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Two-pathogen model with competition on clustered networks
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Networks provide a mathematically rich framework to represent social contacts sufficient for the transmission
of disease. Social networks are often highly clustered and fail to be locally treelike. In this paper, we study the
effects of clustering on the spread of sequential strains of a pathogen using the generating function formulation
under a complete cross-immunity coupling, deriving conditions for the threshold of coexistence of the second
strain. We show that clustering reduces the coexistence threshold of the second strain and its outbreak size in
Poisson networks, while exhibiting the opposite effects on uniform-degree models. We conclude that clustering
within a population must increase the ability of the second wave of an epidemic to spread over a network. We
apply our model to the study of multilayer clustered networks and observe the fracturing of the residual graph at

two distinct transmissibilities.
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I. INTRODUCTION

Complex networks can be found across many different ar-
eas of biology, medicine, the physical and computer sciences.
Each network, empirical or synthetic, has a rich structure
that exhibits large-scale emergent properties from local inter-
actions. Amongst their applications, complex networks have
proven to be excellent models of social networks. The nodes
of the graph represent individuals while the edges that connect
them represent points of contact.

At the time of writing the 2020 COVID-19 pandemic is
still raging and presenting the threat of a “second wave”
of potentially varying strains of the original SARS-CoV-2
virus. A significant use of social network dynamics is in
the study of epidemic diseases, where infected individuals
transmit infection to their social contacts with some prob-
ability [1-4]. While the study of single-disease epidemics
has a substantial literature, it is important to remember that
diseases are organisms evolving under selection pressures.
These different strains of disease can interact with each other
in complex ways: the first disease may render an individual
immune to a later strain, or make them more susceptible, or
indeed be a necessary precursor to later infection. (All these
possibilities—and more—can be found in nature.) Essentially
a second disease is introduced into a system that has been
equilibriated by the passage of a first disease. One way to
think about this is that the “first wave” of a disease changes
the topology of the substrate network over which any “second
wave” propagates, by changing the population, connectivity,
and susceptibility of individuals exposed to later infection.
It is known that disease interactions can introduce nontrivial
changes in threshold behavior of both pathogens. The case in
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which the first disease provides complete immunity against
the second was studied by Newman [5,6] in the case of purely
treelike networks. Of particular current interest, however, is
the behavior of multiple strains on clustered networks that
more accurately model human contact dynamics, especially
in those cases that can lead to coexistence of two pathogens
within the network. An improved understanding of strain dy-
namics on human contact networks is vital in facilitating the
detailed study of countermeasures to limit and control further
outbreaks. The interactions between strains will be critical in
determining how prior infection affects future transmission,
both directly and through topological changes.

Perhaps the most fundamental network model is the Erd&s-
Rényi random graph, a member of the exponential random
graph ensemble with a constraint on the number of edges
within a given realization. Random graphs are well stud-
ied within the network science community using a variety
of mathematical tools. One such theoretical framework, the
generating function formulation [7], has excellent ability to
extract the properties of diseases, such as the number of indi-
viduals who become infected, spreading over such networks.
This is achieved by an isomorphism between the spread-
ing pathogen and the bond percolation process. The latter, a
model that traces its roots to statistical mechanics, examines
the probability that each edge in the network transmits the
disease between two neighbors with transmission probability
T € [0, 1], or fails with probability 1 — 7. We call edges that
transmit the disease occupied, while those that do not are said
to be unoccupied. Once all edges have been considered, the
network may no longer be well connected by the occupied
edges. Within the context of the isomorphism, the size of
the giant connected component (GC) among occupied edges
represents the fraction of the network that becomes infected
by the disease. The expectation value of the GC experiences
a second-order phase transition as a function of 7 at some
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critical value, T, known as the epidemic threshold. Prior to
the threshold, there is no GC and only small components are
connected.

Social networks tend to contain a high density of triangles;
connections between the neighbors of a node, also known
as transitivity or clustering. Many mathematical models fail
to describe the impact of clustering, which is well known to
alter the properties of both bond percolation and the epidemic
outbreaks of a single disease. Specifically, it can be shown
that clustering reduces the epidemic threshold for the disease
to infect a finite fraction of the network as well as reducing
the overall outbreak size [8] for fixed mean degree. Miller
[9,10] conversely showed that clustering can also increase
the threshold when degree-assortativity within the networks
is also studied, a result supported by Volz et al. [11].

