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Extracting dynamical frequencies from invariants of motion in finite-dimensional
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Integrable dynamical systems play an important role in many areas of science, including accelerator and
plasma physics. An integrable dynamical system with n degrees of freedom possesses n nontrivial integrals
of motion, and can be solved, in principle, by covering the phase space with one or more charts in which
the dynamics can be described using action-angle coordinates. To obtain the frequencies of motion, both the
transformation to action-angle coordinates and its inverse must be known in explicit form. However, no general
algorithm exists for constructing this transformation explicitly from a set of n known (and generally coupled)
integrals of motion. In this paper we describe how one can determine the dynamical frequencies of the motion as
functions of these n integrals in the absence of explicitly known action-angle variables, and we provide several
examples.
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I. INTRODUCTION

Integrable dynamical systems play an important role in
many areas of science, including accelerator [1,2] and plasma
physics. It is well known that an n-degree of freedom in-
tegrable system can be solved, in principle, by constructing
action-angle coordinates. However, in general such action-
angle coordinates are defined only locally and break down
near critical phase-space structures (e.g., the separatrix of the
nonlinear pendulum). In addition, the canonical transforma-
tion to action-angle coordinates is difficult to obtain in explicit
closed form for even the simplest systems. In practice, this
can be an obstacle to extracting the dynamical frequencies of
motion of the system, which are often the primary quantities
of interest. Finally, the trend in mechanics is to move toward
results that can be expressed in a geometric form, independent
of a specific choice of coordinates.

In this paper, we propose a method to find the n dynamical
frequencies of an integrable symplectic map or a Hamiltonian
flow without knowledge of the transformation to action-angle
coordinates. This result is motivated by the Mineur-Arnold
formula [3–6], which states that the n action coordinates I j

can be constructed as path integrals of the form:

I j = 1

2π

∮
γ j

n∑
k=1

pkdqk, ( j = 1, . . . , n), (1)

where the γ j define n appropriately chosen closed paths (cy-
cles) in the invariant level set (Appendix A). We will show that
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an explicit integral formula analogous to (1) can be obtained
for the n dynamical frequencies. This result is a generalization
to arbitrary dimension of a result described in Ref. [7], which
is valid for the special case when n = 1.

It is emphasized that this procedure is developed for the
narrow class of Hamiltonian systems (or symplectic maps)
with a sufficient number of exactly known invariants, and
not for arbitrary Hamiltonian systems. However, experience
suggests that this procedure may be used to extract and
to understand the frequency behavior of systems for which
“approximate invariants” can be constructed, which exhibit
sufficiently small variation over the time scale of interest.
Such quantities can sometimes be constructed analytically or
numerically [8,9].

The structure of this paper is as follows. Section II provides
a brief summary of background definitions regarding inte-
grable maps and flows. Section III motivates the concept of
the tunes (or equivalently, the rotation vector) of an integrable
symplectic map. Section IV contains the main technical result
of this paper (16), relating the tunes of an integrable sym-
plectic map to its dynamical invariants. Section V describes
the mathematical properties of this solution, together with its
proof. In Sec. VI, we describe how this result can be applied
to determine the characteristic frequencies of an integrable
Hamiltonian flow. Section VII illustrates the application of
these results using two numerical examples. Conclusions are
provided in Sec. VIII. There are four Appendices.

II. INTEGRABLE MAPS AND FLOWS

For simplicity, we take the phase space M to be an open
subset of R2n with its standard symplectic form. In any lo-
cal set of canonical coordinates (q1, . . . , qn, p1, . . . , pn), the
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symplectic form is represented by the matrix:

J =
(

0 In×n

−In×n 0

)
. (2)

We will frequently use the fact that JT = J−1 = −J .
Let M : M → M denote a symplectic map. A smooth

function f : M → R is said to be an invariant of the map M
if:

f ◦ M = f . (3)

The map M is said to be completely integrable if there exists
a set of n invariants fk such that (i) the invariants Poisson-
commute, { f j, fk} = 0 ( j, k = 1, . . . , n), and (ii) the set of
gradient vectors ∇ fk (k = 1, . . . , n) is linearly independent
at every point of M, except for a possible set of zero measure
(phase-space volume) [10–12].

Similarly, if H : M → R denotes a smooth Hamiltonian
function, then the flow generated by H is said to be completely
integrable if the conditions (i)–(ii) apply, with the invariant
condition (3) replaced by the local condition { f , H} = 0.

To analyze the behavior of such a map or a flow, let F :
M → Rn denote the momentum mapping, the function that
takes each point in the phase space to its n-tuple of invariants
[3]:

F (ζ ) = ( f1(ζ ), . . . , fn(ζ )), ζ ∈ M. (4)

Each orbit is then confined to lie in some level set of F of the
form:

Mc = {ζ ∈ M : F (ζ ) = c}, c ∈ Rn. (5)

The level set (5) is said to be regular if the linear map DF ,
represented by the Jacobian matrix of F , is surjective (rank n)
everywhere on Mc. In this case, Mc is a smooth surface of di-
mension n. Assuming that Mc is also compact and connected,
the Liouville-Arnold theorem [3–6] states that Mc may be
smoothly transformed by a symplectic change of coordinates
into the standard n-torus T n, and application of the map (or
flow) corresponds to rotation about this torus with a fixed
frequency vector, which we wish to determine.

III. TUNES OF AN INTEGRABLE MAP

Let M be an integrable symplectic map, and let Mc be
one of its regular level sets. By the Liouville-Arnold the-
orem, there exists a neighborhood of the level set Mc in
which there is a set of canonical action-angle coordinates
ζ = (φ1, . . . , φn, I1, . . . , In) in which the map takes the form
M(φ, I ) = (φ f , I f ), where:

I f = I, φ f = φ + 2πν(I ) mod 2π. (6)

The coordinates (φ, I ) in Eq. (6) are not unique [13]. However,
the quantities ν j ( j = 1, . . . , n), called the tunes of M, have a
coordinate-invariant physical meaning, described as follows.

If F denotes any observable, given by a smooth real-valued
function defined in our neighborhood of Mc, then F may
be expressed as a uniformly convergent Fourier series in the
angle coordinates φ, so that:

F (φ, I ) =
∑
k∈Zn

ak (I )eik·φ, ak ∈ C. (7)

Applying the map M in the form (6) N times shows that:

F [MN (φ, I )] =
∑

k∈ZN

ak (I )eik·(φ+2πk·ν(I )N ). (8)

From (8), it follows that there exist smooth complex-valued
functions Fk (k ∈ Zn) on our neighborhood of Mc such that:

F ◦ MN =
∑
k∈Zn

Fkei2π (k·ν)N . (9)

One sees from (9) that any time series obtained by fol-
lowing an observable F (defined on the level set Mc) during
iteration of the map M contains contributions at the discrete
set of frequencies:

�ν = {k · ν + k0 : k ∈ Zn, k0 ∈ Z}. (10)

Algorithms to determine the basic frequencies ν j ( j =
1, . . . , n) from a sequence of observations of the form (9) with
N = 0, 1, 2, . . . are well established [14,15].

