in the immune system. Thus, we are
also interested in exploring sensitive rate parameter(s) and
how different sets of parameters control the immune response
to the invasion by antigens, including dose dependence of GC.

A. GC treated and untreated CD4+ T-cell dynamics
and different dynamical phases

We consider a system both with and without GC treatment.
By solving the above-mentioned five coupled differential
equations of model I, we find the dynamical behavior of
pro-inflammatory and anti-inflammatory T cells throughout
their course of time evolution, as depicted in Fig. 2, in the
presence of GC. In the absence of GC, we have only four
coupled rate equations described in Appendix A, and the
corresponding dynamical behavior of T cells are shown in
Fig. S1 of the Supplemental Material [77]. As several early
clinical studies reported that immunosuppressive drugs like
GC often leave a long-term effect even long after the treatment
has stopped [34–36], in this study, we monitor GC-treated and
untreated T-cell dynamics over almost a year-long period. In
both cases, after observing the long-term time-evolution of T
cells under a small pathogenic perturbation limit, we iden-
tify different dynamical phases of T cells and thus classified

majorly into three periods or phases: the expansion period
(lag and log phase), the latent period (intermediate stationary
phase), and finally, a long-term steady-state as shown in Fig. 2.
Similar dynamical phases in terms of lag, log, and intermedi-
ate stationary states are well known in the time evolution of
microbial growth patterns found in various experimental stud-
ies [28,30]. However, in T-cell dynamics studies, this unique
presteady state stationary phase behavior sustaining for a
few months long periods in the intermediate time progression
range has not been characterized in any early work. Long-time
dependent T-cell regulation studies are limited [3,31,32].

In this stationary phase, the pro-inflammatory and anti-
inflammatory T cells maintain highly balanced concentrations
and a very small amount of pathogens are observed to be
present, which are not likely to cause any disease-related
disorder, as shown in Fig. S2. In clinical terminology, it is
considered an asymptomatic phase and the phase duration a
clinical latent period. A similar latent period is observed in
the case of various HIV-based models [31,32] containing a
period of clinical latency where the patient does not exhibit
any symptoms. Finally, at a longer time, the system reaches
a steady state with a higher number of anti-inflammatory
T cells and a lower number of pro-inflammatory T cells in
the postlatent period depicting the antagonistic nature of pro-
inflammatory T cells and anti-inflammatory T cells.

In connection to the early time evolution study of CD4+
T cell [78], here also we find that the initial phase of
pro-inflammatory T-cell time evolution has three subphases:
expansion, contraction, and memory. The pro-inflammatory
T cells clonally increase in number during the first phase,
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FIG. 2. Time evolution of the immune response of CD4+ T cells in the presence of GC. (a) The log-log plot represents a regime of the
immune phase regulation that contains an expansion period, followed by a latent period, i.e., the time range within which the concentration of
pro-inflammatory T cells and anti-inflammatory T cells does not change with time. After the latent period, there is a jump to the final steady-
state condition. (b) Moreover, the schematic illustration of the phases of immune response mediated by antigen-specific pro-inflammatory T
cells is depicted on the left side, where three phases of the initial T cells immune response (lag phase, log phase, and stationary or latent period)
are indicated. The time evolution of pro-inflammatory T cells and anti-inflammatory T cells is plotted by solving the coupled kinetic equations
using a deterministic approach. In the plot, pro-inflammatory T cells and anti-inflammatory T cells are represented by the red line and the blue
line, respectively. The cyan shaded region represents the expansion period, the yellow shaded region represents the latent period, and the pink
shaded region represents the steady state. Note that here we consider kpro = 56, and the other rate values are the same as given in Table I. Note
the zoomed portion of (a) is shown in (b).

in the presence of an antigen. Soon after the pathogen load
drops down, the contraction phase follows, and the number
of pro-inflammatory T cells reduces due to apoptosis. Af-
ter the contraction phase, the number of pro-inflammatory
T cells stabilizes and is maintained for significant periods,
representing the memory phase, as depicted in Fig. S3 of
the Supplemental Material. Three similar phases have also
been reported in other studies [78]. It represents the re-
gion of stabilization of CD4+ T cells, where the CD4+
T-cell count stays constant for a certain amount of duration,
which also can be referred to as the decision-making phase
where the final fate (final steady state) of T cell is being
determined. In the presence of pathogenic stimulation, the
pro-inflammatory T-cell population will increase after the sta-
tionary phase because of the presence of memory T cells. So,
the stationary phase has also been referred to as the memory
phase [78].

