
PHYSICAL REVIEW E 103, 062301 (2021)

Emergent dynamics in excitable flow systems

Miguel Ruiz-García and Eleni Katifori
Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

(Received 22 March 2020; accepted 26 April 2021; published 3 June 2021)

Flow networks can describe many natural and artificial systems. We present a model for a flow system that
allows for volume accumulation, includes conduits with a nonlinear relation between current and pressure
difference, and can be applied to networks of arbitrary topology. The model displays complex dynamics,
including self-sustained oscillations in the absence of any dynamics in the inputs and outputs. In this work we
analytically show the origin of self-sustained oscillations for the one-dimensional case. We numerically study
the behavior of systems of arbitrary topology under different conditions: we discuss their excitability, the effect
of different boundary conditions, and wave propagation when the network has regions of conduits with linear
conductance.
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I. INTRODUCTION

Flow networks appear in a multitude of natural and arti-
ficial systems that require efficient distribution of nutrients,
goods, or any other quantity of interest through the system.
They are composed of a set of connections (e.g., resistors in
the context of an electrical current network) that carry the flow
between nodes. They also possess an external input (akin to an
electric battery or a fluid pump) that provides the necessary
energy for the flow to overcome energy losses due to dissi-
pation. A widely studied example of a natural flow network is
the vascular system of plants and animals, whereas an artificial
one is the power grid or water distribution systems.

Since the seminal work of Kirchhoff in 1847 [1], much
success has been achieved modeling flow systems as networks
of linear resistors (see, e.g., [2]). These models present in-
teresting physics; however, their linear nature, and absence
of elements such as capacitors and inductors, assumes that
a change on the boundary conditions (the net currents or
pressures specified at a predetermined set of nodes, termed the
contacts) is instantaneously transmitted to the entire system.
Thus, when the boundary condition (e.g., the voltage drop in
the battery) is specified, there is a unique solution (up to a
gauge) for the pressures throughout the system, and the dy-
namics of the whole system can be straightforwardly inferred
from the dynamics imposed at the boundary nodes.

In this work we revisit the physics of resistor networks
by relaxing the linearity condition. We consider a system of
nonlinear resistors, with a nonlinear relation between the cur-
rent flowing through a link (i, j) and the pressure difference
between the two nodes i and j. We demonstrate that such a
system can exhibit complex dynamics even in the absence of
a time-dependent drive. In our model, in contrast to simple
linear resistor networks, the spatiotemporal variations of the
current require that we consider transient internal storage of
fluid. In the vascular system, for example, this is something
that is accomplished by the dilation of the vessels. In our
model we introduce this property by allowing, and account-

ing for, accumulation of volume at the network nodes. This
enables the propagation of pressure and volume perturbations
along the system.

The one-dimensional (1D) limit of our model is related
to previous models used to study semiconductor superlattices
[3,4]. These models can present complex dynamics such as
self-sustained oscillations [3] or chaotic behavior [5,6]. Also,
its continuum limit has been used to study the Gunn effect in
semiconductors [7]. Our model uses equations consistent with
the scaling laws of fluidic systems rather than with semicon-
ductor electronics. Unlike the previous work, it can be used
on networks of arbitrary topology.

We focus our attention on the parameter range that displays
oscillatory behavior under constant boundary conditions.
Moreover, the model presented in this work displays the ba-
sic properties characterizing excitable dynamical systems. In
particular, for some parameter range, the system presents a
stable point; and when perturbed away from it, it makes a large
excursion in phase space before returning to the stable point.
This is the signature behavior of excitable models [4,8]; we
show an example of this behavior in Sec. IV B 2 and in Fig. 7.
Other models of excitable networks have been previously
studied, but these models usually include explicitly excitable
elements at the nodes of the network. These elements can
belong to different classes: they can be discrete variables that
can be in a resting, excited, or refractory state and that can
excite their neighbors (see [9]); or they can be neuron-like
continuous variables whose dynamics are coupled to their
neighbors’ dynamics (see, e.g., [10]). In our case the nodes are
not intrinsically excitable but just store volume. Excitability
emerges as a global effect that stems from the combination of
(1) the coupling between the node capacity and the pressure
field and (2) the nonlinear conductance. This combination
gives rise to the complex dynamics shown, at least in part,
in this work.

The paper is structured in the following way. We first
describe the mathematical model in Sec. II. In Sec. III we
present the basic rationale for the emergence of spontaneous
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(a)

(b)

FIG. 1. Sketch representing a section of a flexible tube (vessel)
immersed in an elastic surrounding medium (a) and its network
counterpart (b). (a) The pressure is set at the entrance and exit of
the tube, driving flow from left to right (red arrows). The pressure
in the tube decays from P1 to P2. Due to a nonlinearity in the flow-
pressure relation, present in biological systems (see Appendix B) or
in microfluidic networks [11–13], the flow can diminish in one region
of the tube (smaller arrow). This causes a volume accumulation in the
preceding region at x that subsequently makes the pressure locally
increase in the same region. This accumulation deforms the sur-
rounding medium modifying the pressure far from the accumulation
region as well (see Appendix A). Note that, depending on the relation
of the flow to the pressure gradient, this accumulation can decrease
and vanish, returning the system to the original configuration, or it
can grow to a new stable solution, such as a traveling wave. The
dashed lines display the internal displacements in the surrounding
medium due to the volume accumulation in the vessel. (b) The 1D
discrete network modeling the continuous system in (a) conserves
the basic ingredients that explain the emergence of the complex
dynamical behavior. The volume Vi is stored in the nodes {i}, and
it can vary with time, and the edges carry the currents Ii−1,i between
them.

dynamics with an analytic study of the 1D version of the
model. Section IV shows how to numerically solve the model
(Sec. IV A) and different examples of interesting phenomenol-
ogy (Sec. IV B). The discussion of our results is contained in
Sec. V.

