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Airlines use different boarding policies to organize the queue of passengers waiting to enter the airplane. We
analyze three policies in the many-passenger limit by a geometric representation of the queue position and row
designation of each passenger and apply a Lorentzian metric to calculate the total boarding time. The boarding
time is governed by the time each passenger needs to clear the aisle, and the added time is determined by
the aisle-clearing time distribution through an effective aisle-clearing time parameter. The nonorganized queues
under the common random boarding policy are characterized by large effective aisle-clearing time. We show
that, subject to a mathematical assumption which we have verified by extensive numerical computations in all
realistic cases, the average total boarding time is always reduced when slow passengers are separated from faster
passengers and the slow group is allowed to enter the airplane first. This is a universal result that holds for any
combination of the three main governing parameters: the ratio between effective aisle-clearing times of the fast
and the slow groups, the fraction of slow passengers, and the congestion of passengers in the aisle. Separation
into groups based on aisle-clearing time allows for more synchronized seating, but the result is nontrivial, as
the similar fast-first policy—where the two groups enter the airplane in reverse order—is inferior to random
boarding for a range of parameter settings. The asymptotic results conform well with discrete-event simulations
with realistic numbers of passengers. Parameters based on empirical data, with hand luggage as criteria for
separating passengers into the slow and fast groups, give an 8% reduction in total boarding time for slow first

compared to random boarding.
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I. INTRODUCTION

Determination and optimization of the macroscopic prop-
erties of complex systems are of importance in many fields
of physics. In airplane boarding, the main observable is the
boarding time, which is the time it takes to get all passengers
seated. The boarding time is affected by several factors, in-
cluding sequencing of the queue, passenger interactions, and
the time each passenger needs to clear the aisle. Moreover,
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the dynamics of the passenger queue become increasingly
complex as the number of passengers N increases.

While the quantification of properties of complex systems
often requires extensive simulations, the airplane boarding
process can be analyzed in terms of a geometrical represen-
tation of the queue position and the row designation of the
passengers. When the number of passengers N — oo, a flat
Lorentzian metric enables the boarding time to be expressed in
analytical terms, which also enables rough estimates for finite
numbers of passengers [1,2]. The boarding time is found to
be of leading order /N, and it is scaled by a prefactor that
is governed by three main parameters (that will be explained
later). The analytical expressions enable a direct optimization
over these parameters [3-9].

In terms of statistical physics, airplane boarding can be
viewed as a particle process where the passengers constitute
an ensemble of interacting particles of which the macroscopic
observables are of interest [ 10]. The geometric representation,
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consisting of a simple two-dimensional diagram, is directly
linked to space-time geometry. Our approach is also directly
related to the causal set program of quantum gravity [11-15].
In terms of the causal set program, the main contribution of
this work is that we consider scenarios where each event has
a stochastic proper time contribution.

When the aisle-clearing time X of each passenger is
stochastic, there exists a constant tx such that the asymptotic
boarding time 7 is the same as if the aisle-clearing time was
constant for all passengers with value X = tx. We therefore
call tx the effective aisle-clearing time. The parameter is
another macroscopic property of airplane boarding, and it
is similar to what in material science is described as effec-
tive transport and optical properties for composite materials
[16-19]. As in material sciences, the computation of tx is not
trivial, and one of the main contributions of this work is to
devise a method for precise estimation of the parameter. We
utilize the property that tyx depends on the aisle-clearing time
distribution only, and interestingly this also reduces the task to
the mathematical problem of finding the heaviest increasing
subsequence in a permutation [20].

We study the airplane boarding process from the time that
passengers have lined up in a queue outside the airplane until
the last passengers are seated at their reserved seats. Empirical
data shows that a reduction of the boarding time would reduce
the total turnaround time and hence reduce airline costs [21].
Still, most passengers have experienced that boarding is a
seemingly chaotic process where most of the time is spent in
the queue waiting.

The way airlines organize the queue prior to boarding is
called a boarding policy. The random boarding policy, with
its completely unorganized queues, is surprisingly common,
in particular for intracontinental flights in Europe [22]. There
have been several efforts to find optimal policies [23], but
airlines hesitate to apply the solutions since optimal queues
require that individual passengers adhere to specific positions
in the queue [24-27], and such detailed regulation could be
detrimental to passenger satisfaction. Aspects such as priority
boarding of passengers with high revenue tickets will also
limit the potential for optimization.

Many airlines do enforce boarding policies with weaker
restrictions, where passengers typically are divided into two
or more groups. A common policy is the back-to-front policy
where the first group to enter the queue is passengers with des-
ignated seats in the back of the airplane. The next group will
be seated at consecutive rows closer to the front, and so on.
In spite of these efforts, the policy tends to increase boarding
time compared to random boarding [6]. A less common policy
is the window-middle-aisle policy where groups designated
to window seats are asked to sit first, followed by the middle
seats and so on. However, here passengers that travel together
run the risk of getting separated during boarding.

Other applied policies involve priority boarding where,
e.g., groups consisting of small children or other needing
assistance are asked to enter first. This is actually a variant
of the slow-first policy where passengers who are expected
to use a long time to clear the aisle (the slow group) are
allowed to enter first, followed by the faster passengers. The
universal result in Ref. [9] states that the slow-first policy is
always superior to the opposite fast-first policy. In this paper,

we prove another universal result, namely that slow first is also
universally better than the random boarding policy. The result
is a confirmation of the simulation-based result in Ref. [28].
We quantify the result by taking parameters from empirical
data where the slow group is defined to be passengers with
overhead bin luggage. Other boarding policy models that take
the aisle-clearing time into account exist, but even though they
have the potential to reduce the boarding time even further,
they all assign specific position in the queue for each passen-
ger [29-32]. As noted above, this is most likely not beneficial
for customer satisfaction.

The structure of the paper is as follows. In Sec. II, we
describe the boarding process, followed by a summary of the
main results in Sec. III. Main parameters of the boarding pro-
cess, its geometric representation, and the blocking chains that
lead to the asymptotic boarding time in the many-passenger
limit (N — o0) are presented in Sec. IV. In Sec. V, we present
bounds for the effective aisle-clearing time tx that is needed
for computing the asymptotic boarding time when the aisle-
clearing time X varies between passengers within each group.
Ty is particularly important for random boarding, and we pre-
scribe an algorithm that enables precise estimation of tx and
argue that /(X2) serves as a lower bound for tyx. In Sec. VI,
we present and compare analytical results for the asymptotic
boarding time of the slow-first (SF), the fast-first (FF), and
the random boarding (RA) policies. We also demonstrate by
simulations that the large-N limit results hold for realistic
numbers of passengers. We end the paper with a discussion
in Sec. VIL.

II. THE BOARDING PROCESS

We consider the boarding process from the time the pas-
sengers stand in line right outside the airplane until the
last passenger is seated. Once the passengers have entered
the airplane, we assume that the queue order is maintained
throughout the process and that a passenger in front cannot be
passed in the aisle until that passenger has cleared the aisle
and is seated. This means that most of the time the passengers
stand still in the queue waiting for other passengers in front to
take their seat.

The boarding is modeled as an iterative, two-step pro-
cess: First, passengers move as far as they can get toward
their designated row but must stop short in the aisle if they
are blocked by other passengers. This is assumed to take a
negligible amount of time compared to the next step, where
passengers who have arrived at their designated row use a
certain aisle-clearing time to organize luggage and take a seat.

This is illustrated by a simple example in Fig. 1, consisting
of N = 8 passengers, all having the same aisle-clearing time.
At each time step, the queue moves forward and some pas-
sengers are able to sit down. However, most passengers are
delayed by other passengers blocking the aisle. For example,
att = 1 the second passenger in the queue aiming for row 4
must wait for the passenger sitting down at row 3 since the
latter has a lower row number. Other passengers are blocked
by displacement: The fourth passenger in the queue heading
for row 2 does not have to pass any other passenger but must
still wait for passengers in front to proceed. If there were
more room for passengers to stand closer in the aisle (less
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FIG. 1. (a) Boarding process shown as the stepwise advance of a queue, with N = 8 passengers, four rows and two seats per row. Each
circle represents a passenger with designated row number. At each time step, the queue moves forward, and passengers who have arrived at
their designated rows sit down simultaneously. Passengers that take their seat at that time step are marked by red arrows, and each group of
passengers that sit down simultaneously is color coded. (b) Each point in the queue-row diagram represents a passenger, indicated by initial
queue position and designated row number. The color codes highlight groups of passengers that sit down simultaneously. Each passenger in a
group has been blocked by at least one passenger in a preceding group, some of them indicated by arrows. Passengers that consecutively block
each other form blocking chains, and the sum of aisle-clearing times of the passengers in the maximal blocking chain determines the boarding

time, T = 4.

congestion), the displacement effect would be less pro-
nounced. The boarding time 7 is the time until the last
passenger is seated, and in Fig. 1, T = 4 time steps.

The gr diagram in Fig. 1(b) conveys each passenger’s
initial queue position ¢ and designated row number r in the
airplane. Groups of passengers that sit down simultaneously
are color coded. The boarding time can be obtained by sum-
ming up the time it takes for each group of passengers to clear
the aisle.

An alternative strategy, which is used in this paper, is to
utilize the property that each person in a group has been
blocked by at least one passenger in the preceding group. The
gr diagram is used as a tool to analyze the entire hierarchy
of blocking between passengers for a given queue and to
find sequences (chains) of passengers that consecutively block
each other according to a blocking relation [9]. The boarding
time can then be found by considering the blocking chain that
needs the most time to seat all its passengers. In Fig. 1(b)
three different blocking chains are shown, and the longest one
consists of four passengers that have to be seated one after
the other. The boarding time is the sum of those passengers’
aisle-clearing times.