B. Effect of glucocorticoid on CD4+ T-cell population:
Transition from weak to moderate to strong regulation

Mature pro-inflammatory T cells are the ones respon-
sible for the elimination of pathogen or malignant self-
cells [7,9,79]. However, these pro-inflammatory T cells have
a role in the self-regulation process of inducing naïve T cells
to produce more of themselves. This phenomenon is evident
from various studies where it has been suggested that the
pro-inflammatory cytokines produced from mature activated
CD4+ T cells induce the production of more of themselves
through various biological pathways [20,56,80]; this over-
amplification of inflammation may lead to an autoimmune

disorder. In various model studies, it has been reported that the
anti-inflammatory T cells maintain a balanced regulation of
the immune system [3,4,33,71]. Moreover, numerous clinical
and experimental studies suggest that the immunomodulatory
role of GC causes downregulation of the pro-inflammatory
T-cell population to keep it under control [15]. To observe
the role of GC in the interaction network of the immune
system, we introduce GC-related rate constants and initial
pre-existing GC concentration into our system of consider-
ation. After the introduction of GC, we observed that GC
has the potential to modulate the immune system from weak
regulation to moderate regulation to strong regulation. Along
with GC, we have found another sensitive rate constant
kpro, (autocatalytic rate of pro-inflammatory T cells), which
also has the ability to modulate the immune system across
these three regimes both in the presence and absence of
GC.

To investigate several GC-associated factors, we have
performed a time-evolution analysis of each participating el-
ement after perturbation from the pathogen to study their
long-time behavior by varying kpro both in the absence and
presence of GC. By solving our system of equations, we have
got all three regulation regimes, both in the presence and
absence of GC. Figure 3(a) shows that in the absence of GC,
the system falls under a weak regulation limit when we fix
kpro = 50. However, In the presence of a standard level of GC,
we found weak regulation Fig. 3(b) at kpro = 70. Figure 3(c)
shows a moderate regulation in the absence of GC at kpro =
30, where the intermediate stationary phase is sustained with
a latent period of 20 days. Furthermore, in the presence of
GC, we have found a moderate regulation with the stationary
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FIG. 3. Time evolution of immune response showing all three regulations, both in the presence and absence of GC. A weak regulation state
appears (a) in the absence of GC at kpro = 50 and (b) in the presence of GC at kpro = 70. Moderate regulation state appears (c) in the absence
of GC at kpro = 30, where the latent period is 20 days. (d) In the presence of GC, moderate regulation appears at kpro = 56, where the latent
period is 90 days. The system falls into a strongly regulated state at both (e) in the absence of GC and (f) in the presence of GC. The strong
regulation remains strong both in the presence and absence of GC at the same value of kpro = 10. As we vary kpro, other rate parameter values
are kept constant and are taken from Table I. A standard dose of dex(GC) is taken to be optimal, which is 38.21 nmol/l (∼0.75 mg) [73]. For a
detailed explanation for the determination of this optimal value, see Appendix B. In the plot, pro-inflammatory T cells and anti-inflammatory T
cells are represented by the red line and the blue line, respectively. (g) We have shown a frequency distribution histogram of pro-inflammatory
T cells (Tpro ) and anti-inflammatory T cells (Tanti ).

phase extended with a latent period of 90 days at kpro = 56,
Fig. 3(d). In both cases (absence of GC), as shown in Fig. 3(e)
and (presence of GC) Fig. 3(f), we find strong regulation at
kpro = 10.