Note that knowledge of the set of frequencies (10) does not
specify the vector ν ∈ Rn uniquely. To see this, let

ν ′ = Uν + m, (11)

where m ∈ Zn is any n-tuple of integers and U is any unimod-
ular integer matrix (an n × n integer matrix with det U = ±1).
This implies that U is invertible, U −1 is also a unimodular in-
teger matrix, and U defines an invertible linear transformation
from Zn to Zn. The same conclusion holds for U T . By making
the transformation of integer indices k = U T k′, the sum in
Eq. (9) becomes

F ◦ MN =
∑

k′∈Zn

FU T k′ei2π (k′ ·ν ′ )N , (12)

which takes the same form as (9), with ν replaced by ν ′.
A similar argument starting from (10) shows that �ν ′ = �ν .
Thus, the vector ν is at best defined only up to transformations
of the form (11) [16].

Indeed, one can construct action-angle coordinates in
which the map M has the form (6) with the tunes ν ′ given
by (11). In terms of the original coordinates (φ, I ), let:

I ′ = U −T I, φ′ = Uφ mod 2π. (13)

The quantities (φ′
1, . . . , φ

′
n) define periodic angle coordi-

nates on the torus T n, since φA = φB mod 2π ⇔ UφA =
UφB mod 2π , by the condition that U be a unimodular in-
teger matrix. The transformation (13) is easily verified to be
symplectic. The map M in the coordinates (φ′, I ′) takes the
form:

I ′ f = I ′, φ′ f = φ′ + 2πν ′(I ′) mod 2π, (14)

where

ν ′(I ′) = Uν(U T I ′) + m. (15)

Since points on the level set Mc satisfy a condition of the form
I0 = I = U T I ′ for some constant I0 ∈ Rn, it follows that (11)
holds on Mc, as claimed.

The vector ν is called the rotation vector of the map M
corresponding to the level set Mc [17]. Two rotation vectors
ν and ν ′ will be said to be equivalent if there exists a rela-
tion of the form (11). In practice, one would like a natural
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method to select a unique representative from each equiva-
lence class. In addition, one would like the selected vector
ν to vary smoothly with the invariant value c ∈ Rn. If the
map M decouples when expressed using a particular choice
of canonical coordinates, then the n tunes can be chosen (up
to a permutation) to correspond to rotation angles in each of
the n conjugate phase planes. If the system is coupled, then
selecting a natural choice of representative is a more subtle
issue. However, note that the rotation vector ν may always be
chosen so that 0 � ν j � 1/2 ( j = 1, . . . , n).

The precise choice of the rotation vector is closely related
to geometric considerations. In the following section, we will
see that there is a correspondence between the rotation vector
and the choice of certain paths lying in the invariant torus. It
is of interest to study the relationships between the analytic
properties of the rotation vector and the topology of these
curves. However, for the remainder of this paper, we content
ourselves with demonstrating that all results are valid up to an
equivalence of the form (11).

IV. TUNES FROM INVARIANTS

Let M be an integrable symplectic map with momentum
mapping F , as defined in Eq. (4). The goal of this paper is
to demonstrate that on any regular level set of F , the tunes
ν = (ν1, . . . , νn)T may be expressed using a set of n(n + 1)
path integrals over the level set, in the form:

S = −
∫

γ

(DF+)T Jdζ , (16a)

Rjk =
(

−
∮

γk

(DF+)T Jdζ

)
j

, (16b)

ν = R−1S. (16c)

Here ν and S are real n-vectors, R is a real n × n matrix,
and J is the 2n × 2n matrix of the symplectic form (2). It will
be shown that the matrix R is, in fact, invertible.

In Eq. (16), γ is a parameterized path in the level set
Mc from any point ζ ∈ Mc to its image M(ζ ) under the
map. Likewise, the γk (k = 1, . . . , n) are parameterized closed
paths in the level set Mc, and these must be chosen to form
a basis for the group of 1-cycles in Mc. (See Appendix A.)
We will show that the resulting value of ν ∈ Rn is inde-
pendent, modulo the equivalence (11), of the choice of the
paths γ and γk . Furthermore, the precise value of ν depends
only on the topology of the curves γ and γk . Intuitively, the
paths (γ1, . . . , γn) specify n independent “winding directions”
around the level set Mc, and the tunes (ν1, . . . , νn) specify
the fraction of a cycle (in each direction) by which a point
is moved under application the map M.

Finally, DF+ denotes any 2n × n right matrix inverse of
the n × 2n Jacobian matrix DF . Since rank(DF ) = n on the
level set Mc, such a right inverse exists at every point on Mc. It
is convenient to use the Moore-Penrose inverse of DF , given
explicitly by:

DF+ = (DF )T [(DF )(DF )T ]−1. (17)

By the rank assumption on DF , the matrix appearing in square
brackets in Eq. (17) is always invertible. It follows that the

q

p

Ψ

(q, p)

(qf , pf )

γ1

γ

Mc

FIG. 1. Illustration of the map (18), showing one of the level sets
Mc (c > 0) of the invariant f in Eq. (19) and the two curves γ (red)
and γ1 (black) used to evaluate (16). Although not shown here, each
curve is allowed to change direction during transit. The curve γ may
wind around the origin multiple times.

matrix elements of DF+ are smooth, bounded functions when
restricted to the level set Mc, and the path integrals in Eq. (16)
are convergent and finite. Appendix B describes important
properties of the matrix DF+ that are used in the remainder
of this paper.

Simple example

Consider the two-dimensional (2D) linear symplectic map
described in matrix form as:(

q f

pf

)
=

(
cos � sin �

− sin � cos �

)(
q
p

)
, (18)

which arises naturally in the study of the simple harmonic
oscillator. In this case n = 1 and an invariant is given by:

f (q, p) = 1
2 (q2 + p2). (19)

The level set Mc = {(q, p) ∈ R2 : f (q, p) = c} is regular for
any c > 0, corresponding to the circle of radius

√
2c with

center at the origin. (See Fig. 1.) We therefore express the two
curves γ and γ1 appearing in Eq. (16) as:

γ (t ) = (
√

2c cos α(t ),
√

2c sin α(t )), a � t � b, (20a)

γ1(t ) = (
√

2c cos β(t ),
√

2c sin β(t )), c � t � d, (20b)

where α and β are (smooth) real-valued functions of some
parameter t . The definitions of γ and γ1 in Eq. (16) require
only that the functions α and β satisfy:

α(b) = α(a) − � − 2πm, β(d ) = β(c) ∓ 2π, (21)

where m may be any integer. (In order to serve as a basis
cycle, the curve γ1 must wind around the circle exactly once,
in either direction.) One verifies using (19) that, since F = f
we have:

DF = (q p), DF+ = 1

q2 + p2

(
q
p

)
. (22)
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Using these results in Eq. (16) gives:

S = −
∫ b

a
(DF+)T Jγ ′(t )dt = −

∫ b

a
α′(t )dt = � + 2πm,

R = −
∫ d

c
(DF+)T Jγ ′

1(t )dt = −
∫ d

c
β ′(t )dt = ±2π.