III. MAIN RESULTS

The boarding process is characterized by three key param-
eters. The congestion k is the ratio between the length of
the initial queue to the aisle length, typically in the range of
three to five for common passenger airplanes (see Sec. IV A
for a more detailed description). The second parameter is the
fraction p of passengers with long aisle-clearing time, i.e.,
passengers who are considered slow. The remaining fraction
(1 — p) are fast passengers. Both the slow and fast groups
have their own aisle-clearing time distribution, and each

distribution is characterized by an inherent effective aisle-
clearing time parameter. The ratio C of the effective aisle-
clearing time of the fast group to the effective aisle-clearing
time of the slow group is the third parameter.

The main results of this paper are illustrated in Fig. 2.
The total boarding time of the slow-first and fast-first policies
are compared to the random boarding policy for increasing
congestion k. In the subsequent sections, we prove rigorously
the universal nature of the main features in Fig. 2 and that they
apply for any set of parameters.

In Fig. 2, the congestion k is on the horizontal axis, the
fraction of slow passengers is p = 10%, and the effective
aisle-clearing time of the slow passengers is twice as long
as for the fast passengers, i.e., C = 0.5. The average total
boarding time for the slow-first policy is less than for the
random boarding policy for all values of k, both for finite
numbers of passengers N = 180 (red bullets) and N — oo
(red, dashed curve). However, the quite similar fast-first policy
(blue curves) does not show this universal feature, as there
is a range around k & 1 where fast first is inferior to random
boarding. This highlights that the universal result for slow first
is highly nontrivial.

When N = 180, all three policies approach the same values
as k — oo, since then each passenger would fill up the whole
aisle. The seemingly erratic behavior for k &~ 10 is due to
sudden changes when N = 180 is a multiple of k.

The total boarding time in Fig. 2 can be determined by what
is called the heaviest chain of passengers. This is illustrated by
the gr diagrams in Fig. 3. A passenger cannot sit down before
all preceding passengers in the chain are seated. The weight
of a chain is the sum of the aisle-clearing times (weights) for
passengers that belong to the that chain. The boarding time
is given by the weight of the heaviest chain, and that chain
follows the asymptotic heaviest curve (the geodesic), with

062310-3



ERLAND, KAUPUZS, STEINER, AND BACHMAT

PHYSICAL REVIEW E 103, 062310 (2021)

1.02 =

Relative average total boarding time

Random Boarding | % ~
—@—Fast First, N=180 | S~oo_
0.94 ' | —e— siow First, N=180 ‘\ emm === 3
= = = Fast First, N=oo g
= = =Slow First, N=oo
0.92 ' ' ' '
0.01 0.1 1 10 100

Congestion, k

FIG. 2. Total boarding time of the slow-first (red curves) and the
fast-first (blue curves) policies relative to the random boarding policy
(black curve) for increasing passenger congestion k. We used realis-
tic parameters with 10% slow passengers (p = 0.1) and assumed that
the fast passengers (e.g., those with little hand luggage) clear the aisle
twice as fast as the slow passengers (C = 0.5). We assumed there are
six seats per row, and a total of N = 180 passengers. The results are
similar for the asymptotic case with an infinite number of passengers
(N = oo, dashed lines). Remarkably, on average the slow-first policy
uses less time to seat all passengers than the two other policies. That
the slow-first policy is superior can be intuitively explained by more
synchronized seating—it better exploits the possibility to seat larger
waves of passengers with similar aisle-clearing time in parallel. How-
ever, the result is nontrivial, as the similar fast-first policy is inferior
to the random boarding policy for a range of congestion values k.
Each point in the graph is an average of 10° discrete-event runs.

deviations decreasing as the number of passengers increases
(N — 00). In the asymptotic case, analytical expressions exist
for the total boarding time for both the random boarding
and the slow-first (and fast-first) policies. In Fig. 3, the main
parameters are derived from empirical data. More than half of
the passengers are in the slow group (p = 0.55, those with
hand luggage) and their aisle-clearing time is about three
times longer than for those in the fast group (C = 0.3). The
congestion is k = 4.

The random boarding policy treats all passengers as one
group with effective aisle-clearing time 14 = tx,, and the
boarding time depends linearly on 74. 74 is determined by
the distribution of the aisle-clearing times X4, but analytical
expressions for 74 are generally not available. The distribution
of X4 is a mixture of the aisle-clearing time distributions of
the slow and the fast groups, with respective weights p, 1 — p
and effective aisle-clearing times 75, 7. We call the mixture
concave if

'L'j = PTS%"_(]_I))TI% = fi.mix' (1)

No distributions resulting in nonconcave mixtures have, so far,
been detected. However, 74 is only slightly larger than 4 mix
when we examine empirical aisle-clearing time distributions.

Figure 2 presents relative boarding times for one spe-
cific choice of the parameters p and C. Under variations in
these parameters, the policies can also be compared using the

relative difference
(TsE)

between the average boarding times of random boarding (RA)
and slow first (SF). When we assume that t4 = T4 mix in
Eq. (1), the contour plot in Fig. 4(a) shows that D > 0 in
the (p, C) unit square for k = 4 and N — 00. Since (Tra) is
scaled by 74, it follows that D > 0 also holds for 74 > T4 mix
(all concave mixtures).

Our main result can be stated as follows.

Theorem 1. The expected boarding time (7') is shorter for
the slow-first policy than for the random boarding policy for
all values of k > O and p, C € (0, 1), in the asymptotic regime
when N — oo, if and only if the aisle-clearing time mixture
is concave.

The discrete-event simulation results in Fig. 4(b) indicate
that this universal result also holds for realistic numbers of
passengers N. For the empirical aisle-clearing time distribu-
tions resulting from separating passengers into slow and fast
groups based on hand luggage, the average boarding time is
8% shorter with slow first compared to random boarding when
N = 180.

We also show that the relative difference D between ran-
dom boarding and slow first can be maximized for fixed
k and t4 = T4 mix in the asymptotic regime when N — oo.
For k > In(2) the maximum is obtained for p — 0 and C =

kp/~ek —k + 1:

k—In(2)+ 1
SupD}&_
p,C «/%

For k = 4, supD = 115% when t4 = %4 mix. For concave
mixtures where 74 > %4 mix, the maximal relative difference is
even higher. For large k, it is obviously unbounded; however,
for fixed p, C the asymptotic relative difference approaches
a limiting value when k& — oo. Proofs for Theorem 1 and
Eq. (2) appear in Appendix B.

D(k,p,C,N) =

k— 00

1 Vk=-1.

IV. SPACETIME GEOMETRY AND BOARDING TIME
ASYMPTOTICS

In this section, we give a brief introduction to how the
boarding time can be approximated by the weight of the heav-
iest chain as N — oo. The reader is referred to Ref. [9] for a
simple introduction to the analogy between airplane boarding
and spacetime geometry and to Ref. [2] for a more rigorous
mathematical description.

A. Main parameters

The following parameters govern the boarding process:

(i) The total number of passengers N. For simplicity, we
assume a full airplane, i.e., that N equals the number of seats
in the airplane. In Fig. I, N = 8.

(i1) The congestion k is defined as the ratio of the total
length of a single-file queue consisting of all passengers, and
the total aisle length of the airplane. As a ratio of lengths it
is a dimensionless quantity. Let / be the number of seats per
row, n, be the number of aisles, d be the distance between
consecutive rows and w be the distance between passengers
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FIG. 3. gr diagrams for two different boarding policies, with each of the N = 180 passengers marked as a point, 7 = 6 seats per row, and
parameters k = 4, p = 0.55, and C = 0.3 derived from empirical data. (a) Random boarding policy with all passengers in one group: The
passengers are uniformly distributed over the diagram. (b) Slow-first policy with two groups: The slow passengers are in the first part of the
queue (red bullets). For both policies, the boarding time is the sum of the aisle-clearing times for passengers that belong to the heaviest chain
(dashed lines). A passenger cannot sit down before all preceding passengers in the chain are seated. The boarding time in each diagram is
determined by the heaviest chain which follows the asymptotic limit (solid line—the geodesic), with deviations decreasing as the number of

passengers increases.

as they are lined up, one after the other, in the aisle(s). Then
k = hw/(n,d). The parameter k reflects both the maximum
density of passengers in the queue and the interior design
of the airplane.1 In Fig. 1, k = 1 since d = 2w, n, = 1, and
h=2.

(iii) Fraction of slow passengers p. In Fig. 1, the aisle-
clearing time of all passengers is the same, so p = 1 or p = 0,
i.e., only a single group.

(iv) Effective aisle-clearing time tx. The aisle-clearing
time X is the time needed for a passenger to organize bin

'The formula for calculating k can be adjusted to include the
relative occupancy of the airplane [33].

luggage and take a seat after reaching one’s row. In Fig. 1, all
passengers have an aisle-clearing time of X = 1 time steps.
The effective aisle-clearing time tyx is an intrinsic parameter
in the asymptotic estimate of the total boarding time and is
determined by the distribution of X only. Explicit expressions
are generally not available, except when X = c is constant, in
which case 7y = c.

(v) Ratio C between the effective aisle-clearing time of the
fast passengers to that of the slow passengers.

(vi) Initial queue position g of a passenger normalized by
the total number of passengers N. In Fig. 1, the sixth passenger
in the queue (heading for row 2) has ¢ = 6/8 = 0.75.

