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Polarization inhibits the phase transition of Axelrod’s model
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We study the effect of polarization in Axelrod’s model of cultural dissemination. This is done through the
introduction of a cultural feature that takes only two values, while the other features can present a larger
number of possible traits. Our numerical results and mean-field approximations show that polarization reduces
the characteristic phase transition of the original model to a finite-size effect, since at the thermodynamic
limit only the ordered phase is present. Furthermore, for finite system sizes, the stationary state depends on
the percolation threshold of the network where the model is implemented: a polarized phase is obtained for
percolation thresholds below 1/2, and a fragmented multicultural one otherwise.
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I. INTRODUCTION

Agent-based models [1,2] provide a fruitful theoretical
framework to study the fundamental mechanisms underlying
the dynamics of social systems [3]. In this line, Axelrod’s
model for cultural dissemination [4], introduced in 1977 by
Robert Axelrod, has become a paradigm for the study of
social imitation. The model relies on the idea of homophily,
i.e., agents more likely interact with similar neighbors, and
therefore, similar neighbors tend to become even more alike.
To implement this idea in the model, the probability for
an agent to imitate a neighbor’s uncommon cultural trait is
proportional to the number of other traits that both already
share. Axelrod found that, while for low values of the initial
cultural diversity the dynamics drives the system towards
a monocultural state, for larger initial diversity the system
freezes in a multicultural state. Axelrod’s model has been
studied under different approaches and variations, including
complex networks [5,6], clustering [7], social pressure [8],
noise [9,10], external fields [11,12], dynamic features [13],
mobility and segregation [14,15], tolerance [16], confidence
thresholds [17], and dynamic networks [18].

In this work, we are interested in adding to Axelrod’s
model an element that can account for polarization. Cultural,
ideological, and political polarizations are phenomena that re-
cently have attracted the attention of the scientific community,
politics, and society as a whole [19–22]. A source of this re-
newed interest stems from the observation that, paradoxically,
polarization may constitute a side effect of globalization.
Although according to the homogenization thesis, global-
ization should standardize a global pattern [23–25], cultural
alternatives and resistance to Western norms suggest that cul-
ture universalization may lead to polarization [26,27]. These
two theses constitute the convergence-divergence open debate
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[28]. To this end, we propose a modification of Axelrod’s
model that allows exploring the consequences of polarizing
issues on cultural diversity. Polarization is characterized by a
process of segregation where a vast plural pool of moderate
and conciliatory positions tend to disappear in favor of a few
opposing positions, eventually characterized by being extreme
and partisan. We model this phenomenon focusing on the
most serious polarization situation, where only two distinct
positions can be assumed by agents. This is straightforwardly
obtained by introducing a cultural feature that can present only
two possible values. As we are interested in a clear theoretical
characterization of the main effects of this phenomenon, we
focused on this extreme case and we do not consider milder
forms of polarization.

The introduction of a polarizing issue in Axelrod’s model
seems to have an important impact on the existence of its
phase transition. The order-disorder transition described by
Castellano et al. [29] is a genuine phase transition which
occurs in the limit of infinite system size [30,31]. Anyway,
it has already been questioned in relation to its robustness. In
some circumstances, it has been proven that exogenous per-
turbations can drive the system to a monocultural state [10].
Another interesting example is the effect that cultural drift,
modeled as a noise which randomly changes one agent’s cul-
tural trait, has on the model. In this case, even if a finite system
shows a well defined noise value which separates the tran-
sition between order and disorder, an infinite system always
results in a multicultural state [9,10]. The disappearance of the
transition is also recorded when the original Axelrod model is
embedded on a Barabási-Albert network [5]. In that case, the
location of the finite-size transition point scales as a power
of the system size with a positive exponent, and therefore, in
the thermodynamic limit, the transition disappears because the
ordered monocultural state always establishes in the system.
Keeping in mind these interesting aspects of Axelrod’s model,
the principal aim of this work is to analyze the effects of the
introduction of cultural polarization on its phase transition and
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to characterize the impact of this new element on the dynamics
of cultural dissemination.