II. MODEL

The network model is composed of a set of nodes and
connections (edges) between them [see Fig. 1(b)]. In contrast
to the usual network of linear resistors, we allow for temporal
accumulation and depletion of volume in the system. In a
system of flexible tubes, the extra volume accumulated by a
mismatch between the incoming and outgoing currents in a
region of the system produces a temporary expansion of the
tubes within this region, increasing their internal volume and
compressing the surrounding medium; see Fig. 1 for a sketch
showing this effect in a single tube. For simplicity, we account
for these volume changes on the nodes of our network. Also,
instead of a linear, Ohmic relationship between the pressure
drop at the nodes and the current going through the edge
that connects them, we consider the connections between the

(a)

(b) (c)

FIG. 2. Plots depicting the construction of piecewise profiles in
the 1D model. (a) Generic plot of �(�P) versus �P (continuous
line). The three highlighted points correspond to pressure differ-
ences �P such that �(�Pa) = �(�Pb) = �(�Pc ) = J . The red point
(�Pb) corresponds to an unstable configuration, whereas the two blue
points (�Pa and �Pc) are locally stable. Panels (b) and (c) show two
piecewise profiles in blue with a low-pressure drop region (�Pa) and
a high-pressure drop region (�Pc). Panels (b) and (c) also depict an
unstable configuration with �Pi = �Pb, in dashed red lines. (b) P
versus x (position on the 1D network). The region of the curve with
the shallow slope corresponds to �Pa and the steeper slope to �Pc.
(c) �P versus x. Note that in the 1D case we use �P = Pi − Pi+1,
making �P positive for these profiles. The solid line in (b) and
(c) corresponds to the case �P = �Pa followed by �P = �Pc, and
the dashed line to �P = �Pc followed by �P = �Pa.

nodes as nonlinear resistors with a region of negative slope
(e.g., see Fig. 2).

We define Vi and Pi as the volume and pressure, respec-
tively, at node i of the network. We assume the following
expression for the current Ii j that goes from node i to node
j, through the edge that connects both nodes:

Ii j =
{

V 2
i �(�Pi j ), if Pi > Pj

V 2
j �(�Pi j ), if Pj > Pi

, (1)

where the pressure drop is defined as �Pi j = Pi − Pj and
�(�P) is a general function of the pressure drop. For the sake
of simplicity, unless otherwise noted, we consider only two
kinds of vessels. The first is nonlinear on the pressure drop
with one local maximum and one local minimum:

�NL(�P) = γ
�P4

o + ε�P4

�P4
o + �P4

�P, (2)

where �Po is a constant with units of pressure; see Fig. 2.
This phenomenological relation may play an important role
in biological systems; see Appendix B. Moreover, this type of
nonmonotonic relation also can be engineered in microfluidics
devices; see, for example, [11,12]. In this work we will also
use a linear relation on the pressure drop,

�L(�P) = h�P. (3)

The parameter ε is a nondimensional constant and γ and h
are constants with dimensions ([V ][P][t])−1, where [V ], [P]
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and [t] are the dimensions for volume, pressure, and time,
respectively. From Eqs. (1)–(3) it follows that Ii j is positive
if Pi > Pj and the current travels from i to j, whereas it is
negative if Pi < Pj and the current travels from j to i.

Note that we include a quadratic volume term in the ex-
pression for Ii j and that �NL is linear for low-pressure drops,
ensuring that we recover the scaling of Poiseuille flow at low
pressures. In particular, considering the node volume Vi in
the network as a proxy for the volume stored in the region
surrounding node i in the real system, we have Vi ∝ R2. At
sufficiently low �Pi j , �(�Pi j ) is linear in the pressure drop
and (1) takes the form I ∝ R4�P. Assuming that the length of
the vessel (l) and the viscosity of the fluid (μ) do not change,
this scales as Poiseuille flow (I = πR4�P/8μl). Of course,
depending on the specific characteristics of our system, this
may be a strong approximation. Nevertheless, a wide range
of exponents in the volume factor in Eq. (1) produce self-
sustained oscillations; see the Supplemental Material [14]. We
also include a relation that couples volume and pressure,

Vi − VR = αd

∑
k

LikPk, (4)

where VR is a rest volume and Li j stands for the graph
Laplacian. Li j is equal to the degree of i if i = j and −1
if i �= j but i and j are connected by a link, Li j = 0 other-
wise. This relationship, connecting pressure and volume, is a
phenomenological expression consistent with the physics of
flow through an elastic medium (see Appendix A), and it is
independent of the currents. When there is an accumulation
of volume at one node, expression (4) will result in a pres-
sure distribution in the network that produces currents that
will promote the dispersion of the accumulation. When the
volume decreases in one node with respect to its neighbors,
the pressure field will promote currents that will increase the
volume at that node.

Finally, conservation of volume is imposed through

dVi

dt
=

∑
k

−Iik, (5)

where an increment of the volume at one node causes the drop
of volume at neighboring nodes.

Without loss of generality we can make the equations di-
mensionless using Ṽ ≡ V

VR
, P̃ ≡ P

�Po
, and Ĩ ≡ I

2γV 2
R �Po

, which

sets the dimensionless time to be t̃ ≡ 2VRγ�Pot . With these
substitutions, Eqs. (1) to (5) become

Ĩi j =
{

1
2Ṽi

2
�̃(�P̃i j ), if P̃i > P̃j

1
2Ṽj

2
�̃(�P̃i j ), if P̃j > P̃i

, (6)

�̃NL(�P̃) = 1 + ε�P̃4

1 + �P̃4
�P̃, (7)

�̃L(�P̃) = h̃�P̃, (8)

Ṽi − 1 = αd�Po

VR

∑
k

LikP̃k, (9)

dṼi

dt̃
= −

∑
k

Ĩik, (10)

We will also define α ≡ αd �Po
VR

so that (9) takes the form

Ṽi − 1 = α
∑

k

LikP̃k . (11)

In the rest of this work we will drop the tildes for the sake of
clarity. Further considerations on alternative expressions for
�(�P) or the possible variations of Eq. (4) may increase the
complex dynamical behavior of the model.