(a) 1 1.2 (b) 0.4 p=0.1,C =0.2
-@ p=01 K
Q . > p=05 /
- — — /
S 08 E03k 4 p=09 /
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Number of passengers, N

FIG. 4. Relative difference in average total boarding time D = ({(Tra) — (Tsr))/{Tsr) between random boarding and the slow-first policy
when k = 4. (a) The number of passengers N — oo, and we assume 74 = T4 ;. The slow-first policy gives reduced boarding time for all
combinations of p and C. The maximal relative difference of 115% is obtained for small p and C = kp/~/e¥ — k + 1. For the empirical
parameters resulting from separating passengers into slow and fast groups based on hand luggage, the relative difference is 13% (black circle).
(b) Simulation results for finite numbers of passenger N confirm that random boarding is inferior to slow first. The connected points show
that D = ((Tra) — (Tsp))/{Tse) > O for increasing N for all combinations of parameter values p € {0.1,0.5,0.9} and C € {0.2, 0.5, 0.8}. The
rightmost points are based on the asymptotic values taken from the indicated positions in the inset contour plot from panel (a), and corrected
by precise estimates of 7. There are six seats per row, and the accuracy is 40.0002 (as a result of 10° runs for each finite-N data point).
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(vii) Designated row number r for a passenger normalized
by the total number of rows. The sixth passenger in the queue
inFig. l hasr =2/4 = 0.5.

In Fig. 1(b), the actual queue and row numbers are given
on the axes, while the normalized (g, r) values will be used in
the remaining part of the paper.

We assume that only one door at the front of the airplane is
used. In our numerical simulations, we use a single aisle for
convenience, i.e., n, = 1 and a realistic number of N = 180
passengers for that scenario as the default. Some simulations
also report on other numbers of passengers. Moreover, the
aisle at a row has to be cleared before another passenger can
start clearing the aisle at the same row. However, we treat
passengers as individuals and not as groups traveling together,
and thus it very seldom happens that two persons heading for
the same row arrive at the same time.

B. Boarding policies and heaviest blocking chains

A boarding policy defines how the passenger queue is orga-
nized before entering the airplane. Under the random boarding
policy, the passengers enter the queue in random order. The
gr diagram in Fig. 3(a) presents a typical random boarding
scenario. The points that are uniformly distributed over the
unit square, represent each of the N = 180 passengers. A
scenario with the slow-first policy is shown in Fig. 3(b). The
passengers are divided into two groups based on aisle-clearing
time, and those who are considered slow constitute the first
part of the queue. Within each group, the passengers are
randomly distributed in the queue and so are the designated
row numbers.

The task of finding the total boarding time can be found
by identifying the groups of passengers (wave fronts) that sit
down simultaneously as shown in Fig. 1 where all passengers
have equal aisle-clearing time. In this case, the boarding time
can be found by counting the number of such wave fronts and
multiplying by the aisle-clearing time.

An important additional feature that can be observed in
Fig. 1 is that each passenger in a wave front has been blocked
from sitting down any earlier by a passenger in the preced-
ing wave front. This feature is particularly useful when the
aisle-clearing times vary between passengers. Instead of labo-
riously counting wave fronts, the blocking hierarchy between
passengers is exploited. We say that a passenger A blocks
passenger B if A must clear the aisle before B can take a seat.
A blocking chain consists of passengers that consecutively
block each other. The weight of a blocking chain is the sum of
aisle-clearing times for passengers that belong to that chain,
and the crucial observation is that the boarding time equals
the weight of the heaviest chain.

The heaviest chain can be constructed for a given queue, by
starting with a passenger B in the last wave front. Passenger
B could be blocked by several passengers in the preceding
wave fronts. The one that is closest in the queue just before B
arrives at B’s designated row is chosen as the next passenger
in the chain. A heaviest chain is obtained by proceeding in
this manner, until ending up at a passenger near the front
of the queue, who was never blocked. Examples of heaviest
chains are shown in Figs. 1(b) and 3 for N = 8 and 180,
respectively. A much more efficient way of constructing the

heaviest blocking chain is given in Ref. [20] for £k = 0, and
we apply this to compute 7y in Sec. V.

C. Space-time geometry, causal curves, and curve weight

Figure 3 indicates that the heaviest chains are close to what
is called a heaviest curve. When the number of passengers
N — 00, tools from causal set theory and space-time geome-
try can be used to show that the heaviest chains do approach
the heaviest curve in the limit [2].

In space-time geometry, a Lorentzian metric defines
whether there is a causal relation between events (timelike
separation), and the proper times between such events are
measured by causal curves with maximal length under that
metric (geodesics). In airplane boarding, passengers corre-
spond to events and the property that passenger A blocks
passenger B corresponds to that of A potentially having a
causal influence on B. The time between seating of two pas-
sengers corresponds to the proper time between events, and
when the number of events (passengers) N — oo, the time
difference can be calculated by a particular Lorentzian metric.

The total boarding time is given by the blocking chain
with a maximal sum of aisle-clearing times, and this heaviest
blocking chain approaches a heaviest causal curve under the
metric when N — oo. If we assume that the aisle-clearing
time of each passenger is deterministically given by the pas-
sengers’ normalized queue and row position, X = t(g, r), the
curve weight of a causal curve r(q) can then be defined by [2]

q1
W)= [t r@Wr@ T HT - i@lda. ()
q0

The square root in the integral measures the number of pas-
sengers along the causal curve, and this is weighted by the
respective aisle-clearing time t(q, r(q)) along the same part
of the curve. The curve is causal when the square root is real,
and since the normalized queue and row number (g, r) of all
passengers are within the unit square, the heaviest curve must
obey the same restriction. Other features of the heaviest curve
are that it connects the points (0,0) and (1,1), it is continuous,
and it is differentiable whenever 7 (g, r) is continuous [2].

As noted in Sec. III, when the aisle-clearing times X are
stochastic, t(g, r) in Eq. (3) can be replaced by an effective
aisle-clearing time 7y (g, r), which is independent of k [8].
Moreover, we only consider boarding policies where each
section of the queue (each passenger group) has the same
aisle-clearing time distribution, such that tx(q, r) = tx(q)
takes constant values on a finite number of ¢ intervals.

D. Asymptotic boarding time

A general formula of Myrheim [12] states that the total
boarding time converges to a multiple of the weight [Eq. (3)]
of the heaviest causal curve r from (0,0) to (1,1) within the
unit square [2],

T a.s.
— 2 max W(r).

VN

From this, the asymptotic average boarding time is given by

(TY ~ 2/NmaxW(r) = T. )
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The asymptotic boarding time 7" is a leading term and tends
to overestimate the finite-N average boarding time (T') by a
relative error of order O(N ’%) for k < In(2) and o(N ’%) for
k > In(2) [6]. Still, the relative ranking of boarding policies is
usually maintained for small N.

For the simple case with k =0 and aisle-clearing time
X =1, Eq. (4) reduces to the Vershik-Kerov theorem which
states that the number of passengers in a maximal blocking
chain is approximately 2+/N for large N [34]. Extending to the
case where all passengers have stochastic aisle-clearing times
X from the same distribution, (T') ~ 27¢+/N [2]. These re-
lations are used to estimate and establish bounds for ty in
Sec. V.

The result in Eq. (4) is used in Sec. VI to derive analyt-
ical expressions for the expected boarding time for both the
random boarding and the slow-first boarding policies.

V. EFFECTIVE AISLE-CLEARING TIME AND
EMPIRICAL DATA

The effective aisle-clearing time tx (g), replaces (g, r) in
Eq. (3) when each section of the queue consists of groups of
passengers with the same aisle-clearing time distribution. tx
for each group depends solely on the distribution of X and is
independent of k. Explicit analytical expressions for tx are to
our knowledge only known for deterministic X = ¢, in which
case tx = c. However, the analytical bounds and extensive
numerical calculations in this section indicate that \/(X2) is a
relatively tight lower bound for tx. The stronger conjecture,
that a mixture of two distributions is concave [Eq. (1)], is
supported by simulations based on empirical aisle-clearing
time data.

A. Lower and upper bounds on the effective aisle-clearing time

Bounds for the effective aisle-clearing time 7y appear in
Ref. [8]. Let the aisle-clearing times X follow a distribution
with density function f(x) and support in the interval [a, b].
Then the following inequalities hold:

< ey 1+ 1n(b/a). (®)]

1 Tx

ex/1+1In(b/a) s V(X2

These bounds justify the use of /(X2) as an estimate for
Tx. Moreover, they show that the ratio of upper and lower
bounds of tyx for any distribution with support in [a, b] is at
most e*[In(b/a) + 1], and therefore reasonably good. Here we
improve those bounds and show that the estimate /(X?) has
the same bounds.

Theorem 2. Let the aisle-clearing times X follow a distri-
bution with density function f(x) and support in the interval
[a, b]. Then the following inequalities hold:

 itfwdr e _

mab S x % )
wladl [t oy () 4=

where {u;} is a subdivision of [a, b] witha = uy < u; < up <
---<u, =>b and p; = Pr(u;—; <X < u;). The upper and
lower bounds for tx also holds for 1/ (X?).

The proof is presented in Appendix B 5. Based on the
extensive numerical calculations in Sec. V B below, we con-
jecture that tg > (X?) for all distributions of X. This is
necessary for all mixtures to be concave, which in turn is a
prerequisite for Theorem 1 to hold.

For a two-valued distribution taking the values X = 1y
and X = 7y with probabilities p and 1 — p, respectively, the
ratio of the upper bound in Eq. (6) and the conjectured lower
bound is

2C/p(1 — p)
p+C*(1—p)

U
x = / 1 ()
ViX?)
This ratio attains the maximum value ~/2 when p = C2/(1 +
C?)forall C € (0, 1).