II. MODEL

The original Axelrod model of cultural dissemination con-
siders N agents interconnected by a network whose links
represent the social interactions. For an agent i, the cul-
ture is represented by a set of F variables {σ f (i)} ( f =
1, . . . , F ), the cultural features, that can assume q values,
σ f = 0, 1, . . . , q − 1, the traits of the feature. The number of
possible traits, q, represents the initial cultural diversity, which
is obtained by means of an equiprobable random initialization
of each agent’s features. At each time step, an agent i is chosen
at random and allowed to imitate an uncommon feature’s trait
of a randomly chosen neighbor j with a probability given by
their cultural overlap ωi j , which is defined as the fraction of
common cultural features:

ωi j = 1

F

F∑
f =1

δσ f (i),σ f ( j); (1)

here δx,y stands for the Kronecker’s delta, defined as δxy = 1
if x = y and δxy = 0 otherwise.

In this work, we will consider the situation where one
of the F features, f = 1, is limited to take only two values
(σ1(i) ∈ {0, 1}, ∀i ∈ {1, 2, . . . , N}). The rest of the features,
f = 2, 3, . . . , F , can take q possible values, as in the original
model. In this way, we will address how a dichotomy can
impact the process of cultural dissemination described by
Axelrod’s model.

III. RESULTS

The principal aim of our study is the characterization of
the phase transition exhibited by the model. To this end, we
simulate the model on a regular two-dimensional square lat-
tice of size L (i.e., N = L2 nodes, each node being occupied
by a cultural agent) with periodic boundary conditions. We
consider von Neumann neighborhoods so that each agent has
k = 4 neighbors, and interactions take place only between two
neighbors. The number of features is fixed to F = 10 and the
parameters q and N are varied.

The phase transition is determined by the passage from
an absorbing monocultural state composed by a single cul-
tural cluster where, for small q values, everybody shares the
same culture, to a frozen disordered and fragmented state. In
fact, for large values of q order is not attained and different
cultures, distributed among the sites, characterize the system.
Because of this phenomenology, the relative size of the largest
cultural cluster present in the system is an excellent parameter
for characterizing the transition [29,32,33]. This parameter is
defined as the size of the largest cluster, made up by nodes
sharing all the traits, normalized by the system size: Smax/N .
The parameter is estimated averaging over different simula-
tions: 〈Smax/N〉.

Panel (a) of Fig. 1 shows the order parameter 〈Smax/N〉
versus the initial cultural diversity q for different system sizes
N . The inspection of the behavior of the order parameter sug-
gests the existence of a transition. In fact, a sharp transition,

characterized by a drop of 〈Smax/N〉 for a critical value of q, is
observed. We can identify this transition point looking at the
fluctuations of the size of the largest cluster:

χ = 〈
S2

max

〉 − 〈Smax〉2.

Panel (c) of Fig. 1 shows the values of χ as a function of
q for different system sizes N . This quantity displays its max-
imum at a value of q that can be considered as the finite-size
transition point qc(N ). From this analysis we can estimate the
critical point by looking at the convergence of the finite-size
transition points qc(N ), as estimated by the localization of
the maxima of the fluctuations. The inset of panel (c) shows
that the finite-size transition point values grow proportionally
to the system size as qc(N ) ∝ N . The same conclusion is
obtained measuring the transition points from the location of
the observed discontinuity in the normalized size of the largest
cluster. This point corresponds to the first value of q for which
〈Smax/N〉 is less than 1. Using these results, we can obtain a
data collapse by introducing the rescaled parameter q/N [see
panels (b) and (d) of Fig. 1].

