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Self-driven criticality in a stochastic epidemic model
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We present a generic epidemic model with stochastic parameters in which the dynamics self-organize to
a critical state with suppressed exponential growth. More precisely, the dynamics evolve into a quasi-steady
state, where the effective reproduction rate fluctuates close to the critical value 1 for a long period, as indeed
observed for different epidemics. The main assumptions underlying the model are that the rate at which each
individual becomes infected changes stochastically in time with a heavy-tailed steady state. The critical regime
is characterized by an extremely long duration of the epidemic. Its stability is analyzed both numerically and
analytically in different models.

DOI: 10.1103/PhysRevE.103.062303

I. INTRODUCTION

Compartmental epidemics models, and their many varia-
tions or derivatives, have been proven useful in understanding,
analyzing, and predicting real epidemic outbreaks [1,2]. How-
ever, fitting such models to the observed infection or death
time series has proven challenging [3]. One of the main
discrepancies is that compartmental models are essentially ex-
ponential, at least locally in time [1,4], while observed data are
often not [2,5,6]. Exponential dynamics emerge since at any
given time in the evolution of the epidemics, the equation for
the dynamics can be linearized around its current state, sug-
gesting an exponential growth or decay of variables (except at
particular time points such as the local maximum of infected
individuals). The predicted exponential growth/decay moti-
vates the commonly used notion of the effective reproduction
rate, Rt , or equivalently, doubling time [1,2]. The effective
reproduction rate approximately describes the instantaneous
exponential rate of change in the number of infected, hos-
pitalized, deceased, or other types of individuals. Fitting Rt

to real data is not straightforward, and several methods have
been proposed and applied [7–9].

Often the epidemic dynamics seem to be at or close to the
critical state Rt = 1 [4,10–16]. Consequently, the number of
new cases per day is constant or linear. Indeed, several authors
studied the dynamics of epidemics, both in compartmental
and network models, assuming that the epidemic is poised
at the critical threshold between exponential growth and ex-
ponential decay [5,6,14,17]. This dynamical pattern can be
explained by assuming that contact rates adapt to the spread of
the epidemic to fine tune Rt [11,16]. However, such negative
feedback typically takes effect on long timescales, possibly up
to years [16]. Alternatively, Stollenwerk and Jansen [12,13]
suggested a sandpile-type model that exhibits self-organized
criticality. The model assumes that the epidemic spreads on
a square two-dimensional (2D) lattice. Criticality is due to
a vanishingly small rate of mutation to a deadly strain. Re-
cent versions assume that the epidemic spreads to neighbors
only once the viral load is above a threshold [10] or that
lattice sites are partially isolated communities (cliques) [15].

Although these models are applicable for specific examples
[12,13], they are not as generic as standard compartmental
models. Moreover, there is no evidence supporting their main
assumptions in general.

Here we suggest a generic mechanism driving epidemics
towards criticality. The main new assumption is that the
infectivity of each individual (i.e., the probability of each
individual to get infected upon meeting with an infected in-
dividual) is a time-varying correlated random variable [18].
Three dynamical regimes or phases are identified, depending
on parameters: (i) exponential growth, (ii) exponential decay,
and (iii) a quasi-steady critical state—a novel regime in which
the dynamics naturally evolves to a steady state that is close
to critical, i.e., Rt fluctuates close to 1. In this regime the
exponential dynamics are suppressed, resulting in constant or
linear infected individuals over long timescales. The critical
state does not require fine-tuning of parameters to have partic-
ular prescribed values. The only condition is for a heavy tail in
the infectivity probability distribution and a finite correlation
time.

II. MODEL DETAILS

For simplicity we concentrate on the SIR modeling point of
view, assuming that the evolution of the disease in each indi-
vidual follows the three states (S)usceptible → (I)nfected →
(R)ecovered [1,2]. In addition, we assume a well-mixed
population [1]. These assumptions underlie considerable sim-
plifications, and realistic epidemic modeling requires more
detailed models [1,19,20]. However, our main goal is to show
that the new self-organized critical regime is generic; hence
we restrict our focus to the simplest, most universal approach.
The mechanism proposed here applies similarly to more com-
plex models. Similarly, for the sake of simplicity, we assume
that the variability is only on the infected side and not on the
infecting side.

The SIR model dynamics are determined by three param-
eters: the population size N , the infectivity rate λ, and the
recovery rate, taken with no loss of generality to be 1. Our
only departure from the standard SIR model is in relaxing the
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assumption that the infectivity rate of an individual is con-
stant. Instead, we assume it follows a stochastic process, i.e.,
it is changing randomly in time. In other words, the infectivity
rate of individual k is replaced by a stochastic process λk (t ).
Thus each infected individual can infect each susceptible indi-
vidual k with a rate proportional to the susceptible infectivity,
λk (t ).

