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Mean-field theory of superradiant phase transition in complex networks
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In this work we consider a superradiant phase transition problem for the Dicke-Ising model, which gen-
eralizes the Dicke and Ising models for annealed complex networks presuming spin-spin interaction. The
model accounts for the interaction between a spin-1/2 (two-level) system and external classical (magnetic)
and quantized (transverse) fields. We examine regular, random, and scale-free network structures characterized
by the δ function, random (Poisson), and power-law exponent [p(k) ∝ k−γ ] degree distributions, respectively.
To describe paramagnetic (PM)-ferromagrenic (FM) and superradiant (SR) phase transitions we introduce two
order parameters: the total weighted spin z component and the normalized transverse field amplitude, which
correspond to the spontaneous magnetization in z and x directions, respectively. For the regular networks and
vanishing external field we demonstrate that these phase transitions generally represent prerequisites for the
crossover from a disordered spin state to the ordered one inherent to the FM and/or SR phase. Due to the
interplay between the spin interaction and the finite-size effects in networks we elucidate novel features of the
SR state in the presence of the PM-FM phase transition. In particular, we show that the critical temperature
may be high enough and essentially depends on parameters which characterize statistical properties of the
network structure. For the scale-free networks we demonstrate that the network architecture, characterized by
the particular value of γ , plays a key role in the SR phase transition problem. Within the anomalous regime
scale-free networks possess a strong effective spin-spin interaction supporting fully ordered FM state, which is
practically nonsensitive to variations of the quantum transverse field or moderate classical magnetic field. In a
scale-free regime the networks exhibit vanishing of the collective spin component in z direction with increasing
γ accompanied by establishing spontaneous magnetization in the transverse field. The SR phase transition occurs
in the presence of some FM state. We establish the conditions for the network parameters, classical and quantum
field features to obtain a quantum phase transition in the spin system when the critical temperature approaches
zero.
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I. INTRODUCTION

Currently, complex networks evoke an enormously in-
creasing interest among the scientific community performing
advanced studies at the boundary of physics, social and cog-
nitive sciences, and applied mathematics [1–3]. In particular,
these studies aim to investigate complex processes in social
networks and on the Internet [4,5], in living systems integrated
within biological networks [6], designing new (quantum) ma-
terials with complex topology and structure [7–9], developing
communications and information network technologies in-
cluding quantum networks [10,11]. Complex networks and,
especially, (hyper)network structures are inherent to modern
cognitive science and current brain activity research [12].

Despite the fact complex network studies are largely inter-
disciplinary, in many cases they are based on the models and
approaches of statistical physics, which allow obtaining suffi-
ciently clear dependencies for nontrivial processes in various
network structures [13]. The Ising model is one that has been
well established in such works [14]. In particular, an Ising-
type model was proposed to explain the opinion formation
and social impact [15]. This model was recently revised in the
framework of collective emotions [16], social cohesion, and
structural balance [17].

The Ising model for scale-free networks possessing ar-
bitrary degree distribution was comprehensively studied by
Leone et al. [18] by the replica method. The random
transverse Ising model on the complex networks with a scale-
free degree distribution was examined in the framework of
superconductor-insulator phase transitions [19]. Notably, the
annealed network approximation was explored in Ref. [20] to
characterize scale-free networks.

It seems important to stress that the Ising model allows
depicting complex (scale-free) network models exhibiting a
second-order phase transition and Bose-Einstein condensation
(BEC) phenomenon [21]. In contrast to random networks,
the scale-free, so-called Barabási-Albert (BA), model consid-
ers a preferential link connection during network growing.
This situation can be established in the framework of the
Ising annealed network approach that possesses a power-law
distribution of degrees [22,23]. Some peculiarities of a fer-
romagnetic (FM) phase transition and criticality in such a
model, which occurs for large but finite-size network systems,
represent a primary interest in Refs. [24,25]. The mean-field
approach to the Ising model on networks with a degree dis-
tribution is discussed in Refs. [14]. In recent research [26]
Krishnan et al. examined the mean-field approach based on
the effective long-range interacting homogeneous Ising model
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to describe the Ising model on a BA network. By means
of Monte Carlo simulations and analytical approach to BA
network it was shown that such a model is reasonable in a
low-temperature domain and above the critical temperature.
However, the role of degree exponent γ for scale-free net-
works was not discussed in Ref. [26].

Noteworthy, the critical behavior of the Ising model mani-
fests due to the spin-spin interaction. The interaction of spins
with a classical (constant transverse) external field is typically
studied in the framework of the so-called transverse Ising
model, cf. Ref. [27].

In this work we focus on the problem when the transverse
field represents some variable which allows for a second
quantization procedure. In this case, spin systems may be
represented as two-level oscillators like natural or artificial
two-level atoms [28], quantum dots, etc, which interact with
the quantized field in the framework of the Dicke model. This
model presumes a so-called superradiant (SR) second-order
phase transition, and has been long known in quantum optics
domain [29–32]. In particular, the SR phase transition evokes
the establishment of some certain (nonzero) spontaneous po-
larization, that occurs in a thermodynamically equilibrium
ensemble of two-level oscillators interacting with the quan-
tized field.

To the present, the SR phase transition has been predicted
and observed with atomic ensembles [33–35], exciton polari-
tons in semiconductor microstructures [36], superconductor
circuits [37,38], solids [39], and extended star graphs [40].
The evidence of the SR state in such experiments is usually
achieved by means of cavity exploiting that enables to en-
hance a photon lifetime [9,41,42]. Moreover, the quantized
light interaction with various two-level system ensembles en-
ables high- (up to room) temperature phase transitions, cf.
Refs. [34,36]. Such a feature of the Dicke-Ising model that we
offer in this work may be useful for the problem of obtaining
high-temperature BEC, which is now a hot topic of research
in statistical physics and material science, cf. Refs. [43,44].

In particular, two different regimes are relevant to be dis-
tinguished when the SR phase transition occurs in the system.
First, we speak about the zero chemical potential limit when
we can describe the total system in the framework of the
canonical ensemble approach. In this case, the ensemble of
two-level oscillators and photonic system are thermodynam-
ically equilibrium closed subsystems [29–32]. Second, the
grand canonical approach presumes a nonzero chemical po-
tential when photons and spins (or two-level systems) can
form coupled states (dressed states, polaritons), which possess
the SR phase transition [34,36]. In other words, at nonzero
chemical potential we can speak about BEC of low branch
polaritons that occurs in the system in the presence of ap-
propriate trapping potential [43–45]. In this work we restrict
ourselves by canonical ensemble approach to the network
spin-1/2 system, which interacts with classical and quantized
fields.

Recently, the SR phase transition has been discussed in
Refs. [46,47] in the framework of the so-called Dicke-Ising
model for the material systems exhibiting spin-spin interac-
tion. In particular, in Refs. [46,47] it is demonstrated that such
systems permit a first-order phase transition depending on the

character of spin-spin interaction. Some important applica-
tions in quantum metrology are also found [48].

In Ref. [16] we established the Dicke-like model for
the collective decision-making problem that exhibits the
second-order phase transition that occurs in heterogeneous
information-oriented communities interacting with informa-
tion field. In particular, we showed that the system demon-
strates social polarization and lasing phenomena for certain
parameters (density of excitations, temperature). In this sense
our model bridges the gap between the laserlike models
described in Refs. [49,50] and current studies on opinion
formation which involve echo-chamber effects in social net-
work communities [51,52]. However, the network topology
and (Ising-like) coupling between agents eventually play a
vital role for various socially oriented statistical models, see
Refs. [4,5,22,23,51–53] and cf. Ref. [16].

Surprisingly, the phase transitions problem for the Dicke-
Ising model specified for complex networks has not been
studied yet at all; this work aims to investigate it. We are going
to elucidate the role of particular network characteristics, such
as node degree, degree exponent (for scale-free networks) in
the SR phase transition that activates the network structure.
In particular, an important task of this work is to show how
the establishment of the superradiant transverse quantum field
affects the spin ordering in the orthogonal z direction.