This scaling indicates that, in the thermodynamic limit, the
transition point [qc = limN→∞ qc(N )] goes to infinite. There-
fore, the system does not display a genuine phase transition,
which is rigorously defined at the thermodynamic limit, where
the number of constituents tends to infinity. The introduction
of the binary feature destroys the well known phase transition
of Axelrod’s model: in the thermodynamic limit the transition
disappears and the ordered monocultural state is the sole phase
displayed by the system.

A clear understanding of this result can come from the
exploration of the dynamics of the density ρ of active links.
An active link is a bond that connects two agents (i, j) with
at least one different feature and at least another one equal
(i.e., 0 < ωi j < 1). The nodes at both ends of these links are
the only ones that can change their states and produce some
dynamics. For this reason, ρ = 0 implies a frozen configu-
ration. Figure 2 displays the time evolution of this quantity.
Panel (a) of Fig. 2 shows the result of ten different simulations
for q < qc(N ), which generate ordered final configurations. In
this situation, ρ starts near 0.5, experiences a decrease but then
rises again towards a peak before finally decaying to zero. The
second part of the dynamics, after the maximum is reached, is
a coarsening process which follows different erratic paths and
abruptly reaches zero. Note that the final state corresponding
to one region of ordered features is reached as the result
of a fluctuation in a finite system. A finite-size effect pro-
duces a final ordered region of size comparable to the whole
system.

When q > qc(N ) [panel (b) of Fig. 2] the simulations do
not converge to an ordered state and ρ follows quite regular
paths towards zero. This smooth coarsening process gives rise
to regions clearly smaller than the system size (of the order of
N/10) and produces regular similar trajectories of ρ(t ). These
results are totally analogous to those of the original Axelrod
model [29].

In order to better understand the impact of the binary
feature on the evolution of the system, we have studied the
dynamics of the mean overlap 〈ω(t )〉. Panels (a)–(c) of Fig. 3
display the trajectories of the mean overlap of the binary
feature (〈ωB(t )〉) versus the mean overlap of the nonbinary
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(a) (b)

(c) (d)

FIG. 1. (a) Mean of the normalized largest cultural cluster size 〈Smax/N〉 as a function of the initial cultural diversity q for different system
sizes N . (b) The same plot after rescaling the x axis for q/N . (c) Variance χ of the order parameter 〈Smax/N〉 versus q for different system
sizes. Inset: Value of qc from the maximum variance χ (blue squares) and from the jump location in the normalized size of the largest
cluster (red ×’s) as a function of the system size N , showing the tendency of the finite-size transition points qc(N ) in the thermodynamic
limit: qc = limN→∞ qc(N ) = ∞. (d) χ versus q/N for different system sizes N . It is shown that the maximum of the fluctuations in the order
parameter takes place for the same value of q/N regardless of the system size. All these results correspond to a lattice (k = 4) and F = 10.
Each point is averaged over 1000 simulations. Note that as qc grows linearly with L, for characterizing the theoretical behavior of the phase
transition we must consider a very large number of cultural traits, even if these specific high values cannot be considered realistic, taking into
account the typical situation of a social community.

features (〈ωNB(t )〉). Solid lines correspond to the numerical
results, different colors corresponding to different single sim-
ulations. We can distinguish three different stages. During
the first stage, the binary feature remains almost unaltered,
in contrast to the nonbinary overlap which increases. This
suggests that the cultural uniformization is realized predomi-
nantly within clusters of agents that share the binary trait. For
q > qc(N ) [panel (c)], only this first stage takes place, and
the system remains frozen in a disordered state with a charac-
teristic number of different cultural clusters. For q � qc(N )
[panels (a) and (b)], after a particular overlap value of the
nonbinary feature is reached, the two overlaps start to increase
together. In this regime, the cultural exchange might take
place also between agents marked by distinct binary features.
Finally, a finite-size driven process turns on and the system
converges to the ordered phase. It is interesting to note that, in

general, the binary feature reaches the convergence before the
nonbinary ones.