B. Numerical estimation of 7y for two-valued distributions

In this section, we base the numerical estimation of the
effective aisle-clearing time tx on the asymptotic behavior of
the normalized boarding time when k£ = 0,

LY 2ty —a\N73, (8)
VN

where the constant a; > 0 [1].

The slow convergence towards 7y in Eq. (8) requires large
N to obtain precise estimates of ty. However, the computation
of (T') is challenging when the number of passengers N is
large, in particular if a discrete event simulation approach
is used to compute 7 for every realization of a queue of
passengers.

We describe a more efficient procedure for the estimation
of tx. In particular, we apply an efficient algorithm for the
computation of the boarding time 7 for a given queue. In
a more general setting, this is the same as computing the
heaviest increasing subsequence in a permutation (HIS) [20]
which can be done in time of order N InN. The procedure
is described in more detail in Appendix A. For example, we
estimated the boarding time 7 in 9 min running time for N
as large as 2.62 x 103. For comparison, a discrete event sim-
ulation would be of order N/? in the simplest case, where all
passengers are equally fast. Indeed, in this case the boarding
proceeds in ~+/N time steps, and it is necessary to update
positions of ~N passengers in one step.

For two-valued distributions of the aisle-clearing time X
and fixed p, the estimates of ty//(X?2) are presented in Ta-
ble I. The fact that no values are (significantly) below 1 seems
to indicate that v/ (X?) might be a lower bound for x. Hence,
the two-valued mixtures in the table can with reasonable cer-
tainty be said to be concave.

For each fixed C, the maximum of zyx//(X?) in each
column in Table I is obtained when p &~ C2/(1 + C?), the
same relation that gives the maximum for the upper bound
in Eq. (7). For the smallest value C = 0.01, tyx is 26% larger
than /(X 2), which is relatively close to the upper limit of 41%
in Eq. (7). For C — 1, the distribution of X approaches a con-
stant, which implies that x — +/(X?2). Hence, the ratio in the
table approaches 1, which makes the upper bound artificially
high for values of C in this range.
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TABLE L. 7y //(X?) for various combinations of C = tr/ts (numbers in the top row) and p (numbers in the left column) for a two-valued

distribution. The precise estimates of the effective aisle-clearing time parameters 7y have been obtained by extensive simulations.

p\C 0.01 0.03 0.1 0.3 0.5 0.7 0.9

0.00001 1.1240(20) 1.02662(52) 1.00127(17)

0.00003 1.2049(21) 1.05731(58) 1.00401(20) 1.00000(16)

0.0001 1.2643(23) 1.11353(79) 1.01211(19) 1.00038(14) 0.99999(14)

0.0003 1.2385(19) 1.18219(91) 1.02929(20) 1.00119(11) 1.00015(11) 1.00014(11) 0.99993(11)
0.001 1.1646(14) 1.2252(11) 1.06751(38) 1.00365(17) 1.00025(16) 0.99995(16) 0.99994(16)
0.003 1.1028(11) 1.20197(80) 1.12042(45) 1.01041(18) 1.00155(16) 1.00073(16) 1.00042(16)
0.01 1.05402(69) 1.13153(59) 1.15914(47) 1.02803(20) 1.00462(17) 1.00171(16) 1.00054(16)
0.03 1.02896(51) 1.07480(43) 1.14159(42) 1.05433(23) 1.01187(17) 1.00496(16) 1.00153(16)
0.1 1.01313(33) 1.03446(29) 1.08511(32) 1.07420(23) 1.02711(18) 1.01215(16) 1.00389(16)
0.3 1.00455(23) 1.01376(21) 1.03753(23) 1.05582(21) 1.03520(18) 1.02031(17) 1.00646(16)
0.5 1.00232(20) 1.00715(17) 1.02042(20) 1.03617(19) 1.02858(17) 1.01999(16) 1.00735(16)
0.7 1.00142(17) 1.00374(15) 1.01057(18) 1.02050(17) 1.01899(17) 1.01443(16) 1.00582(16)
0.9 1.00051(17) 1.00092(14) 1.00334(16) 1.00710(16) 1.00779(16) 1.00637(16) 1.00265(16)
0.97 1.000043(54) 1.00022(14) 1.00081(16) 1.00209(16) 1.00257(16) 1.00194(16) 1.00100(16)

C. 7y for slow and fast groups based on empirical
aisle-clearing time data

Passengers can be separated into slow and fast groups in
several ways depending on what information is known for
each passenger. Based on the empirical data of Ref. [35],
we apply a strategy for separating slow and fast passengers
into two groups based on the number of items each passenger
carries: For example, a passenger is in the slow group if he
carries more than i items, where i is a chosen value. In the
empirical data of Ref. [35], the number of hand luggage items
carried by each passenger proved to be the parameter which
influenced aisle-clearing time the most.

The parameters resulting from this type of luggage-based
separation strategy are presented in Table II, and details of the
computation are found in Appendix A. Note that the given
mixtures are concave for each type of separation. This means
that the main result in Theorem 1 applies (for N — 00).

VI. ANALYSIS OF THE RANDOM BOARDING AND
SLOW-FIRST POLICIES

We now turn to computing the asymptotic average board-
ing time in Eq. (4) for k > 0, with p, C = tr/75 both
in the range (0,1). We show that the slow-first policy is

more efficient than the random boarding policy in the entire
(k, p, C)-parameter space in the large-N limit (N — oo) when
the aisle-clearing time mixture is concave. Comparisons to
simulation results for finite N are also made.

A. Analysis of the random boarding policy

The random boarding policy treats all passengers as one
group such that all passengers have the same aisle-clearing
time distribution and effective aisle-clearing time. Then
7(g, r) can be replaced by t4 in Eq. (3) and W(r) = t4L(r),
where

q1
L(r) = / V(@) + k1 = r(g)ldg. )
q

0

The variational method can be used to maximize the curve
length L(r), and this leads to general solutions of the form
r*(q) = ae**4 + be*? 4+ 1 when k > 0.

The constants a, b are determined using the values at the
start and end points: 7*(0) = 0 and r*(1) = 1. A typical shape
is shown in Fig. 5(a) for k < In(2).

However, when k > In(2), r*(g) will extend below the
(g, r)-unit square. Since the curve should be within the unit

TABLE II. Effective aisle-clearing times for groups resulting from different strategies for separating passengers into slow and fast groups.
The random boarding policy with all passengers in one group has exact value 74, = 0.443, while \/(X?) = 0.397 (both rounded to three
significant digits). All mixtures are concave since 7 > ptg + (1 — p)tz = ;... Note that in all cases 75 > /(Xg) and 77 > /(X2).

Slow group p (x2) 75 (x3) T A mix C=1/15
All passengers 1 0.397 0.44320(12)

>1 item 0.55 0.516 0.56756(13) 0.153 0.169853(43) 0.437 0.299
>2 items 0.15 0.766 0.82599(16) 0.285 0.317433(83) 0.435 0.384
>3 items 0.04 1.054 1.12911(21) 0.348 0.383802(94) 0.435 0.340

0 or >2 items 0.60 0.408 0.45560(13) 0.381 0.41827(10) 0.441 0918

2 items 0.11 0.645 0.68426(12) 0.352 0.39959(12) 0.442 0.584

1 or 2 items 0.52 0.453 0.49250(10) 0.327 0.37614(13) 0.440 0.764

1 or >3 items 0.44 0.476 0.53154(14) 0.322 0.356265(92) 0.442 0.670
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(b)

q q

FIG. 5. The shape of the longest curve for random boarding can
be either ordinary or piecewise. (a) Ordinary-type curve (O) when
0 < k < In(2). (b) Piecewise curve consisting of a constant function
along the base (B) which is smoothly continued by an upward-going
ordinary-type curve (U) when k > In(2).

square, a piecewise curve as in Fig. 5(b) emerges as the
longest curve (see Ref. [9] for details).

The lengths of these longest curves are computed by
Eq. (9), and by Eq. (4), the expected boarding time with
random boarding and effective aisle clearing time 74 is to first
order given by

7 ZTA\/gx/ek -1
RA =
2rA\/§[k @)+ 1] In@) <k

0 <k<In@
= n (10)

In Fig. 6, comparisons of the asymptotic boarding time
for the random boarding policy with simulation results for
N < 240 show that the asymptotic result in Eq. (10) tends
to overestimate the boarding time. Still, the relative ranking
between different parameter settings is maintained. t4 is here
estimated for two-valued distributions by extensive discrete-

5 : .
Random boardin
? ¢ pe0 08
~4-p=0.9 +—p=09,C =02
41 P p=0.5 p=05,0'=08
_ =0.1,C =0.8
@ p=0.1 05,0 =055
=0.5,C =0.2
S '
-~ p=0.1,C =0.5
=
N 2¢
~ _@ p=0.1,C =0.2
1 L

30 60 120 180 240 o0
Number of passengers, N

FIG. 6. Average boarding time estimates for the random board-
ing policy for different (p, C)-parameter settings. Simulation results
for increasing number of passengers are compared to the asymptotic
results for all combinations of parameter values p € {0.1, 0.5, 0.9}
and C € {0.2,0.5,0.8}. k =4, tg = 1, and the accuracy is +0.002
(as a result of 10° runs for each finite-N data point). The rightmost
points are the asymptotic values in Eq. (10). Corresponding results
are presented in Ref. [9] for the slow-first and fast-first policies.

event simulations to a high degree of accuracy as in Table I in
Sec. VB.