III. ANALYTICAL RESULTS: STABILITY AND WAVE
PROPAGATION IN ONE DIMENSION

In this section we use the 1D version of our model to
explain some of the dynamics exhibited by this system. Here,
to simplify the formulas we redefine the pressure difference
between two nodes as �Pi = Pi − Pi+1, and we adopt this sign
convention for the rest of this section. Some of the arguments
presented here are inspired by the analytical work on semicon-
ductor superlattices. Useful review references of that work can
be found in [3,4].

A. Stability of homogeneous stationary profiles

If all the edges (nonlinear resistors) are equivalent, and
there is a constant pressure drop at every edge, then �Pi =
�P∗ and Vi = 1. This results in a constant current across the
system, a stationary point of the dynamics. For simplicity let
us consider here a generic expression for the current I (�Pi )
from node i to i + 1 that depends only on the pressure dif-
ference between the two nodes. We also use the coupling
between pressure and volume [Eq. (11)], which in the 1D
network takes the form

Vi − 1 = α(�Pi − �Pi−1). (12)

Consider now a small perturbation around the stationary state,

�Pi = �P∗ + ε�pi, and Vi = 1 + εvi. (13)

Substituting these expressions into Eq. (12) we get

vi = α(�pi − �pi−1). (14)

The conservation of volume in the system is given by

dVi

dt
= I (�Pi−1) − I (�Pi ). (15)

Linearizing I around �P∗ and using (13) and (14) we get

dvi

dt
= − I ′(�P∗)

α
vi. (16)

Now it is clear that a negative slope of I (�P) at �P∗ will
result in an exponential increase of the small perturbations
of the accumulated volume (vi). This is the basic mechanism
that renders some of the “trivial” stationary solutions of the
model unstable when the current versus pressure drop presents
a region of negative slope.

B. Piecewise linear profiles

We now explore when piecewise constant pressure drop
profiles are stationary solutions of the dynamics. We consider
again a system of N edges arranged on a line. A stationary
solution requires the current from one node to the next one
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to be constant throughout the whole system. As we have
seen in the previous section, if the boundary conditions are
the constant external pressures P0 = � = N�Pb and PN = 0,
such that �Pb lies on the negative-slope region of �(�P),
the solution �Pi = �Pb,∀i ∈ (0, N ) is unstable [red dot in
Fig. 2(a)]. However, if �(�P) presents a local maximum
followed by a local minimum, as in Fig. 2(a), we can build
a different pressure profile containing two regions of constant
pressure drop �Pa and �Pc [blue points in Fig. 2(a)]. These
piecewise pressure profiles are presented in Figs. 2(b) and 2(c)
as continuous and dashed blue lines. To study if these profiles
are stationary solutions of our model, let us assume first that
the transition between the regions of low- (�Pa) and high-
(�Pc) pressure drop happens at a single point. This point is
situated at k:

k = � − N�Pc

�Pa − �Pc
, (17)

for the continuous line in Figs. 2(b) and 2(c), and at N − k for
the blue dashed line. Within the regions with constant pressure
drop (�Pa and �Pc), the volume is 1 and the current is equal
to J [see Fig. 2(a)]. However, exactly at the node where the
slope of the pressure field changes from �Pa to �Pc, the
volume is different from 1 [due to Eq. (12)]. According to
Eq. (6), Ik,k+1 �= J while Ik−1,k = J , and as result dVk

dt �= 0,
showing that this configuration is not a stationary solution of
the dynamics.

We will now examine a configuration where the transition
between the regions with pressure drop �Pa and �Pc spans
multiple nodes. Like in the previously examined case, we
know that the volume at the node situated in the right extreme
of the transition region should be 1, to avoid a mismatch in the
currents. This can be achieved only exactly in the continuous
limit, but let us consider the case where the transition region
spans a finite number of nodes.

Again, a stationary solution should present a constant
current throughout the entire system. Within the constant
pressure drop regions Vi = 1, and the current is then J . A
stationary solution requires the current in the intermediate
region to be

V 2
i �(�Pi ) = J, (18)

where

Vi = 1 + α(�Pi − �Pi−1). (19)

We can rewrite Eq. (18) as

[1 + α2(�Pi − �Pi−1)2 + 2α(�Pi − �Pi−1)]�(�Pi ) = J.

(20)

Defining

θi = α(�Pi − �Pi−1), (21)

Eq. (20) takes the form

�(�Pi )θ
2
i + 2�(�Pi )θi + [�(�Pi ) − J] = 0, (22)

which has the solution

θi = −1 +
√

J/�(�Pi ). (23)

Note that we keep only the positive sign of the square root
since 1 + θi is the volume at node i. Using (21) we can write

�Pi = �Pi−1 + 1

α
[−1 +

√
J/�(�Pi )]. (24)

Let us now consider two cases, a piecewise pressure profile
that connects a region of �Pa to a region of �Pc and the
reverse (going from �Pc to �Pa). In the former case, the
transition region is characterized by a �Pi = Pi − Pi+1 that
grows as i increases. If �(�Pi ) has a local maximum at �Pmax

followed by a local minimum at �Pmin, as displayed in Fig. 2,
Eq. (24) will have a solution for �Pi that grows from �Pa to
�Pc only if

α � −1 + √
J/�(�Pmin)

�Pmin − �Pa
≡ αc1 (25)

(see the Supplemental Material [14] for the derivation). Sim-
ilarly, in the case where a piecewise pressure profile connects
a region of �Pc to a region of �Pa, �Pi = Pi − Pi+1 must
decrease in the transition region as i increases. Following
similar arguments as before, (24) will have a solution if

α � 1 − √
J/�(�Pmax)

�Pc − �Pmax
≡ αc2. (26)

If α does not satisfy (25) or (26) these piecewise pressure
profiles cannot be stationary solutions of the system.

In summary, when a constant pressure drop � is applied to
the network such that �/N = �Pb, with �Pb in the negative-
slope region of �(�P), the homogeneous pressure profile
(�Pi = �Pb,∀i) is unstable. In addition, if α > αc1 and α >

αc2, the piecewise pressure profiles discussed above are not
stationary solutions. Performing numerical simulations in 1D
networks (see the Supplemental Material [14]) we observe
self-sustained oscillations outside these regions of stationary
solutions. The next section provides a qualitative explanation
of their behavior.