Different biological and social mechanisms can be pro-
posed to explain a random evolution of the individual
susceptible infectivity rate. For example, individual differ-
ences in health, behavior, social distancing measures, and
more. Indeed, previous models considered the effects of
quenched heterogeneity (i.e., assume that individuals have dif-
ferent properties, but they are fixed in time) [20–23]. Several
authors considered deterministic time dependence of λk (t ),
for example, due to seasonality or decline in vaccination
rates [16,24,25]. Stochasticity has also been considered, ei-
ther through a randomly evolving network [26], by additive
and multiplicative noise [24,27–29], or by stochastic (typ-
ically normal) fluctuation of parameters [30,31]. The main
conclusion of these approaches is that assuming population
growth (possibly with a random but strictly positive growth
rate), stochastic SIR models admit a steady-state solution.
This solution does not exist if the population size N is fixed.
Intuitively, the idea underlying these models is clear: at the
steady state, the average population growth compensates for
the average rate of new infections. This steady state is reached
on the timescale of the population growth, typically consider-
ably longer than the epidemic timescale.

Here we assume that infectivity rates λk (t ) are inde-
pendent, identical stationary stochastic processes with two
important properties: (i) univariate marginal distributions that
have a power-law tail, and (ii) a finite correlation time. Note
that while individual infectivity rates vary, the statistics of all
individuals are identical and constant in time. In particular,
the process is autonomous, i.e., there is no explicit time de-
pendence. To be specific, the model is defined as follows.

Below, we denote the fraction of susceptible, infected, and
recovered populations by s(t ), i(t ), and r(t ), respectively, with
s(t ) + i(t ) + r(t ) = 1. A susceptible individual k becomes in-
fected in the period [t, t + dt ) with probability pk (S → I) =
λk (t )i(t )dt + o(dt ). An infected individual k recovers in the
period [t, t + dt ) with probability pk (I → R) = dt + o(dt ).
There are different ways to implement a stochastic process
satisfying the two conditions described above. We choose
several realizations and present here one that is convenient to
simulate and admits some analytical analysis. The main idea
is to define the characteristic infectivity times μk (t ) = 1/λk (t )
instead of the rates. We assume that μk (t ) are independent
stationary processes with gamma univariate marginal distri-
bution,

μk (t ) ∼ Gamma(α, β ), (1)

and an exponential autocorrelation function,

C(t, s) = β2

α
[〈μk (t )μk (s)〉 − 〈μk (t )〉〈μk (s)〉] = e−|t−s|/τ .

(2)

FIG. 1. Example simulation results with a population of 1M in-
dividuals, average infectivity rate 2.7, and shape parameter α = 1.3.
Time units are the inverse rate of recovery. (a) The time evolution
of the fraction of susceptible s(t ), infected i(t ), and recovered r(t )
individuals on a semilog scale. (b) After a short relaxation period,
the effective reproduction rate Rt fluctuates close to the critical value
1. As Rt remains constant while s decreases, the average infectivity
rate has to increase.

Then the instantaneous distribution of infectivity rates λk (t ) =
1/μk (t ) has an inverse gamma distribution, characterized by a
tail that decays with a power α + 1.

Writing the SIR model as a continuous-time Markov pro-
cess, we simulate the dynamics using the Gillespie algorithm
[32]. Synchronous simulations give similar results. We con-
sider a shape parameter in the range 1 < α < 2, which implies
that infectivity rates have a finite mean but infinite variance.
The rate parameter β is chosen to have a given average tran-
sition time 〈μk (t )〉 = α/β. Initial conditions are ten infected
individuals and no recovered. See the Appendix for imple-
mentation details.

III. SIMULATION RESULTS

Figure 1(a) shows the time evolution of s, i, and r for a pop-
ulation of 106 individuals. Parameters are α = 1.3, 〈μk (t )〉 =
1.6 (i.e., β � 0.81 and 〈λk (t )〉 � 2.7) and τ = 4. Following a
short exponential transient that follows the SIR dynamics with
either equal or quenched infectivities, most individuals that
started with a high infectivity rate are infected, and the rate of
new infections decreases [Fig. 1(b)]. As a result, the fraction
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of infected individuals decreases, but on a considerably longer
timescale compared to previous models with noncritical dy-
namics. Figure 1(b) depicts our main result, showing that
the effective reproduction rate Rt stabilizes to a value that
fluctuates around the critical value Rt = 1.

An intuitive explanation is a negative feedback mechanism:
Initially, the average infectivity rate is larger than 1. As s
is close to 1, the reproduction rate Rt > 1 and the number
of infected individuals increases exponentially. However, sus-
ceptible individuals with large initial λk (0) are more likely
to be infected during this exponential growth phase. As a
result, given the heavy tail of the distribution of λk , the av-
erage infectivity rate in the remaining susceptible population
decreases, decreasing Rt . On the other hand, if the rate of
new infections i′(t ) is sufficiently large (compared to 1/τ ) so
that Rt < 1, then the number of infected individuals decreases
exponentially. Since there are not many new infections and be-
cause the distribution of infectivity rates returns to the steady
state at a characteristic time τ , the average infectivity rate
increases back towards its unperturbed steady-state average,
which is greater than 1. Note that an essential requirement
for such a mechanism is a heavy-tailed distribution of the
infectivities; otherwise, the reduction of the right-hand tail
would not have a strong affect on the average infectivity. In
addition, if the correlation time τ is too small or large, then
the infectivity rate will not return towards its steady-state
value.