B. Analysis of the slow-first policy

When there are two groups, as in, e.g., the slow-first policy,
the curve weight for a function r(g) on the interval ¢ € (0, 1)
is given by

P
W (r) = / ts/F (@) + k(1 = r(@))dg
0

1
+ / /7 (@) + k(1 — r(@)dq
P

= t5Ls(r) + trLr (1), (11)

where Lg, Lr are curve lengths as defined in Eq. (9) and
Ts, Tr are the effective aisle-clearing time for the slow and
fast groups, respectively.

The maximal weight Wi, of Wsg is given by the curve that
gives the maximal curve weight in Eq. (11). The shape of the
heaviest curve is determined by the values of k, p, C, where
C =1r/15 € (0,1). Detailed computations of the heaviest
curves and their respective curve weights are presented in
Ref. [9]. The expression for the maximal curve weight
Wgr(k, p, C) is also given in Appendix B and consists of four
different subfunctions. Figure 7 illustrates how the subdo-
mains of each of the subfunctions depend on the parameters.
For example, for k < In(2), only one of the subfunctions
(SF4) is present, whereas another subfunction (SF1) domi-
nates the parameter space when k — oo.

The maximal weight W¢;. is used to calculate the corre-
sponding asymptotic boarding time 7sr in Eq. (4). Compar-
isons of the asymptotic boarding time for the slow-first policy
with simulation results for N < 240 in Ref. [9] show that the
asymptotic result in Eq. (4) tends to overestimate the boarding
time, but the relative ranking between different parameter set-
tings is maintained. Corresponding analytical expressions and
results for the fast-first policy are also presented in Ref. [9].

C. Comparison of slow-first and random boarding policies

As stated in Theorem 1 in Sec. III, the slow-first policy
outperforms the random boarding policy for all values of
k>0 and p,C € (0, 1). The results are valid for concave
mixtures and the proof showing that W, — Wgi > 01s left for
Appendix B. The results of the finite-N discrete-event simula-
tions in Figs. 2 and 4(b) indicate that the result are also valid
for realistic numbers of passengers N.

Another feature of the result is presented in Fig. 8§ where
the percentage of seated passengers is plotted as a function
of time for the three different policies. The same empirical
parameter setting as in Fig. 3 are used. The boarding time
T is equal to the time when the fraction of seated passengers
reaches 100%. Slow first ranks first (Tsp = 919 time steps),
then fast first (7gg = 955), and at last random boarding (Tgrs =
1037).

The graph for the slow-first policy (SF) in Fig. 8 consists
of two curve segments with different slopes. The first, less
steep segment corresponds to boarding dominated by slow
passengers, while the steep segment is dominated by fast
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Low congestion

Moderate congestion

High congestion

k < In(2) k=15 k=4
SF1
SF3 SF2
C N SF1
SF4 SFs
N
SF4 ko
0 t
0 1 0 1 0 g4 1
p p p

FIG. 7. The subdomains of the (p, C)-unit square where the slow-first boarding time and the maximum of Wsg in Eq. (11) is represented

by the different subfunctions in Eq. (B1).

passengers. As boarding starts, the queue of passengers is four
times as long as the aisle (k = 4), and the first fast passengers
in slow first enter the airplane only after a significant portion
of the slow passengers are seated.

The contour plot in Fig. 4(a) indicates that the relative
distance between random boarding and slow first increases for
decreasing C. This is explicitly shown in Eqs. (B10) and (B16)
for the SF4 and the SF1 regions, respectively. Ultimately, this
leads to the maximal relative distance being obtained for small
C, as stated in Eq. (2).

SFFF RA
100% ‘ ‘ ‘ ‘ T
, ’
’
= 80% R 1
<5} v
e ’
g ¢
g 60% L 1
) e
= 40%r i 1
3] ¢ . —
= , Boarding policies
A 20% ," —— Slow first _
s —Fast first
Py - = =Random boarding
0% : ‘ ‘ :
0 200 400 600 800 1000 1200
Time steps

FIG. 8. Comparison of three different boarding policies. We used
parameters based on the empirical data in Sec. V C, with congestion
k =4, 55% slow passengers (p = 0.55), and assumed that the fast
passengers (those without hand luggage) clear the aisle about three
times faster than the slow passengers (C = 0.3). We assumed there
are six seats per row, and a total of N = 180 passengers. The percent-
age of seated passengers is plotted as a function of time. On average
the slow-first policy (rightmost, red, solid line) is lagging behind all
the way to around ~85%. However, the slow-first policy eventually
seats all passengers in a shorter time span, relative to the two other
policies. Fast first is second (FF; +4%), and the random boarding
policy is third (RA; +13%). The graph is an average of 100 000
discrete-event runs.

As indicated in Fig. 7, W¢y, = W, for large k when p, C
are fixed. In Appendix B 6, we show that

Vr+C*(1—p)

—a8 > 1. (12)
Wik p+C—p)

This explains why the relative difference between slow first
and random boarding in Fig. 2 approaches a limiting value
when N, k — oo. That both the slow-first and the fast-first
policies approach the same limiting value is shown in Ref. [9].
The limiting value in Eq. (12) increases for smaller C, and for
fixed C, Eq. (12) is maximized by p = C/(1 — C), giving the
maximum (1 + C)/(2+/C).

D. Comparison of fast-first and random boarding policies

As opposed to the slow-first policy, fast first can be both
better and worse than random boarding, depending on the
congestion k as shown in Fig. 2 for p =0.1,C = 0.5. The
same feature is shown for other (p, C) values in Fig. 9 when
k = 11is fixed. Blue-shaded areas in the figure indicate that the
asymptotic boarding time of random boarding is shorter than
for the fast-first policy (negative relative difference).

In Fig. 9(a) the effective aisle-clearing time t4 of ran-
dom boarding is approximated by T4 mix in the estimates, and
the results suggest that fast first can be inferior to random
boarding for N = oco. In Fig. 9(b) this is verified for several
combinations of p, C values when precise estimates of t4 are
applied.

Figure 10 demonstrates that fast first is inferior to random
boarding also for finite numbers of passengers N for the
particular set of parameters k =1, p = 0.1, C = 0.5 (black
circles in Fig. 9). For large N, the relative difference ap-
proaches —1.77%, which corresponds to the minimum value
in Fig. 9(b) (close to the peak value of the blue dashed curve
in Fig. 2).

E. Optimal separation strategies based on empirical data

The asymptotic boarding times for random, slow-first (SF),
and fast-first (FF) boarding based on the (p, C) values for
some of the different separation strategies in Sec. VC are
compared in Fig. 11. The congestion parameter is set to k = 4
(typical empirical value) and we assume that 74 = T4 mix. The
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FIG. 9. Relative difference in asymptotic average boarding time ((Tra) — (Trr))/{Trr) between the random boarding and the fast-first
policies when k = 1 as in Fig. 2. (a) The effective aisle-clearing time of random boarding 7 is approximated by %4 iy = +/pt3 + (1 — p)T2,
and fast first is seemingly inferior to random boarding on large portions of the (p, C) parameter space. (b) The precise estimates of 7, in Table I
are applied, and hence the asymptotic total boarding time of random boarding is larger than in panel (a). Still, fast first is inferior to random
boarding for several values of p small and C large. Gray areas indicate that the ranking of the two policies was indeterminate within the range

of 2 standard deviations of the 7, estimate.

inset from Fig. 4(a) shows that the (p, C) values (bullets) are
in the vicinity of the region with largest improvement for the
slow-first policy relative to random boarding. The asymptotic
boarding times of slow first and fast first relative to random
boarding are shown as red and blue bullets, respectively.

The improvement by choosing the slow-first policy (and
for most parameter settings also fast first) instead of random
boarding is significant. From Fig. 11, one sees that when the
slow and fast groups are separated based on the number of
luggage items, the maximum improvement with slow first
compared to random boarding is obtained when the slow
group consists of those who carry luggage items. Applica-
tion of the precise estimates of 74 in Table II for empirical
distributions (instead of assuming t4 = T4 mix), gives a slight
improvement increase from 13% to 14%. For finite number of

0%

—&— N finite

——-N=o

= -0.5%

-1%

Tra) — (Trr)) /(Tk

= 15% 1

-2% '
10 100 1000 10000
Number of passengers, N

100000

FIG. 10. Relative difference in asymptotic average boarding time
({Tra) — (Trr))/ (Trr) between the random boarding and the fast-first
policies when (k, p, C) = (1,0.1,0.5). For this setting, the graph
indicates that random boarding is superior also for finite N. For
large N, the relative difference approaches —1.77%, which is the
asymptotic value (N — oo) marked with a black circle in Fig. 9(b).

passengers N = 180 and empirical aisle-clearing time distri-
butions, discrete event simulations give that the improvement
of slow first compared to random boarding is 8% when the
slow passengers are those who carry luggage items.

When the slow and fast groups are separated (clair-
voyantly) based on those p =30% who have the slowest
aisle-clearing times, the maximum improvement with slow
first compared to random boarding is 21% in Fig. 11. Note,
however, that this separation strategy is merely theoretical, as
the exact aisle-clearing times are not known before seating is
completed. The choice of quantile p that is used as a threshold
to separate slow from fast passengers is quite robust to varia-
tions as the improvement is quite similar for all values of p in
the range p € [0.2, 0.4].

VII. DISCUSSION AND OUTLOOK

In this paper, we recast the airplane boarding problem to
the setting of Lorentzian geometry and show that the slow-first
boarding policy is superior to random boarding for any set
of parameters when the number of passengers N — co. The
analytical result is presented in Theorem 1 and hinges on
a concavity assumption regarding the effective aisle-clearing
time of groups of passengers with varying aisle-clearing
times. This parameter is not available in closed form, but
extensive numerical computations enable us to validate the
concavity assumption with a high degree of certainty.