C. Traveling piecewise profiles

We have shown that the piecewise profiles shown in
Figs. 2(b) and 2(c) can be stationary solutions of our model
for α smaller than certain values. However, we can wonder if
other piecewise profiles could move with some velocity across
the system as traveling waves. An instance of this behavior is
displayed in Fig. 3 where there is a pressure profile that travels
from left to right while satisfying the boundary condition, a
constant external pressure difference between the first and last
node.

Consider again a piecewise profile where �Pi changes
within an intermediate region from �Pa to �Pc. Since in that
intermediate region �Pi−1 < �Pi we know Vi > 1, and this
is a region of volume accumulation. If this volume accumu-
lation were to be rigidly translated with speed ca across the
system, we can expect the pressure drop at any node within
the system to change with time as �Ṗi ∼ −ca(�Pi − �Pi−1).
Using Eqs. (5) and (19), one can define I , which is constant
throughout the system,

I := α�Ṗi + V 2
i �(�Pi ) = α�Ṗi−1 + V 2

i−1�(�Pi−1). (27)
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(a) (b) (c) (d)

FIG. 3. A traveling wave through a system with constant pressure boundary conditions. The upper half of every panel depicts the pressure
at every node of the system, whereas the bottom half shows the pressure drop at each node. These pressure profiles contain two transitions
between �Pa and �Pc. The four panels correspond to different snapshots. The wave travels from left to right maintaining its shape [from panel
(a) to (d)]. The wave can recycle once it reaches the end of the domain, satisfying the boundary conditions (a constant external pressure drop
�) at all times.

Using (27), the difference in pressure drop (�P) between
the beginning and the end of the intermediate region can be
rewritten as

�Pc − �Pa =
∑

i

(�Pi − �Pi−1) =
∑

i

−1

ca
�Ṗi

=
∑

i

−1

caα

[
I − V 2

i �(�Pi )
] = 1

caα

{∑
i

[�(�Pi ) − I]

+
∑

i

[α2(�Pi − �Pi−1)2 + 2α(�Pi − �Pi−1)]�(�Pi )

}
.

(28)

Solving for the velocity (ca) we get

ca = 1

(�Pc − �Pa)α

{∑
i

[�(�Pi ) − I]

+
∑

i

[α2(�Pi − �Pi−1)2 + 2α(�Pi − �Pi−1)]�(�Pi )

}
.

(29)

One can follow similar steps for a profile where �Pi goes
from �Pc to �Pa within the intermediate region (a volume
depletion region) obtaining a similar expression cd .

In general ca and cd can be different. The specific shape
of the pressure profile (Pi and therefore �Pi) within these
intermediate regions control the value of ca and cd . In fact, one
accumulation and one depletion region can adapt their shapes,
and thus their velocities, to travel together with the same
speed. This creates a soliton-like traveling wave that always
satisfies a constant pressure drop between the beginning and
end of the system. This is schematically shown in Fig. 3.
More detailed asymptotic analysis, as the ones performed for
semiconductor dynamics lay outside the scope of this work.
Asymptotic analysis concerning electronic dynamics in semi-
conductor heterostructures, which are described with a related
model to our 1D case, can be found in [4].

IV. NUMERICAL RESULTS ON NETWORKS
OF ARBITRARY TOPOLOGY

A. Boundary conditions and time integration of the model

The evolution of the system with time is determined by the
evolution of the pressure field at every node Pi. Taking the
derivative of Eq. (11) with respect to time and using Eq. (10)
we get

α
∑

k

LikṖk = −
∑

k

Iik . (30)

To solve for Ṗi we need to consider the boundary conditions
of the system of equations, i.e., we select n nodes from the
system, set them as the contact points, and externally control
their pressure. We assume that these nodes are reservoirs with
a constant volume (Vn = 1). We augment the graph Laplacian
by including the pressure boundary conditions as new rows
and columns. For example, for the case where we consider
two pressure contacts at nodes n1 and n2 we have

L̂kl =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

0
...

Li j 1 0
0 1
... 0

. . . 0 1 0 . . .
...

. . . 0 1 0 . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (31)

where the elements of the two new rows and columns are all
zero except for L̂N+1,n1 = L̂N+2,n2 = L̂n1,N+1 = L̂n2,N+2 = 1.
We also add corresponding elements to Pi and to the vector
of currents,

˙̂Pk =
⎡
⎣Ṗi

λ1

λ2

⎤
⎦, Q̂i =

⎡
⎣−∑

k Iik

β1

β2

⎤
⎦, (32)

to finally get

˙̂Pj = 1

α

∑
i

L̂−1
ji Q̂i. (33)
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Note that in this formulation, from Eqs. (32) and (33), λi

(with i = 1, 2) is related to the net currents going in (or out)
of the system at node ni, whereas βi/α is the rate of change of
the imposed pressure at the contact nodes. In general we will
use as initial conditions Pi = 0 and Vi = 1 ∀i. We carry out the
time integration as follows. Starting from Pn1 = 0, we increase
the pressure of n1 at constant rate (β1 = const, β2 = 0) until
it reaches the desired value �. Then we set β1 = β2 = 0.
Note that controlling βi as a function of time enables to freely
control the pressure at the contacts (n1 and n2). Integrating the
system of equations contained in expression (33) with time we
get the evolution of the pressure and volume in the system.
Additionally, we obtain λ0 and λ1.

For an example of time integration see Fig. 4: Figs. 4(a)
and 4(b), respectively, show a snapshot of the pressure and
volume distribution in a planar disordered network, whereas
Fig. 4(c) shows the total current at the contacts that is going in
and out of the system with time. For this simulation we chose
10 pressure sources at random; in five of them (red nodes) the
pressure is 0 during the whole simulation. For the other five
contacts (blue nodes) the pressure is ramped up at a fixed rate
to a constant value of 150 and kept constant afterwards. After
a brief transient, the system exhibits stable disordered volume
waves that travel through the system all while satisfying time-
independent pressure boundary conditions. Figure 4(c) shows
oscillations in the total current that is going in and out of the
system.