This yields the following result for the tune ν of the map (18):

ν = R−1S = ±
(

�

2π
+ m

)
, m ∈ Z. (23)

This result is expected, since (18) represents a clockwise
rotation in the phase space by the angle �. If we think of
the basis cycle γ1 as defining an orientation of the circle Mc

(i.e., defining the clockwise or the counterclockwise direction
to be positive), then ν represents the fraction of a cycle that
is completed as we move along the curve γ , completing one
iteration of the map. The sign in Eq. (23) is determined by
the direction of γ , while the integer m counts the number of
complete turns that the curve γ winds about the origin. Note
that the final result is independent of the parametrization (20),
as defined by the choices of the functions α and β.

The purpose of this example is to illustrate the result (16)
in its simplest possible setting. More sophisticated examples
are considered in Sec. VII, in Appendices C and D, and in
Ref. [7].

V. PROPERTIES OF THE SOLUTION

In this section, we discuss the properties of the general
solution (16), and we provide its mathematical proof.

A. Path integrals in the level set

If A : M → Rn×2n is a smooth matrix-valued function
on the phase space, and if γ : [a, b] → M is a smooth
parametrized path, then an integral of the form (16) is to be
interpreted as: ∫

γ

Adζ =
∫ b

a
A(γ (t ))γ ′(t )dt, (24)

where γ ′(t ) is the 2n-vector tangent to γ at t . For any path
γ confined to a level set of F , F is invariant along γ , and
applying the chain rule gives that:

0 = d

dt
(F ◦ γ )(t ) = DF (γ (t ))γ ′(t ). (25)

Since this holds for every such path γ , motivated by (24) we
will denote (25) more simply as:

(DF )dζ = 0. (26)

Since it follows from (26) that Jdζ ∈ J ker(DF ), we have
from (B10) that:

(DF+)(DF )Jdζ = Jdζ . (27)

Since (DF+)(DF ) is symmetric, as is easily verified, we
have:

(DF )T (DF+)T Jdζ = Jdζ . (28)

The identity (28) allows us to prove many results on coordi-
nate and path independence of the integrals in Eq. (16).

As an example, let B denote any right matrix inverse of
DF . Then BT is a left inverse of (DF )T . Multiplying (28) on
the left by BT gives:

(DF+)T Jdζ = BT Jdζ , (29)

which shows that we could replace DF+ by any right matrix
inverse of DF in the integrals (16) without changing the
result.

B. Coordinate independence

Let ζ ′ denote a vector of new phase-space coordinates
related to ζ by an arbitrary symplectic coordinate transforma-
tion N , so that

ζ ′ = N (ζ ). (30)

Let all quantities expressed in these new coordinates be de-
noted with ′. Then it is straightforward to verify that:

dζ ′ = (DN )dζ , DF ′ = (DF )(DN )−1. (31)

Since the map N is symplectic:

(DN )T J (DN ) = J. (32)

To simplify notation, let dv denote the form appearing in the
integrals (16), namely

dv = (DF+)T Jdζ . (33)

Writing down the identity (28) in the primed coordinates, we
have:

(DF ′)T dv′ = Jdζ ′. (34)

Making the substitutions of (31) into (34) gives:

DN−T (DF )T dv′ = J (DN )dζ . (35)

Multiplying both sides by DN T gives

(DF )T dv′ = (DN )T J (DN )dζ . (36)

Applying the symplectic condition (32) gives:

(DF )T dv′ = Jdζ . (37)

Finally, multiplying both sides by (DF+)T and noting that
this is a left inverse of (DF )T gives:

dv′ = (DF+)T Jdζ = dv. (38)

Since (16) can be written as:

S = −
∫

γ

dv, Rjk =
(

−
∮

γk

dv

)
j

, (39)

it follows from (38) that for a fixed choice of paths γ and
γk (k = 1, . . . , n) each integral in Eq. (39) is independent of
the choice of canonical coordinates.

C. Reduced forms in canonical coordinates

Consider canonical coordinates given by ζ =
(q1, . . . , qn, p1, . . . , pn)T . We may express the n × 2n matrix
DF in terms of two n × n blocks, which correspond to partial
derivatives with respect to the variables q = (q1, . . . , qn) and
p = (p1, . . . , pn), respectively:

DF = (DqF DpF ). (40)
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Let dv be defined as in Eq. (33). Then using identity (28)
gives:

(DF )T dv = Jdζ . (41)

Expressing this in terms of its n × n blocks using (2) and (40)
gives: (

DqFT dv

DpFT dv

)
=

(
d p

−dq

)
. (42)

In the special case that the matrix (DqF )T is invertible along
the integration path, we may use the first row in Eq. (42) to
give:

dv = (DqF )−T d p. (43)

Noting the definition of dv it follows that:

S = −
∫

γ

(DqF )−T d p, (44a)

Rjk =
(

−
∮

γk

(DqF )−T d p

)
j

, ν = R−1S. (44b)

Alternatively, in the special case that the matrix (DpF )T is
invertible along the integration path, we may use the second
row in Eq. (42) to give:

dv = −(DpF )−T dq. (45)

Noting the definition of dv it follows that:

S =
∫

γ

(DpF )−T dq, (46a)

Rjk =
(∮

γk

(DpF )−T dq

)
j

, ν = R−1S. (46b)

In the special case of one degree of freedom (n = 1),
the expression (46) reduces to the expression appearing in
Ref. [7]. Another example, for a map with two degrees of
freedom (n = 2) separable in polar coordinates, is provided
in Appendix D.