The paper is arranged as follows. In Sec. II we offer
the Dicke-Ising model that exploits the annealed complex
networks approach. The equations for the order parameters
are derived in the framework of variational (thermodynamic)
approach. Specifically, we explore the mean-field approach,
which is familiar in quantum optics, cf. Refs. [30,36,42]. This
approach deals with coherent state anzatz for quantized field,
which presumes neglect of spin-spin and spin-quantized field
correlations. However, as we show, it allows to account degree
correlations in the network structure. In Sec. III we discuss
the complex network parameters that play an essential role in
the phase transition problem. Moreover, we examine regular,
random, and scale-free networks. The scale-free networks are
examined in the anomalous, scale-free, and random regimes,
which are characterized by different values of degree expo-
nent, cf. Refs. [4,5]. The phase transition problem for the
complex networks in the presence of the quantized transverse
field is comprehensively studied in Secs. IV and V. We in-
vestigate various limits in respect of the classical magnetic
field, degree exponent, statistical properties of network de-
gree. In Sec. IV we examine regular networks characterized
by a constant spin-spin interaction strength. In this case, we
obtain simple analytical treatments describing the SR phase
transition in the presence of FM and/or paramagnetic (PM)
states for both low- and high-temperature limits. Section V
presents the solution of the phase transition problem in the
scale-free and random networks, which possess strong spin-
spin interaction depending on the network architecture. In
addition, we study the quantum phase transition problem for
the complex networks attained in the zero-temperature limit.
Some specific problems connected with the SR phase transi-
tion in the low-temperature limit with regular networks are
given in Appendix. In Sec. VI the results obtained are sum-
marized.
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II. THE DICKE-ISING MODEL FOR
COMPLEX NETWORKS

Let us consider the ensemble of N spin-1/2 (or two-level)
systems (particles), which randomly occupy N nodes of a
complex network. We represent the complex network as a
graph with nontrivial (specific) properties, resulting from its
topology, degree distribution, and other characteristics, see
Refs. [1,2,5]. The spins, which are placed in the nodes of the
graph, are supposed to interact with classical (local) magnetic
field hi and the quantized (transverse) field. We describe the
transverse field by means of annihilation (a) and creation (a†)
operators. The total Hamiltonian of the model reads

H = −
∑

i j

Ji jσ
z
i σ z

j − 1

2

∑
i

hiσ
z
i + ωaa†a

− 1

2
√

N

∑
i

χiσ
x
i (a + a†), (1)

where σ z
i and σ x

i , i = 1, . . . , N , characterize the ith particle
spin components in z and x directions, respectively. The sum
is performed over the graph vertices with certain adjacency
matrix Ai j proportional to Ji j , it stores the information about
the graph structure: matrix element Ai j = 1 if two vertices are
linked and Ai j = 0 otherwise.

First two terms in Eq. (1) describe the Ising model, while
the last terms are inherent to the Dicke model. The Dicke part
of H in Eq. (1) is responsible for the spin interaction with the
quantized transverse (“photonic”) field possessing energy h̄ωa

(in this work for simplicity we put the Planck and Boltzmann
constants h̄ = 1, kB = 1). Parameter χi in (1) characterizes
the coupling of spin x component, σ x

i , with the quantum
transverse field in the so-called dipole approximation. Below
we restrict ourselves to a homogeneous problem when hi = h
and χi = χ for any i.

Notably, (1) describes the Husimi-Temperley-Curie-Weiss
model that belongs to the transverse Ising model if in (1) we
assume χi(a + a†)/

√
N → εi, i.e., in the limit of the fixed,

constant, classical transverse field, cf. Ref. [27]. However, in
this work average photon number Nph ≡ 〈a†a〉 accumulated
in the transverse field is a variable that relates to the order
parameter of the SR phase transition.

We are more interested in the annealed network approach
that presumes a weighted, fully connected graph model. This
network is dynamically rewired. Two nodes i and j are con-
nected with probability pi j that looks like, cf. Ref. [19]

pi j = P(Ai j = 1) = kik j/N〈k〉, (2)

where Ai j is an element of the adjacency matrix, ki is ith node
degree taken from distribution p(k). In (2) 〈k〉 = 1

N

∑
i ki is an

average degree.
Noteworthy, the annealed network approach is valid for

pi j � 1 and for large-enough N , cf. Ref. [54]. We recast
parameter Ji j that indicates the coupling between the nodes
in Eq. (1) through probability pi j as Ji j = J pi j , where J is a
constant.

Thus, the strength of two spins interaction Ji j is a variable
parameter and depends on particular network characteristics;
it is greater for two pairs of nodes with the highest k coeffi-
cient.

The properties of the system described by Eq. (1) may be
determined by means of two order parameters. The first order
parameter, Sz, is a collective weighted spin component defined
as

Sz = 1

N〈k〉
∑

i

kiσ
z
i . (3)

The second one, λ, is a normalized mean transverse field
amplitude

λ = |α|√
N

=
√

Nph

N
, (4)

where we use Glauber coherent state basis |α〉 for the quan-
tized transverse field that contains Nph = 〈α|a†a|α〉 = |α|2
photons on average.

The physical meaning of Eqs. (2) and (3) becomes more
evident if we introduce local effective magnetic field Heff,i ≡
2

∑
j Ji jσ

z
j + h that acts on the ith node spin. Combining the

first two terms of (1) with (2) for Heff,i we obtain

Heff,i = 2JkiSz + h. (5)

The first term in Heff,i depends both on spin-spin interaction
strength J and collective weighted spin component Sz. The
network system peculiarities become unimportant in the limit
of strong classical field h 	 J . On the other hand, for h = 0
spin ordering completely depends on local properties of the
ith node connectivity.

We can take into account the cumulative role of locally
acting effective magnetic fields Heff,i by total effective field
Heff = 1

N

∑
i Heff,i that looks like

Heff = 2J〈k〉Sz + h. (6)

From (6) it is clear that spin-dependent peculiarities, which
are determined by Heff , depend on the network topology en-
coded in average degree 〈k〉. Thus, the limit of zero classical
field h = 0 is of primary interest to elucidate these peculiari-
ties.

To determine order parameters (3) and (4) for some tem-
perature T ≡ 1/β, we use a variational (thermodynamic)
approach, see, e.g., Ref. [29]. We exploit partition function
Z = Tr(e−βH ). The mean-field approach that we use in this
work (cf. Ref. [30]), presumes exploring factorized total state
anzatz |�〉 and representing it as |�〉 = |α〉|s1 · · · sN 〉, where
|s1 · · · sN 〉 defines an N-spin state. Strictly speaking, for the
partition function we have:

Z = 1

π

∑
si

∫
d2α〈�|e−βH |�〉. (7)

Assuming
∫

d2α
π

= N
∫ ∞

0 dλ2 for the transverse coherent pho-
tonic state and performing integration in (7), for partition
function Z we obtain

Z = N
∫

dλ2e−βNωaλ
2
e−βJN〈k〉S2

z

×
∏

i

2cosh

[
β

2

√
(4JkiSz + h)2 + 4χ2λ2

]
. (8)

Evaluating the integral in Eq. (8) by Laplace method af-
ter some calculations we obtain the mean-field equations for
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collective spin Sz, Eq. (9a), and average transverse field λ,
Eq. (9b), respectively:

Sz = 1

N〈k〉
∑

i

ki
Szki + H√

(Szki + H )2 + 4λ2

× tanh

[
β

2

√
(Szki + H )2 + 4λ2

]
, (9a)

λ�a = λ
1

N

∑
i

tanh
[

β

2

√
(Szki + H )2 + 4λ2

]
√

(Szki + H )2 + 4λ2
. (9b)

In Eqs. (9) we introduce the normalized dimensionless
parameters as

 = 4J/χ ; H = h/χ ; �a = ωa/χ ; βχ �→ β. (10)

Noteworthy, the latter expression in (10) implies dimen-
sionless temperature T/χ �→ T that we use below.