B. Results

The aim of this section is to present and explain different
instances of the rich behavior that this model can display in
one and two dimensions. We begin by an exploration of the
behavior of the 1D network, where we can directly compare
our analytical predictions in Sec. III with the results of the
simulation. For the 1D system we present a phase diagram
that summarizes the different types of behavior the system
can exhibit. We also demonstrate that the network can behave
as an excitable medium. We then move to two-dimensional
(2D) networks, where we first demonstrate the highly complex
patterns of dynamics that can be present when more than
two contact points are present, a behavior that is intrinsically
absent from one dimension. Last, we demonstrate that in
two dimensions the system exhibits qualitative similarities in
behavior with excitable systems such as the one in [15].

1. Phase diagram and robustness of the dynamical behavior

In Fig. 5 we present a phase diagram for a 1D network of
N = 100 nodes. For each value of α and � we perform an
independent simulation. � is the pressure difference between
the two extremes, the contact points. The initial conditions
are Vi = 1 and Pi = 0, ∀i. For t > 0 we ramp up the pressure
at one contact point until it reaches � and keep it fixed after-
wards. The pressure at the other contact point is fixed at 0. The
protocol of gradual ramping up of the pressure at the contact
point was chosen because of its connection to experiments
(the system starts disconnected from the pressure source, so
that all internal points are initially at zero pressure). The
arbitrary choice of initial conditions generally only affects the

FIG. 4. Volume waves on a disordered planar network. The two
upper panels show the pressure (a) and volume (b) distribution at
dimensionless time 1000. The value of Pi and Vi is represented by
the color surrounding each node. The network has 512 nodes and
an average degree of ∼5.5. We have placed 10 contacts at random
(blue and red dots). The pressure increases at constant rate, β1 = 5,
at the blue contacts until they reach a value of pressure P = 150
and remains constant afterwards. The pressure at the red contacts
is always 0. All edges in the network follow �NL with ε = 0.001
(continuous lines), except for the edges connected to one of the con-
tacts that follow �L with h = 1/5 (dashed lines). We used α = 0.32.
Panel (c) shows the evolution of the current that is going in (blue)
and out (red) of the system with respect to time. Note that the system
is undergoing self-sustained oscillations where volume waves travel
across the system (with periodic boundary conditions) until they
reach another contact.

transient and not the eventual dynamic or stationary steady
state.

Figure 5 exhibits a region of oscillatory behavior. The
phase diagram also contains the analytical predictions that
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FIG. 5. Phase diagram for a 1D network of 100 nodes, ε = 0.15 and h = 1/5. Color map indicates the amplitude of the oscillations. Vertical
dashed lines correspond to 100�Pmin and 100�Pmax. Dotted and dashed-dotted lines correspond to expressions (25) and (26), respectively. The
continuous line corresponds to expression (36). Note how the oscillations occur in the region delimited by the analytical bounds. Panels
below the phase diagram show the pressure profile throughout the network at the points marked with letters (a)–(e). (a) A snapshot of the
time-dependent pressure profile that corresponds to the region of largest oscillations. Note that it has the structure proposed in Fig. 3; (b) and
(c) two linear stationary pressure profiles, as the theory predicts; (d) piecewise stationary profile, as described in Sec. III B; (e) stationary
pressure profile with curvature (Vi < 1), as our analytical results predict for large values of α.

constrains the region where we expect to see oscillations, in
good agreement with the numerical results. The two verti-
cal dashed lines limit the region at which the homogeneous
stationary solution is unstable; see Sec. III A. For larger or
smaller pressure differences (�) we expect to see linear pres-
sure drops, as Figs. 5(b) and 5(c) confirm. Below the dotted
and dashed-dotted lines piecewise stationary profiles are sta-
ble; see Sec. III B. This is in good agreement with Fig. 5(d).
Figure 5(a) shows a snapshot of the time evolution of the pres-
sure profile for a point in the phase diagram where the system
displays self-sustained oscillations. The pressure distribution
in this case is formed by three linear pieces, as described in
Sec. III C (see also Fig. 3).

Finally, we would like to understand why the oscillations
disappear for large α. As shown in Figs. 3 and 5(a), self-
oscillations occur for piecewise solutions that contain two
transition regions, one where Vi > 1 and another where Vi <

1. For a total pressure decay � = N�Pb (where �Pmin <

�Pb < �Pmax), we know that the pressure drop inside the
accumulation region (Vi > 1) goes from �Pa to �Pc, whereas

the pressure drop inside the depletion region (Vi < 1) goes
from �Pc to �Pa, see Fig. 2. Moreover, we know that volume
always has to be positive. Using (12) and Vi > 0 we get

1 + α(�Pi − �Pi−1) > 0. (34)

When the system displays oscillations, the transition regions
should occupy a small portion of the network, see Sec. III C
and Fig. 5(a). A traveling wave has two narrow depletion
or accumulation regions separated by a linear pressure drop
domain. Such a traveling wave cannot be maintained if the
depletion or accumulation regions are comparable to the size
of the system. If we suppose that the depletion region occupies
approximately 10% of the entire system, or N/10 nodes, we
can approximate (34) by

1 + α
�Pa − �Pc

N/10
> 0, (35)

which translates to

α <
10

�Pc − �Pa
, (36)
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FIG. 6. Self-sustained oscillations in a regular cubic network of
dimensions 7 × 7 × 7 with two contacts connected to two opposite
corners. The plot shows the current going in and out of the system
during a simulation displaying self-sustained oscillations. Parameter
values are α = 0.32, � = 150, ε = 0.001, h = 1/5, β1 = 5 (β1 = 0
when P1 reaches the desired value) and β2 = 0.

for N = 100. We include expression (36) in Fig. 5 with a
continuous line, below which we expect to see oscillations.
According to this, for α above the continuous line the de-
pletion region (Vi < 1) has to occupy a larger fraction of the
nodes of the network to be able to respect the Vi > 0 condi-
tion. This does not allow the traveling wave to develop. This
is in good agreement with Fig. 5(e), which shows a depletion
region that occupies almost the complete network (note the
subtle curvature of the pressure profile what implies Vi < 1).