As stated in Eq. (2), the maximal relative distance between
random boarding and slow first is obtained for a small ratio
C between effective aisle-clearing times of the fast and slow
groups. This seems to be an important feature that distin-
guishes the slow-first policy from random boarding. C being
small implies that the aisle-clearing time of the slow passen-
gers is much longer than for the fast passengers. In random
boarding, a few slow passengers will then be able to block
and delay many fast passengers from getting to their seats, in
particular when the congestion k is large. With the slow-first
policy, the variability within each group is reduced, and this
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FIG. 11. Relative asymptotic boarding time for slow first (SF,
red) and fast first (FF, blue) compared to random boarding for dif-
ferent (p, C) values based on empirical data and k = 4. Results for
luggage-based separation strategies are shown as red and blue bullets,
while separations that are based on quantiles of the empirical aisle-
clearing time distribution are shown as dot-lined curves. Red-colored
results are asymptotic values taken from the indicated positions in the
inset contour plot of the relative difference between random boarding
and slow first from Fig. 4(a). The effective aisle-clearing time of
random boarding 7, is approximated by £4 i = v/pté + (1 — p)T2
(conjectured as a lower bound). If the slow group are those with
1 luggage item or more, the improvement by choosing slow first
instead of random boarding is 13%. The corresponding result for fast
first is 8%. However, separation where slow passengers have three
or more luggage items results in a fast-first policy which could be
inferior to random boarding. The improvement can be up to 21%
when slow and fast passengers are separated according to quantiles
in the aisle-clearing time distribution.

enables more synchronized clearing of the aisle and less effect
of local interference between passengers. Since the relative
difference tends to increase with C small and k large, local
interference seems to be the crucial detrimental aspect of ran-
dom boarding. This aspect seems to be much less pronounced
within the more homogeneous groups in the slow-first policy.

While slow first is always superior to random boarding, the
ranking of fast first and random boarding depends on the val-
ues of the parameters (k, p, C). Fast first enables synchronized
seating in the same way as slow first, and the positive effect of
this is higher when C is small and k is large. However, random
boarding is superior for large C and small k. A heuristic ex-
planation for the inconsistent ranking of the two policies could
be found in Fig. 8. The graphs indicate that the rate of seating
is slower in the start phase for all boarding policies. While
the slow-first policy enables parallel seating in the transition
phase between the groups [9], there is in effect two starting
phases with the fast-first policy—one for the fast group and
one for the slow group. For certain parameter settings (e.g.,
large C and small p), the positive effect of improved local
synchronization in fast first is not enough to offset this.

The present paper together with Ref. [9] provides a com-
plete picture of the relation between three policies which are
actually practiced by airlines—random boarding, fast first,

and slow first—across all parameter settings. In ongoing work
with several additional coauthors, we are extending this work
in new directions, both in terms of optimization functions and
policies, in terms of finding optimal policies and considering
more than two groups.

Considering more than two groups, a possible extension of
the slow-first policy, could be to distribute the passengers into
more groups with even less variation within each group. Since
slow first is better, the groups should be sequenced in the
queue according to descending effective aisle-clearing times.
In fact, preliminary results indicate that this strategy reduces
the total boarding time and ultimately a queue where all
passengers are ranked according to descending aisle-clearing
time is even better.

With respect to optimization functions, one could consider
average individual boarding time (customer experience) rather
than total boarding time. Then the ranking of the three policies
slow first, random boarding, and fast first is reversed, and the
performance differences between fast first and slow first are
more pronounced compared to total boarding time. Conse-
quently, the total boarding time of slow first is shorter, but the
average passenger suffers longer waits in the queue. This leads
to the introduction of new policies which interpolate between
slow first and fast first and provide the benefits of both.

The problem of finding optimal queue-row placements is
also of great interest. Such placements form space-time lenses
with respect to proper time for positive mass particles, in the
sense that (0,0) and (1,1) become conjugate points. This leads
to some efficient lens constructions, but as boarding policies
they are often very difficult to implement. However, for large
values of k, there are near-optimal lenses with small amounts
of aberrations that correspond to reasonable boarding policies.
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APPENDIX A: PROCEDURE FOR ESTIMATION OF tx

In this Appendix, we describe an efficient procedure for
the estimation of the effective aisle-clearing time 7y, when
the aisle-clearing time X of all passengers in a group follow a
common distribution. Since tx is independent of k, we refer
to the case when k = 0.

First, we establish an efficient algorithm for the computa-
tion of the boarding time 7 for a given queue, by recasting the
problem to the computation of a heaviest increasing subse-
quence (HIS). We use a variant of the algorithm in Ref. [20].
Then (T') is estimated by simulation for a series of N val-
ues. The first-order approximation (7) /(2+/N) — 1% (see
Sec. IV D) is improved by an extrapolation to N — oo using
the extended large-N behavior in Eq. (8).

We first considered an example where the weights 77 =
1 (fast passengers) and tg =2 (slow passengers) are as-
signed randomly, each with probability p = 1/2 (the fraction
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TABLE III. The dependence on N of the normalized boarding
time (T')/+/N of random boarding when p = 0.5 = C.

N (T)/v/N
1000 2.9802(14)
8000 3.11190(75)
64 000 3.1798(12)
512 000 3.21753(61)
0 3.2553(17)

of slow passengers). We tested the algorithm for N =
1000, 8000, 64 000, and 512 000 passengers. A total of 10 000
simulation runs were performed for N < 8000 and 1000 sim-
ulation runs for N > 64 000.

The estimated average boarding times (7)) for random
boarding (the values of HIS) normalized to VN are given in
Table III. The asymptotic value at N = oo is obtained by an
extrapolation (see the following section), taking into account
that corrections to scaling can be expanded in powers of N~1/3
as in Eq. (8).

The normalized asymptotic boarding time for both slow
first and fast first is just 2,/(X2) ~ 3.1622777 (when k =
0, p =0.5,C = 0.5). It is seen that, in this particular case, the
random boarding policy is a bit worse (slower).

1. 1y for two-valued distributions

In order to estimate the unknown constant ty and to inves-
tigate whether it is bounded from below by /(X?2), we take
the asymptotic result in Eq. (8) and define the ratio

T/VN N 1

= oo — 1N "3,
N NOS ) a

(AL)

where @oo = Tx/+/(X?). Then the following extrapolation al-
gorithm to estimate ¢, has been used.

We performed simulations at a hierarchy of N = N; values:
No, Ny = 8Ny, N, = 82N, etc. This resulted in a correspond-
ing hierarchy of ¢y values, i.e., ¢n,, dn,, ¢n,, etc. Using that
¢y in Eq. (Al) is linear in N~!/3, we obtain a sequence of
estimates for ¢, by linear extrapolation, i.e.,

" = 2¢n, — ¢, ,

for i > 1. With the ansatz that Eq. (Al) can be expanded

further in powers of N =3, we also considered the quadratic
extrapolation

(A2)

¢ = (8w, — 69w, + ).

Each next value is expected to be twice closer to the
asymptotic value at N — oo for the original sequence

¢n,, four times closer for @™, and eight times closer

for . We also observed that at a given number M
of simulation runs, each next value in any of these se-
quences has statistical error (standard deviation o) smaller by
approximately 2.

We used the following criterion: The maximal number of
points (passengers) N has to be large enough to ensure that the
systematical extrapolation error is much smaller than o. The

(A3)

TABLE IV. The values of tx y (t4 for all passengers, tr for fast
passengers, and 7y for slow passengers when the slow passengers are
those carrying hand luggage), extracted from 10 000 runs of HIS sim-
ulations depending on the number of passengers N. The asymptotic
estimates are obtained by a linear and a quadratic extrapolation in the
variable N~1/3,

N 17 TF Ts

100 0.33337(62) 0.12969(22) 0.44204(70)
800 0.38168(35) 0.14771(12) 0.49844(39)
6400 0.41048(18) 0.158080(65) 0.53049(20)
51200 0.426061(93)  0.163696(33) 0.54820(10)
409 600 0.434405(48) 0.166659(17) 0.557788(53)
3276 800 0.438745(24) 0.1682272(86)  0.562650(27)
oo (linear extr.)  0.443086(68) 0.169795(24) 0.567511(75)
oo (quadr. extr.)  0.44320(12) 0.169853(43) 0.56756(13)

statistical error for ¢! is somewhat smaller than that of ¢3**;
however, in some of the considered cases, the above criterion
was not well satisfied for ¢! but it was satisfied for p**’.

Therefore, q)iquad values for the largest i have been used as the
final asymptotic estimates of ¢n.

Calculations within the range of parameters 0.01 < C <
0.9 and 0.00001 < p < 0.97 have been performed. The simu-
lation parameter Ny ranged from 10 to 1000 (larger for smaller
C and p), whereas the maximal i has been fixed equal to 7.
The number of MC realizations (simulation runs) ranged from
10000 (for Ny = 10) to 500 (for Ny = 1000). The results are
collected in Table I.

The most accurate value has been obtained for p = 0.97
and C = 0.01. In this case, the original less accurate value
0.99981(16) was smaller by ~1.2¢ than unity, and therefore
we performed extra simulations to verify whether or not it is
<1. As a result, the possibility that ¢, < 1 holds in this case
has not been confirmed. In all other cases ¢ is either >1 or
the deviation below unity is within lo.