Clustering has been well studied in the context of the
generating function formulation for a single strain; it requires
a generalization of the generating function formulation to
partition edges into distinct topological sets [8,9]. The random
clustered graphs we consider here are built using the general-
ized configuration model [12—14]. In this model, a vector of
edge topologies, 7, is defined; the simplest model consists of
treelike edges, denoted by L and triangles, denoted by A, such
that T = {_L, A}. Each node is assigned a stub degree, k., for
each topology in the topology set, T € 7. For instance, a node
involved in three treelike edges and one triangle has k; =
3 and kxn =2 and it should be clear that {kx = 0 mod 2}.
During the network construction, the stubs are connected to-
gether to create a random graph whose edge topologies are
distributed according to the assigned stub degree.

It is not clear, however, precisely how clustering impacts
the spread of two cross immune pathogens spreading sequen-
tially over a network. The subject has been studied before
using percolation in the context of clique random networks
whereby each strain spreads on a particular edge topology
[15]. In this paper, we study the influence of clustering on
the outbreak size of two sequential pathogens spreading with
a perfect cross-immune coupling on a random clustered net-
work.

II. SEQUENTIAL STRAIN MODEL WITH CLUSTERING

In this section, we introduce a two-strain model on clus-
tered networks containing triangles in addition to the treelike
degrees. The second strain is assumed to temporally separated
from the first such as seasonal influenza outbreaks or a rare
mutation in an equilibrated bacterial population.

A. Strain-1

The generating function formulation [1,7] rests upon the
degree distribution, p(k), the probability of choosing a node
at random from the network of degree k. When the network
contains triangles, we introduce the joint degree distribution,
p(ky, ka), the probability of choosing a node at random from
the network with &k treelike edges and k, /2 triangles. We can
recover p(k) from the joint degree sequence as

pk)y =Y plhi, ka)Sick, +,- ()

k1 =0kp=0

The joint probability distribution is generated by

Golzi,za) = Y Y plhi ka)ztza®? (@)
k1 =0kpn=0

The probability of reaching a node of joint degree (k| , ko) by
following a random treelike edge back to a node is generated
by
1 0Gy
Gz, 72a) = ——. 3
1,.(z1,2a) TRy 3
Similarly, the degree of the node reached by following a
random triangle edge to a node is
Groa(zi, 2a) = —— 020 @)
L,AaZL,2A) = 77—
(ka) 9za
In each case, (k;) is the average t degree of a node which is
given by 9, Go(1, 1).

The clustering coefficient C is a metric that indicates the
level of clustering in the network [8,16]. It is given by the
following quotient:

3N,
c=="*=, )
N;
where N, is the number of triangles and Ns is the number of
connected triples. In terms of the above generating functions
and network size N, we have

3Ny = N(ZTGAO) (0)
1 [k
Ny=2N)_ (2)p(k). @)
k=0

The probability that a node does not become infected
through its involvement in a treelike edge (triangle) is g; (ga)-
Each g, is a function of u,, the probability that a neighbor
is uninfected in a t site. These expressions are well known
for both treelike and triangle edge topologies. We construct
g1 (uy;T) by summing the independent probabilities that a
given treelike edge fails to infect the focal node; this is
either because the neighboring node was uninfected by the
disease with probability u, , or that it was infected but failed
to transmit the disease to the focal node with probability
(1 —uy)(1 —T). Together we have

grup;T)y=u, +(1 —u)d—-T). (®)

The ga(ua; T') expression is slightly more complex to con-
sider due to the interneighbor connecting edge. For a node that
has 1, triangles (and therefore has triangle degree ka = 214),
there are three ways to consider the failure to infect the focal
node as in Fig. 1.

Firstly, both neighbors can themselves be uninfected with
probability #23. Similarly, both neighbors could have been
infected but both failed to transmit their infection to the focal
node directly with probability [(1 — ua)(1 — T)]?; in this case
the interneighbor edge has no consequence on the final state
of the focal node. However, in the case that one neighbor is
infected, fails to transmit directly to the focal node and the
other node is initially uninfected (the probability of which is
ua(1 —up)(1 — T)), then the interneighbor edge can be an
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FIG. 1. The three triangles that a focal node may be connected
to. (A) The focal node has two uninfected neighbors (green), neither
of which are capable of transmitting infection. (B) Both nodes are
infected (red), but each direct edge fails to infect the focal node.
(C) Only one neighbor is infected; however, it can infect the focal
node by first infecting the susceptible neighbor and then a further
transmission to the focal node.
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avenue of infection back to the focal node. The probability
that this fails to occur is 1 — 72%. Allowing there to be 7,
triangles around the focal node we use the binomial theorem
to find