To improve our understanding of the overlaps dynamics,
here we extend the single link mean-field approach described
in [29] to the case where one of the features is restricted to
only two values. In order to do that, we define Pm,s as the
probability for two neighbors to coincide in m features (out
of F − 1) and s = 0, 1 binary features. Then, by considering
the probability of link states actualization, we can write a
system of equations that describe the time evolutions of Pm,s.
To compute these probabilities, we notice that when an agent
j imitates a feature from an agent z, it modifies the state of
the link between j and z (direct process) and the state of some
of the other links of agent j (indirect processes). Figure 4 dis-
plays a diagrammatic description of all the possible processes
that contribute to the Pm,s dynamics.
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(b)
(a)

FIG. 2. Evolution of the density ρ of active links in a regular lattice (N = 1600, k = 4) for q = 100 (a), q = 5 × 105 (b). Each color
corresponds to a realization among ten randomly selected.

By considering all the depicted diagrams we finally arrive
to

dPm,s

dt
= −Pm,s

m + s

F
(1 − δF,mδs,1)

+ Pm−1,s
m − 1 + s

F

(
F − m + s

F − m + 1

)

+ Pm,s−1
m

F

(
s

F − m

)

+ (k − 1)

[
−

∑
n,s′

Pm,sPn,s′
n + s′

F

1 − s′

F − n − s′

−
∑
n,s′

Pm,sPn,s′
n + s′

F

F − 1 − n

F − n − s′
m

F − 1

−
∑
n,s′

Pm,sPn,s′
n + s′

F

F − 1 − n

F − n − s′

× F − 1 − m

F − 1
ωδ(s,s′ )(t )

+
∑
n,s′

Pm−1,sPn,s′
n+ s′

F

F − n − 1

F − n− s′
F − m

F − 1
ωδ(s,s′ )(t )

+
∑
n,s′

Pm,s̄Pn,s′
n

F

1 − s′

F − n − s′

+
∑
n,s′

Pm+1,sPn,s′
n + s′

F

F − n − 1

F − n − s′
m + 1

F − 1

]
, (2)

where k is the mean connectivity of the network, δ(a, b) is the
Kronecker’s delta function, s̄ stands for the logic negation of
s, and ω1(t ) [respectively, ω0(t )] is the mean overlap between
agents that share (do not share) the binary trait. We also
consider P−1,s = PF+1,s = 0.

Dashed blue lines in panels (a)–(c) of Fig. 3 show the
evolution of the binary feature’s overlap versus the nonbinary
features overlap, according to the mean-field approximation.
As shown, the mean-field approximation qualitatively repro-
duces the behavior of all the regimes, including the first two
until the finite size of the numerical simulations allows the
final convergence for q � qc.

(a) (b) (c)

FIG. 3. Evolution of the mean overlap for the binary feature versus the overlap for the nonbinary features. Solid lines correspond to the
numerical results for a regular lattice (k = 4, N = 1600) and q = 102 (a), 104 (b), and 1012 (c). Different colors correspond to ten different
characteristic realizations. Dashed blue lines show the results corresponding to the mean-field approximation given in Eq. (2).
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FIG. 4. Schematic description of the different processes that contribute to Eq. (2). (a)–(c) correspond to direct processes while (d)–(i)
correspond to indirect ones. To illustrate the meaning of these diagrams let us consider two of them. The subdiagram (b) corresponds to the
direct process where a (m − 1, s) link evolves to a (m, s) link. The probability for this process to happen is given, in a mean-field approximation,
by the probability of a (m − 1, s) link to be sorted (Pm−1,s), times, the probability of the imitation process to happen (m − 1 + s/F ), times,
the probability for the imitation to occur on a nonbinary feature [(F − m + s)/(F − m + 1)], which produces the second term of Eq. (2).
The subdiagram (e) corresponds to the indirect process where the state change of a link, from (n, s′) to (n + 1, s′), also modifies one of the
(k − 1) neighbor links from (m, s) to (m − 1, s). The probability for this process to occur is approximated by the probability of a n(n, s′) link
to be sorted (Pn,s′ ), times, the probability to have a (m, s) as a neighbor link [(k − 1) · Pm,s], times, the probability for the imitation to happen
[(n + s′)/F ], times, the probability to imitate a nonbinary feature [(F − 1 − n)/(F − n − s′)], times, the probability that the chosen feature
was one of the m shared features [m/(F − 1)], which produce the fifth term of Eq. (2).