The maximum fraction of the traveling wave occupied by
the accumulation and depletion regions was estimated at 10%.
However, note that a factor of 2 increase or decrease in that
fraction would still provide qualitatively good agreement with
the simulation, as the region of the phase diagram that exhibits
oscillations spans almost two decades.

Additionally, our work indicates that the emergence of
complex dynamics in this model is a robust effect that persists
after modifying different properties of the system. To show
this, we present in the Supplemental Material [14] phase dia-
grams for 1D networks, with different shapes of �NL and �L

and different distributions of linear edges. Self-sustained com-
plex dynamics are found for a broad range of α and � values.
Complex dynamics are also present in nonplanar networks. To
illustrate this, we include here a simulation carried out using
a cubic lattice, also displaying self-sustained oscillations; see
Fig. 6.

2. Excitability

In this work we have focused more extensively in the
oscillatory regime of the system where time-independent pres-
sure boundary conditions result in time-dependent behavior.
However, one of the distinctive features of this model is its
capacity to get exited by external perturbations. Excitable
media, according to classical definitions (e.g., [8]), show large
excursions in phase space after being driven away from an
equilibrium point, for a certain range of their parameters.
In this subsection we show how our system responds to a
pressure perturbation while within the excitable regime of the
system.

In Fig. 7 we show a simulation in a rectangular net-
work with 5 × 100 nodes. Figures 7(a)–7(g) present snapshots
of the volume distribution in the system at different times,
whereas Fig. 7(h) shows the current that is going in and out of
the system, and Fig. 7(i) presents the pressure at the contact

FIG. 7. Excitability of a network with 500 nodes arranged in a
rectangular grid, with five rows and 100 columns. The pressure of the
red nodes in the right column (“Out” nodes) is maintained constant at
0, whereas the pressure of the nodes in the left column (“In” nodes)
follows the protocol displayed in blue in panel (i). Panels (a)–(g)
display the volume at each node of the network for the different times
marked in (h) and (i) with vertical dashed lines. Continuous lines in
(a)–(g) stand for edges following �NL, whereas dashed gray lines
stand for �L (present only around the contacts). ε = 0.001, h = 1/5,
and α = 1. Panel (h) displays the current that goes in and out of
the system as a function of time. For this configuration the system
is stable around a state with a homogeneous volume distribution
(panels a, c, and g). A short perturbation in the pressure (i) can trigger
a pulse that propagates along the complete network. A second pulse
cannot be excited while one is still traveling through the network (f).

points versus time. In the simulation, we rapidly increase the
pressure at the blue nodes and keep it constant at P = 40,
a stable point of the system with an homogeneous volume
distribution [Fig. 7(a)]. We then perturb the system with a
brief increase of the pressure on the boundary. This triggers
a pulse that travels through the system [a large excursion in
phase space; see Fig. 7(b)]. After the pulse arrives to the
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other end of the network (the low-pressure contact points), the
system is in its stable point again [Fig. 7(c)]. We then trigger
another pulse [Fig. 7(d)], and while it is traveling through
the system we introduce a third perturbation. However, the
presence of the previous pulse prevents the creation of a
new one and gives rise to an effective “refractory” time for
the traveling excitation [see Fig. 7(f)]. Finally, with no more
perturbations the system returns to the equilibrium behavior
again, after the last pulse has exited the low-pressure contact
points [Fig. 7(g)].

3. The spatial footprints of traveling waves

When waves travel through networks of nonlinear resistors,
they follow complex spatial-temporal patterns that depend on
the network topology and position and number of contact
points, something not present in the 1D analysis. In Fig. 8 we
show three different sets of pressure boundary conditions for
a disordered planar network: two, six, and ten contacts (one
case per column). Each configuration produces a different
oscillatory pattern, where the volume stored in some nodes
oscillates with a large amplitude, whereas the volume stored
at other nodes is almost stationary. We display three snapshots
for every configuration, panels (a)–(c) for the case with two
contacts, panels (e)–(g) with six contacts, and panels (i)–(k)
with 10 contacts. The bottom row (panels (d), (h) and (l))
displays the standard deviation of the time series of the ac-
cumulated volume at each node. In simple cases with a small
number of contact points, these static profiles have spatial dis-
tributions that resemble the temporal-spatial patterns shown
in the snapshots. In particular, conservation of mass imposes
that pulses that change their shape increase their amplitude as
they concentrate in smaller regions. This causes the standard
deviations [panels (d), (h), and (l)] to highlight regions close
to the contacts, with shapes that resemble the pulse fronts.
For the case with two contacts (a)–(c), note that the volume
wave front near the low-pressure contact point is radially
symmetric, but near the high-pressure contact point the profile
is dendritic. As the number of contact points increases then
the oscillatory patterns become more complex. The standard
deviation of the time-dependent volume stored at each node
is highly variable. The magnitude of the fluctuations does not
follow the simple patterns of the two-contact case. Instead, we
find regions close to the contact points that oscillate strongly
and regions close to them that are stationary. We hypothesize
that these complex spatiotemporal patterns are partially due
to constructive and destructive interference of the traveling
waves, but the detailed study of the patterns is not in the scope
of this work.