Since the number of nodes is large enough, N 	 1, we
are interested in network structures, which admit continuous
degree distribution p(k). The transition from the discrete to
continuous version of Eq. (9) may be performed by replac-
ing 1

N

∑
i · · · → ∫ kmax

kmin
· · · p(k)dk, where kmin and kmax are the

minimal and maximal values of node degree k. In this case,
from (9) we can obtain:

Sz =
∫ kmax

kmin

kp(k)

〈k〉
(Szk + H )

�
tanh

[
β

2
�

]
dk, (11a)

λ�a = λ

∫ kmax

kmin

p(k)
tanh

[
β

2 �
]

�
dk, (11b)

where we made denotation � ≡
√

(Szk + H )2 + 4λ2.
Let us briefly describe possible phase states, which may

appear in the system determined by Eqs. (11).
Equation (11a) is inherent to the FM-PM phase transition.

For nonvanishing (constant) λ this equation may be connected
with the superconductor-insulator phase transition problem,
cf. Ref. [19].

Equation (11b) looks as a gap equation in the Bardeen-
Cooper-Schrieffer theory of superconductivity, cf. Ref. [55].
In our case, Eq. (11b) governs superradiant properties de-
termined by another order parameter λ. Physically, λ is
responsible for the temperature-dependent energy gap (Rabi
splitting) that occurs due to the interaction of the two-level
system with the quantized field in the framework of the Dicke
model, cf. Refs. [29–32,34]. This work aims to find joint
solutions of Eqs. (11), which correspond to the states with
Sz �= 0, λ �= 0.

The phase transitions that we consider can be established
by means of spontaneous magnetizations along x and z
axes, which are defined as mx,z = Tr[σ x,z

i e−βH ]/Z , see, e.g.,
Ref. [27]. Magnetization in z direction coincides with the
collective weighted z component of the spin, i.e., mz = Sz. An-
other magnetization component mx is proportional to the order
parameter λ. This magnetization is similar to spontaneous
polarization of two-level system that occurs in the framework
of conventional Dicke model, cf. [16].

The nonsuperradiant (non-SR), normal phase corresponds
to the trivial solution of Eq. (11b) with λ = 0 and is charac-
terized by the absence of transverse magnetization, mx = 0.

In this limit only Eq. (11a) solution is responsible for the
phase transition from the PM state (Sz = 0) to the FM state
(Sz �= 0) in the network system. Notably, this limit for the
Dicke-Ising model may be recognized completely in the Ising
model framework, where the phase transition appears only
due to finite-size effects, cf. Refs. [24,25].

The SR phase corresponds to nonzero (positive) λ that
characterizes the activation (excitation) of the network nodes
possessing spontaneous transverse magnetization mx �= 0.
The Dicke model is well discussed previously in the frame-
work of SR phase transition [29–32]. The model considers
noninteracting particles, i.e., we should suppose J = 0 in (1).
In this limit Eqs. (11) are essentially simplified, and the effects
occurring due to network structure properties are completely
ignored.

Thus, the transition from some disordered state with mz =
mx = 0 to the ordered one with mz �= 0, and/or mx �= 0 ap-
pearing for J �= 0 represents a primary interest for this work.

III. NETWORK ARCHITECTURES

In this work we consider the regular, random, and scale-
free networks with the properties determined by various
distribution functions p(k). In particular, we characterize the
networks by means of the first (〈k〉) and second (〈k2〉) mo-
ments for the degree distribution, which are defined as:

〈km〉 =
∫ kmax

kmin

km p(k)dk, m = 1, 2. (12)

Below we exploit the parameter

ζ = 〈k2〉
〈k〉 (13)

that determines the basic statistical properties of the chosen
network.

The typical networks considered in this work are shown
in Fig. 1. Spin-1/2 particles are placed in the network nodes.
Figures 1(a)–1(c) represents randomly allocated spin-up and
spin-down configuration particles with the average total spin
equal to zero. The configuration of the network obeys a certain
distribution function, p(k), established in Fig. 1(d). In particu-
lar, the networks in Figs. 1(a)–1(c) demonstrate the case where
the numbers of spin-up and spin-down particles are equal.

First, we examine a regular network, see Fig. 1(a). It can be
established as a network with Delta-function degree distribu-
tion p(k) = δ(k − k0) and a certain positive constant degree of
nodes k = k0. From definitions (12) and (13) we immediately
obtain 〈km〉 = km

0 (m = 1, 2) and ζ = k0, respectively.
Physically, the regular network implies constant interaction

strength k0 for an arbitrary pair of spins. It is maximal for
the complete graph with N nodes and k0 = N − 1.

Second, we discuss a scale-free network in the framework
of the SR phase transition problem. In particular, we examine
the degree distribution obeying the power law

p(k) = (γ − 1)kγ−1
min

kγ
, (14)

where γ is a degree exponent and kmin is the smallest de-
gree for which Eq. (14) holds. In this work we examine
the region 1 < γ � 4 which covers the anomalous (1 < γ <
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FIG. 1. (a) Regular, (b) scale-free, (c) random networks and (d) the relevant degree distributions are plotted for N = 1000 and 〈k〉 = 4.
The red (green) nodes in (a)–(c) correspond to the “spin-up” (“spin-down”) states. The average magnetization is Sz = 0. The magenta (blue)
curves represent Poisson (power-law) degree distribution in (d). Single (red) point characterizes the Delta-function distribution with k0 = 4.
The insert shows the degree distribution in a logarithmic scale for the scale-free (BA) network. Points sequences located in right corner in
inset, indicate presence of hubs for BA network in (b).

2), scale-free (2 < γ < 3), and random (γ > 3) regimes, cf.
Refs. [1,3]. The properties of scale-free networks possessing
distribution (14) for γ = 2 and γ = 3, should be calculated
separately. As an example, in Fig. 1(b) we plot the numerically
generated scale-free, Barabási-Albert (BA), network with
γ = 3.

The normalization condition for p(k) is the following:∫ +∞

kmin

p(k)dk = 1. (15)

An important feature of the scale-free network is the exis-
tence of hubs, which are clearly recognized by means of four
points located in the right corner of the inset in Fig. 1(d). The
largest hub is described by degree kmax called a natural cutoff.
The condition ∫ +∞

kmax

p(k)dk = 1

N
(16)

can be used if the network with N nodes possesses more than
one node with k > kmax. From Eqs. (14) and (16) we ob-
tain kmax = kminN

1
γ−1 , cf. Ref. [3]. Notably, in the anomalous

regime kmax/kmin > N .
In Table I we represent the analytical treatments for the

scale-free network characteristics 〈k〉 and ζ in the limit of
large N . The relevant dependence of 〈k〉 and ζ on degree
exponent γ are presented in Fig. 2. As clearly seen, both
characteristics increase in the anomalous region. It is worth
noting that within this region of parameter γ , the effective
magnetic field in Eqs. (5) and (6) may be enormously large

even in the limit of H = 0. In other words, the networks in
anomalous regime support strong spin-spin interaction.

On the other hand, in the scale-free and random regions
〈k〉 and ζ vanish. As we show below, these features of the
scale-free network parameters play a crucial role in the SR
phase transition problem.

Third, we consider a random (Poissonian) network model
that consists of N nodes and M edges, see Fig. 1(c), cf.
Refs. [1,3]. Each edge is included in the network with proba-
bility w, which is independent from other edges. For a very
large N and finite 〈k〉 = (N − 1)w  Nw it is possible to
consider the Poisson degree distribution p(k); it is shown in
Fig. 1(d) by the magenda curve:

p(k) = 〈k〉ke−〈k〉

k!
. (17)

From Eqs. (12), (13), and (17) we deduce that ζ = 1 + 〈k〉
in this case. Noteworthy, the mean-field approach is valid for
the Ising model above the critical point 〈k〉 = 1, when a large
cluster with size N2/3 is formed [10].

The estimation of upper (kmax) and lower (kmin) natural
cutoffs for random networks with the Poisson distribution (17)
is discussed in Ref. [3]. In particular, we can infer the largest
node degree kmax of the random network from the numerical
solution of Ne−〈k〉 〈k〉kmax+1

(kmax+1)! ≈ 1. This equation may be obtained
from the discrete version of (16). As before we assume that
in the random network there exists no more than one node
with the degree higher than kmax. Notably, hubs effectively
disappear for the random network since the dependence of
kmax on N is practically negligible.