To test if the mean-field description can reproduce the
effect of the connectivity on the dynamical behavior, we run
some simulations of our model implemented on a random
regular network (RRN) with different values of the degree k.
The thin solid lines in Fig. 5 display the numerical results for
the evolution of binary and nonbinary overlaps for the RRN
with increasing connectivity: k = 4, 6, 8 in panels (a), (b),
and (c), respectively. The thick dashed lines correspond to the
mean-field approximation for the same values of k. As shown,
the mean-field approach describes the decreasing value of the
nonbinary overlap reached after the first part of the dynamics,
before the finite-size driven coarsening dynamics start.

As mean-field descriptions assume infinite system size, the
considered approximation can be useful also for shedding
light on the absence of the transition in the thermodynamic

limit, corroborating our numerical findings with some ana-
lytic arguments. If we consider a system of an infinite size,
as already suggested by Castellano et al. [29], for q < qc

the system is poised indefinitely in a coarse-grained state
and, for q > qc, after a characteristic time, the coarsening
process stops and the density of active links ρ equals zero.
Hence, for infinite systems, we can rigorously define the
transition looking at the value of ρ, which acts as an order
parameter distinguishing among the two different dynami-
cal regimes: one with a perennial coarsening state (ρ > 0),
and one with a frozen state (ρ = 0). Therefore, if a phase
transition exists ρ undergoes a discontinuity, jumping from
a finite value to zero. In our mean-field approximation ρ can
be computed by solving the system of equations (2), which
lead to ρ = ∑F−1

f =1 Pf ,s=0 + ∑F−2
f =0 Pf ,s=1. We calculated the

(a) (b) (c)

FIG. 5. Solid lines show the evolution of the overlap for the binary feature versus the overlap for the nonbinary features according to
simulations run on a RRN (N = 1600) with k = 4 (a), 6 (b), and 8 (c); different colors correspond to ten different characteristic runs. Dashed
blue lines show the results corresponding to the mean-field approximation. q = 103.
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(a) (b)

FIG. 6. Normalized size of the communities corresponding to the two largest cultures as a function of q for the model implemented on a
regular square lattice [panel (a)] and on a RRN (b), both with connectivity k = 4. Averages are taken over 100 independent simulations and
N = 1600.

stationary values of ρ for different q. The corresponding val-
ues are independent of q and always positive, without any
discontinuity, implying that it is not possible to detect any
phase transition in the infinite-size limit.

Finally, we study the model behavior in the regime that
does not lead to a monocultural state (q > qc). When the
site percolation threshold of the network is below 1/2, agents
sharing a given binary trait form a giant component even for
a random distribution of the traits. Therefore, initially, there
will be two binary-feature clusters, one for each binary trait,
allowing cultural imitation inside those components, since any
pair of connected nodes belonging to one of those components
has a nonzero cultural overlap. Those two clusters will con-
verge separately, leading the system to a final polarized state.
Conversely, when the percolation threshold of the network
is above 1/2, initially there are no giant components for the
binary traits and, presumably, for large enough values of q
and finite system sizes, initial small clusters of agents sharing
the binary feature will converge leading the system to a frozen
cultural mosaic constituting a multicultural fragmented phase
[14,16]. Summarizing, for large values of q, the final state can
correspond either to a fragmented phase with a large number
(which scales with the system size) of different cultures or
to a polarized state, where the number of different cultures is
finite, with two predominant ones.