D. Proof of the result

By the Liouville-Arnold theorem for integrable symplectic
maps, there exists a neighborhood of the level set Mc in
which there is a set of canonical action-angle coordinates
ζ = (φ1, . . . , φn, I1, . . . , In) in which the map takes the form
M(φ, I ) = (φ f , I f ), where:

I f = I, φ f = φ + 2πν(I ) mod 2π, (47)

and the invariants fk are functions of the action coordinates
only, so that:

DφF = 0, DF = (0 DIF ). (48)

Since we have assumed that DF is of full rank, it follows from
(48) that DIF is invertible, and we may apply the result (46)
to obtain:

S =
∫

γ

(DIF )−T dφ. (49)

Since the invariants are functions of the action coordinates
only, the matrix DIF is constant along the integration path

γ , and we need only evaluate an integral of the form:∫
γ

dφ = �φ + 2πm, (50)

where �φ = (�φ1, . . . ,�φn) denotes the net change in the
angle coordinates (φ1, . . . , φn), when taken to lie in the range
[0, 2π ), and m = (m1, . . . , mn) ∈ Zn denotes the number of
times the path γ winds around the torus with respect to
the angles φ1, . . . , φn, respectively. Using (47) and (50) in
Eq. (49) gives:

S = 2π (DIF )−T (ν + m), m ∈ Zn. (51)

Similarly, we have

Rjk =
(∮

γk

(DIF )−T dφ

)
j

. (52)

By definition, the closed paths γk (k = 1, . . . , n) form a basis
for the group of 1-cycles on Mc. Consider the coordinate
curves γ̃k : [0, 1] → Mc, given in action-angle coordinates by:

γ̃k (t ) = (0, . . . , 0, 2πt, 0, . . . , 0), (53)

where the nontrivial entry corresponds to the kth angle coordi-
nate. Then the paths γ̃k (k = 1, . . . , n) also form a basis for the
group of 1-cycles on Mc. The change of basis is represented
by some unimodular integer matrix U , so that:

∫
γk

dφ =
n∑

l=1

Ukl

∮
γ̃l

dφ. (54)

However, ∮
γ̃l

dφ =
∫ 1

0
(2πel )dt = 2πel . (55)

It follows that the lth component of (54) is given by:(∮
γk

dφ

)
l

= 2πUkl , (56)

so using (52) gives:

R = 2π (DIF )−T U T . (57)

Since U T is invertible, it follows that the matrix R is invertible
and we have:

R−1S = U −T (ν + m) = U ′ν + m′, (58)

where U ′ = U −T is a unimodular integer matrix, and m′ =
U −T m is an n-vector of integers. It follows that (58) yields the
vector of tunes ν appearing in Eq. (47), up to an equivalence
of the form (11). Coordinate independence then shows that the
same is true of the expression in Eq. (16).

More can be said. If the basis cycles γ1, . . . , γn are initially
chosen to be homologous to the coordinate curves γ̃1, . . . , γ̃n,
then U ′ = In×n, and (58) correctly yields the vector of tunes ν

modulo 1. Otherwise, by making a change of coordinates of
the form (13), one may transform to action-angle coordinates
in which the tunes appearing in Eq. (58) are equal to those
in Eq. (47), modulo 1. Thus we may assume, without loss of
generality, that the initial action-angle coordinates are chosen
such that the coordinate curves (53) are homologous to the
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basis cycles γk (k = 1, . . . , n). In this way, the choice of basis
cycles fixes the tunes uniquely mod 1.

This proof also demonstrates that the expression (16) is
independent of the choice of the initial point ζ and the paths
γ , γk . This occurs because we can transform to coordinates
in which the integrand is constant along these paths, and the
path dependence of each integral is determined only by the
net change in the angular coordinates along each path. In
particular, the result depends only on the homotopy class of
the paths γ and γk .

E. Changing the set of invariants

In the previous subsection, we showed that (16) correctly
produces the dynamical tunes of the map M. The proof uses
the fact that (16) is invariant under a change of coordinates
for the domain of F (the phase space). In fact, (16) is also
invariant under a change of coordinates for the range of F
(which is Rn). More precisely, let f ′ = ( f ′

1, . . . , f ′
n) denote

a new set of invariants that is related to the previous set
of invariants f = ( f1, . . . , fn) through a smooth coordinate
transformation A : Rn → Rn, so that

f ′ = A( f ). (59)

Let all quantities expressed in these new coordinates be de-
noted with ′. Then by definition we have:

F ′ = A ◦ F , DF ′ = (DA)(DF ). (60)

Let the quantity dv be defined as in Eq. (33). The identity (28)
in the primed coordinates is:

(DF ′)T dv′ = J ′dζ ′. (61)

Using (60) and noting that J ′ = J and dζ ′ = dζ gives

(DF )T (DA)T dv′ = Jdζ . (62)

Multiplying both sides by (DF+)T and noting that this is a
left inverse of (DF )T gives:

(DA)T dv′ = (DF+)T Jdζ = dv. (63)

Thus, we have:

dv′ = (DA)−T dv. (64)

Since the level sets of F and F ′ coincide, we assume that we
use the same paths γ and γk to integrate (64) on both sides of
the equality. Note that DA is evaluated at the point F (ζ ), so it
depends on the invariants only and is therefore constant along
the integration path. It follows that:

S′ = (DA)−T S, R′ = (DA)−T R, (65)

and therefore

ν ′ = R−1(DA)T (DA)−T S = R−1S = ν. (66)

This shows that the vector of tunes ν ∈ Rn does not change
under a transformation (59) of the invariants.

One may simplify the proof in the previous subsection
as follows. In addition to using action-angle coordinates to
evaluate (16), one may choose to transform the invariants
( f1, . . . , fn) to the set of action coordinates (I1, . . . , In) using
an invertible transformation A( f ) = I . Using these coordi-
nates for the domain and range of F , we have DIF ′ = In×n,

the identity, and the integrals (49) and (52) take a trivial form.
We chose not to take this approach, in order to illustrate
explicitly the path independence of the separate factors S
and R.

VI. FREQUENCIES OF HAMILTONIAN FLOWS

Let M denote the period-1 map associated with an
integrable Hamiltonian H . Expressing the dynamics in action-
angle form, we have:

I (t ) = I (0), φ(t ) = φ(0) + ω[I (0)]t, (67)

where the frequency vector ω = (ω1, . . . , ωn) is given by:

ωk = ∂H

∂Ik
. (68)

The period-1 map is given by M(φ, I ) = (φ f , I f ), where

I f = I, φ f = φ + 2πν(I ), ν = ω

2π
. (69)

It follows that we may apply the result for integrable maps
(16) to extract the frequency vector ω without knowledge of
the actions I that appear in Eq. (68).

Of the many available choices for the path γ , we may
choose an integral curve of the Hamiltonian flow. Along this
curve,

dζ

dt
= J∇H (ζ ). (70)

Assume that H is given by some function G of the invariants,
so that H = G ◦ F . Then

DH = (DG)(DF ), (71)

and

dζ

dt
= J (DF )T (DG)T . (72)

Using this as the path γ in Eq. (16), and noting that application
of the map corresponds to moving from t = 0 to t = 1:

S =
∫ 1

0
(DF+)T (DF )T (DG)T dt . (73)

Since (DF+)T is a left inverse of (DF )T , and the matrix DG
is constant along the path, it follows that:

S = DGT , ν = R−1DGT . (74)

In the special case that H = f1, then DGT = e1 and

ω = 2πR−1e1, (75)

where e1 = (1, 0, 0, . . . , 0)T . Note that the result (74) no
longer requires explicit knowledge of the period-1 map M,
which has been eliminated in favor of the Hamiltonian H .