—1
galua;T) = ("f) (3] ("Am )[((1 —up))(1 = T))*"

x [2ua(1 —up)(1 = TY(1 = TH]"7=m (9)

The multiplication by two in the final term is due to the
symmetry of the triangle. Each square bracket contains the
probability that the focal node remains uninfected in the par-
ticular triangle it is considered to be a part of.

To solve for the expected fraction of the network that con-
tracts strain-1, Sy, we use fixed-point iteration to find each u,
value as the solution to a self-consistent functional equation
in u;

U = Gl,‘l.'(gJ_9 gA)v (10)
J

each equation converging on a solution in the unit interval.
With these values, S| can be found by solving

Silur, ua; T =1— Go(gy, 8ga)s (11)

where the square brackets indicate the functional dependency
of the GC on u, and the disease transmission parameter, T .

B. Strain-2

Once the first strain has passed through the network, a
fraction, S, of the nodes will have contracted it and conse-
quently a fraction, 1 — Sj, remained uninfected. In the case
that nodes infected by strain 1 have perfect cross immunity
against further strains, then only those nodes in the fraction
1 — Sy, termed the residual graph (RG), can become infected
by the second strain. The threshold criterion for the emergence
of the second strain on unclustered random graphs has been
solved previously by Newman. We now proceed to understand
the role of clustering on the second strain.

Setting the transmissibility of the second strain to 75, the
probability that the second strain fails to infect a node cho-
sen at random is comprised of the probabilities that both the
treelike edges and the triangle edges each fail to transmit the
strain. In analogy to the first disease, we define the proba-
bility &, to be the probability that a treelike edge remains
unoccupied following both strains and introduce v, , which
is the probability that a neighboring node at the end of a
treelike contact does not have disease 2. The probability that
anode with k treelike contacts has precisely < k susceptible
neighbors following disease 1 of which m < [ also failed to
contract disease 2 is given by

k /
hi(uy,vi;T, 1) = <l> (m) [ vg ™[ (1 — v)(1 = T)I [ — uy )(1 = T)H]F. (12)

Similarly, the probability, &, that a focal node involved in a triangle fails to become infected is given by the probability that each
avenue of infection fails, as considered for the first disease in Eq. (9). Defining v, to be the probability that a node involved in a
triangle, that is also in the RG of the first strain, remains uninfected during the second epidemic, we now examine each bracket
in Eq. (9).

In the first case, both nodes are uninfected with strain-1 with probability 3 . To remain uninfected with strain-2, these nodes
must fail to transmit to the focal node. This can occur in three distinct ways: either both neighbors fail to contract strain-2, vi, or
they both have disease-2 but fail to transmit, ((1 — va)(1 — T3))?, or finally, one remains uninfected with strain-2 and the other
fails directly to infect with probability 2va(1 — va)(1 — T3).

Next, in the case when the RG contains both an infected and an uninfected node, there are only two ways that the focal node
can remain uninfected by strain-2. These are the probability that the neighbor remains uninfected, v, or is infected but fails to
transmit, (1 — va)(1 — T»). Together, these terms can be written as

I (1 —j : -
ha(ua, va; T, T) = (7) [ui]l(j) [vi]’( ; J) [2va(1 — va)(1 = T)(1 = T2)] 1A = va)(1 = T3))*] 7

—1
x ("m >[2uA(1 —up)(1=T)(1 - T2)]’"<’;1>[UA]f[(1 —vpa)(1 =)™

x [((1 —u)(1 = T))y* =, (13)

Upon application of the binomial theorem this expression becomes

haGua, vas T, ) = [1la[v + 2va(1 = vA)(1 = B)(1 = T7) + (1 — va)(1 = T)]’]
+ 2ua(l = ua)(1 = Y1 = THva + (1 — o)1 = TN+ (A —up)(1 =T (14)

062308-3



MANN, SMITH, MITCHELL, AND DOBSON

PHYSICAL REVIEW E 103, 062308 (2021)

Despite the length of this equation, the interpretation is sim-
ple, we spread strain-2 according to the triangle formula of
Eq. (9) in the case that the residual motif is a triangle [motif
(A) in Fig. 1], we spread according to the treelike expres-
sion when the residual triangle has only one neighbor in the
RG (motif C) and finally, we do not spread strain-2 in the
case that the motif is completely part of the GC of strain-1
(motif B).