Thus, our simulation and calculation results do not allow
us to conclude that Ty in some cases is smaller than /(X?2)
for two-valued distributions.

2. tx for multivalued distributions based on empirical data

We consider the aisle-clearing time distribution data in
Ref. [35]. The mean boarding time (7') for the multivalue
distribution is determined by the HIS algorithm where each
weight is taken from the same distribution. For each distribu-
tion, we define a hierarchy of tx » values where for each N,
oy =(T)/ (ZW ). As for the two-valued distributions, we
use linear and quadratic polynomials of N~!/3 [correspond-
ing to Egs. (A2) and (A3)] for an extrapolation to N = oo,
based on the idea that (T') /+/N can be expanded in powers of
N~!/3. The results for 10 000 simulation runs are collected in
Table IV for the separation strategy when the slow passengers
are those carrying hand luggage.

A fast convergence of a series of extrapolated values shows
that such an extrapolation is accurate enough. The values of
the linear extrapolation in Table IV have smaller statistical
errors, but systematical extrapolation errors are smaller and
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practically negligible for the values of the quadratic extrap- estimates for 7z and 7y in Table II when the passengers are
olation. Hence, t4 = 0.44320(12), tr = 0.169853(43), and divided into fast and slow groups in other ways are obtained
g = 0.56756(13) can be assumed as the final estimates. The in a similar manner.

|
APPENDIX B: PROOFS

There are five different combinations of RA and SF subfunctions which we treat in the subsections below in order to show
that Wy, — Wgi > 0 [for k < In(2) there is one combination, and for k > In(2) there are four combinations]:

W — rAﬂ\/ek —1 0 <k <In(2)
KA ‘L’A\/E[k “ @)+ 1] InQ) <k
We assume that

w3 =pi + (1= p)rp = lp+C2(1 - p)] = &

A,mix

and prove that Wy, — W, > 0. Obviously, this inequality will also hold if 74 > T4 mix.
From Ref. [9], we have that W}, can be represented by one of four different subfunctions,

Ts C 2
We, = ﬁ[kp(l —C)+kC+1+Cln (1 +C) ~In <1+—C)} max (G2, C1} < C,
« _ S _ 2 2 2 2
W, = \/E[kp+l 1n<1+C2(ek('—P)—l)>] C; <C° <y,
\/ k 2 \/ k 2 (B1)
s (e — 1)(1 - C?) (e’ — 1)(1—C?)
Ws*mzﬁc[kw—ln(zwr - —In (1+ c )} C; <C*<C,
W*_fs\/kp D) & C2(ek — ekp C? < min [C2. C2
SF4_E (e — 1)+ C*(e* — e'P) < min {C3, C7}.
Here C = 17 /15 € (0, 1), and the borders between the different subdomains as shown in Fig. 7 are given by
SF1-SF2:  C; = (0-» — 1)1,
SFI1-SF3: G, =2e %P — 1, (B2)
SF2-SF4: C32 = (2 —ekP)/(ek — kP,

SF3-SF4:  C7 = 4(e!? — 1)/[e* — 4(ek — 7).

For k < In(2), both C3 > 1,y > 1, and then Wi = Wy, For k > In(2), all subfunctions are present. The borders meet at a
vortex point where p = p* = In[2/(1 4+ C*)]/k and C = C* = 2¢7 .

1. Proof of Theorem 1: W, — Wg; > 0 when k < In(2)

We show that the difference of the squares is decreasing in C for all p, k. It is straightforward to show that the difference is 0
both for C = 1, p = 0, and p = 1. Since the difference is O for C = 1, the difference is positive for C < 1:

%(Wﬁ‘i — W) = [p+C2(1 = pler — 1) — (7 = 1) = C*(et — &),
%W = (1 =p)(e =)= (" =) = glk, p),
g—i = —(f — 1)+ ke?,
g—jf; =k > 0. (B3)

Since g(k, 0) = 0 = g(k, 1), g(k, p) < O for all p € (0, 1). There is also negative curvature in the p direction:

ia(wliki - WS*F24) — (1 _ CZ)(ek _ 1 _kekp)

2 ap

k 82 W*2 _ W*Z
= ( ng - SF4) _ _(1 _ C2)k2€kp < 0.
Tg )%
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2. Proof of Theorem 1: Necessity of concave mixture

The necessity of concavity of the aisle-clearing time mixture is shown by a counterexample for small k. In Eq. (B3),

it is assumed that 73 = fimix = pt? + (1 — p)t?. Instead, assume that the mixture is nonconcave, i.e., for ¢ > 0, let 77 =

A2 A2 . .
(1-— s)rA’miX < Y mix- This gives

1 A
=5 (WRR = Wekis) = =624 ix + O(), (B4)
N

which means that the boarding time will be less for random boarding than for slow first for sufficiently small k.

3. Proof of Theorem 1: W, — Wg, > 0 when k > In(2)
It is straightforward to show that the difference is 0 both forC =1, p =0, and p = 1.

a. RA vs SF1

The difference has negative curvature in p,

%?M&—W&)=/@+pU—C%M+1—mQH—HC+M1—O]
—14+In2) —CIn(C) — (1 —C)In(1 + C),
VkdWgy — W) _ (1=C)k+1-In)]
Ts ap 2,/C? + p(1 —C?)
V(Wi = Waia) __(=C»[k+1-InQ2) o
o 0 41C> + p(1 = €2

—k(1-0),

That the difference is positive depends on non-negative difference on the SF3-SF1 and SF1-SF2 borders, respectively (see
Appendixes B 3 b and B 3 ¢ below).

b. RA vs SF2

The difference has negative curvature in p,

Vi
T(Wfi"A = Wsp) = VC* + p(1 = CHk +1 —In(2)] —kp — 1 +1In(2)
S
—In[1+ " - 1),
VEOWg, — W) (1= CDk+1—1n(2)] kC2ek
T ap - 2[C2 + (1 —Cz)p]% C2ek 4 (1 — C2)ekp’

VEPWE, — W) (1-C)?k+1—1n()]  K2C2%et(1 — C)el?

oo HC+ (1 -Cp [C2eF+ (1= CA)eko

That the difference is positive depends on non-negative differences on the SF1-SF2 (smooth) and SF4-SF2 borders (see
Appendix B 3 c) and that the difference is zero for p = 1.

c. RAvs SF3

Set y = ¢*? — 1. Then y € (0, 1), since kp < In(2). Set R = \/(ek? — 1)(1 — C2)/C = /y(1 — C2)/C > 0. To stay in SF3
toward the SF3-SF1 border, y < R/(2 + R), and toward the SF3-SF4 border R < (& —2) /2. This means that R is constant at
the SF3-SF4 border for fixed k.

The reparameterization gives that

[ R2InCl
_\/];(W]‘:(A — Weps) = (k+L)< 4 KA +y) 1) +In(1 +R)—R
CTS ky

= fOn R, k), (BS)

where L = 1 — In(2).
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We first find the values of k € (In(2), o) that minimizes f in Eq. (B5) for fixed values of A = R?In(1 + y)/y:
— f— L —
af A(A —4L)(k 1_\/g)[\/Z(k L)+ 2k+/L]
ok '
A+ 2D+ 1+ - 58+ 1]

Lower bounds for f on the SF3 domain are given by three different values of k, depending on the value of A = A(R, y):

(1) When A < 4L, ¥ < 0, and f is minimized when k — k; = oc.

(2) When A > 4L, f is minimized when % = 0, which is obtained when % is set to

L

_ \/E ’
A
Note that k»(A) decreases toward L when A increases.

(3) WhenA > 4L/[1 — L/In(2)]? ~ 3.95, then k; < In(2), and k = k3 = In(2) gives a lower bound for f since k > In(2) by
default and 2 > 0 when k > k.

Since In(1 + y)/y is decreasing in y, d f /dy < 0. Furthermore, since y < R/(R + 2) on the SF3 domain, lower bounds for f
can be found by setting y = y; = R (used below for small R) or y =y, = 1 (used below for large R) since both y; and y, are
larger than R/(R + 2). Given the fixed value of R, A(R, y(R)) determines which of the three values of k above should be chosen
to obtain a lower bound for f:

(1) Assume A < 4L, and set k = k; = 0o and y =y; = R. Then G|(R) = f(y = R, R, k = 00) is a lower bound for f on
SF3 when R < 1.40, since then A = RIn(1 + R) < 4L, and

k(A) =

A R
Gi(R) = 5 +In(1 +-R) = R =~ In(1 + R) + In(l +R) = R

G!(R) = 0.

20+R?

Since G1(0) = G}(0) = 0, then G;(R) > 0 when R > 0, and in particular for R € (0, 1.40).

(2) Assume A > 4L, and setk = k» and y = y, = 1. Then A = R>In(2) > 4L when R > 2./L/In(2) ~ 1.33. Also, with this
choice of y, ky = LR/[R — 24/L/In(2)] > In(2) when R < 2/LIn(2)/[2In(2) — 1] &~ 2.38. Then G,(R) = f(y =1,R, k) isa
lower bound for f on SF3, at least when R > 1.35, and

G>(R) = 2L(\/§— 1) +In(1+R)—R

( In(2) )
=2L(R\[= =~ 1] +In(1 +R) ~R.

! 0
- <
(14 R)?