TABLE I. Behavior of average degree 〈k〉, ζ parameter, and critical number Nc for the scale-free network with degree distribution p(k) ∝
k−γ for various values of degree exponent γ in the limit of large N . The parameters are specified in the text.

γ 〈k〉 ζ Nc

γ > 1, γ �= 2, γ �= 3 kmin
γ−1
2−γ

(N
2−γ
γ−1 − 1) kmin

2−γ

3−γ

N
3−γ
γ−1 −1

N
2−γ
γ−1 −1

( 2〈k〉
k2

min

3−γ

γ−1 Tc + 1)
γ−1
3−γ

2 kminln(N ) kmin
ln(N ) N 2〈k〉

k2
min

Tc

3 2kmin
kmin

2 ln(N ) e
8Tc
〈k〉
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FIG. 2. Dependence of mean degree, 〈k〉, and ζ parameter on
degree exponent γ for the scale-free network at N = 1000.

For the random networks, that we examine in this work, av-
erage degree 〈k〉 belongs to supercritical regime domain 1 <

〈k〉 < ln(N) that is relevant to a moderate number of nodes
(we consider networks with N = 1000), cf. Ref. [3]. Physi-
cally, such networks possess isolated nodes, see Fig. 1(c). In
this regime we can take kmin � 0.

IV. PHASE TRANSITIONS IN REGULAR NETWORKS

Let us start from the regular network analysis that admits
relatively simple analytical solutions of Eqs. (11). Equations
(11) now can be represented as

Sz = k0Sz + H

�0
tanh

[
β

2
�0

]
, (18a)

�a = tanh
[

β

2 �0
]

�0
, (18b)

where Sz = 1
N

∑
i σ

z
i simply represents the additive (collec-

tive) spin z-component variable, cf. (3); �0 ≡ �(k = k0) =√
(Szk0 + H )2 + 4λ2.
Combining together Eqs. (18a) and (18b) we can establish

the necessary condition for the existence of the SR phase
transition solution in the system.

In particular, the solution of (18b) (for FM phase, Sz  1)
exists if the condition

(ε + �aH )2 + 4�2
aλ

2 � 1 (19)

is fulfilled. In (19) we make denotation ε = k0�a.
When the considered system is very close to the fully

ordered FM state, we represent the total spin component as
Sz  1 − δ, where δ is positive small perturbation (δ � 1) to
the ordered state. In this case Eqs. (19) and (18a) lead to the
condition 2�2

aλ
2 � δ − 0.5δ2. Notably, the fully ordered FM

state with Sz = 1 may be obtained only in the limit of the
absence of any perturbations (δ = 0) that implies the absence
of superradiance, λ = 0.

Our approach to the analysis of Eqs. (18) is as follows.
First, we consider nonzero classical field H that implies some
FM state for Sz. In this limit it is possible to examine condi-
tions for the occurrence of the SR phase transition.

Second, we examine Eqs. (18) considering vanishing clas-
sical field H → 0, which admits the phase transition from
the collective spin disordered state to some ordered one, cf.
Ref. [27].

A. Ferromagnetic SR phase transition, H �= 0

In the presence of finite magnetic field H , some FM phase
establishment with nonzero magnetization Sz occurs. The SR
phase transition boundary can be obtained from Eqs. (18) by
setting λ = 0. Thus, we obtain

Sz = tanh

[
β (1)

c

2
(k0Sz + H )

]
, (20a)

�a = tanh
[ β (1)

c
2 (k0Sz + H )

]
k0Sz + H

, (20b)

where β (1)
c = 1/T (1)

c is the reciprocal critical temperature of
the SR phase transition in the presence of the FM state.

Further analysis of Eqs. (18) and (20) is easy to perform in
two limiting cases for the temperature parameter.

The low-temperature limit presumes β 	 1. In particular,
for β�0 	 1, in Eqs. (18) and (20) one can suppose that

tanh

[
β

2
�0

]
≈ 1 − 2e−β�0 . (21)

In this case, we assume that the FM state is fully ordered, i.e.,
Sz  1, and we use Eqs. (18b) and (20b) to elucidate the SR
phase transition.

Remarkably, physical temperature T in (21) may by high
enough for complete graph possessing large number of nodes
N in the low-temperature limit implying T � N .

Critical temperature T (1)
c may be obtained from (20b) by

using (21) (see also Appendix); it is

T (1)
c = �0,c

ln
[

2
1−�a�0,c

] , (22)

where we define �0,c ≡ �0(λ = 0) = k0 + H at the phase
transition point λ = 0.

The SR phase transition occurs if β > β (1)
c or equivalently

T < T (1)
c .

Noteworthy, condition (19) at λ = 0 and Eq. (22) imply the
fulfillment of inequality �a(k0 + H ) � 1 that establishes
critical maximal degree kc,max = ( 1

�a
− H )/. The SR phase

can exist only for the networks possessing k0 � kc,max. For
example, the complete graph inspires critical number of nodes
Nc = 1−�a (H−)

�a
obtained from (19) at λ = 0. Thereby, the SR

state occurs for the networks with N < Nc nodes.
On the other hand, from (20), and (10) at Sz = 1, λ = 0,

we can obtain the critical value χc of coupling strength χ that
looks like

χc =
√

ωa(h + 4Jk0). (23)

For a given network with some specified value of k0 the
SR phase occurs if transverse field coupling parameter χ

obeys condition χ < χc. For vanishing J Eq. (23) reproduces
a well-known result for the Dicke model of superradiance: the
critical coupling parameter is χc = √

hωa, cf. Refs. [30–32].
Importantly, in the framework of this model the SR state dis-
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appears for zero external field h = 0 that supports a disordered
state with Sz = 0.

Let us establish features of the order parameter λ in the
low-temperature domain. From Eqs. (18b) and (20b) account-
ing (21), we obtain

λ  λ0

√
1 − e(β (1)

c −β )�0,c , (24)

where λ0 is the order parameter at temperature T = 0 (β →
∞)—see (A5) in Appendix.

In the vicinity of the critical temperature (β → β (1)
c ) the

behavior of the order parameter λ is reminiscent of familiar
temperature dependence λ ∝

√
1 − T/T (1)

c , which is relevant
to SR second-order phase transition, cf. Ref. [34].

In the high-temperature limit, β � 1, we can suppose
tanh( β�0

2 ) ≈ β�0

2 in Eqs. (18). Collective spin Sz in this limit
approaches

Sz = βH

2 − k0β
. (25)

Equation (25) indicates the reduction of magnetization in z
direction with temperature T increasing (β → 0) or classical
field H suppression.

B. Phase transitions in the limit of vanishing
classical field, H → 0

Here we perform analysis of Eqs. (18) in the PM-FM phase
transition domain that accounts for vanishing Sz. To elucidate
the phase transition features it is necessary to examine the case
of vanishing classical field, H → 0, in more detail. From (18)
we obtain:

Sz = k0Sz√
(k0Sz )2 + 4λ2

tanh

[
β

2

√
(k0Sz )2 + 4λ2

]
, (26a)

�a = tanh
[

β

2

√
(k0Sz )2 + 4λ2

]
√

(k0Sz )2 + 4λ2
. (26b)

The Eqs. (26) possess the common solution if the condition

ε ≡ k0�a = 1 (27)

is fulfilled, cf. (19). Equations (26a) and (26b) with condition
(27) are reduced to one equation,

1

�
tanh

[
β

2
�

]
= 1

k0
, (28)

where � ≡
√

(k0Sz )2 + 4λ2.
Noteworthy, Eq. (28) is completely symmetric in respect

of collective spin Sz and photonic field amplitude λ. Thereby,
we can fix one of the order parameters (say, λ) and examine
the phase transition properties for another one (Sz) by solving
(28).

The normal (non-SR) PM state with Sz = 0, λ = 0 charac-
terizes some disordered phase for (28) formed on condition
� = 0. Concerning nontrivial solutions of Eq. (28) we are
interested in the transition from � = 0 to some spin ordering
state with � �= 0 accompanied by the SR and/or PM-FM
second-order phase transitions, which are inherent to the
Dicke and Ising models separately.