However, we find a shift in kpro, the parameter value for
strong and moderate regulations, when we change our system
from the absence of GC to the presence of GC. We find that
in the absence of GC, the system is under a strong regulation
limit with kpro = 50. However, when we introduce GC to our
system at kpro = 50, we find a moderate regulation which is
shown in Fig. S4. The moderate regulation is extended over a
wide range of limits, which is shown in Fig. S5. Beyond a cer-
tain limit, it falls in a weakly regulated regime. As presented
in Fig. 3, The parameter values of kpro are very sensitive
for determining the strong regulation, moderate regulation,
and weak regulation of T cells. Moreover, Fig. 3(g) shows a
population distribution of the number ratio between pro- and
anti-inflammatory T cells, characterizing the overall classifi-

cation weak, moderate, and strong regulation. This analysis
was performed using model I.

C. Intermediate stationary phase detection at the moderate
T-cell regulation limit

Using mode -II, we have replaced GC’s rate equation with
a saturation function, which presents a one-time external dose
intake mode. However, with an increase in the concentration
of the GC dose, the saturation function saturates into a con-
stant value. Thus the coupling effect of GC is lost, shown in
Fig. S7 of the Supplemental Material. In our model I, we have
accounted for the natural metabolism of GC in the fifth rate
equation containing all the pharmacokinetic constants. This
considers GC’s natural recursive regulation, which enables
us to get a better understanding of the role of glucocorticoid
on T-cell dynamics. Using a rate equation of GC makes our
model more robust. We have observed a difference in the dose
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FIG. 4. Time evolution of pro- and anti-inflammatory T cells in
the presence of GC. (a) T-cell dynamics from model I, in the presence
of standard or optimal concentration of GC = 38.21 nM, (b) one-
time external administration using saturation function GC = 0.1 nM
(∼1.96 micrograms). In the plot, pro-inflammatory T cells and anti-
inflammatory T cells are represented by the red line and the blue line,
respectively. The yellow shaded region represents the latent period
(stationary transition phase). Note that here we consider kpro = 56,
and the other rate values are the same as given in Table I.

to obtain a moderate regime in models I and II. For capturing
the moderate regulation phase using the saturation function,
we need to go to the lower values of the GC dose as exp(−G*)
tends to zero with the increase in the value of G* (dose of
dex), which left us with a loss of coupling effect of GC, so
while using the saturation function, we are constrained with
a lower GC dose. Despite the limitations of this saturation
function, we used it for comparison purposes and to make the
analysis more comprehensive with an existing model as used
by Yakimchuk in a very recent work [33]. However, in both
methods, we have distinguished all three regulations: weak,
moderate, and strong. Most importantly, the longer-time dy-
namical analysis of the T-cell population from any of these
model studies at their moderate regulation limit consistently
demonstrates the existence of an intermediate stationary phase
behavior with a significant length of the latent period, as
shown in Fig. 4.

D. Experimental comparison of dose-dependent T-cell
dynamics, understanding glucocorticoid and kpro-induced

stationary phase optimization, and bifurcation phase diagram

To investigate the effect of GC on the T-cell population
dynamics, we compare the pro-inflammatory T-cell dynamics
data obtained from our model for a short time duration to that
of existing experimental and clinical data collected from a
cohort of patients suffering from Insulin-dependent diabetes
mellitus (IDDM), an autoimmune disease [81]. Our result
is in good agreement with the experimental data at a short
time scale regime [Figs. 5(a) and 5(b)]. While most of the
patient data for autoimmune disease are available for 12–30
days, using our model, we have investigated more extended
time-scale dynamics of T cells up to 500 days to understand
the long-term phase regulation of T-cell dynamics. In a more
profound sense, a long-term effects study can be character-
ized as “dark data,” where the probability of confronting an
unlikely “black swan” type effect increases with time signif-
icantly and cannot be ignored. In our case, we have found
that upon steroid administration for a prolonged period, the
system stays in a near-normal state, which is our stationary