Overall, if the increase and decrease in the average infec-
tivity rate occur on comparable timescales, then the dynamics
self-organize to the critical value. In the SIR model, the frac-
tion of susceptible individuals s(t ) decreases monotonically
with time. Denoting averages over susceptible individuals by
〈·〉S, the instantaneous reproduction rate is given by Rt =
〈λk (t )〉Ss(t ). Thus criticality is maintained through an in-
crease in the average infectivity of each susceptible individual,
through a stronger bias for infections in the tail of the distri-
bution [dashed blue curve in Fig. 1(b)].

The duration of the critical state can be orders of magnitude
longer than in the quenched analog (Fig. 3). However, it does
not correspond to a true steady state due to the finite popula-
tion. Accordingly, we term this regime a quasi-steady critical
state. To understand the different regimes that emerge in this
model, we estimate the model phase diagram. Figure 2(a)
shows the three dynamical regimes (exponential growth, ex-
ponential decay, or quasi-steady criticality) as a function of
the average infectivity time and the shape parameter. We refer
to the exponential decay case as an instance in which the
overall (final) fraction of the recovered population (when the
infected population reaches 0) is smaller than a low threshold
(here we used 1%). Otherwise, the epidemic spreads (with
exponential or critical growth). The regime is labeled critical
if Rt is in [1 − ε, 1 + ε] for at least half of the duration of
the epidemic. Here we used ε = 0.05. Otherwise, the regime
is labeled as exponential growth. Note that these definitions
contain multiple arbitrary parameters, which may affect the
precise borders of the different regimes. However, the main
properties of the phase diagram, in particular, the occurrence
of the critical regime in a wide range of parameters, are not
affected by the details of the formal definitions. For suffi-
ciently large vales of α, the boundary between the exponential

FIG. 2. Phase diagram. (a) The regime of the epidemic (expo-
nential growth, exponential decay, or self-organization to the critical
state) for different average infectivity times and shape factor α. The
critical regime occupies a large fraction of the phase space and does
not require fine-tuning of parameters. (b) Dependence on τ . The
figure shows the final values of r, indicating the overall fraction of the
population which was infected (solid black line) and the duration of
the epidemic (dashed red line) as a function of τ . As the critical state
is characterized by long epidemic duration, we see that the stability
of the Rt = 1 state increases for τ � 1 and abruptly drops around
τ = 20 − 50, suggesting a phase transition. (c) Dependence on N .
The figure shows icritical, the fraction of the population infected during
the critical phase (solid black line), and T , the epidemic duration on
a log-log scale (dashed red line). Initial conditions are I (0) = 10−4N
and results are averaged over 10 realizations. Both quantities seem to
depend algebraically on N , with slopes −0.8 and 0.5, respectively.

growth and decay regimes occurs when 〈μ〉 = 2, in which Rt

is approximately 1.
Figure 2(a) shows that the critical regime inhabits a large

section of the phase diagram. Not surprisingly, it is highly de-
pendent on α. When α approaches 1, the dynamics are critical
for a very wide range of β values. For high α values, the model
converges to the classical SIR model distinction of exponen-
tial increase for high infectivities (lower time for infection)
and exponential decrease for low infectivities. Figure 2(b)
shows the dependence of the dynamics on the characteris-
tic timescale of the stationary gamma process, τ . All other
parameters are the same as in Fig. 1. The final value of r,
indicating the overall fraction of the population which was in-
fected, decreases monotonically with τ . However, the duration
of the epidemic depends nonmonotonously on τ . As the criti-
cal state is characterized by long epidemic duration, the figure
shows that the stability of the Rt = 1 state increases for τ � 1
and abruptly drops at around τ = 20 − 50. The sharpness of
the drop in the duration suggests a phase transition. Finally,
we study the dependence on the population size N . To this end,
systems with different population sizes were simulated with
equal initial conditions i(0) = 10−4. The epidemic duration T
was defined as the last time where i(t ) >= 10−5. The fraction
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FIG. 3. Results for annealed dynamics, τ → ∞. All other pa-
rameters are the same as in Fig. 1. (a) s(t ), i(t ), and r(t ) on a semilog
scale. The duration of the epidemic is an order of magnitude shorter
compared to the critical regime. Time units are the inverse rate of
recovery. (b) Both the reproduction number r(t ) and the average in-
fectivity rate decrease monotonically in time. (c) The phase diagram
shows that criticality is only obtained at the exact boundary between
the exponential growth and exponential decay regimes. (d) Depen-
dence on N . The duration of the epidemic T appears to increase
sublogarithmically with N .

of infected individuals during the critical state was defined
as icritical = i(T/2). Both icritical and the epidemic duration T
show an algebraic dependence on N , with slopes of approx-
imately –0.8 and 0.5, respectively [Fig. 2(c)]. The duration
of the quasi-steady state increases with N , suggesting it may
become a fixed point in the infinite system limit (N → ∞).

These results are in stark contrast to results for quenched
infectivity rates (Fig. 3). In the quenched system, the dynam-
ics transitions from early exponential growth to exponential
decay, with Rt monotonically decreasing to an asymptotic
value that is smaller than 1. In particular, the critical state Rt =
1 is instantaneous. Accordingly, the phase diagram shows
that criticality is only obtain for specific fine-tuned values
along the boundary between the exponential growth and decay
phases. Finally, the epidemic duration decays sublogarithmi-
cally with N [Fig. 3(d)]. This is because T was calculated until
a fixed small fraction i(t ) is reached. With Rt < 1 (exponential
decay), the average time from i(t ) >= 10−5 to i(t ) = 0 is
trivially of order ln N . Overall, the quenched model does not
show a critical behavior.