To be more specific, let us examine a phase boundary
equation that describes the PM-FM phase transition occurring
in the presence of the SR state (λ = λc). This equation can be
easily obtained from (26a) for vanishing but finite Sz → 0 and
looks like

2λc

k0
= tanh

[
λc/T (2)

cλ

]
. (29)

From (29) for critical temperature T (2)
cλ we immediately obtain

T (2)
cλ = λc

tanh−1
[ 2λc

k0

] . (30)

Critical temperature T (2)
cλ depends on network degree k0,

parameter , and another order parameter λc. In particular,
it follows from (29) that for λc > k0/2 no phase transition
occurs in the network system at any temperature. For T < T (2)

cλ
and λ < λc the FM SR phase represents a stable solution for
the regular network system.

On the other hand, from (28) we can recognize critical
temperature T (2)

c,S of the SR phase transition

T (2)
c,S = k0Sz,c

2tanh−1[Sz,c]
, (31)

setting in (28) λ  0 for Sz = Sz,c.
In the vicinity of the PM non-SR state, assuming in (29)–

(31) λc → 0 and Sz,c → 0, respectively, we can use in (28)
approximated formula tanh[ β

2 �] ≈ β

2 �. In this limit critical
temperatures (30) and (31) are equal to each other T (2)

cλ =
T (2)

c,S = T (2)
c and tend to

T (2)
c = 1

2 k0,c. (32)

Here, we consider the situation when the critical tempera-
ture in (32) implies the existence of critical degree k0,c. The
phase transition occurs in the networks possessing degree
k0 < k0,c.

Remarkably, the critical temperature in (32) tends to infin-
ity in the thermodynamic limit at N → ∞ for the complete
regular graph with k0 = N − 1. However, in practice T (2)

c
may be high enough but finite due to finite-size effects which
determined by number of nodes N .

Figure 3 demonstrates a numerical solution of Eq. (28)
established in 3D space by using Sz and λ variables. We exam-
ine here the particular case k0 = �a = 1 for (27) and (28).
The SR FM domain appears within temperature window 0 �
T < T (2)

c as a result of intersection of σ plane (z = 1
k0

= 1)

with a surface representing function F (Sz, λ) = 1
�

tanh[ β

2 �],
which is relevant to the left side of (28). Clearly, the size
of the domain is maximal in the zero-temperature limit, see
the black solid curve AB in Fig. 3. This domain is char-
acterized by equation

√
(k0Sz )2 + 4λ2 = k0 that may be

obtained from (28). Obviously, the domain reduces with the
temperature increasing up to T (2)

c = 1/2, see the red curves
in Fig. 3.

The results obtained in Eqs. (30)–(32) admit a simple phys-
ical interpretation given in Fig. 3.
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FIG. 3. Function F (Sz, λ) (yellow surface), σ plane (green plane)
vs. Sz and λ for k0 = �a = 1 and temperature T = 0. The point
O indicates the PM normal (non-SR) state. The lines OA and OB
correspond to the SR PM and normal FM phases, respectively, which
occur within the suitable temperature domain. The red curves indi-
cate the solutions of (28) at two different temperatures [F (Sz, λ) is
not shown for them].

The point O in Fig. 3 with coordinates Sz = λ = 0 char-
acterizes the disordered (PM non-SR) state � = 0 being a
solution of Eq. (28) at temperature T (2)

c , cf. (32).
The line OB represents the phase boundary for the SR

phase transition in the presence of some FM state relevant
to nonzero Sz,c and characterized by critical temperature T (2)

c,S
defined in (31).

Remarkably, the line OA represents the PM-FM phase
boundary in the presence of superradiance. Various values
of λc on OA are inherent to critical temperature T (2)

cλ . For
example, the point A corresponds to the phase transition at
zero critical temperature that implies λc = k0/2, cf. (29). By
means of definition (4), for N 	 1, we can represent critical
photon number Nph,c required to achieve the phase transition
for the complete graph as

Nph,c  2N3

4
. (33)

In some applications of the SR phase transition in photon-
ics two limiting cases are usually considered. First, we can
speak about convenient lasing phenomena when the number
of photons is much larger than the number of particles (nodes
in our case), cf. Refs. [34,36]. Another limit that implies
fulfillment of inequality Nph�N is typically considered in
the framework of polariton lasers occurring in the strong
matter-field coupling regime [36,42,43]. These limits appear
in experiments with exciton polariton BEC as two thresholds
to the lasing effects, which possess different physical back-
ground [43,56]. For the network system inequality Nph,c�N
applied to the critical photon number Nph,c together with (33)
implies that dimensionless spin-spin interaction strength 

obeys the condition  � 2/N . Since number of nodes N is
huge for many practical applications [22,23],  should be
small enough in this limit.

V. PHASE TRANSITIONS IN COMPLEX NETWORKS

A. Superradiant phase transition in the random
and scale-free networks

1. Phase transitions in H → 0 limit

Now let us consider the phase transitions in the random
and scale-free networks by means of Eqs. (11). Unfortunately,
due to large set of parameters occurring in the Dicke-Ising
model, it is hard to examine (11) analytically in a general case.
Here we represent some important limiting cases, which admit
simple treatments for the critical parameters obtained under
the phase transition condition. In particular, (11) for H = 0
yields

F1(Sz, λ) ≡
∫ kmax

kmin

p(k)
k2

�〈k〉 tanh

[
β

2
�

]
dk = 1, (34a)

F2(Sz, λ) ≡ 1

�a

∫ kmax

kmin

p(k)
tanh

[
β

2 �
]

�
dk = 1, (34b)

where � ≡
√

(Szk)2 + 4λ2.
In a general case, critical temperature Tc of the SR phase

transition for the complex networks essentially depends on
particular degree distribution p(k). The physical explanation
of this fact looks as following.

The random and especially scale-free networks considered
here support a locally (node) dependent interaction between
the spins because of some specific topological features (hubs,
clusters, etc.). This interaction leads to the existence of effec-
tive local field [see Eq. (5)] responsible for the establishment
of some FM ordering in the z direction even without external
magnetic field H . Thus, the SR phase transition appears as
a result of the interplay between spin ordering in z and x
directions and depends on topological features of the network
in λ → 0 limit.

In Fig. 4 we examine solutions of Eqs. (34) numerically.
In particular, Fig. 4(a) displays the solution of Eqs. (34) for
the BA network. We take the parameters �a = 1, 〈k〉 = 1,
which are maximally close to the ones for Fig. 3. Graphically,
this solution looks as the crossing point C for σ plane and
functionals F1(Sz, λ) (yellow surface) and F2(Sz, λ) (blue sur-
face), which represent the left-hand sides of Eqs. (34a) and
(34b), respectively, cf. Fig. 3. The intersection lines AD and
BE confine the domains of the FM and/or SR phases, which
correspond to the solutions of Eqs. (34a) and (34b) separately.
The dashed red line restricts the area where the FM and SR
phases coexist. This area is maximal at zero temperature.

Thus, the only one crossing point C in Fig. 4(a) separates
different phases, while in Fig. 3 this role is performed by the
curve, which implies the phase boundaries in the OA and OB
directions.

Figure 4(b) establishes the numerical solutions of Eqs. (34)
for various temperatures and values of γ for the scale-free
(crosses, triangles) and random (circles) networks. The so-
lution of Eqs. (34) for scale-free networks exists within the
domain 2 < γ � 3.75, where 〈k〉 possesses moderate val-
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FIG. 4. (a) Functionals F1 (yellow surface), F2 (blue surface), and σ plane (green plane) vs. Sz and λ at temperature T = 0 and for γ = 3.
(b) Phase boundaries for the crossing points in the λ-Sz plane. The parameters are as follows:  = 0.25, �a = 1, and N = 1000. The maximal

(minimal) degree for the scale-free networks are kmax = kminN
1

γ−1 (kmin = 2). For the random networks kmax = 11 (for 〈k〉 = 3.87) and kmax = 9
(for 〈k〉 = 3.1) with kmin = 0 are used, respectively. The green dashed line represent solution of Eqs. (35). See more details in the text.

ues, see Fig. 2. For example, consider the dark blue curve
in Fig. 4(b) (marked by crosses) that corresponds to the
BA network with γ = 3. The curve starts at T = 0 in the
crossing point C, which is the same point as in Fig. 4(a),
and then moves toward Sz axis with the temperature increas-
ing. Critical temperature Tc of the phase transition to the
superradiance is obtained at the point where λ = 0; it is
equal to Tc = 0.42. The functional in (34a) for this point is
F1(Sz, 0) = ∫ kmax

kmin
p(k) k

Sz〈k〉 tanh[ βc

2 kSz]dk and corresponds to
the FM state with Sz  0.68, see Fig. 4(b). This feature of
F1(Sz, 0) manifests the SR phase transition in the presence of
the FM state that occurs at zero external field H , cf. Fig. 3.