To test this hypothesis, we have implemented the model in
both a regular square lattice with connectivity k = 4, which
presents a site percolation threshold above 1/2 (0.593), and in
an RRN with k = 4, whose site percolation threshold is below
1/2 (0.25). As argued above, while the regular lattice presents
a final multicultural fragmented state [14], when the model
is implemented on a network whose percolation threshold
allows the formation of giant components for the binary traits
(RRN), the dynamics leads the system towards a polarized
state characterized by two dominant cultures. This behavior is
described in Fig. 6, which displays the normalized size (S/N)
of the two largest cultures for both networks. As shown in
panel (a), for q > qc(N ), in a regular lattice, the two more
spread out cultures cover around 10% of the system size.

In the case of the RRN [panel (b)], for the same q values,
the two more spread out communities include near 90% of
the system, and the remaining sites correspond to a pool of
different cultures organized on the border separating the two
main clusters.

IV. DISCUSSION AND CONCLUSIONS

In summary, we have presented a study of a modified
version of Axelrod’s model to describe the effect of cultural
polarization in a population of interacting agents. This char-
acteristic is introduced by limiting one of the cultural features
to take only two possible values. The model was first analyzed
on a regular two-dimensional square lattice with the intention
of clearly characterizing the nature of the transition between
the ordered monocultural state and the disordered one. Our
analysis shows that the introduction of a binary feature makes
the well-established phase transition of the classical Axelrod
model disappear in the thermodynamic limit. This behavior
has been characterized through a finite-size scaling analysis
based on the variance of the order parameter. Additional con-
firmations of this result come from the outputs of a mean-field
description of the model.

These results show that the system does not display a
genuine phase transition. Even if this point is not a genuine
critical point, it has a clear physical meaning as it is the value
of the q parameter that identifies the shift from the order
to the disorder regime. Other models, where the transition
is only observed for finite-size systems, disappearing in the
thermodynamic limit, and which present system size scal-
ing, are well known in the literature [34–37]. In particular,
this phenomenon has been previously observed in Axelrod’s
model [5,9,10,14,16].

In general, when we transfer statistical physics tools to
problems of social sciences, the population size is always
considerably smaller than the Avogadro number, and so, not
so large to justify the thermodynamic limit and its results. In
fact, we are interested in the behavior of finite-size systems,
where important phenomena can appear regardless of the
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number of individuals [34]. For this reason, it is interesting
to characterize the behavior of our system for typical finite
numbers of individuals. We have presented some results for
the overlap dynamics of both binary and not binary features,
displaying three different stages. In the first stage, the cultural
uniformization takes place predominantly inside groups of
agents with the same binary trait. Then, only for low q values,
a new regime of coarsening takes place, with a first step
where the cultural exchange also happens between agents,
marked by distinct binary features and, finally, a finite-size
driven process that leads the system to converge to the or-
dered phase. This behavior suggests that the binary feature
has a predominant role in characterizing the dynamics of the
system. This fact can be interpreted in social terms: agents find
empathy on the basis of some polarizing feature and then tend
to align their cultures. Consequently, the spatial structure in
the initial condition of the binary feature clusters is essential
to characterize the dynamics of the system. Varying these
initial conditions, it is possible to modify the dynamics and
to pose the system in different disordered absorbing states.
This is possible by changing the connectivity of the network
of interactions. We considered the case of a regular square
lattice and random regular networks with different average
degrees. For the regular lattice, which presents a percolation

threshold larger than 0.5, there is no giant component in the
cluster of the binary feature and the disordered absorbing state
of the system is a fragmented one. For the random regular
networks, which present a percolation threshold smaller than
0.5, the clusters of the binary feature are giant components,
and, therefore, the disordered absorbing state of the system
corresponds to cultural polarization. In contrast to the original
Axelrod model, always characterized by fragmentation and
with a large number of different cultures scaling with the
system size, our system can be partitioned in a few different
cultures. This is an interesting result because models with
a large number of possible different absorbing states that
present polarization are uncommon [32,38]. We conclude that
our implementation can effectively describe polarization in
finite populations.
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