The Appendix describes an alternative implementation for
simulations in which the infectivity rates are jump processes
with univariate marginal distributional that are “pure” power
laws. The results, depicted in Fig. 4, are qualitatively similar
to Fig. 2, showing a long quasi-steady state.

IV. AN ANALYTICAL APPROXIMATION
OF THE CRITICAL REGIME

To further gain insight into the stability of the critical
regime, we take advantage of a particular realization of

FIG. 4. Simulation results with the alternative jump rates pro-
cesses. α = 1.3, 〈λ〉 = 1.4, τ = 4, and N = 106. Time units are
the inverse rate of recovery. (a) The time evolution of the fraction
of susceptible s(t ), infected i(t ), and recovered r(t ) individuals on
a semilog scale. (b) After a short relaxation period, the effective
reproduction rate Rt fluctuates close to the critical value 1. As Rt

remains constant while s decreases, the average infectivity rate has
to increase.

stationary gamma processes for the case in which the shape
parameter α is equal to half an integer. From [33,34], the
solution to the following stochastic differential equation,

dμt = −2

τ

(
μt − α

β

)
dt + 2√

βτ

√
μt dWt , (3)

satisfies (1) and (2), where Wt is the standard Brownian
motion. In order to derive self-consistent equations for the
existence of a steady state, we assume that the total rate
of individuals leaving state S (i.e., they become infected) is
constant (that depends on i). In other words, μt is a diffusion
process that is killed at a rate that is proportional to μ−1

t . To
uphold the steady state, individuals are reintroduced to the
susceptible population at a constant rate. One can write the
Fokker-Plank equation associated with the effective steady-
state distribution p(μ) (see the Appendix). Expanding in an
asymptotic series,

p(μ) = p0(μ) + icritical p1(μ) + O
(
i2
critical

)
, (4)

where p0(μ) is the density of the gamma distribution
Gamma(α, β ) and icrit is the fraction of infected individu-
als during the steady state. In the Appendix we show that
q(μ) = 2p1(μ)/τ is dimensionless and satisfies an inhomo-
geneous confluent hypergeometric equation whose solutions
can be written in terms of a generalized gamma function. With
α = 3/2, we find that a steady state can be obtained for a large
range of parameters with a critical fraction of infected indi-
viduals that is inversely proportional to the population size,
and icritical is at most 1/ ln N . Comparison with the numerical
results confirms the stability of the critical state and the pa-
rameters range in which it is obtained (Fig. 5). In contrast,
for α = 2 and α = 5/2, a steady state cannot be obtained for
long durations that are at least of order ln N . Therefore the
phase diagram [Fig. 2(b)] can be understood by the following
logic. If the average infectivity rate 〈λ〉 is too small (i.e., 〈μ〉 is
large), then the initial Rt < 1 and we observe an exponential
decay. On the other hand, if 〈λ〉 is very large, i(t ) becomes too
large [O(1) in N] and the quasi-steady state is not possible (or
short). In between, critical dynamics is observed.
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FIG. 5. Comparison between simulation results with α = 3/2,
〈μ〉 = 1.4, τ = 4, and N = 106 and the analytical approximation at
the steady state. (a) After an initial transient period, the reproduction
rate Rt fluctuates close to 1. The dashed vertical line marks the begin-
ning of the quasi-steady state in simulations. The agreement between
the analytical and simulated results slowly deteriorates, because in
simulations S is slowly decreasing and the steady-state assumption
does not hold.

V. DISCUSSION

Some fundamental questions are still open. The generality
of our results remains to be proven beyond the three examples
studied here. In addition, linking the self-organizing principle
to similar known physical processes, in particular, the well-
studied self-organized criticality [10,12,13,15] and the stable
steady state inferred in stochastic models (with population
growth) [16,24–29] or to the steady state with an effective
Rt = 1 observed in SIRS models, is of interest.

Relating the model proposed here to realistic epidemic
data requires introducing more complicated models to take
into account several details that have been proven important
to realistic modeling [35], such as interaction networks, het-
erogeneity (e.g., by age), incorporating the variability in the
infecting side, and coupling between infectivity rates and the
epidemic dynamics. Most importantly, the current work does
not establish that the main assumptions underlying the model
are indeed realized for some detailed, microscopic model. For
example, it has been suggested that the rate of some person-
to-person contact types were are heavy tailed [36,37] (while
others are not [38]). In addition, some contact durations,
which may also influence infectivity rates, were also found
to be heavy tailed [39]. SIR-type models are also widely used
to describe the spreading of computer viruses [22], memes in
social networks [40], and adoption of new products [41]. It
is well known that the number of edges in such networks is
heavy tailed [22,42]. These issues are beyond the scope of the
current manuscript.