The dashed red line in Fig. 4(b) indicates the fact that
Tc diminishes for the scale-free network with γ reduction.
Simultaneously, the value of magnetization Sz increases. This
is not surprising, since without the external classical field,
H = 0, the network spin system aspires to increase the order-
ing state at lower temperatures. In particular, Eqs. (34) admit
of the point in the λ-Sz plane [marked by bright blue crosses
in Fig. 4(b)] that corresponds to the ordered collective spin
state (Sz  1) obtained at critical temperature Tc  0.11 for
γ = 2.01.

Remarkably, the same dashed (red) curve in Fig. 4(b)
exhibits vanishing of the order parameter λ with increas-
ing average degree 〈k〉. We can elucidate this feature of the
Dicke-Ising model examining the asymptotic solution of (34)
in zero-temperature limit. We assume in (34) that �  � ≡√

(Sz〈k〉)2 + 4λ2, supposing that approach k ≈ 〈k〉 is valid.
In this limiting case from (34) we obtain

�aζ = 1, (35a)

�a� = 1. (35b)

The green dashed curve in Fig. 4(b) represents the solu-
tion of Eqs. (35) for 〈k〉 = 3.1 (ζ  4). From Fig. 4(b) it is
clearly seen that the approach we use here is valid within
degree exponent 3.75 � γ � 3.25, where the green dashed

line approaches the red one, which is relevant to numerical
solutions of (34). For γ < 3.25 the discrepancy between two
dashed curves grows and self-consistent solutions of Eq. (35)
do not exist.

The phase boundaries for the random networks are repre-
sented in Fig. 4(b) by two (red and black coloured) curves
with circles. To find the upper natural cutoff kmax we explore
arguments represented in Sec. III. The difference between the
curves is determined by the value of 〈k〉 and exhibits general
tendency of vanishing λ with increasing 〈k〉.

Now let us analytically examine Eqs. (34) when they admit
some simplifications. Remarkably, Eqs. (34) possess simple
treatments for the PM-FM phase transition boundary that oc-
curs in the complex networks at some SR state, for given λc

and vanishing Sz. In particular, the green curve with triangles
in Fig. 4(b) is relevant to this limit. Solving Eqs. (34) in the
limit of vanishing Sz for the critical temperature we get

Tc = λc

tanh−1
[ 2λc

ζ

] (36)

with condition (35a) that accounts for the solution of (34b) in
the same limit, cf. (27).

Equation (36) represents a generalization of (30) obtained
for the regular networks. The topological properties of the
network in (36) are taken into account at the macroscopic level
using the ζ parameter.

In the vicinity of the disordered state at Sz ∼ 0, λ ∼ 0
Eq. (34) simplifies; for the critical temperature of the tran-
sition to the ordered state we can obtain

Tc = 1
2ζ. (37)

Equation (37) represents a generalization of Eq. (32) for
the complex networks in the Dicke-Ising model framework; in
(37) and thereafter we omit the upper indices for the critical
temperature. It is noteworthy that the critical temperature (37)
obtained for Dicke-Ising model coincides with that for the
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FIG. 5. Dependence of temperature T versus order parameter
λ for the scale-free network (green curves) with γ = 3.75, Sz  0
and random one with Sz  0.3 (solid red curve), Sz  0 (dashed
red curve), respectively. The parameters are as follows:  = 0.25,
�a = 1, N = 1000, and 〈k〉 = 3.1, cf. Fig. 4(b). The shadow region
corresponds to the PM phase Sz = 0. The inset indicates the depen-
dence of critical temperature Tc on number of nodes N calculated for
the same scale-free network at different λc.

Ising model on networks, cf. Refs. [14,19,22,24]. Moreover,
this critical temperature agrees with results obtained rigor-
ously by other approaches, cf. Refs. [1,18].

From (36) and (37) it follows that since ζ → ∞ for the
scale-free network in the thermodynamic limit, the critical
temperature of the PM-FM phase transition is also infinite.
However, the finite critical temperature for the phase tran-
sition occurs in (37) due to the finite-size effects for the
scale-free network, see Table I.

In Fig. 5 we plot dependence (36) for the critical temper-
ature Tc of PM-FM phase transition versus order parameter λ

for the scale-free (green curves) and random (the red dashed
curve) networks, respectively. The parameters for the scale-
free network in Fig. 4 are relevant to the ones established
for the green curve with triangles in Fig. 4(b). The phase
boundaries shown in Fig. 5 separate the PM state (it is shown
as a shadow region for the scale-free network) and the FM
SR state. Notably, (37) may be obtained from (36) in the
limit of λc → 0. In particular, the crossing point of the solid
green curve in Fig. 5 with line λ = 0 determines the critical
temperature established by Eq. (37) for the scale-free network.
In this limit PM-FM phase transition leads to establishment of
some ordering FM non-SR state.

It is instructive to compare Eqs. (36) and (37) with the
results obtained in the framework of other mean-field theories
suitable for the Ising model, see Refs. [14,19,26]. In Ref. [26]
authors consider the approximation of the Ising model on a
BA network by the effective long-range homogeneous Ising
model providing effective spin-spin interaction strength de-
termined through the average degree of the BA network.
The result for the effective long-range Ising model may be
obtained from (37) setting ζ  〈k〉 that implies 〈k2〉 ≈ 〈k〉2.
Physically, such a condition means “homogenization” of the
scale-free network, which may be relevant for large degree
exponent γ , cf. Ref. [14]. As it follows from Table I, such an
approximation error for the effective long-range Ising model

grows with the number of nodes N as ζ /〈k〉 = 1
4 ln(N ). More-

over, as it follows from Fig. 2, discrepancy between ζ and 〈k〉
is large enough within domain 1 < γ < 3, where the effective
long-range Ising model seems to be inapplicable.

To be more specific, in Fig. 5 we examine the effective
long-range Ising model for the scale-free network with de-
gree exponent γ = 3.75; the dashed green curve in Fig. 5
represents the phase boundary in this case. This mean-field
approach accuracy may be estimated from Table I; it is
determined by ratio ζ /〈k〉  1.5(1 − N−3/11) ≈ 1.26 with
N = 1000. In this approximation the critical temperature (36)
for the scale-free network behaves as Tc = λc/tanh−1[ 2λc

〈k〉 ],
which is reminiscent to the regular network with 〈k〉 = k0,
cf. (30) and Ref. [26]. Thereby, some discrepancies for the
green curves in Fig. 5 may be explained due to the scale-free
network “homogenezation” procedure.

Red curves in Fig. 5 establish temperature dependence
for random networks. The dashed curve represents phase
boundary in accordance with Eq. (36), i.e., in the limit of
Sz = 0. However, as it follows from numerical simulations
given in Fig. 4(b) we can treat collective spin Sz in (34) as
some constant possessing average value within temperature
domain being under consideration if the variation of Sz with
temperature is not so large.

In Fig. 5 we represent the solid red curve for the random
network possessing Sz ≈ 0.3 and relevant to the red curve
with circles in Fig. 4(b). Within this limit the temperature
dependence on λ is obtained from (34a) and approaches

T = �

2tanh−1
[

�
ζ

] . (38)

As clearly seen from Fig. 5, for moderate values of col-
lective spin Sz and coupling strength  the temperature
dependence (the dashed curve) approaches its phase bound-
ary. At the same time, dependence for the random networks is
close to the solid green curve that characterizes the scale-free
network in the random domain, cf. Ref. [3].