FIG. 5. Evolution of CD4+ pro-inflammatory T cell with a dose
of glucocorticoid (dexamethasone) and the sensitivity of the latent
period to GC concentration and kpro. (a) In silico model I showing
downregulation of pro-inflammatory T-cell (Tpro) with the increase
in glucocorticoid dose results in a decrease in pro-inflammatory T
cell count. (b) Experimental data collected from insulin-dependent
diabetes mellitus (IDDM) in an autoimmune disease patient [81]
are in good agreement with our model result. In both cases, the
treatment period is considered to be ∼12–30 days. (c) Dynamics of
the latent period with an increase in the dose of glucocorticoid and
(d) dynamics of the latent period with the increase in kpro parameter.

phase (90–161 days), Fig. S5. After the stationary phase,
the system often switches on a strong regulation limit, an
immunocompromised state. Here comes the relevance of a
long-term (dark data) dose and time dependence of steroid
drug administration. It has precisely captured the pathogenic
reactivation (black swan effect), a known outcome of long-
term chemotherapies [82–84].

After analyzing CD4+ T-cell dynamics over long-term
steroid drug administration for around 500 days, we find that
GC has a significant role in efficiently keeping the immune
system in a moderate regulation regime for a significantly
longer duration. Moreover, it has also been seen that the
moderate regime is conserved for a specific range of GC,
which we consider an optimal range, as shown in Fig. 5(c).
Our findings also show that at a lower value or in the ab-
sence of GC, the latent period is small, leading to a risk
of autoimmune disease due to the uncontrolled rapid growth
of pro-inflammatory T cells (weak regulation). Moreover,
when the GC dose is very high, the system again falls in the
range of a smaller latent period with a significantly smaller
population of pro-inflammatory T cells corresponding to an
immune-compromised condition (strong regulation). In be-
tween strong and weak regulations, we observe the divergence
of the system to a latent period peak, which corresponds to
moderate regulation. Our results signify the sensitivity of the
immune system to the dose of GC. The optimal range of GC
(dex) is in accordance with the experimental finding [73,85]
(for a detailed explanation, see Appendix B). In Fig. 5(c)
the kpro value is taken under a moderate regulation regime,
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FIG. 6. Bifurcation phase diagram of CD4+ T cell. Bifurcation diagram depicting the changes in (a) naïve T cell, (b) pro-inflammatory T
cell, and (c) anti-inflammatory T-cell levels with variations in the levels of bifurcation parameter kpro. (b) The highest pro-inflammatory T-cell
levels correspond to weak regulation, intermediate levels of pro-inflammatory T cell correspond to a moderate regulation, and lowest levels of
pro-inflammatory T cell correspond to strong regulation, as indicated by different colors (Weak, strong and moderate regulations are predefined
immune classes as shown by background colors). Stable, steady states are indicated by solid (blue) lines; unstable steady states, by dashed
(blue) lines. (c) Since pro-inflammatory T cell and anti-inflammatory T cell have antagonistic behavior, the dynamics of anti-inflammatory T
cells are the opposite of pro-inflammatory T cell, high anti-inflammatory T cell corresponds to strong regulation, and low anti-inflammatory T
cell corresponds to weak regulation. In all three bifurcation plots, characteristic bistability has been observed, showing the parameter space of
monostable and bistable phases characterized over each classified immune regulation regime as colored. Note that all the constant rate values
are taken the same as given in Table I. In the plot, naïve T cell (Tnaive ), pro-inflammatory T cells (Tpro), and anti-inflammatory T cells (Tanti ) are
taken in nM concentration.

and all other parameters and rate constants are taken from
Table I.