Let us check the coordinate-invariant expression (74) by
evaluating the matrix R using action-angle coordinates. In
these coordinates,

Rjk =
(∮

γk

(DIF )−T dφ

)
j

. (76)
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Since the matrix DIF is constant along the integration path, it
follows that:

R = 2π (DIF )−T . (77)

But then:

ν = R−1S = 1

2π
(DIF )T (DG)T . (78)

Finally, evaluating expression (71) in terms of its n × n blocks
gives:

(DφH DI H ) = DG(DφF DIF ), (79)

so that:

DI H = (DG)(DIF ). (80)

Using this result in Eq. (78) and multiplying by 2π then gives:

ω = (DI H )T , or ω j = ∂H

∂I j
, (81)

which is (68).

VII. NUMERICAL EXAMPLES

To illustrate the application of (16) using practical exam-
ples, the results of this paper were used to determine: (1) the
dynamical frequencies of one nonlinear Hamiltonian flow and
(2) the tunes of one nonlinear symplectic map, both defined
on the phase space R4. Appendix C illustrates in detail how
(16) can also be used to correctly produce the tunes of a stable
linear symplectic map of arbitrary dimension.

A. Integrable Hénon-Heiles Hamiltonian

Consider the Hamiltonian given by (for λ > 0):

H = 1

2

(
p2

x + p2
y + x2 + y2

) + λ

(
x2y + y3

3

)
. (82)

This is the usual Hénon-Heiles Hamiltonian [18], except that
the sign of the y3 term is reversed. It is known that (82) is
integrable, with two invariants of the form [19,20]:

f1 = H, f2 = px py + xy + λ

(
xy2 + x3

3

)
. (83)

An analysis of (83) shows that an invariant level set Mc for
some c ∈ R2 contains a connected component M0

c near the
origin that is regular and compact provided that:

0 � c1 − c2 � 1

6λ2
, 0 � c1 + c2 � 1

6λ2
. (84)

For orbits on M0
c , we wish to evaluate the characteristic fre-

quency vector ω = (ω1, ω2)T using (75).
To evaluate the path integrals appearing in the matrix

R, we need to choose two basis cycles γ1, γ2 lying in the
two-dimensional surface M0

c . One approach is to consider
the curve obtained by intersecting M0

c with the hyperplane
y = kx (k ∈ R). Using (83) to solve for px and py locally
in terms of the coordinates x, y and setting y = kx gives the
parameterized curve segment:

t 	→ (t, kt, px (t ), py(t )), (85)

where px(t ) is given by:

px(t ) = ±
√

1

2
(c1 + c2) − 1

4
(k + 1)2t2 − λ

6
(k + 1)3t3

±
√

1

2
(c1 − c2) − 1

4
(k − 1)2t2 − λ

6
(k − 1)3t3,

(86)

and the signs of the two terms may be chosen independently.
In each case, py(t ) is given by reversing the sign of the second
term in Eq. (86). To construct the cycle γ1, one must then paste
together curve segments that utilize the appropriate signs in
Eq. (86) to produce a closed path. For convenience, the closed
path γ2 is obtained using the same procedure, for the choice
of intersecting hyperplane y = −kx. Independence of the two
cycles γ1 and γ2 will be explored momentarily.

In the coordinates (x, y, px, py), note that the Jacobian ma-
trix of the momentum mapping is given by:

DF =
(

x + 2λxy y + λ(x2 + y2) px py

y + λ(x2 + y2) x + 2xyλ py px

)
,

(87)
and its Moore-Penrose inverse (17) can be evaluated explic-
itly. Alternatively, we may use only the 2 × 2 momentum
block DpF by applying (46), provided we avoid points where
px = 0 or py = 0. Evaluating the integrals in Eq. (16) numer-
ically along the paths γ1 and γ2 to produce the matrix R, and
using (75) to produce the frequency vector ω yields the results
shown in Fig. 2.

This system can also be solved exactly. Note that by mak-
ing the symplectic coordinate transformation:

q1 = 1√
2

(y + x), p1 = 1√
2

(py + px ), (88)

q2 = 1√
2

(y − x), p2 = 1√
2

(py − px ), (89)

the Hamiltonian decouples as:

H = H1 + H2, Hj = 1

2

(
p2

j + q2
j

) + λ
√

2

3
q3

j , (90)

and the invariants take the form:

f1 = H1 + H2, f2 = H1 − H2. (91)

Periodic motion in the coordinate q j ( j = 1, 2) occurs be-
tween two turning points qmin

j , qmax
j when:

0 � Hj � 1

12λ2
= Hmax, (92)

with period given by:

Tj =
∮ (

dq j

dt

)−1

dq j = 2
∫ qmax

j

qmin
j

dq j√
2Hj − q2

j − 2λ
√

2q3
j/3

.

The corresponding frequency ω j = 2π/Tj is given explicitly
by:

ω j = π
√

ζb j − ζa j√
6K

( ζc j−ζb j

ζa j−ζb j

) , (93)
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FIG. 2. Frequencies of the Hamiltonian (82) with λ = 1, shown
for the level set M0

c defined by ( f1, f2 ) = (c1, c2). Dots correspond to
the analytical expression given in Eq. (93), while solid curves corre-
spond to the result obtained using (16). (a) The value ω1 is shown for
6λ2(c1 − c2) = 1/2. (b) The value ω2 is shown for 6λ2(c1 + c2) =
1/2. In both cases, a separatrix is approached as the horizontal axis
approaches 1.

where K denotes the complete elliptic integral of the first kind,
and ζa j , ζb j , ζc j denote the three roots of the polynomial:

Pj (ζ ) = 2ζ 3 + 3ζ 2 − (Hj/Hmax), (94)

ordered such that ζa j < ζb j < 0 < ζc j for j = 1, 2.
Figure 2 shows a comparison between the result obtained

by numerically evaluating the path integrals in Eq. (75) and
the exact solution in Eq. (93). This result is shown for k =
1/2. By varying k, one may study the dependence on the
choice of cycles γ1 and γ2. For example, Fig. 3 shows that the
frequencies ω1, ω2 on the level set (c1, c2) = (0.1, 0.03) are
independent of k, for 0.4 < k < 4.5. Beyond this range, the
two cycles obtained by intersecting M0

c with the hyperplanes
y = kx and y = −kx fail to be independent, and the matrix R
is not invertible. In this case, at least one of the two cycles
must be modified if (75) is to be used.