The finite-size effects may be obtained from the last col-
umn in Table I that displays the critical number of nodes,
which is required to obtain phase transition for a given net-
work system. As example, from (36) for the BA scale-free
network that imposes γ = 3 the critical temperature of the
phase transition is Tc = 1

8 〈k〉ln(Nc) that immediately de-
fines the critical number of nodes

Nc = e8Tc/〈k〉. (39)

Equation (39) implies critical clustering coefficient 〈Cc〉 ∼
[ln(Nc)]2/Nc permissible for the phase transition.

The inset in Fig. 5 exhibits the behavior of critical tempera-
ture Tc on number of nodes N as it follows from (36). Since the
number of nodes N is large enough, we restrict ourselves to
region N � 1000. The curves in Fig. 5 inset constrain the re-
gion of superradiance. In particular, these curves demonstrate
that critical temperature Tc grows starting from some certain
value that corresponds to the critical number of nodes where
the solution of (36) exists.

062309-10



MEAN-FIELD THEORY OF SUPERRADIANT PHASE … PHYSICAL REVIEW E 103, 062309 (2021)

FIG. 6. Dependence of (a) critical temperature Tc and (b) order parameter λ vs. γ . The parameters are as follows:  = 0.15, N = 1000,

�a = 0.5, kmin = 1, kmax = kminN
1

γ−1 for (a) −λ = 0, and for (b) T = 0.8, respectively; 〈k〉 specified in Table I. The inset in (a) exhibits total
spin component Sz vs. γ for the dependence given in (b) at T = 0.8. The inset in (b) demonstrates the dependence of λ on  at H = 0.1 and
T = 0.8 but for different values of γ : γ = 1.5, γ = 2, and γ = 3.

2. Phase transitions at nonvanishing classical field H
and for scale-free networks

The aim of this part is to study the phase transition problem
for the scale-free network within a large domain of power
degree γ and nonvanishing classical field H . We now search
for nontrivial solutions λ �= 0 and Sz �= 0 of Eqs. (11).

In Fig. 6 we represent numerical solutions of Eqs. (11)
for critical temperature Tc and order parameter λ as functions
of γ .

Notice, collective spin component Sz, as it follows from
Fig. 6(a), approaches the FM state within the domain 1 <

γ < 1.7 of the anomalous regime for the scale-free networks.
Roughly speaking, the spin system exhibits the fully ordered
state. Figure 6(b) shows that the influence of another order
parameter λ is not so important in the anomalous regime
where Sz  1. In fact, in this case we deal with the situation
valid for the familiar Ising model without the transverse field.
Moreover, the thermal fluctuations have no ability to break
the FM state at any finite temperatures within the domain
1 < γ < 3, cf. Ref. [1].

The behavior of the spin system within 1 < γ < 1.7 do-
main completely depends on average degree 〈k〉 that grows
rapidly, as it follows from Fig. 2. In particular, in the anoma-
lous regime the size of the largest hub kmax ∝ N

1
γ−1 > N , and

the number of links connected to the largest hub increases
faster than the size of the network, N . We expect to obtain
a strong spin-spin interaction within this domain. Thus, we
assume that randomly chosen k possesses large values due
to the power-law degree p(k), see Fig. 1(d). In this case, for
large k we can use approximation tanh[ β

2 (Szk + H )] ≈ 1 in
Eq. (11a), which allows to obtain Sz  1 for the collective
spin, see the inset in Fig. 6(a).

Remarkably, in the anomalous regime the main contribu-
tion to effective magnetic field Heff comes from the term
that characterizes the spin-spin interaction and depends on

network parameter 〈k〉, see (5) and (6). From Fig. 6 we can see
that behavior of the spin system for small values of external
field H (the red and blue curves) are practically still the same.

In the presence of the interaction with the quantized trans-
verse field, Sz abruptly vanishes at small values of classical
magnetic field H , which is clearly seen from the inset in
Fig. 6(a). In Fig. 4(b), we have already specified this behavior
of Sz within the scale-free and random domains (2 < γ �
3.75), respectively.

In particular, we perform the analysis of Eqs. (11) in the
relatively high-temperature limit for nonzero field H ; the
spontaneous magnetization can be represented in the follow-
ing form [cf. (25)]

Sz = βH

2 − βζ
, (40)

that defines the FM state with vanishing Sz in the presence
of superradiance. Sz approaches some constant value Sz ≈ βH

2
for vanishing ζ that clearly exhibits the dependence of Sz in
the inset in Fig. 6(a) in the network system.

This happens due to the critical temperature increasing
and establishing the finite superradiant field amplitude λ that
characterizes the magnetization in x direction; critical tem-
perature Tc in Fig. 6(a) approaches some nonzero value for
γ � 2.5. In particular, the superradiant field promotes the
spin flipping that occurs on the scale-free network nodes, see
Fig. 6(b). In other words, the establishment of nonvanishing
transverse field introduces some disordering in the collective
spin component in z direction. In contrast, classical magnetic
field H tends to preserve the ordered state of collective spin Sz,
see the green curves in Fig. 6(a) which are plotted for value
H = 1. The absolute value of the established superradiant
field amplitude λ vanishes in this case, see the green curve
in Fig. 6(b).

The inset in Fig. 6(b) demonstrates the suppression of order
parameter λ with increasing of . Such a behavior happens
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due to the contribution of the spin-spin interaction energy into
total magnetization in z direction. As it follows from Eqs. (5)
and (6) the increasing of  for a given degree exponent γ

leads to the increasing of effective field Heff that enhances
magnetization in z direction suppressing it in the x direction.
For the degree exponent less than two, the domain where the
SR state exists, λ �= 1, is narrow enough, see the solid curve
with γ = 1.5 in the inset in Fig. 6(b). As we discussed before,
in this case the spin system possesses some ordered state,
as it is shown in the inset in Fig. 6(a). At larger values of
degree exponent γ , the SR state domain exists within a large
-parameter window [that the inset in Fig. 6(b) indicates]
due to establishing of the nonvanishing superradiant field for
γ > 2, as it is shown in Fig. 6(b).

B. Quantum phase transitions

The quantum phase transition is obtained in the zero-
temperature limit setting in Eqs. (11) β → ∞ that presumes
tanh( β

2 �)  1. From (11) for small-enough λ in this case we
obtain:

Sz = 1 − 2λ2

〈k〉
∫ kmax

kmin

kp(k)

(Szk + H )2
dk, (41a)

�a =
∫ kmax

kmin

p(k)

(Szk + H )

[
1 − 2λ2

(Szk + H )2

]
dk. (41b)

As clearly seen from Eqs. (41), the spin system is fully
ordered, i.e., Sz = 1 for λ = 0. This situation agrees with
the results obtained for Fig. 4(b) (the bright blue curve) and
Fig. 6(a) at nonzero temperatures and relatively small γ .

The SR quantum phase transition, with Sz = 1, occurs for
the critical value of transverse field frequency �a,c that is
determined from (41b) and looks like

�a,c =
∫ kmax

kmin

p(k)

k + H
dk. (42)

Equations (41b) and (42) result in a simple dependence for
order parameter λ

λ = λ0

√
1 − �a

�a,c
, (43)

where λ0 =
√

�a,c

2I is the order parameter in the limit �a → 0,

I ≡ ∫ kmax

kmin

p(k)
(Szk+H )3 dk.

We can simplify Eqs. (42) and (43) in the vicinity of H = 0
for the FM state, Sz = 1. In particular, for the regular network
we obtain λ0 = 0.71k0 ≡ 0.71〈k〉, cf. Fig. 3. For the BA
network possessing very large number of nodes N we get λ0 
0.46〈k〉, see Table I, γ = 3. Thereby, the approach used in
Eq. (43) is valid for the network parameters obeying condition
〈k〉 � 1.

On the other hand, for finite field H close to the disordered
state with Sz = 0 from Eq. (43), we can deduce that the
quantum phase transition has no dependency on the network
characteristics and results in the establishment of small trans-
verse, mx, and longitudinal, mz, magnetizations proportional
to λ0 = H/

√
2 � 1 and �a/�a,c � 1, respectively.