To summarize, we showed that a small change in the SIR
model in which the infectivity rates (or rather times) of each
individual are changing stochastically in time can qualitatively
change the dynamics. For simplicity, we assumed a minimal
model with a well-mixed population, statistically identical

individuals, and a stationary, independent random process for
the infection time of each individual. Our results demonstrate
that the effect of including temporal fluctuations in the in-
fectivity times is drastic. In particular, the dynamics admit
a new regime that is not present in previous compartmental
models, in which the dynamics evolve spontaneously into a
quasi-steady critical state in which the reproduction number
fluctuates close to 1. During this stage, a small, constant frac-
tion of the population, icritical, remains infected. This fraction
decreases with N . At the same time, the duration of this
state increases with the population size approximately as

√
N ,

suggesting a phase transition to a critical steady state in the
infinite system limit.

Without a doubt, fitting and understanding realistic epi-
demic data require further generalizations to more com-
plicated models. Yet, this work takes the first steps in
understanding the implications of the self-organized quasi-
stable critical regime introduced here, which can have analog
consequences in other systems, such as population dynamics
and kinetics of chemical reactions.
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APPENDIX A: SIMULATION IMPLEMENTATION

The section provides details for implementing the SIR
simulations described in the main text. Recall that for each
k, μk (t ) is a stationary process with univariate marginal
distribution μk (t ) ∼ Gamma(α, β ) and exponential autocor-
relation function exp(−|t − s|/τ ) for μk (t ) and μk (s). The
initial distribution of infection times is taken to be the steady-
state distribution Gamma(α, β ). Thus the process for μk (t ) is
stationary.

We approximate μk (t ) by a piecewise constant jump pro-
cess with step �t using the discrete AR(1) process presented
in [34–43]. To be precise, let ρ = exp(−�t/τ ) and take

μk[(i + 1)�t] = ρμk (i�t ) + ζi, (A1)

where

Gi ∼ Gamma(α, 1) (A2)

Ni ∼ Pois((1 − ρ)Gi/ρ) (A3)

ζi ∼ Gamma(Ni, β/ρ). (A4)

Here Pois(L) denotes a Poisson distribution with mean L.
The SIR model is simulated in steps of �t . During the

ith step, we assume that S → I transitions have an exponen-
tial distribution with constant rates λk = 1/μk (i�t ). I → R
transition rates equal 1. Within each time period �t , the SIR
dynamics is modeled using the Gillespie algorithm as follows.
For simplicity, we consider the first period, i = 0 and t = 0.
Denote by AS(t ) and AI(t ) the sets of susceptible and infected
individuals at time t , respectively.
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(1) Let


 = 1

N
|AI(t )|

∑
k∈AS(t )

λk, (A5)

where |A| denotes the number of elements in a set A.
(2) Let dtS2I denote the time to the first infection event. As

the rate in which a susceptible individual k becomes infected
is iλk/N , the first event occurs at dtS2I ∼ Exp(1/
), an expo-
nentially distributed random variable with mean 1/
.

(3) Let dtI2R denote the time to the first recovery event. As
the rate in which an infected individual recovers is 1, the first
event occurs at dtI2R ∼ Exp(1/|AI|).

(4) Let dt = min{dtS2I, dtI2R}.
(5) If t + dt > �t , then no transitions occur until the end

of the period [0,�t] and the process jumps to t = �t . The
current time-step ends.

(6) Otherwise, a transition occurs. If dtI2R < dtS2I, then
a recovery event occurs. Let I denote an element from AI(t )
chosen at random with uniform distribution. Then, individual
I recovers: AI(t + dt ) ← AI(t ) − {I} and t ← t + dt . Return
to 1.

(7) Otherwise, an infection event occurs. Let u ∼ U (0, 1),
a uniformly distributed random variable in (0,1), and

I = arg max
I

{∑
k∈AS(t ),k�I λk∑

k∈AS(t ) λk
< u

}
. (A6)

Then individual I becomes infected: AS(t + dt ) ←
AS(t ) − {I}, AI(t + dt ) ← AI(t ) ∪ {I}, and t ← t + dt .
Return to 1.

Note that the algorithm makes use of the no-memory prop-
erty of exponential random variables. Thus, cutting off the
distribution for dt if t + dt > �t and redrawing it does not
change the distribution of dt (unless 
 or |AI(t )| change).

APPENDIX B: INFECTIVITY RATES AS A JUMP PROCESS

The section describes an alternative mechanism that does
not use stationary gamma processes. The main idea is to define
a stochastic process for the infectivity rates λk (t ) such that

(1) The univariate distribution of λk (t ) are a power law
with minimum xmin and tail x−α+1.

(2) Correlations decay exponentially, 〈λk (t )λk (s)〉 −
〈λk (t )〉〈λk (s)〉 = Ce−|t−s|/τ .

Note that ∀k, j, λk (t ), and λ j (t ) are independent. Without
loss of generality, we consider the case k = 1 and generate a
process in discrete time steps �t .

The algorithm is quite simple:
(1) Set t = 0. Draw λ1(t ) from the required power law.
(2) Let u ∼ U (0, 1), a uniformly distributed random vari-

able in (0,1).
(3) If u < �t/τ , then draw λ1(t + �t ) independently

from the required power law. Otherwise, λ1(t + �t ) ← λ1(t ).
(4) t ← t + �t . Go to 2.
It is trivial to see that the univariate distributions are a

power law. The (approximately) exponential correlation is due
to the fact that the probability that the value of λ1(t ) does
not change after j steps is (1 − �t/τ ) j . Hence, after time
t = j�t , it is (1 − �t/τ )t/�t →�t→0 e−t/τ .