Since G, (1) & 0.0018, G»(3) =~ 0.54, then G,(R) > 0 when R € [1, 3], and in particular for R € [1.35, 3].
(3) Assume A > 4L/[1 — L/In(2)]*> (which is the case when y =y, = 1 and R > 2.38), and set k = k3 = In(2). Then
G3(R) = f(y = 1, R, k3) is a lower bound for f on SF3 when R > 2.38, and

/ A
G3(R)=< 1+ln(—2)—1> +In(1+R)—R

=(/R2+1—-1)+In(1 +R)—R,
R
— >
1+rR 1+R

GY(R) =

G5(R) = 0,

and since G3(0) = 0, we get that G3(R) > 0 when R > 0, and in particular for R > 2.38.

d. RA vs SF4

We show that the difference of the squares is decreasing in C for all p, k,

%(W;,i —Wi5) = [p+ C*(1 = pllk — In@2) + 11> — (7 — 1) — C*(e" — &) = f(k, p. ), (B6)
S
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%W = (1 = plk —InQ) + 11> — (" — &)
< =p)e=1)— (" =)= gk, p) < 0. (B7)
The first inequality in Eq. (B7) is due to
hk)=(f—1)—[k—In@2)+ 11>, H@k)=e —2[k —In@)+ 1], h'(k)=e —2>0,

when k > In(2). Since h(In(2)) = 0 = #'(In(2)), h(k) > 0 when k > In(2). The second inequality in Eq. (B7) was shown in
Appendix B 1 forall k > 0, p € (0, 1).
There is also negative curvature in the p direction,

*2 *2
* O(Wii — W) = (1 =CH{[k +1—1nQ2)]* — ke*?},

2 ap

k 0% (Wgk — Weih)

— VNV RASH (] — C)k2ekr 0.
ré? o ( kP <

Due to the negative curvature in p, the difference in Eq. (B6) is positive on SF4 if it is positive on the SF3-SF4 border (proved
in Appendix B 3 ¢) and on the SF4-SF2 border.

At the latter border p < In(2)/k and C < C* = 2¢*. Due to the negative curvature in p, it is sufficient to show that the
difference is positive on a line extending from C = 0 to C = C* with fixed p = In(2)/k. Since the difference is decreasing in C
[Eq. (B7)], it is sufficient to show that the difference is positive at the point (p = In(2)/k, C = C*),

f<k, p= 1“]({2),0 = c*) = %[z2 +de k= D)k — L + 11> = 1 — 4e7 (X — 2) = F(k),

where [, = In(2). Let K = k — [, (such that £ > In(2) implies K > 0), then

ke F (k -1
eT() = KKl +2h — 1)+ (K + 1% — 2K — 1) — 21,%

Since h(0) = 0, it is sufficient to show that #/(K) > 0 to prove that 2/(K) > 0 for K > 0 [which in turn implies that F (k) > O for
k > In(2)],

= h(K).

WK KK —1)+1
% =XKL +2.50 — 1)+(K+1)—eK—lg%. (B8)
—_—
g1(K) (k)

For K < 1, the first term g;(K) is increasing. Hence, a lower bound is g;(K) > £1(0) = 0.73 when K > 0. An upper bound for
g2(K) is found by eX > 1 4+ K + K?/2 and that the factor (K — 1) is negative for 0 < K < 1. Then we can write for 0 < K < 1

A+K+K/D)K-D+1 1 -
() < /2 — 204 K) = 2K,
K 2
Using that this upper bound is increasing, g»(K) < g(1) =1, =0.69 when K < 1. This implies that g;(K) — g2(K) >
0.73-0.69 > 0 for K < 1. For K > 1, it is straightforward to show that each of the negative terms in Eq. (B8) are dominated by
one of the respective positive terms, completing the proof of Theorem 1.

4. Proof of Eq. (2): Maximal relative distance between RA and SF policies
We propose that the maximal relative distance (Wg,, — Wep)/Ws = W, /WS — 1 is in the SF4 region. For fixed k > In(2),
we therefore seek the maximum of
1 Wi\ p+C*(1 —p) C? + p(1 —C?)
3 ( - ) = = = g(k, p. C). (B9)
[k —In(2) + 117 \ Wgp,

Cekp — 1 4 C2(ek —ekr)  ekr(1 — C2) 4 C2ek — 1

The same equation applies for £ < In(2), except that the leftmost denominator is exchanged with & —1.
Partial differentiation of g gives
0 kp 1 — p(ef — 1
g2 __e ple ) <0, (B10)
(C?)  [er — 1 + C2(ek — ekr)]
since the numerator of dg/d(C?) has positive curvature in p and equals 0 both for p = 0 and p = 1. Consequently, for fixed k, p
and C € (0, 1), g is maximized when C — 0.
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Partial differentiation of g with respect to p gives

1 0g €21 —kp)—14C?[e" —eP(k —kp+1)]

= B11
1-C2ap [ekP — 1 + C2(ek — ekr))? (B1D
A local optimum if found by setting Eq. (B11) to zero. This gives
1 —efP(1 —k
C? = e = kp) (B12)
ek — ekrlk(1 — p) + 1]

— kp)? ~0o  (kp)?

p=0 (kp) koo (kp) (B13)

ek —k+1 ek

For fixed k, the numerator in Eq. (B12) is increasing from 0 when p > 0, and the denominator is non-negative and bounded from
above. Hence, p must be small to minimize C.
The asymptotic optimal value for C? in Eq. (B13) can be inserted into Eq. (B9), which gives the maximum

2
W 2 + (kP) (1—p)
<_§A> = [k —In(@) + 1P —— AT
Wy ekr — 1+ ﬁ(ek — ekp)
po0 k=@ + 1P (¢ —k+ 1)+
k (ek —k+1)+kpek—1)
kioo k

This means that for fixed k, the maximal relative difference between random boarding and slow first equals [k — In(2) + 1]/vk —
1 and is obtained for p small and C ~ kp/+/ek — k + 1.

For large k, the maximal relative difference between random boarding and slow first is obtained for p small and C =~ kp/ Ve,
and by increasing k the relative difference can be infinitely large,

WlikA — WS*F4 ~ \/]; 1
Weks

Theoretically, there could be other local maxima in other subdomains. However, numerical inspections indicate that the given
solution is the global maximum.

5. Proof of Theorem 2: Bounds on the effective aisle-clearing time ty

Since ty is independent of k, we look at the case k = 0 where the weight of the heaviest chain is asymptotically 2ty +/N for
large N. We apply the Vershik-Kerov theorem which states that when X is deterministic and k = 0, the number of points in a
longest chain is asymptotically 2+/N.

For tx and a given u € [a, b], the lower bound is established by considering the weight of the longest sequence of points with

weight at least u. There are roughly fub f(@®)dtN such points and so by the Vershik-Kerov theorem we have a longest chain of

size roughly 2,/ ft tb f(t)dt~/N points. The average weight of a point in this chain is the same as the average weight of a point

conditioned on being larger than u, i.e., fub tf(t)dt/ fuh f(¢)dt. Since this holds for any u, the result follows.

The upper bound on 7y is obtained by replacing X by X, that takes the values u; with probability p; = Pr(u;—1 < X < u;).
Obviously tx < tx,, since X, dominates X. Consider the heaviest chain with respect to X,,. The number of points with weight
u; in this chain is bounded from above by the size of longest chain of such points which by Vershik-Kerov has a total weight of
roughly 2u,~\/E-\/]V . Adding this up gives that the weight of the heaviest chain is estimated from above by 2(}_"_ u; \/E)W .
The upper bound in Eq. (6) is obtained since this holds for all subdivisions.

For the lower bound of \/(X?), we apply the Cauchy-Schwartz inequality |, b o) f()dt < \/ fab g2(t)dt\/ I " h2(t)dt. For a

given u € [a, b], let g = 1,5/ f(¢) and h =t/ f(¢) (here 1, is the indicator of the interval [u, b] which equals 1 for points
in the interval and O otherwise). For these f and g, the two sides of the lower bound inequality coincide with the two sides of
Cauchy-Schwartz.

Regarding the upper bound of /(X2), we note that since the £; norm of a vector is greater or equal to its £, norm,

n
Z%\/E‘?

i=1

S up =3 > VX2,
i=1
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6. Asymptotic relative distance between RA and SF policies for k — oo

For large k, the SF1 domain dominates the p, C unit square which follows straightforwardly from the SF1 boundaries in
Eq. (B2). For fixed p, C, the relative distance is independent of k for large k and Eq. (12) follows since

Wia Vp+C3(1 = p)lk+1—1n(2)]

ks P+ C3(1—p)
e —_—

= B14
Weey  [p+C*(0 —plk+1—-In2)+ (1 —C)In(1 +C)+ CIn(C) B14)
1—p)(1—C?
= h(p,C) =1+ p = pX ) > 1 (B15)
p+Cd—=p) [p+CU = pllp+C—p)++/p+C}1~-p)
The last equality comes from the identity a/b = 1 + (a* — b*)/[b(a + b)]. The partial derivatives of h are
dh 1-p1-cC oh 1-CP[C—p(l-C
p(l —p)( ) ( )°[C — p( )] (B16)

9C ~ 2/p+ 21— plp+C(1 - p)P

i 2/prCU—plp+Cd—pP

This gives that the asymptotic function hA(p, C) in Eq. (B15) is increasing with decreasing C. For fixed C, the maximum is at

p = C/(1 — C) with maximum value #* = (1 + C)/(2/C).

For fixed p, C, the partial derivative with respect to k gives that the relative difference in Eq. (B14) is decreasing with

increasing k toward the asymptotic function h(p, C), if

1 -
Pt T

[ln(l +C)+

Cln(C):| (B17)

1-C

This means that i(p, C) is a lower bound for Wy, /W5, in this area of the p, C unit square for all k£ > In(2). On the other hand,
if p is smaller than the right-hand side of Eq. (B17), the relative difference is increasing toward A(p, C).
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