4. Regions of linear conductance

As we have discussed in other sections, it is the combina-
tion of the nonlinear conductance and the coupling between
volume and pressure that gives rise to complex dynamics.
In this section, motivated by [15], we study how traveling
waves interact with a region of linear edges. To achieve this
we take a disordered planar network without periodic spatial
boundary conditions (see Fig. 9). We impose a constant high
pressure to the contacts on the left boundary of the system
and zero pressure to the contacts on the right. After a short

FIG. 8. Self-sustained oscillations for different sets of contact
points. Rows 1 to 3 (panels (a), (b), (c), (e), (f), (g), (i), (j), and
(k)) correspond to snapshots whereas the bottom row (panels (d), (h),
and (l)) corresponds to the standard deviation of the volume at each
node (it is calculated from the volume time series at every node). The
color coding stands for volume accumulated at each node. We use
a disordered planar network with 512 nodes, average connectivity
∼5.5, and periodic spatial boundary conditions. Continuous lines
stand for edges following �NL, whereas dashed gray lines stand for
�L (here present only around the contacts). We used ε = 0.001,
h = 1/5, α = 0.32, and � = 150 for all simulations. Pressure is
maintained constant at 150 at the blue nodes, and 0 at red nodes.
Left column (panels (a), (b), and (c)) presents waves traveling from
one high-pressure contact to a low-pressure one. Central column
(panels (e), (f), and (g)) shows snapshots of traveling waves for six
randomly distributed contacts points (three corresponding to high
pressure and three for low pressure). Right column (panels (i), (j),
and (k)) presents an analogous case but with 10 contacts points
(five corresponding to high pressure and five for low pressure). The
bottom row (panels (d), (h), and (l)) shows the profiles obtained after
computing the standard deviation of the volume time series at each
node. This is done after the initial transient has passed and the system
displays stable oscillations.

transient, approximately flat fronts move from left to right; see
snapshots in Figs. 9(a)–9(c). Now we modify the conductance
of the edges in a circular region in the middle of the network,
making them linear [following �L(�P)]. When the fronts
arrive to the linear region, they “leap frog” ahead and continue
their propagation at the other side; see Figs. 9(d)–9(f). Finally,
we do the same with a larger region in panels (g)–(i). These
results are consistent with linear regions being areas of very
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FIG. 9. Snapshots of planar waves traveling through a region of linear conductance. Color patches around each node stand for volume
accumulated at that node. We use a disordered planar network with 512 nodes and average connectivity ∼5.5, without spatial periodic boundary
conditions. Continuous lines stand for edges following �NL whereas dashed gray lines stand for �L . We used ε = 0.001, h = 1/5, α = 0.32,
and � = 35 for all the simulations. Pressure is maintained constant at 35 at the left blue nodes, and 0 at the right red nodes. (a)–(c) Snapshots
of planar waves traveling from left to right. (d)–(f) Illustration of how the planar wave gets distorted when it reaches a central region of linear
edges (35 linear edges). (g)–(i) An analogous case but with 98 linear edges in the central region. The waves “leap frog” the linear edges. This
leads to an increase of the oscillation frequency, as the waves can traverse and exit the system faster.

fast pulse propagation. The observed behavior is reminiscent
of that shown in Figs. 3(a)– 3(c) of Ref. [15], further strength-
ening the connection of the phenomenology of the model with
standard excitable systems.

V. DISCUSSION

The work contained in this paper presents a model to study
dynamics on complex networks. We use general phenomeno-
logical expressions that can be applied to a broad variety
of problems. Indeed, these expressions can be modified and
adapted to make them better approximate the governing equa-
tions of other physical or biological systems. We therefore
expect the framework presented in this work to open new
research avenues in the study of dynamics in nonlinear flow
networks of arbitrary topology. One such potential example
is the spontaneous fluctuations of blood volume in the brain
vasculature [16]. It has been proposed that spontaneous fluc-
tuations (in resting state) may be due to a nonneural origin

[17], in contrast to typical brain hemodynamics, which is
driven by the activity of neurons. Understanding and modeling
these phenomena in brain vasculature is of critical importance,
since functional magnetic resonance imaging (fMRI) relies
on the tight correlation of neural activity with blood volume
and oxygenation. We have included in Appendix B a brief
discussion of the physical arguments that may connect our
model to brain hemodynamics. Brain blood flow dynamics is
not the only biological system where spontaneous oscillations
arise. Another system that involves intrinsic peristaltic-like
contractions (which are also poorly understood) is the lym-
phatic system [18].

In summary, this work shows how a network of nonlinear
resistors can display emergent spontaneous dynamics for very
different topologies and boundary conditions. The analytical
results of Sec. II help to understand the basic mechanisms be-
hind the emergence of this complex behavior. We have shown
how the negative-slope region makes the “trivial” homoge-
neous solution unstable in some cases, and how the system
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can support traveling waves. More detailed analysis of similar
models in one dimension can be found in the semiconductor
heterostructure literature (see, e.g., [3,4]).

In Sec. IV A we discussed how to numerically integrate
the system of equations for the case of a network of arbitrary
topology. To do so we showed how to include the pressure
boundary conditions as a redefinition of the graph Laplacian.
This enabled us to integrate the system numerically in a
straightforward way, obtaining the time-dependent pressure
and volume at each node. This is a completely different ap-
proach from the one used to time integrate the equations of
the models studying semiconductor superlattices [3]. Since
those cases were 1D the integration could be performed us-
ing one Lagrange multiplier. Our approach is more general
and suitable for networks of arbitrary topology. In addition,
our model opens the possibility of exploring other types of
complex dynamics in flow networks, as it provides a general
framework to explore systems with different expressions for
edge conductance or for the volume-pressure coupling.

We have extensively discussed how the combination of
nonlinear edges and the coupling between pressure and vol-
ume can give rise to emergent spontaneous fluctuations under
time-independent pressure boundary conditions. These sys-
tems present a broad array of interesting phenomena that
will encourage further research, like the complex spatial
patterns of volume fluctuations or the traveling wave behav-
ior in inhomogeneous media composed of regions of linear
edges. Moreover, in Sec. IV B 2 we discussed how this model
presents some properties which are typical of an excitable
medium [8] while still in the realm of distribution network
theory. In this way we believe this model is an example of a
new class of excitable systems, different from other models
of excitable networks that explicitly use excitable elements
in their nodes [9,10]. Instead, our excitable flow network
is composed of edges that present a nonlinear conductance
and nodes that can store volume. The excitable nature of the
system emerges as a product of the global coupling between
currents, volumes, and pressures.
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APPENDIX A: COUPLING BETWEEN VOLUME
ACCUMULATION AND PRESSURE IN FLEXIBLE TUBES

We consider a network of flexible tubes embedded in an
elastic (almost incompressible) medium. The deformation of
the tube wall and the surrounding medium controls the pres-
sure response to a local volume accumulation. This relation
is included in our model through the phenomenological re-

lation (4). This equation is nonlocal, which means that an
accumulation of volume causes a increase of pressure not
only in the region of accumulation but also in neighboring
sites. In particular, a local volume accumulation in relation
(4) produces a pressure field that decays with distance from
the region of accumulation.