Finally, the SIR model is simulated in steps of �t . Dur-
ing the ith step, we assume that S → I transitions have an
exponential distribution with constant rates λk (i�t ). I → R
transition rates equal 1. Within each time period �t , the
SIR dynamics is modeled using the Gillespie algorithm as
described in the previous section.

APPENDIX C: SELF-CONSISTENT CONDITIONS
FOR CRITICALITY

We take advantage of a particular realization of stationary
gamma processes, i.e., stochastic processes with univariate
marginal gamma distribution and an exponential autocorre-
lation function. Following [33,34], if the shape parameter α

is equal to half an integer, then one can write such a sta-
tionary gamma processes as a stochastic differential equation.
Note that this realization is different from the AR(1) process
defined in Eq. (4), i.e., it may have different higher (�3)
moments. Specifically, for α = n/2 and β > 0, the solution
of the stochastic differential equation,

dXt = −2

τ

(
Xt − n

2β

)
dt + 2√

βτ

√
Xt dWt , (C1)

satisfies [33,34]

Xt ∼ Gamma(n/2, β ) (C2)

〈Xt Xs〉 − 〈Xt 〉〈Xs〉 = e−|t−s|/τ . (C3)

The Fokker-Plank equation associated with (C1) is

∂ p(x, t )

∂t
= 2

τ

∂

∂x

[(
x − n

2β

)
p(x, t )

]
+ 2

βτ

∂2

∂x2
[xp(x, t )].

(C4)

Our goal is to model the distribution of infectivity times (here
denoted X ) in the susceptible population. We assume that the
rate in which individuals leave the state S (i.e., they become
infected) is inversely proportional to the infectivity time,

1

Xt

1∫ ∞
0 x−1 p(x, t )dx

. (C5)

Instead of a quasi-steady state, which is difficult to define and
treat analytically, we assume a steady state, which is obtained
by reintroducing infected individuals back as susceptibles
with infectivity times that are distributed according to the
present measure, i.e., p(x, t ). Note this is different than an SIS
model, in which recovered individuals are also reintroduced
as susceptible but with the initial measure p(x, 0) (gamma
here). Overall, the Fokker-Plank equation associated with the
effective steady-state process is

∂ p

∂t
= 2

τ

∂

∂x

[(
x − n

2β

)
p

]

+ 2

βτ

∂2

∂x2
[xp] − ρ

[
1

x

1∫ ∞
0 x−1 p(x, t )dx

− 1

]
p(x, t ),

(C6)

062303-6



SELF-DRIVEN CRITICALITY IN A STOCHASTIC … PHYSICAL REVIEW E 103, 062303 (2021)

where ρ � 0 is the overall rate in which individuals are re-
moved. At the steady state ∂ p/∂t = 0,

2

τ

[(
x − n

2β

)
p

]′
+ 2

βτ
[xp]′′

−ρ

[
1

x

1∫ ∞
0 x−1 p(x)dx

− 1

]
p(x) = 0. (C7)

Taking ρ = 0, we verify that the density of a gamma distribu-
tion with rate parameter β and α = n/2,

p0(x) = 1

�(α)
βαxα−1e−βx, (C8)

is indeed a steady-state solution. Here, �(·) is the gamma
function. Multiplying (C7) by τ/2 and denoting ε = τρ/2,
Eq. (C7) becomes

L0 p(x) − εβ

[
1

x

1∫ ∞
0 x−1 p(x)dx

− 1

]
p(x) = 0, (C9)

where

L0 f =
[(

βx − n

2

)
f

]′
+ [x f ]′′ (C10)

is the forward Kolmogorov operator associated with (C1).
Assuming ε � 1, we expand p(x) in an asymptotic series,

p(x) = p0(x) + εq(x) + O(ε2). (C11)

Substituting into (C9) and expanding in powers of ε,

L0q(x) − β

[
1

x

1∫ ∞
0 x−1 p0dx

− 1

]
p0 + O(ε) = 0, (C12)

where we used L0 p0 = 0. In the following, the high-order
O(ε) term is neglected.

As α = n/2 is half an integer, we concentrate on the only
relevant case with 1 < α < 2 and take α = 3/2. Substituting
p0 into (C12), we obtain a second-order ordinary differential
equation for the leading-order perturbation term q(x),

βq +
(

βx + 1

2

)
q′ + xq′′ = 2√

π
β3/2

(
1√
x

− β
√

x

)
e−βx.