We have also looked into the sensitivity of the latent period
with respect to the change of a sensitive rate constant kpro,
which is represented in Fig. 5(d). At a specific range of kpro

value, the immune system is in a moderate regulation with
a large latent period. We have observed this at both lower
and higher values of kpro. The latent period is small, show-
ing strong regulation and weak regulation, respectively. By
changing the kpro values, we have modulated the system from
strong regulation to moderate regulation to weak regulation.
At kpro = 56.146, the system is at moderate regulation and
has the largest range of latent period, and at kpro = 56.147, the
system converts from moderate regulation to weak regulation,
with a significant decrease in the latent period. This accounts
for the sensitivity of the kpro value for its response in the
latent period of immune system regulation. As kpro can vary
from person to person, we have taken varied values of kpro

and determined the latent period, and all other parameters
and rate constants are taken from Table I; the dose of GC
(dex) is taken to be optimal, which is 38.21 nmol/L—the
determination of this optimal value is explained in detail in
Appendix B.

As discussed above, the latent period is a very sensitive
response parameter to both GC and kpro, and with a change
in the value of kpro or GC, we can observe a shift of the
system’s regimes. However, our system in the presence of
optimal doses of glucocorticoid shows the conservation of
moderate regulation for large limits of kpro and GC dose shown
in Figs. S5 andS6, respectively, in the Supplemental Material.
As shown in Fig. 5, the latent period keeps increasing slowly,
then there is sudden divergence, and it falls, modulating the
system across weak to moderate to strong regulation limits.
The modulation of the latent period when it decreases can be
an early warning signal of abrupt change in dynamics of the
system from one stable state (moderate regulation) to another

(weak regulation) upon small perturbation like small change
in the GC dose or a sensitive rate parameter like kpro values.

With the classification of three regulation regions (weak,
moderate, strong) we have investigated the boundaries be-
tween any two phases in the immune phase space accounting
for the above-mentioned two sensitive order parameters: kpro

and [GC]. The immune phase diagram is shown in Fig. S8.
In light of our previous studies [3,4], it is worth mentioning
here that distinguishing bistability in the moderate regulation
regime is a key concept for understanding the basic phe-
nomena of pro- and anti-inflammatory T-cell regulation. All
these phenomena arise due to the nonlinearity of the biolog-
ical system [86–88]. The phase diagram presented in Fig. S8
depicts the normalized concentration of pro-inflammatory T
cells with respect to total CD4+ T-cell concentration (sum
of pro- and anti-inflammatory T cells) as a function of both
kpro and [GC]. It is plotted using numerical results from the
solution of our system of equations obtained from model
1. In this immune phase diagram, the bistable or moderate
regulation regime is a narrow constricted region. However,
we find this only near bistable regions; the immune system is
sensitive to GC. At too weak or strong regulation, the system
loses its GC sensitivity. It suggests that when a person is close
to a moderate regime of parameter space, then only a synthetic
GC intake may help.

To further characterize the parameter space for the possi-
ble coexistence of states (bistability), we analyze bifurcation
diagrams for multiple parameter sets and also the parameter
set mentioned in Table I. The rate constant kpro is chosen
as a bifurcation parameter. To mention again, kpro is the
rate of differentiation of naïve T cell to pro-inflammatory T
cell, which is induced by the pro-inflammatory T cell itself,
a self-activation-like phenomenon. We find that the system
holds characteristic bistability within a certain range of kpro,
as shown in Fig. 6. This bistable region is separated by two
monostable regions.
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IV. CONCLUSION

While the steroid hormone glucocorticoid (GC) is exten-
sively used to control many acute and chronic inflammatory
disorders, it is well documented that GC can cause a wide
array of adverse effects that are both dose and time dependent.
Both the higher doses and long-term usage of low to moderate
GC doses increase the risk of life-threatening infections due to
the immunological cytokine imbalance and many associated
factors [16,35,75,89,90]. While it is absolutely necessary to
understand the immune responses of the T lymphocytes sys-
tematically, in a dose and time-dependent manner, clinically,
it is a daunting task. However, a simple chemical dynamic
model comprised of GC-mediated cellular-level interactions
among different subsets of T cells and preliminary clinical
guidance over a known interaction-level database and pa-
rameters can provide valuable information about the state of
our body. These approaches are often amenable to clinical
measurements and certain conclusions. Thus, understanding
the immune response of the complex human system requires
collaboration between physicists, chemists, biologists, and
clinical scientists. In particular, one may need to borrow the
mathematical models and concepts from physics and combine
certain rules of chemistry to understand the complex biologi-
cal processes and interactions. There have been notable efforts
in this interdisciplinary direction, although a lot remains to be
achieved.