We can generate v, by writing self-consistent expressions,
this time however, dividing by the prior probability that the
neighbor does indeed belong to the RG, which is simply u,.

Ve = Gio(hy, ha)/ue. 15)

The expectation value for the probability that a randomly
chosen node fails to be infected by either strain is

G

A o(hi, ha)
1-5)

where we have divided by the prior probability of belonging

to the RG of disease 1. The fraction of the RG that belongs to

the outbreak of the second strain, the giant residual connected
component (GRCC), is then given by

) (16)

Solur, vo; T, ] = (1 = A)(1 — S1). a7

The complete prescription is as follows: we use Eq. (10) to
compute u, Vt € 7, we can then use Eq. (11) to compute the
epidemic outbreak size of the first strain. With these ingredi-
ents we calculate v, Yt € T using Eq. (15) before finalising
the calculation of the second outbreak fraction with Eq. (17).

A numerical example of the both strains can be seen in plot
(c) of Fig. 2 for varying clustering coefficients. The networks
for the model are created according to the configuration model
[8,9] where the stub degrees of both treelike (k) ) and triangle
(t = ka/2) topologies of each node are Poisson distributed.
The joint degree-distribution is given by [8]

kL '

P e
— “ l)_
p(s,t)=e kﬂe e (18)

where pu is the average treelike degree and v is the average
number of triangles. The clustering of each network is varied
such that the mean degree is fixed at 2. From this we find the
means of each Poisson degree sequence as u + 2v = 2. As
the clustering coefficient increases the epidemic threshold of
the first strain decreases. Specifically, when C = 0 we have
v = 0 indicating the threshold is 7, = 1/2, while at C = 1/3
we have u = 0 and hence find the critical threshold as the root
of T? + 2T — 1 = 0 yielding T, ~ 0.41.

The overall epidemic size at T = 1 is reduced as a function
of increasing clustering coefficient. Therefore, in this experi-
ment, clustering is seen to have a dual effect on the outbreak
of strain-1 depending on T'; clustered networks can expect an
epidemic at lower 7', but also expect fewer people to become
infected. Setting 7, = 1, the total outbreak size of the second
strain decreases as a function of increased clustering.

In a second experiment we fix the degrees of each node
according to the uniform-degree model, defined in Ref. [9],
enabling the effects of degree assortativity to be under-
stood. Bond percolation is run on three networks whose
nodes have either degrees 2,4, and 6, but their clustering
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FIG. 2. The percolation properties of the 2-strain model over
clustered doubly-Poisson networks with clustering coefficient, C, and
fixed average degree u + 2v = 2 of treelike and triangles, respec-
tively. (a) The epidemic threshold of strain-1 (solid) as a function
of C. The critical thresholds for a GC to exist solely among tree-
like edges (small dashed lines) or triangle edges (long dash lines
from Eq. (19) are plotted in (a). Similar analysis in plot (b) shows
the coexistence threshold, 7%, as a function of increasing cluster-
ing coefficient from Eq. (20). Also plotted in (b) is the difference
Ts = T, — T* between the epidemic and coexistence thresholds. Plot
(c) shows the expected epidemic size of each strain. Scatter points
indicate experimental results of bond percolation on a network of size
N = 40000 with 70 repetitions. Solid lines represent the theoretical
predictions of Egs. (11) and (17) for each strain.

is distributed differently. The first has a joint degree dis-
tribution of p(2,0) =1/3, p(2,1) = 1/3 and p(0,3) = 1/3,
increasing the clustering of the high-degree sites. The second
network has an even neighbor distribution with p(2, 0) = 1/6,
p0,1)=1/6, p2,1)=1/3, p(4,1)=1/6 and p(0,3) =
1/6. Finally, the third network has clustering predominantly
among the low-degree sites with p(6,0) = 1/3, p(2,1) =1/3
and p(0, 1) = 1/3. The percolation properties of these net-
works are presented in Fig. 3, along with the prediction from
the configuration model. In contrast to the random Poisson
networks, clustering is shown to increase both the GRCC
and the coexistence threshold relative to the configuration
model. Assortativity among low-degree clustered nodes leads
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FIG. 3. The residual network of the three networks described in
Sec. II B. In this model [9,17], clustering can be shown to increase
both the size of the GRCC and also the coexistence threshold relative
to the configuration model. We also observe dichotomous results de-
pending on the nature of the degree assortativity among the clustered
edges. When clustering is assortatively confined to low-degree nodes,
the results of the Poisson experiment are reproduced.

to the emergent properties observed by the random Poisson
networks.