(C13)

Changing variables x = t/β, we write y(t/β ) = q(x). The
equation for y reads

y +
(

t + 1

2

)
ẏ + t ÿ = 2√

π
β

(
1√
t

− √
t

)
e−t . (C14)

This is an inhomogeneous confluent hypergeometric equation
(a.k.a. Kummer’s equation). It is easily verified that

√
te−t is

a solution of the homogeneous equation. The second solution
involves the imaginary error function which diverges at infin-
ity and is therefore not normalizable. Following the variation
of parameters approach, we look for a solution in the form of

y(t ) = √
te−t [1 + βz(t )]. (C15)

Substituting into (C14), z(t ) satisfies(
3

2
− t

)
ż + t z̈ = 2√

π

(
1

t
− 1

)
. (C16)

Denoting w = ż,

t2ẇ + t

(
3

2
− t

)
w = 2√

π
(1 − t ). (C17)

We split the right-hand side into two cases:

t2ẇ1 + (
3
2 − t

)
w1 = 1 t2ẇ2 + (

3
2 − t

)
w2 = t . (C18)

Using MATLAB’S symbolic toolbox, the solutions are

w1(t ) = −√
πt−3/2et erfc(

√
t )

w2(t ) = −1

t
− 1

2

√
πt−3/2et erfc(

√
t ), (C19)

where erfc is the complementary error function, and the con-
stants were chosen such that w1 and w2 vanish in the limit
t → ∞. Overall,

w(t ) = 2√
π

1

t
− t−3/2et erfc(

√
t ). (C20)

Integrating,

z(t ) = 2√
π

ln t −
∫ t

1
s−3/2eserfc(

√
s)ds + C. (C21)

Substituting into y and then q, we obtain

q(x) =
√

β
√

xe−βx

[
1 + βC + 2√

π
β ln(βx)

−β

∫ βx

1
s−3/2eserfc(

√
s)ds

]
. (C22)

The constant C is determined to enforce normalization:

1 =
∫ ∞

0
p(x)dx =

∫ ∞

0
p0(x)dx + ε

∫ ∞

0
q(x)dx + O(ε2).

(C23)
As p0 is normalized,

∫
qdx = 0. Denote

h(y) = y1/2e−y
∫ y

1
s−3/2eserfc(

√
s)ds. (C24)

Expanding h for small y, the limit y → 0 exists and equals –2.
In addition, the function is integrable at ∞. Approximating
numerically,

∫ ∞
0 h(y)dy � −0.1869. Overall,

C �
√

2π (−0.1869 − 2 + γ − 2 ln 2) − 1

β
, (C25)

where γ is the Euler-Mascheroni constant. Substituting into
(C22), we get that for x > 0,

q(x) = p0(x)

[
D + ln(βx) − 1

2

√
π

∫ βx

1
s−3/2eserfc(

√
s)ds

]
,

(C26)

where D � −0.2233 and q(0) = 2β.
Here, we encounter a problem: while q(x) is continuous

and integrable (
∫ ∞

0 q(x)dx = 0), the correction for the av-
erage infectivity rate

∫ ∞
0 x−1q(x)dx, which also appears in

(C9), diverges close to x = 0 (because q(0) > 0). This seems
to contradict the consistency of the asymptotic expansion in
ε,

∫
x−1 pdt = ∫

x−1 p0dx + ε
∫

x−1qdx + O(ε2), as the first
integral is finite, while the second diverges.
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In order to overcome this difficulty, we need to take into
account the finite population size. In our assumed quasi-
steady state, the population size is the current number of
susceptible individuals, S. Denote by m the smallest value
out of S samples with density p(x). On average, we have
that E[P(m)] = 1/(S + 1), where P(x) = ∫ x

0 p(t )dt , the cu-
mulative distribution function of p(x). Neglecting terms of
order ε, the leading-order term is m = β−1S−2/3. However,
this value is random. Numerical tests show that, for large
S, the standard deviation in P(m) is approximately 0.83/S.
Hence, the variation in m cannot be neglected and needs to be
also considered.

Applying a lower cutoff of all densities at m, we need to
calculate ∫ ∞

m
x−1[p0(x) + εq(x)]dx. (C27)

Using known power-law expansions of the error function,
the exponential integral (

∫
t−1e−t ), and a lower incomplete

gamma function,∫ ∞

m
x−1 p0(x)dx = 2β + O(

√
m)

∫ ∞

m
x−1 p0(x) ln(βx)dx = −2(γ + 2 ln 2)β + O(

√
m)

∫ ∞

m
x−1h(βx)dx = − 4√

π
[−γ − ln(βm)] + O(

√
m).

(C28)

In particular, the integral over x−1q(x) diverges logarithmi-
cally in S. The logarithmic divergence of the last integral can
also be seen from the fact that h(x) → −2 as x → 0+. As a
result, for x � 1, x−1h(x) ∼ x−1.

Using the average value m = β−1S−2/3, we obtain∫ ∞

m
x−1 p(x)dx = 2β − βε(1.5036 + 0.5905 ln S) + o(1).

(C29)

However, as explained above, this approximation is not suffi-
cient because the lower cutoff m is used to evaluate integrals
of the form

∫ 1
m x−1dx, which is not symmetric with respect to

fluctuations in m. In order to improve the approximation, we
introduce a proportionality constant F and replace (C29) with∫ ∞

m
x−1 p(x)dx = 2β − βε(1.5036 + 0.5905F ln S) + o(1).

(C30)

As noted above, F describes the ratio between E[1/m] and
1/E[m], where averages are with respect to the uniform dis-
tribution (because h is approximately constant for x � 1). We
numerically estimate the value of F for the case S = 106 by
repeatedly sampling S samples, finding the minimum and cal-
culating F = E[1/m]E[m]. Because of the 1/m dependence,
it is difficult to obtain an accurate estimate. Using 105 − 106

samples we find that F is in the range 20–30. Hence, below
we take F = 25.