Below we summarized the key highlights of this study:
(i) To monitor both time and dose-dependent GC effects

on T-cell dynamics, we have developed two independent
mathematical models. The first model considers the pharma-
cokinetic characteristics of GC, and in the other model, a
saturation function is used to capture GC’s dose dependence
of T-cell regulation. Both the models unanimously provide
a similar dynamical pattern of pro- and anti-inflammatory
T cells.

(ii) In this long-term CD4+ T-cell kinetic study, three
characteristic dynamic phases have been distinguished:
growth (lag and log), the stationary or latent period, and the
long-term-steady or memory phase. These phases are analo-
gous to the growth kinetics of microbial cells.

(iii) In this study, depending on the population ratio
between the pro- and anti-inflammatory T cells, we have quan-
titatively distinguished three classes of immune regulations:
strong, weak, and moderate both in the presence and absence
of steroid hormone GC.

(iv) A characteristic intermediate “stationary phase” is
detected to develop especially in the moderate regulation
limit under the influence of pathogen. This is an apparent
near-normal clinically asymptomatic or latent phase, and the
corresponding latent period can be sustained for a long time
(more than a couple of months), where the pathogenic load
drops dramatically. The emergence of prolonged clinical la-
tency correlates well with the CD4+ T-cell dynamics that
have been monitored in the case of HIV infection [32].

(v) GC dose dependence of the pro-inflammatory T-cell
population obtained from our model for a short time duration
correlates well with the existing experimental data collected
from insulin-dependent diabetes mellitus (IDDM) in an au-
toimmune disease patient [81]. The GC dose-dependent T-cell

downregulation curve shows that the transition midpoint
ranges 5–40 nmol/L, close to an optimal GC dose (∼38.21
nmol/L). We also find the latent period in the intermediate
stationary phase to vary nonmonotonically as a function of
GC dose. At a standard or optimal level of GC concentration,
the latent period is found to reach the peak implying that
GC optimizes the stationary phase by subtly balancing the
population ratio between the pro- and anti-inflammatory T
cell. However, this needs to be clinically verified.

(vi) At a longer time, after the asymptomatic phase,
a long-term steady-state outcome is reached, which is a
decision-making phase of the system. In this decision-making
phase, the system either deactivates or reactivates the pro-
inflammatory actions, which decides the fate of the antigen
or disease. In the presence of steroid administration, after a
prolonged stationary phase, the system has a general tendency
to switch on a strong regulation limit where immunity is
challenged. In a broader sense, such long-term steroid ef-
fects are characterized as dark data where the probability of
encountering a black swan type effect increases with time
significantly and cannot be ignored [74–76]. And, here comes
the relevance of dose and time dependence of steroid drug
administration. It is now well known that in addition to GC,
many other immunosuppressive drugs such as prednisone,
pain killers (morphine, codeine, hydrocodone, opioids), and
other chemotherapeutic drugs perform life-saving tasks within
the human body but often cause pathogen or viral reactiva-
tion when immunity is critically suppressed. In fact, during
chemotherapy, a viral reactivation event is very real [82–84].

(vii) Finally, understanding the final steady-state outcome
in different immune regulation limits and their coexistence
is illustrated by an immune phase diagram which reveals
that the steroid-dependent moderate or healthy phase is a
constricted immune regime that is adept at tolerating a wide
range of pathogenic stimuli when the autocatalytic rate of pro-
inflammation is low (i.e., when T cells are less aggressive).
From the bifurcation diagram, we get characteristic bistability
when kpro was chosen to be a bifurcation parameter for multi-
ple parameter sets.