C. Ry

The Ry value, also known as the case reproduction number
of a disease, is a quantity used in epidemiology to represent
the number of infections that the average infected node in
the network will cause. When the disease has a low trans-
missibility 7 < T, we do not expect that an epidemic will
occur throughout the entire network, in other words, the in-
fections fizzle out over time. In these cases the R value is
less than unity. Ryp = 1 marks the threshold for which the
epidemic infects a macroscopic fraction of the population and
at this value the transmissibility experiences a critical point,
T =T.. Under the bond percolation isomorphism, a GC of
occupied edges forms in the network at and after this bond
occupancy probability. The critical transmissibility of the first
strain can be found by applying the Molloy-Reed criterion
to the configuration model [9]. Specifically, linearizing u, =
G1,.(g(u;)) in € around u, = 1 — €, [14]. To leading order
in €, we have € = Ae with € = [, €4, . ..]T. The GC forms
at the point when the determinant det [A — I| vanishes, where
A =1[0G/0u,], G =[G, Gi,o] and [ is the identity matrix.
We thus obtain the following condition:

dgy (k% —k,) ><dgA (kX —ka) )

S L R (A A AR,

(duL (k) O\ dun (ka) 0
_ dgidga (kika)

=— _—, (19)
duy dup (ky)(ka)

where each derivative is evaluated at the point u, = 1. Each
bracket on the left-hand side can be used to investigate if a
GC occurs among the edges of a given topology; or, the entire
expression can be used to determine of the entire network is
connected, irrespective of the edge-type, see plot (a) in Fig. 2.
It is clear from this plot that clustering increases the interval
T € [T, 1] by the reduced epidemic threshold, allowing a
finite-sized epidemic at lower transmissibilities.

Newman [5] found that the RG also experiences a phase
transition due to the availability of nodes that are not within
the GC as a function of T'. In the case of clustered networks,
we find the condition to be given by

dhy (k3 —k.) _ dha (k% — ka) B
(E (k) RO)(BvA (ka) RO)

_ 0hy dhy (kika)®
© vy dua (ko) (ka)

The derivatives are evaluated at the point v, = 1; however,
we must find the point (7%, u}) that satisfies this where the
coexistence threshold, T*, signifies the emergence of a GC
among the treelike edges of the RG was derived previously by
Newman [5].

As with the first strain, the presence of a GC of the second
pathogen among only the treelike or the triangle edges can
be found by examining each bracket on the left- hand side
of Eq. (20). The emergence of a GC among the entire RG
is found using the entire expression, according to plot (b) in
Fig. 2. Setting 7, = 1, we find

Oy, hy

(20)

=u’ @21)

v =1

and hence the coexistence threshold among treelike compo-
nents is

_oup—1
G (wi)—1
The coexistence threshold for the emergence of a GC among

the triangles is slightly harder to solve. Again, with 7, = 1,
we find

uyhal, = 2+ 2up(1 —up)(1 = T)(1 —T?). (23)

*

(22)

For brevity, we use the notation x = (ki —ka)/(ka) and
hence we arrive at an equation just in T

AGiallg) =1
2Gi A (L gy )(1 — G a1, 81))

where we have used Eq. (10) to solve for u, given T in the
absence of treelike edges.

From plot (b) in Fig. 2, it is clear that the interval [0, T}*],
which defines the transmissibility range within which strain-2
can exist on the network, is reduced as T* decreases as a func-
tion of increasing C. Comparison of plots (a) and (b) indicates
that while both T, and T* fall with C, the interval [T, T*],
which defines the coexistence of each strain on the network,
also is reduced, since, T* falls faster than 7;. This indicates
that clustering reduces the total fraction of the population
affected at any given T'; decreasing the range of values of T
at which strain-2 can coexist with strain-1 present; and finally,

0, (24)
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decreasing the largest value of 7' at which strain-2 is found in
the network, squeezing it to a smaller region of the model’s
phase space.