B. Integrable 4D McMillan map

Consider the symplectic map M : R4 → R4 given by
M(x, y, px, py) = (x f , y f , pf

x , pf
y ), where:

x f = px, pf
x = −x + apx

1 + b
(
p2

x + p2
y

) , (95a)

y f = py, pf
y = −y + apy

1 + b
(
p2

x + p2
y

) , (95b)

FIG. 3. Demonstration that the frequencies of the Hamiltonian
(82) (λ = 1) obtained using (75) are unchanged under deformation
of the cycles γ1 and γ2. These are defined by intersection of the level
set M0

c with the hyperplanes y = kx and y = −kx, respectively. The
results are shown for the case c1 = 0.1, c2 = 0.03.

and a, b > 0. This is a 4D analog of the so-called McMillan
mapping [21]. It is known that (95) is integrable, with two
invariants of the form:

f1 = x2 + y2 + p2
x + p2

y − a(xpx + ypy)

+ b(xpx + ypy)2, (96a)

f2 = xpy − ypx. (96b)

We wish to evaluate the tunes of this map using (16).
The cycles γ1 and γ2 can be defined, as before, by tak-

ing the intersection of Mc with hypersurfaces of the form
Gj (x, y) = 0 for smooth functions Gj ( j = 1, 2), chosen to
make γ1 and γ2 independent. One must also choose an arbi-
trary initial point ζ ∈ Mc and a path γ to its image M(ζ ).
An example of a regular invariant level set is shown in Fig. 4,
together with two independent basis cycles γ1 and γ2, and the
path γ .

FIG. 4. Orange: Level set ( f1, f2) = (2, 0.5) of the 4D McMillan
map (95) with a = 1.6, b = 1. The apparent self-intersections of
the 2D surface are an artifact of projection into R3. This is shown
together with examples of basis cycles γ1 and γ2 and the path γ used
to evaluate the tunes ν1, ν2 from (16).
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FIG. 5. Tunes ν1, ν2 of the 4D McMillan map (95) with a = 1.6,
b = 1, shown for the invariant level set defined by ( f1, f2) = (c1, c2).
Dots correspond to the analytical expression given in Ref. [7], while
solid curves correspond to the result obtained using (16). Compare
Fig. 5 of Ref. [7]. The curves from uppermost to lowermost corre-
spond to (in the upper figure) c2 = 1.0, 0.5, 0.01 and (in the lower
figure) c2 = 0.01, 0.5, 1.0.

In the coordinates (x, y, px, py), note that the Jacobian ma-
trix of the momentum mapping is given by:

DqF =
(−apx + 2(x + bpxτ ) −apy + 2(y + bpyτ )

py −px

)
,

DpF =
(−ax + 2(px + bxτ ) −ay + 2(py + byτ )

−y x

)
,

where τ = xpx + ypy. Using these results, the integrals in
Eq. (16) can be evaluated numerically to obtain the rotation
vector ν as a function of the two invariants.

This system can also be solved exactly [7]. Figure 5 shows
a comparison between the exact solution provided in Ref. [7]
and the solution obtained using the above procedure. The
agreement confirms that the tunes can be accurately deter-
mined from (16), without the construction of action-angle
coordinates or knowledge of a coordinate system in which the
dynamics is separable.

VIII. CONCLUSIONS

Integrable Hamiltonian systems and symplectic maps play
important roles in many areas of science, as well as providing
an active area of contemporary mathematical research [3].

However, the standard techniques for exact solution of these
systems are difficult to apply, except in the simplest cases.
This paper provides an explicit formula (16) that connects the
n tunes of an integrable symplectic map (on a phase space
of dimension 2n) with its n invariants of motion. The same
formula can be used to extract the n dynamical frequencies
of a Hamiltonian flow (Sec. VI). By construction, the for-
mula is invariant under a canonical (symplectic) change of
coordinates and can be expressed in a geometric form that is
coordinate-free. The construction of action-angle coordinates
is not required.

This formula is consistent with an expression previously
obtained for 2D integrable symplectic maps [7], and it re-
produces exactly known results for dynamical frequencies
that have been independently obtained for several nonlinear
benchmark problems (Sec. VII). A demonstration that this
result correctly reproduces the tunes of a linear symplectic
map of any dimension is found in Appendix C, and additional
special cases of low dimension are treated in Appendix D.

In practice, this formula can be used to extract the dynam-
ical frequencies of the orbits of an integrable system without
the need for numerical tracking, which is especially useful
when studying the dependence of the dynamical frequencies
on the choice of the initial condition or system parameters.
Evaluation of (16) requires only that one parametrize a set of
paths in the invariant level set, which is often done by solving
locally for one of the phase-space variables in terms of the
others. Note that this result can also be applied to extract
approximate dynamical frequencies of orbits (of a symplectic
map or a Hamiltonian flow) when a sufficient number of
approximate invariants are known.

Most importantly, the expression (16) captures, in a precise
way, the connection between the geometry of an integrable
system and its dynamical behavior, providing first-principles
insight into the physics of such systems.
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APPENDIX A: CYCLES ON THE TORUS

The closed paths γk (k = 1, . . . , n) appearing in Eq. (16)
must lie within the invariant level set Mc, and they must form
a basis for the group of 1-cycles on Mc. A proper discussion
of the latter condition requires the use of (singular) homology
[22]. However, intuition for this condition can be obtained by
visualizing several examples for the special case when n = 2
(dimension 4).

In this case, each regular level set Mc can be smoothly
deformed into the standard 2-torus, defined by:

T 2 = {
(q1, q2, p1, p2) ∈ R4 : (∀ j)q2

j + p2
j = 1

}
.
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γ1

γ2

γ1

γ2

γ1 γ2

FIG. 6. Examples of 1-cycles on the torus T 2. One of the two
holes has been made larger than the other, in order to embed the
torus in R3 without self-intersection. (a) Two basis cycles with
[γ1] = (1, 0) and [γ2] = (0, 1). (b) Two cycles that do not form a
basis, with [γ1] = (1, 0), [γ2] = (−1, 0). (c) Two basis cycles with
[γ1] = (1,−1) and [γ2] = (0, 1).

Let q : R2 → T 2 denote the function given by:

q(t1, t2) = (cos 2πt1, cos 2πt2, sin 2πt1, sin 2πt2). (A1)

Let γ : [a, b] → T 2 be any continuous path with γ (a) =
γ (b). A lift of γ is a continuous map γ̃ : [a, b] → R2 such
that γ = q ◦ γ̃ . For any closed path γ , define its index by:

[γ ] = γ̃ (b) − γ̃ (a) ∈ Z2. (A2)

It can be verified that the index does not depend on the specific
choice of the lift γ̃ . It is also invariant under continuous
deformations of the path γ . Intuitively, [γ ] is a pair of integers
denoting how many times the path γ “winds around” the torus
with respect to each of its two “holes.” Two closed paths γ1

and γ2 will be said to form a basis for the group of 1-cycles
on T 2 when [γ1] and [γ2] form a basis for the additive group
Z2 over the integers.