Here we test whether a local volume accumulation inside a
hollow vessel embedded in an elastic medium could produce a
decaying pressure field. In particular, we solve the equilibrium
equations of classical linear elasticity [19],

E

2(1 + σ )

∂2ui

∂x2
k

+ E

2(1 + σ )(1 − 2σ )

∂2ul

∂xi∂xl
= 0, (A1)

where ui are the components of the displacement vector field,
E is the Young’s modulus, σ is the Poisson’s ratio, and xi

are the spatial variables; summation over repeated indices is
implicit.

For simplicity, we use a rectangular domain as a 2D ver-
sion of our problem, and we clamp all its boundaries except
for the region ∂�free ≡ (y = 0, xi < x < x f ); see Fig. 10.
The lower boundary (y = 0) of the elastic medium is meant
to represent the interface between the tube (that carries the
fluid) and the medium that embeds it. We impose a vertical
pressure on the free “surface” (∂�free) with a bump shape,
Pext = 30e(−1/{0.25−[(x−xi )/(x f −xi )−0.5]2}), displayed in Fig. 10(f).
As the rest of the lower boundary is clamped, we can mea-
sure the pressure that the medium exerts on the nondeformed
region of the tube. In the presence of fluid in the tube, this
pressure field would promote flows that would give rise to new
deformations, a phenomenology that is described in the rest of
this work.

Finally, the pressure field exerted by the medium on its
lower boundary [σyy(y = 0)] is displayed in Fig. 10(a). To
illustrate this effect, we use four different values of the Pois-
son’s ratio, although only values close to 0.5 are probably
relevant in most experimental cases. All lines collapse in
∂�free, as expected since they need to cancel the externally
applied pressure. Outside this region (x < xi, x f < x), there
is a pressure field whose magnitude decays with the distance
to the volume accumulation, and the direction depends on
the sign of σ . For positive Poisson ratios (the most relevant
situation) the direction of the pressure response is against
the tube wall, in qualitative agreement with expression (4).
For visualization, we also plot the deformations undergone by
each material using a simplified mesh [see Figs. 10(b)–10(e)].

APPENDIX B: POSSIBLE SOURCES OF NONLINEARITIES
IN BIOLOGICAL SYSTEMS

The model contained in this work describes the emer-
gence of complex dynamics in flow networks, allowing for
local volume accumulation within the system and nonlinear
conductances for the edges. In this Appendix we describe
various phenomena in the mammalian brain vasculature that
could potentially produce complex nonlinear behavior for the
conductance of the vessels, reminiscent of the nonlinearities
present in �(�P).
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FIG. 10. Idealized deformation of the medium surrounding a
volume accumulation inside a flexible tube and associated stresses.
We consider rectangular domains with different Poisson ratios. The
boundaries are clamped (displacements, u1 and u2, are set to zero),
except for a free “surface” (y = 0 and xi < x < x f ) where we impose
an external pressure (f). In panel (a) we measure the pressure that
the medium imposes on the vessel, σyy(y = 0). All lines collapse
in the free surface region, canceling the imposed external pressure.
Outside this region different Poisson ratios produce different pres-
sure profiles that decay away from the free surface region. For large
Poisson ratios the deformation of the surrounding medium produces
a pressure field of negative sign (against the tube), qualitatively
analogous to the pressure-volume relation that we use in our model.
The displacements present in each of the cases are displayed in
panels (b)–(e), where the meshes have been simplified for easier
visualization. Dashed lines in (a) and (f) mark the region where the
external pressure is applied.

Different vessels present in the mammalian brain vascu-
lature display a broad and complex response to changes in
pressure or flow conditions. This response can be active, when

the vessel modifies its muscle tone, or passive, controlled only
by the fluid-mechanical interaction between the blood and the
vessel. A detailed account of all effects lays outside the scope
of this work. However here we present a short review for the
interested reader.

Active nature of vessels. Since the seminal work of Bayliss
in 1902 [20], it is known that vessels can present a myogenic
response, as they constrict in response to an increment of
internal pressure. Flow has also been experimentally found to
cause dilation and contraction of vessels [21]. This response
depends on different factors, such as the internal pressure [22]
and the ability of endothelial cells to sense blood flow [23].
Experimental work [22,24] is consistent with a nonmonotonic
�(�P) function. The dilation of the vessel in response to
sheer stress is nonmonotonic for low and intermediate myo-
genic tone. As sheer stress increases, the vessel dilates until
it reaches a maximum radius and then reduces the radius
for larger sheer stress. That causes a nonmonotonic relation
between flow and pressure difference. In addition, some ex-
perimental work has shown an oscillatory myogenic response
to a constant internal pressure [25]. We do not consider this
effect in our model although it could be included as edges
presenting a time-dependent �(�P).

Passive response. It has been theoretically proposed [26]
that a viscous flow through a flexible tube can become un-
stable. When the pressure difference between the ends of
the tube reaches a critical value, any small perturbation in
the flow will exponentially grow producing a deformation of
the flexible tube and making the fluid flow depart from the
laminar behavior. This sudden change increases the energy
dissipated in the system and results in a consequent drop of
the total flow. This type of instability has been experimentally
measured in [27,28], where the authors observed a sudden
increase of the effective viscosity of the fluid due to the
development of the instability. This would be consistent with
the nonmonotonic flow-pressure relation used in this work.
The critical velocities for which the linear stability analysis
of [26] gives the first unstable mode is of the order of cm/s
for a vessel with a diameter of 100 μm and of the order of
mm/s for a 5 μm capillary, in good agreement with typical
blood velocities [29]. Nonetheless, this passive response still
needs to be measured experimentally in real blood vessels. In
addition to this, blood rheology may also play an important
role since blood is a complex fluid whose constituent agents
are deformable and very often of the order of the vessel
radius [29,30].
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