While the immunosuppressive drug GC potentially con-
trols weak or autoimmune-prone T-cell regulation, the study
reveals an odd characteristic of steroid-dependent T-cell dy-
namics, which highlights a prolonged stationary phase. In the
stationary phase, while the system is autoimmune controlled
under the steroid treatment, it is now more vulnerable to
pathogen reactivation. These challenges can be circumvented
by long-term diagnostic measures, especially to monitor the
prolonged latency in the intermediate stationary phase and
by prescribing antiviral treatment along with GC treatment in
an effort to ward off pathogen reactivation, as suggested by
a few clinical studies [32,91,92]. Our study indeed provides
the rationale behind such modes of treatment and encourages
awareness against imprudent steroid medication.

In this study, we have employed a simple chemical net-
work model of the immune system to understand the effect of
steroid drugs like GC. This eventually results in an optimized
stationary phase to control autoimmune disorders without any
adverse effect at least for some time (if not longer). The non-
monotonic steroid dependence of the intermediate stationary
phase can be used as a diagnostic marker for steroid treatment,
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especially when the system loses bistability. In the future,
we shall attempt to explore more towards the noise-induced
bistability and fluctuation-driven immune response to monitor
how the fluctuation of certain T-cell subsets affects the sta-
tionary phase latency and steady-state outcome during steroid
treatment.

The data that support the findings of this study are avail-
able in the main text and Supplemental Material but are also
available from the corresponding author upon request.
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APPENDIX A: SIMULATIONS IN THE ABSENCE
OF GLUCOCORTICOID

In order to look at the dynamics of the system in the ab-
sence of glucocorticoids we remove all the terms involving the
glucocorticoids. Hence, we would have four coupled ODEs,
as given below.

Coupled ODEs for the system in the absence of glucocor-
ticoid (representing drug-free immune regulation):

d p

dt
= σp − kpTproP − mpP, (A1)

dTNa

dt
= σNa − kr pTNaP − kraTNaP − kproTNaTpro

− kantiTNaTanti − mNaTNa, (A2)

dTpro

dt
= kr pTNaP + kproTNaTpro − kpaTproTanti − mproTpro,

(A3)

dTanti

dt
= kraTNaP + kantiTNaTanti − mantiTanti. (A4)

APPENDIX B: PARAMETER ESTIMATION AND OTHER
CALCULATIONS

1. Calculation of T-cell diffusion-limited rate constant

The diameter of T cell has been taken to be 10 μm [64,65],
and the effective diffusion coefficient is taken to be
∼67 μm2/min [62].

The T-cell diffusion-limited rate constant kDiff =
4πNA(rA + rB)(DA + DB) [93], where r and D represent
the radius and the diffusion coefficient of T cells, respectively.
NA is Avogadro’s number. From the above formula, kDiff was
calculated to be 1.46 × 107 nM−1 day−1

2. Determination of initial naïve T-cell concentration

We have assumed that in the absence of an antigen, 100
CD4+ naive T cells can pre-exist within this fixed volume
(100 nl) [4,60],

6.022 × 1023 naive T cell → 1 mole,

100 naive T cell → 1.6605 × 10−13 nmole,

Concentration = n

v

= 1.6605 × 10−13 nmole

100 nl

= 1.66 × 10−6 nmole/l.

3. Determination of GC dose

The dose of dexamethasone at which it shows its im-
munomodulatory activity is 0.75 mg [73,85]. The volume
distribution of dexamethasone is 40–60 l [73,85],

Concentration of GC (dex) = dose

volume distribution (VD)
,

VD for dex = clearance

elimination rate
= 40−60 L ∼ 50 l,

Concentration of GC (dex) = 0.75 mg

50 l

= 1910.978 nmole

50 L

= 38.21 nmole/l s.