D. Cre

The clustering coefficient, Crg, of the RG can be deter-
mined and used to investigate how the substrate network
fractures following bond percolation. To derive Crg we ex-
amine the case when 7T, = 1, and define

Ja@) = [uaxi* + [(1 — ua)(1 = T)x,)?
+Rua(l —up)(A=T)1=THx;]  (25)
and
J1@) =u1yr + A —uy)(1 —T)ys. (26)

The overall degree distribution of the residual graph, prg(k),
is given by

1 9% Go(jL(x), ja(x))
pro(k) = = SOSERJAE @7)
ktox*  Go(gr.8a)  lyeyo
Only x, retains triangle connectivity in the RG and hence
9 Go(iL(y). j
WNarG = - 0L, ja(x)) ’ 28)
oxr Go(g1,8a)  lymymr

where Go(g.1, ga) is the prior probability that the node be-
longs to the RG. The number of connected triples is given by

1 3% Go(j ,J
Norg = 2 0(JL(), ja(x)) ’ (29)
20x*  Go(gLl,ga) leet
where z; = x Vz; € x Uy. It now follows that
3NarG
Crg = ———. (30)
kG N3 rG

By comparison of this expression with Eq. (5) it is clear
since g, € [0, 1] that the clustering coefficient of the residual
network is always lower than the substrate network; in other
words Crg/C < 1.

III. EPIDEMICS ON MULTILAYER NETWORKS

We will now apply the 2-strain model to clustered multi-
layer networks that exhibit modularity [13,18]. For simplicity,
we consider a 2-layer system comprised of treelike edges in
the first (orange) layer and triangle edges in the second (green)
layer. In this example, the two layers are sparsely connected
via interlayer treelike edges; however, this is not a require-
ment, see Fig. 4. Modular networks can be used to represent
the different social contact structures that individuals might
experience. For instance, a given family might have different
contact topologies for schools, workplaces or social settings;
each unique setting being represented by a distinct layer.

The multilayer model is an extension of the model pre-
sented in Sec. II; strain-2 spreading over the RG created
by the GC of the bilayer networked system. Representing
interlayer treelike edges that an orange (green) node has as
Log (Lgo), the vector of permissible topologies is given by
T, = {Lo, Log} for the orange layer and 7, = {Ag, L} for

FIG. 4. An example of the multilayer network used to in the
numerical example. The green layer consists solely of triangles while
the orange layer is treelike. Each layer is connected via a few tree-like
edges to allow the GC to span the network.

the green layer, respectively. Following Refs. [13,19], each
layer has its own Gy ,(z) equation, and each element of the
topology vectors has its own G, ;(z) equation also, where
A € {o, g} is a layer index.

As a numerical example consider the case where all edge
topologies follow a Poisson distribution such that the number
of T edges is 1, then

(m_)'“e_“m (nl,0g>nL.oge_(nLog>

ni! nL,og!

Por(NLs NL0g) = &1V

and

(na)nae=(na) <77L‘g0)nl.goe_<nl.go>

na ! nJ_,go !

pgr(nAy nL,og) = (32)

The expected outbreak size of the first epidemic on the orange
layer is then

SO — 1 _ egl.(<77l.>_l)egl,og((nl_,og>_l)’ (33)

while the green layer has

Sg — 1 _ egA(<nA>_l)egl_.go«nj_.go)_l)‘ (34)

The g, equations for each are given by Egs. (8) and (9) for
the intralayer treelike and triangle edges, respectively. The
interlayer treelike connections have a subtle symmetry break-
ing depending on which layer we consider the focal node to
belong to. We define

gl,og(uj_,go; T)= Uy o+ 1 - uJ.,go)(l -T) (35)

and

gJ_,gO(uJ_,og; T)= Uy og + 1 - uJ_,og)(l —T), (36)

since, each focal node depends on the other end being un-
infected. Each u, is then the solution to a self-consistent
equation according to Eq. (10).