The simplest example of a basis on T 2 is shown in
Fig. 6(a). The paths γ1 and γ2 can be represented by the lifts:

γ̃1(t ) = (t, 0), γ̃2 = (0, t ), 0 � t � 1, (A3)

so that [γ1] = (1, 0) and [γ2] = (0, 1). Any two paths that can
be obtained by continuous deformation of the paths γ1 and γ2

also results in a basis.
Figure 6(b) illustrates an example of two closed paths that

do not form a basis on T 2. In fact, if −γ2 denotes the path γ2

transversed in the opposite direction, then the path −γ2 can be
continuously deformed into γ1.

A less obvious example of a basis on T 2 is given in
Fig. 6(c). In this example, [γ1] = (0, 1) and [γ2] = (1,−1).
The number of such possible bases is infinite, but bases whose
cycles have larger index become increasingly difficult to visu-
alize.

APPENDIX B: PROPERTIES OF THE MOORE-PENROSE
INVERSE

The Poisson bracket condition that { f j, fk} = 0 for all j, k
is equivalent to the matrix identity:

(DF )J (DF )T = 0. (B1)

It follows from (17) and (B1) that DF+ satisfies the two
conditions:

(DF )(DF+) = In×n, (DF )J (DF+) = 0. (B2)

Consider the linear map corresponding to (DF+)(DF ). This
map is a linear projection since:

(DF+DF )2 = DF+DF . (B3)

We examine its null space (ker) and range (im). Using the
leftmost identity in Eq. (B2), we obtain:

ker(DF+DF ) = ker(DF ). (B4)

Similarly, it follows from the rightmost identity in Eq. (B2)
that:

im(DF+DF ) ⊆ ker(DFJ ). (B5)

It is straightforward to verify that

ker(DFJ ) = J ker(DF ) (B6)

and since J is invertible,

dim(J ker(DF )) = dim(ker(DF )). (B7)

Since rank(DF ) = n by assumption, it follows by the rank-
nullity theorem that dim(ker(DF )) = n. By (B4)–(B7), the
two subspaces in Eq. (B5) have the same dimension n, and
it follows that they coincide:

im(DF+DF ) = J ker(DF ). (B8)

Thus, at every point in the phase space M we have the direct-
sum decomposition:

R2n = ker(DF ) ⊕ J ker(DF ), (B9)

and the projection P onto the second summand is given by:

P = (DF+)(DF ). (B10)

The two conditions (B2) therefore determine DF+ uniquely.
For if B is any matrix satisfying the two conditions (B2), then
for any vector ζ ∈ R2n,

(DF )JBζ = 0, (B11)

so that Bζ lies in ker(DFJ ) = J ker(DF ), and therefore:

Bζ = PBζ = (DF+)(DF )Bζ = (DF+)ζ . (B12)

The results (B9) and (B10) are used in Sec. V A.

APPENDIX C: TREATMENT OF LINEAR MAPS

Consider a linear symplectic map on the phase space
M = R2n, represented by a 2n × 2n real symplectic matrix R.
Suppose that the 2n eigenvalues of R are distinct and lie on
the unit circle. It follows that the eigenvalues of R occur in
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complex-conjugate pairs, and one may select n eigenvalues λ j

and (complex) eigenvectors ψ j so that for j = 1, . . . , n:

Rψ j = λ jψ j, Rψ̄ j = λ̄ jψ̄ j, |λ j | = 1. (C1)

Following Ref. [23], we introduce the angular bracket nota-
tion:

〈u, v〉 = −iūT Jv, u, v ∈ C2n. (C2)

Then the eigenvectors ψ j may be indexed and normalized
such that for l, m = 1, . . . , n:

〈ψl , ψm〉 = δl,m, (C3a)

〈ψ̄l , ψ̄m〉 = −δl,m, (C3b)

〈ψl , ψ̄m〉 = 〈ψ̄l , ψm〉 = 0. (C3c)

Since the eigenvalues λ j , λ̄ j ( j = 1, . . . , n) are all distinct,
the vectors ψ j, ψ̄ j ( j = 1, . . . , n) form a basis for C2n. Using
this fact, together with the conditions (C3), it follows that any
ζ ∈ R2n may be written uniquely as:

ζ = 2Re
n∑

k=1

〈ζ , ψk〉ψk . (C4)

Consider the set of quadratic functions fk given for ζ ∈ R2n

by:

fk (ζ ) = |〈ζ , ψk〉|2 (k = 1, . . . , n). (C5)

Then each fk is invariant under the linear map since:

fk (Rζ ) = |〈Rζ , ψk〉|2 = |〈ζ , R−1ψk〉|2 = fk (ζ ). (C6)

To obtain the second equality, we used the symplectic condi-
tion RT JR = J , and to obtain the third equality, we used the
facts that R−1ψk = λ−1

k ψk and |λ−1
k | = 1, which follow from

(C1).
Using (C5), one may verify that the Jacobian matrix

D fk (ζ ) at the point ζ ∈ R2n acts on vectors v to give:

D fk (ζ )v = 2Re〈ζ , ψk〉〈ψk, v〉, v ∈ R2n. (C7)

Likewise, the Jacobian matrix of the momentum mapping
DF (ζ ) at any point ζ ∈ R2n becomes:

DF (ζ ) =
⎛
⎝D f1(ζ )

...

D fn(ζ )

⎞
⎠. (C8)

Using (C8), the Poisson bracket condition (B1) takes the form:

(D f j )J (D fk )T = 0, j, k = 1, . . . , n (C9)

where we have suppressed the dependence on ζ . This follows
from the orthogonality conditions (C3), using (C7).

Define a 2n × n matrix B by:

B = (b1 · · · bn), (C10)

where the bk are real 2n-vectors given by:

bk = Re(ψk/〈ζ , ψk〉), (C11)

which are defined, provided that fk (ζ ) �= 0. Then it follows
from (C8) and (C10) that

[DF (ζ )B] jk = D f j (ζ )bk = 2Re〈ζ , ψ j〉〈ψ j, bk〉, (C12)

where in the last equality we used (C7). However,

〈ψ j, bk〉 = 1

2

( 〈ψ j, ψk〉
〈ζ , ψk〉 + 〈ψ j, ψk〉

〈ψk, ζ 〉
)

= δ jk

2〈ζ , ψk〉 , (C13)

by the orthonormality conditions, so that

[DF (ζ )B] jk = δ jk, (C14)

and B is a right matrix inverse of DF (ζ ). This shows that
rank(DF (ζ )) = n, provided fk (ζ ) �= 0 for all k = 1, . . . , n.