4. Parameter estimation

In the work of Fouchet et al., they have considered APC
activation by antigens, effector T cells, and regulatory T cells
to be variable [71]. However, in their work they have consid-
ered the maturation of naïve T-cell via the pathway of APC
to be 1. In our work, we have considered maturation rate of
naïve T cell value ranging from 0.1-1.01 presented in Table I,
based on our early study [3,4], as the antigen of the invaded
pathogen or self-antigen leads to activation of resting APC
and active APC, which further leads to activation of the mat-
uration process of naïve T cells into pro-inflammatory T cells
and anti-inflammatory T cells, from which we can conclude
that the antigen-induced rate of differentiation of naïve T cell
to the pro-inflammatory and anti-inflammatory T cell can be
the sum of APC activation by antigens and naïve T-cell mat-
uration rate activated by APC. However, the glucocorticoid
related pharmacokinetic rate constants are taken from various
literature [72,73,85,94,95]:

absorption rate of glucocorticoid (dex) [73] = 4.8729 ±
8.4998 1/h,

bioavailability of glucocorticoid (dex) [72] = 70–78%
(75%)

biological half life of glucocorticoid (dex) [73] = 36–72 h
(40 h)
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rate of decay of glucocorticoid (dex) = mG∗,

mG∗ = ln[2]

biological half − life
= ln[2]

40 h
= ln [2]

40
(24) day−1 = 0.4158 day−1.

APPENDIX C: STEADY-STATE AND STABILITY ANALYSIS

For the system to be in a steady state, it should have the following conditions:

dP

dt
= dTNa

dt
= dTpro

dt
= dTanti

dt
= dG∗

dt
= 0, (C1)

P = σp

kpTpro + mp
, (C2)

TNa = σNa

(kr pP + kraP + kproTpro + kantiTanti + kaG∗G∗ + mNa )
, (C3)

Tpro = kr pTNaP

(−kproTNa + kpaTanti + kpG∗G∗ + mpro)
, (C4)

Tanti = kraTNaP + kaG∗G∗TNa

(−kantiTNa + manti )
, (C5)

G∗ = σG∗

(kabsKb + mG∗ )
. (C6)

The latent period and steady state found from our MATLAB plot satisfy these steady-state conditions.
The Jacobian matrix for the given system of ODEs (1)–(5) is represented as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−kpTpro − mp 0 −kpP 0 0
−kr pTNa − kraTNa −(kr pP + kraP + kproTpro + kantiTanti + kaG∗ G∗ + mNa ) −kproTNa −kantiTNa − kaG∗ TNa

kr pTNa kr pP + kproTpro kproTNa − kpaTanti − kpG∗ G∗ − mpro −kpaTpro −kpG∗ Tpro

kraTNa kraP + kantiTanti + kaG∗ G∗ 0 kantiTNa − manti kaG∗ TNa

0 0 0 0 −kabsKb − mG∗

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

To analyze the steady-state conditions when there are no source parameters, there is an equilibrium point when all the
concentration of all the elements is equal to zero: (P, TNa, Tpro, Tanti, G∗) = (0, 0, 0, 0, 0) . Then the Jacobean matrix is presented
as follows: ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−mp 0 0 0 0
0 −mNa 0 0 0
0 0 −mpro 0 0
0 0 0 −manti 0
0 0 0 0 −kabsKb − mG∗

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

Then the eigenvalues of the Jacobean matrix are −mp,−mNa, −mpro, −manti, −kabsKb − mG∗ , since all the rate constants
considered in the system are positive. We conclude that the five eigenvalues of the system is negative, which justifies the stability
of the considered system.

The saturation point for the respective ODEs when we consider each ODE is mutually exclusive.
From Eq. (C2) P will saturate at

P = σp

mp
(in absence of TNa, Tpro, Tanti, G∗).

From Eq. (C3) TNa will saturate at

TNa = σNa

mNa
(in absence of P, Tpro, Tanti, G∗).

From Eq. (C4) Tpro will saturate at

Tpro = 0 (in absence of P, TNa, Tanti, G∗).

From Eq. (C5) Tanti will saturate at

Tanti = 0 (in absence of P, TNa, Tpro, G∗).

062401-13
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From Eq. (C6) G∗ will saturate at

G∗ = σG∗

(kabsKb + mG∗ )
(in absence of P, TNa, Tpro, Tanti ).
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