The outbreak of the second epidemic follows from Sec. II B
and in the Poisson case is

SZ 0 = 1 _ e]'lJ_((nJ_)_l)ehL‘og((’]L,od_l) (37)
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FIG. 5. The expected epidemic size of each strain on a Poisson
distributed clustered multilayer network with 2-layers. In this experi-
ment, the orange layer has a clustering coefficient of C = 0 while the
green layer is set to C = 1/3. Interlayer treelike edges have been
added to allow the GC to span the entire network. Scatter points
indicate experimental results of bond percolation on a network of
size N = 20000 with 25 repeats. Solid lines represent the theoretical
predictions of Egs. Also plotted is the SLCC and the SLRCC, peaks
in which indicate a phase transition. From this plot we can see that
peaks in the SLCC and the SLRCC do not align with each other, their
separation defines the region of coexistence of both strains.

while the green layer has

Sy =1 — a(8)=D hisollnig) =D, (38)

We examine this system in Fig. 5. The network is constructed
such that the clustering coefficient of the green layer is C =
1/3 with mean degree (kp) = 6 while the orange layer is
C = 0 with mean treelike degree (k;) = 3.3; a small number
of interlayer edges were then added to connect the layers. In
our experiment, the green-layer undergoes its phase transition
at a lower T than the orange layer due to its clustering. This
causes the outbreak fraction of the first strain to show a double
second-order transition [13,20]. We confirm the presence of a
phase transition by plotting the experimental second largest
connected component (SLCC), peaks in which indicate a crit-
ical point.

Due to the different connectivity of each layer, the RG also
experiences two critical points. We confirm this by plotting
the second largest residual connected component (SLRCC),
peaks in which indicate the presence of a phase transition in
the residual network. The difference between the first peak
in the SLCC and the last peak in the SLRCC defines the
transmissibility range that allows coexistence of each strain
in the network.

IV. CONCLUSION

The study of disease spreading among human contact net-
works is of fundamental importance to society. In particular,
the study of multiple sequential strains with the presence
of clustering can provide realistic models of social interac-
tions capable of pathogen transmission. In this paper, we
have studied the problem of bond percolation on the residual
graph (RG) of clustered configuration networks created by
a prior bond percolation process. This represents two strains
spreading sequentially among a population under a complete
cross-immune disease coupling.

We investigated the expected outbreak sizes of each epi-
demic as a function of the clustering coefficient, C, of a
substrate doubly Poisson contact network with fixed average
degree using generating functions. We found that networks
with higher clustering coefficients exhibit reduced epidemic
thresholds, T, of the first strain as well as smaller outbreak
sizes, S1; therefore, having a dual effect on S| parameterized
by T'. Networks with larger clustering coefficients were found
to reduce the maximum outbreak size of the second strain. The
largest value of T that permits the spreading of the second
strain, T*, is also reduced by clustering for these networks.
This indicates that increased clustering forces the second
strain to occupy a smaller region of the model’s phase space
and thus reduces its ability to become epidemic. The phase
region that permits the coexistence of each strain, measured
by the difference between T, and T*, is also reduced with in-
creased C. Initially, this region broadens with the introduction
of triangles to the contact network [7; in plot (b) of Fig. 2].
However, the loss of treelike edges causes the RG to fracture
more than the original network when clustering is present, as
shown by plotting T;.

We then applied the model to the uniform-degree model [9]
and found that clustering can be shown to increase the coex-
istence threshold of the second strain in addition to increasing
the outbreak size as a function of T, relative to the configura-
tion model. These results, in opposition to the findings of the
Poisson experiment, suggest that it is the degree assortativity
of the residual graph that is the key factor in the progression
of strain-2 to become an epidemic. In particular, the reduction
of the outbreak size and the reduction of the coexistence
threshold observed in the random Poisson experiments are due
to the tendency of high C networks to assort their contacts by
degree, and is not due to clustering.

We applied this model to the study of multilayer networks
providing a numerical example of a 2-layer system with mod-
ularity. We found that the presence of a double second-order
phase transition in the GC also creates a double second-order
phase transition in the giant residual connected component
(GRCC). This was supported by examining the structure of
the SLRCC as a function of the tranmissibility of the first
strain.

The results presented here suggest that the clustering of
contacts can increase the epidemic threshold of the first
disease and also reduce its outbreak size compared to in-
dependent edges. However, under a perfectly cross-immune
coupling, this has a negative impact for subsequent strains of
the disease; enabling and aiding their proliferation. There is
clearly an urgent need to study other possible interactions [21]
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between strains in order to provide a theoretical framework
within which to study the effects of different disease counter-

measures, which may exhibit significantly different efficacies
in different interaction regimes.
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