We now examine the regular level sets of the momentum
mapping F , which take the form:

Mc = {ζ ∈ R2n : fk (ζ ) = ck, k = 1, . . . , n}, (C15)

where ck �= 0 for all k. Note that by (C5) we have

fk (ζ ) = ck ⇔ 〈ζ , ψk〉 = √
ckeitk , (C16)

for some real phase angle tk . It follows from (C4) that:

ζ ∈ Mc ⇔ ζ = 2Re
n∑

k=1

√
ckeitk ψk, (C17)

for some real t1, . . . , tn. Given a point ζ ∈ Mc, applying the
map R gives:

Rζ = 2Re
n∑

k=1

√
ckeitk Rψk = 2Re

n∑
k=1

√
ckei(tk+φk )ψk,

where in the last equality we have introduced the angle φk by
λk = eiφk . Define the path γ : [0, 1] → Mc by:

γ (t ) = 2Re
n∑

k=1

√
ckeitφk ψk . (C18)

The tangent vector takes the form:

γ ′(t ) = 2Re
n∑

k=1

iφk
√

ckeitφk ψk . (C19)

We can now evaluate the vector quantity S appearing in
Eq. (16). By (C10), its components take the form:

Sk =
(

−
∫

γ

BT Jdζ

)
k

= −
∫ 1

0
bT

k Jγ ′(t )dt . (C20)

Using the explicit form for the tangent vector (C19) gives:

Sk = 2Re
n∑

j=1

φ j
√

c j

∫ 1

0
eitφ j 〈bk, ψ j〉dt . (C21)

Now using (C13) we have:

Sk = Reφk
√

ck

∫ 1

0

eitφk

〈ψk, γ (t )〉dt . (C22)

Using the explicit form of the path (C18) gives:

〈ψk, γ (t )〉 =
n∑

j=1

√
c je

itφ j 〈ψk, ψ j〉 +
n∑

j=1

√
c je

−itφ j 〈ψk, ψ j〉,

which gives, using the conditions (C3),

〈ψk, γ (t )〉 = √
ckeitφk . (C23)

062216-11
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Using this in Eq. (C22), the integral gives trivially that:

Sk = φk . (C24)

For the basis cycles γk (k = 1, . . . , n), we will take paths γk :
[0, 1] → Mc given by:

γk (t ) = 2Re
√

ckei2πtψk, (C25)

with tangent vectors

γ ′
k (t ) = 2Re

√
ck (2π i)ei2πtψk . (C26)

Then we have:

Rjk =
(

−
∮

γk

BT Jdζ

)
j

= −
∫ 1

0
bT

j Jγ ′
k (t )dt . (C27)

Using the explicit form for the tangent vector gives:

Rjk = 2Re
√

ck (2π )
∫ 1

0
ei2πt 〈b j, ψk〉dt . (C28)

Now using (C13) we have:

Rjk = Re2π
√

ckδ jk

∫ 1

0

ei2πt

〈ψ j, γk (t )〉dt . (C29)

Since this is nonzero only when j = k, we have in this case
using the path (C25) that:

〈ψk, γk (t )〉 = √
ckei2πt . (C30)

It follows that the integral in Eq. (C29) gives trivially that:

Rjk = 2πδ jk, (C31)

so R = 2π In×n, and therefore (16) gives the tunes:

ν = R−1S, νk = φk

2π
(k = 1, . . . , n), (C32)

which are expressed in terms of the eigenvalues λk = eiφk , as
expected [23].

The freedom in Eq. (11) can be explored by making al-
ternative choices for the paths γ and γk , after noting that a
general smooth path γ : [0, 1] → Mc takes the form:

γ (t ) = 2Re
n∑

j=1

√
c je

ig j (t )ψ j, (C33)

where g : [0, 1] → Rn is a smooth path in Rn.

APPENDIX D: SPECIAL CASES IN LOW DIMENSION

Consider a symplectic map M : R2 → R2 given by:

(q f , pf ) = M(q, p), (D1)

together with a smooth function f : R2 → R satisfying:

f (q f , pf ) = f (q, p), (D2)

so that f is an invariant of the map M. Evaluating (44) and
(46) in the special case n = 1 shows that the rotation number
of M on the level set f = c is given by [7]:

ν =
∫ q f

q

(
∂ f
∂ p

)−1
dq∮ (

∂ f
∂ p

)−1
dq

=
∫ pf

p

(− ∂ f
∂q

)−1
d p∮ (− ∂ f

∂q

)−1
d p

, (D3)

where each integral is taken along a path lying in the curve
f = c, which may be parameterized by solving locally for q
as a function of p or vice-versa.

As a special case with n = 2, consider a symplectic map
given in canonical polar coordinates as:

(
r f , θ f , pf

r , pf
θ

) = M(r, θ, pr, pθ ), (D4)

together with two invariants f1 and f2 of the form:

f1(r, θ, pr, pθ ) = f (r, pr, pθ ), (D5a)

f2(r, θ, pr, pθ ) = pθ . (D5b)

Here f is any smooth function of three variables. The first
invariant is independent of the angle coordinate, while the
second invariant is just the angular momentum. Choose γ1 to
be a closed curve in the invariant level set ( f1, f2) = (c1, c2)
obtained after setting θ = const. This curve can be parameter-
ized by solving locally for r as a function of pr or vice versa.
Choose γ2 to be a closed curve in the same invariant level set
obtained after setting r = const, allowing θ to vary from 0 to
2π .

Evaluating (44) and (46) shows that the rotation vector ν =
(νr, νθ ) can be written in terms of tunes associated with radial
and angular motion as:

νr =
∫ r f

r

(
∂ f
∂ pr

)−1
dr∮ (

∂ f
∂ pr

)−1
dr

=
∫ pf

r

pr

(
∂ f
∂r

)−1
d pr∮ (

∂ f
∂r

)−1
d pr

, (D6a)

νθ = νr
�θ

2 π
− �′

θ

2 π
+ δθ

2 π
, (D6b)

where the integrals are taken over all or part of the path γ1

and:

�′
θ =

∫ r f

r

∂ f

∂ pθ

(
∂ f

∂ pr

)−1

dr =
∫ pf

r

pr

∂ f

∂ pθ

(
−∂ f

∂r

)−1

d pr,

�θ =
∮

∂ f

∂ pθ

(
∂ f

∂ pr

)−1

dr =
∮

∂ f

∂ pθ

(
−∂ f

∂r

)−1

d pr,

δθ = θ f − θ. (D7)
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