FIG. 7. Order parameter λ versus local field H for the BA
network, γ = 3, at Tc = 0 for different number of node N . The
dependence of magnetization Sz on H is shown in the inset. Other
parameters are as follows: �a = 0.5,  = 0.15, kmin = 1, kmax =
kmin

√
N .

In Fig. 7 we plot the dependence of the order parameters λ

and Sz as functions of the magnetic field H , which represent
the numerical solutions of Eqs. (11) for the BA network with
different number of nodes N in the zero-temperature limit.
The SR quantum phase transition occurs for nonzero H when
the magnetization attained the FM state with Sz = 1. In the
vicinity of the phase transition point Hc, the order parameter
λ behaves as λ ∝ √

1 − H/Hc, cf. (43).

VI. CONCLUSION

To summarize, we have considered the problem of the
superradiant phase transition in the network structures. The
Dicke-Ising model is developed to elucidate the second-order
phase transition for the regular, random, and scale-free net-
works. The model concerns the spin-1/2 (two-level) systems
located in the network nodes and placed in the local classical
magnetic and weak quantum transverse (photonic) fields. Ap-
plying the mean-field approach, familiar in quantum optics,
we have obtained the set of Eqs. (11), which describes two
order parameters Sz and λ relevant to magnetization along z
and x axes, respectively. In particular, Eq. (11a) characterizes
the collective weighted spin z component, Sz. It is relevant
to the PM-FM phase transition problem. Equation (11b) es-
tablishes the normalized transverse field amplitude, λ, which
corresponds to the phase transition to the superradiance for the
spin network system. The SR state with λ �= 0 is characterized
by a non-zero-temperature dependent energy gap that takes
place for the spin system.

To be more specific, we have examined the annealed
networks with the regular (fixed) degree number, the ran-
dom network with the Poisson degree distribution, and the
scale-free networks possessing the power-law degree distri-
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bution with degree exponent γ that inherent to the region
1 < γ � 4.

We have considered the problem of the phase transition
for the Dicke-Ising model in two limits of classical field H .
The superradiance occurs in the ferromagnetic spin system in
the limit of the finite (nonzero) classical magnetic field. For
the regular networks we have obtained analytically a simple
equation (24) analogous to the familiar law of temperature de-
pendence for the gap systems (superconductors, ensemble of
two-level systems interacting with quantized electromagnetic
field) possessing the continuous second-order phase transi-
tion. In this case, the transition to the SR state is followed
by the establishment of the spontaneous magnetization with
the quantum transverse field in x direction. For the network
that represents a complete graph, the critical number of nodes
defines the necessary condition to attain the SR state.

The physical picture becomes richer and more complicated
for vanishing classical external field H . We have shown that
for the regular networks Eqs. (11) reduce to one (gaplike)
equation (28), which is completely symmetric in respect of
order parameters Sz and λ. Physically, we can recognize the
phase transition occurring in the network system at the critical
temperature as a crossover from the disordered state with
Sz = 0, λ = 0 to some ordered state possessing Sz �= 0 (FM
state) and/or λ = 0 (SR state).

To achieve the ordering state for the regular networks pos-
sessing constant degree k0, one can fix vanishing collective
spin Sz and then consider the SR phase transition across order
parameter λ. Alternatively, we can fix λ and then obtain the
PM-FM phase transition.

It is important to note that in the Sz  0 and λ  0 limits
the critical temperature of the disorder-order phase transi-
tion for examined networks exhibit the finite-size effects.
Remarkably, our mean-field approach allows to account de-
gree correlations in the scale-free network structure which
we describe by the parameter ζ , see (13). In particular, the
obtained critical temperature may be high enough but finite;
it depends on average degree 〈k〉 for the regular network
and statistical properties (ζ parameter) for the scale-free and
random networks, respectively. The analytical and numerical
simulations which we performed for the scale-free networks
within scale-free and random regimes, allow to conclude that
the order parameter, λ, vanishes with increasing average de-
gree 〈k〉 and increasing collective spin component Sz. The
“homogenization” of the scale-free network structure, that
presumes ζ ≈ 〈k〉, may be relevant for large degree exponent
γ . In this sense, our results agree with the ones obtained
for the scale-free networks possessing the power degree dis-
tribution achieved by other methods, cf. Refs. [14,19]. As
seen from Fig. 5 (the green curves), the mean-field approach
based on scale-free network “homogenezation” leads to some
discrepancies within critical temperature region, cf. Ref. [26].

In general, the features of the complex networks phase
transition strictly depend on power degree γ . In the anomalous
regime, 1 < γ < 2, the effective spin-spin interaction, which
may be described in terms of effective magnetic field, see
(5) and (6), dominates due to large average degree 〈k〉. In
particular, at low γ the FM state with Sz = 1 establishes; this
state is very hard to alter by means of the spin interaction
with the weak quantized field or even with the moderate

external magnetic field. However, the situation changes with
γ increasing. Diminishing the effective spin-spin interaction
leads to the suppression of collective Sz spin component and
creates an enabling environment for the PM-FM and SR phase
transitions, see Fig. 4 and Fig. 6, respectively. In the scale-free
domain, 2 < γ < 3, the ordering in the network spin system
appears as a result of the interplay between magnetizations
in x and z directions. The SR phase transition in this domain
occurs for some FM state, see Fig. 4(b).

Finally, we have examined the quantum phase transition
that happens in the zero-temperature limit. We have demon-
strated that the transverse field amplitude λ exhibits a familiar
scaling as a function of frequency �a. For vanishing H the
maximal value of the field is characterized by degree 〈k〉 and
spin-spin interaction energy J . In fact, this phase transition
disappears for the Dicke model with J = 0.

It is remarkable that the results obtained can be useful for
studying the controllability problem in the complex networks
which may represent distributed (natural, or artificial) intelli-
gence systems (DIS) cf. [53,57]. In particular, the Dicke-Ising
model that we analyse in this work is relevant to the modeling
of finite temperature (i.e. finite network size) phase transitions
occurring in scale-free network DIS’s which we model by
means of interacting two-level systems and which we repre-
sented as a simple quantum-like agents of decision making.
The quantized (transverse) field represents an additional de-
gree of freedom for this problem. In a more general case it is
necessary to examine the limit when each node interacts with
its own (local) quantized transverse field.
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APPENDIX: PHASE TRANSITIONS AT LOW-
AND HIGH-TEMPERATURE LIMITS

Let us briefly discuss the main properties of the regular
networks at low temperatures β 	 1. Eq. (18b) in the limit of
(21) may be rewritten as (cf. Ref. [55])

�a�0 = 1 − 2e−β�0 , (A1)

where �0 =
√

(k0 + H )2 + 4λ2. We assume that at low-
enough temperatures the spin system possesses the FM state
with Sz  1.

At critical temperature T (1)
c ≡ 1/β (1)

c Eq. (A1) looks like

�a�0,c = 1 − 2e−β (1)
c �0,c , (A2)

where we define �0,c ≡ �0(λ = 0) = k0 + H at the phase
transition point λ = 0. Inverting (A2) for the critical tempera-
ture of phase transition T (1)

c one can immediately obtain (22).
On the other hand, at zero temperature Eq. (A1) implies

�a�0,0 = 1, (A3)

where we denote �0,0 ≡
√

�2
0,c + 4λ2

0 and introduce λ0 as a

maximal value of the order parameter obtained at T = 0.
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To find λ0 we assume that it is sufficiently small in the
low-temperature domain (cf. Ref. [42]), i.e., we suppose that
λ2

0 � 1, and for �0,0 we can use approximation

�0,0 ≈ �0,c

(
1 + 2λ2

0

�2
0,c

)
. (A4)

Substituting (A4) into (A3) and combining it with (A2)
after some straightforward calculations we obtain

λ0 = �0,ce− 1
2 β (1)

c �0,c . (A5)

Then we can find the temperature dependence for order pa-
rameter λ from Eqs. (A1) and (A2) leading to

�0

�0,c
 1 − 2e−β�0,c

1 − 2e−β
(1)
c �0,c

. (A6)

In (A6) we use (A4) and also assume that condition
βλ2/�0,c � 1 is fulfilled within the low-temperature limit
domain.

Finally, after some calculations from (A6) we obtain (24)
by means of (A4) and (A5).
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