We now need to address the consistency of the approxima-
tion for the critical quasi-steady state for which it is applied.

Recall that we assume that, during the critical state, the frac-
tion of infected individuals i is constant. Since the recovery
rate is 1, the duration of the critical state is at most 1/i, i.e.,
T < 1/i. This duration is at least O(ln S), even in exponen-
tial growth and decay regimes. Figure 4(a) shows that this
assumption indeed holds. Therefore, i < C/ ln S.

In SIR, the fraction of infected individuals also determines
the rate at which susceptible individuals vanish (i.e., become
infected). Hence, in our case, ρ = i. Overall, we find that

ε < C
τ

2

1

ln S
. (C31)

Hence the expansion is consistent as long as the proportion-
ality constant C is small enough. For example, the slope of a
linear fit to Fig. 4(a) yields C � 0.015.

Next we couple the steady state to the SIR dynamics. The
analysis is similar to [21]. The instantaneous rate in which
a susceptible individual k becomes infected is i(t )/μk (t ).
Therefore the population-averaged rate is i(t )〈1/μk (t )〉S,
where 〈·〉S denotes averaging over the susceptible individuals.
On average, the rate of change in s(t ) is

ds

dt
= −〈1/μk (t )〉Ss(t )i(t ). (C32)

Similarly, the population average i satisfies

di

dt
= 〈1/μk (t )〉Ss(i)i(t ) − i(t ) = [〈1/μk (t )〉Ss(i) − 1]i(t ).

(C33)
Thus the reproduction rate is

Rt = 〈1/μk (t )〉Ss(t ) = s(t )
∫ ∞

0
x−1 p(x)dx. (C34)

As described above, the steady-state distribution of μk (t )
has density p(x) = p0(x) + εq(x) + O(ε2) with ε = iτ/2.
Denoting by icrit and scrit the critical, steady-state values, the
reproduction rate at criticality is given by (C30)

Rt � scrit
[
2β − 1

2βτ (1.5036 + 0.5905F ln S)icrit
]
. (C35)

A steady state would imply the critical value Rt = 1. Setting
β = α/〈μ〉 = 3/(2〈μ〉) (recall that 〈μ〉 is the average infec-
tivity time) yields

icrit = 4

τ

(
1 − 〈μ〉

3scrit

)
1

1.5036 + 0.5905F ln S
. (C36)

Figure 5 compares the analytic approximations to simulation
results with α = 3/2, 〈μ〉 = 1.4, τ = 4, and N = 106. We
see that at the steady state (to the right of the dashed line,
defined by Rt ∼ 1), the mean susceptibility time, the fraction
of susceptible individuals, and the fraction of infected individ-
uals are well approximated by the analytical approximations
(C30), (C34), and (C36), respectively.

Next we wish to evaluate the region in parameter space that
admits the stable regime. For simplicity, we substitute scrit =
1. As the critical i is positive, we obtain a lower bound for 〈μ〉,

〈μ〉 < 3. (C37)

In addition, recall our self-consistent assumption that the per-
turbation in the average susceptibility rate is smaller then
the population average. This requires that icrit < 2/(τF ln S).
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Comparing with (C36) and assuming ln S � 1, we obtain an
upper bound for 〈μ〉,

〈μ〉 > 0.7. (C38)

Overall, we find a consistency condition for the existence of
the steady state at α = 3/2,

0.7 < 〈μ〉 < 3. (C39)

This result is in excellent agreement with the numerically
obtained phase diagram Fig. 2, where, with α = 1.5, critically
is obtained for 0.7 < 〈μ〉 < 2.7.

Next we consider the case α = 2. Following the same
protocol, we find that

p(x) = p0(x) + εq(x) + O(ε2)

p0(x) = β2xe−βx

q(x) = p0(x)(γ − 1 + ln βx). (C40)

Unlike the α = 3/2 case, here the average perturbed infectiv-
ity rate converges,

∫
x−1[p0(x) + εq(x)]dx = β(1 − ε). (C41)

As a result, assuming that s � 1,

Rt = 〈1/μ〉S = β
(
1 − 1

2τ i
) = 1. (C42)

We readily see that with β < 1, (C45) cannot be satisfied.
With β > 1, a solution may exist. However, i = O(1), which
implies that the duration of the steady state is independent of
N and therefore short.

Lastly, we take α = 5/2. We find that

p(x) = p0(x) + εq(x) + O(ε2)

p0(x) = 4

3
√

π
β5/2x3/2e−βx

q(x) = p0(x)(D + ln βx), (C43)

where D � −0.528 96. Again, the average infectivity rate
converges, ∫

x−1[p0(x) + εq(x)]dx = β(1 − ε). (C44)

As a result, assuming that s � 1,

Rt = 〈1/μ〉S � β
(

2
3 − 0.7397ε

) = 1. (C45)

With β < 3/2, (C45) cannot be satisfied. With β > 3/2, a
solution may exist. However, again, i = O(1), which implies
that the duration of the steady state is independent of N and
therefore short.
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