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Discrete and periodic complex Ginzburg-Landau equation for a hydrodynamic active lattice
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A discrete and periodic complex Ginzburg-Landau equation, coupled to a mean equation, is systematically
derived from a driven and dissipative lattice oscillator model, close to the onset of a supercritical Andronov-Hopf
bifurcation. The oscillator model is inspired by recent experiments exploring active vibrations of quasi-one-
dimensional lattices of self-propelled millimetric droplets bouncing on a vertically vibrating fluid bath. Our
systematic derivation provides a direct link between the constitutive properties of the lattice system and the
coefficients of the resultant amplitude equations, paving the way to compare the emergent nonlinear dynamics—
namely, the onset and formation of discrete dark solitons, breathers, and traveling waves—against experiments.
The framework presented herein is expected to be applicable to a wider class of oscillators characterized by the
presence of a dynamic coupling potential between particles. More broadly, our results point to deeper connections
between nonlinear oscillators and the physics of active and driven matter.
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I. INTRODUCTION

With origins in the macroscopic theory of supercon-
ductivity [1–4], the celebrated complex Ginzburg-Landau
equation (CGLE) [5,6] is a generic model describing the
dynamics of spatially extended, dissipative systems near an
Andronov-Hopf bifurcation. In contrast to the complex, high-
dimensional microscopic equations regulating a particular
physical system, amplitude equations [7,8] such as the CGLE
are typically cast in terms of only a few macroscopic vari-
ables, or order parameters [9–13]. In general, the form of
such effective models may be posited on phenomenological
grounds, their structure determined through a combination of
linear stability and symmetry arguments [7]. This universal
approach can, however, obfuscate the connection between the
coefficients of the amplitude equation and the physical param-
eters of the system under study. Exemplified by the theory
of hydrodynamic stability [14–17], a more robust approach
sacrifices derivational simplicity in favor of obtaining the am-
plitude equation(s) directly from the underlying microscopic
equations of the system, typically continuous nonlinear par-
tial differential equations [18]. In contrast, for systems that
are fundamentally discrete, amplitude equations are typically
posed as discretized versions of their continuous counterparts
[19–23], seldom derived in a systematic manner from the
original governing equations.

We herein present a rigorous framework to systemati-
cally derive a fundamentally discrete and periodic complex
Ginzburg-Landau equation (dpCGLE), coupled to a discrete
and periodic mean equation, for a driven and dissipative
nonlinear oscillator, close to the onset of a supercritical
Andronov-Hopf bifurcation. The oscillator model is inspired
by recent experiments exploring the active vibrations of a
hydrodynamic lattice of self-propelled millimetric droplets
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bouncing on a vertically vibrating fluid bath [24,25]. The co-
efficients appearing in our dpCGLE are directly related to the
constitutive properties of the physical lattice system, paving
the way to compare the emergent nonlinear dynamics of the
amplitude equations—namely, the onset and formation of dis-
crete dark solitons, breathers, and traveling waves—against
experiments. Although we present the case of the hydrody-
namic lattice, we propose that the framework presented herein
is applicable to a wider class of oscillators characterized by
the presence of a dynamic coupling potential between par-
ticles. On a fundamental level, our results suggest deeper
connections between nonlinear oscillators and the physics of
active and driven matter [12,26,27].

A. The hydrodynamic active lattice

This study is motivated by experiments of quasi-one-
dimensional lattices of millimetric droplets, bouncing syn-
chronously and periodically on the surface of a vertically
vibrating fluid bath and confined to an annular channel [24];
see Fig. 1. (For a broader perspective of the physics of
bouncing droplets, see [28–31] and references therein.) Upon
successive impacts, each droplet excites a field of standing
waves whose decay time, TM , increases with the vertical ac-
celeration of the bath and diverges at the Faraday threshold
[32,33]. The superposition of the wave fields generated by
each droplet forms the global lattice wave field, which acts
as an interdroplet potential, mediating the spatiotemporal cou-
pling of the lattice. This wave-mediated coupling represents a
distinguishing feature of this new class of coupled oscillator:
the waves produced at each droplet impact give rise to an
effective self-generated, dynamic coupling potential between
droplets, one that evolves continuously with the droplet mo-
tion [34].

For sufficiently weak vibrational forcing, the droplets
exhibit stationary bouncing in a circular, equispaced lat-
tice. Above a critical vertical acceleration of the bath (or,
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FIG. 1. (a) Overhead perspective of a chain of 40 equispaced, millimetric droplets of silicone oil, confined to an annular channel and
surrounded by a shallow layer of fluid. The reflected color in the channel emphasizes the deformation of the fluid surface as droplets impact
the bath and excite subcritical Faraday waves. (b) A subset of droplet polar positions obtained from experiments for a lattice consisting
of 20 droplets [24]. Each droplet undergoes out-of-phase oscillations with respect to its neighbor, following a supercritical Andronov-Hopf
bifurcation [25]. (c) The instantaneous positions of all 20 droplets in the lattice for the same experiment as (b). The net result of the instability
is the out-of-phase oscillations of two decahedral sublattices, colored red and blue.

alternatively, critical decay time, TM), the droplets desta-
bilize to small lateral perturbations, oscillating about their
equilibrium position [see Figs. 1(b) and 1(c)]. Physically,
these oscillations emerge due to the competition between
droplet self-propulsion—arising through the propulsive force
enacted on each droplet by the local slope of the lattice
wave field—and wave-mediated, nonlocal coupling between
droplets. Oscillations of the lattice are further offset by dis-
sipative effects due to drag. That self-propulsion is achieved
and sustained by the continual exchange of energy of the
droplet with its environment—in this case, the vibrating
bath—renders this hydrodynamic lattice a novel example of
an inanimate active system. We note, however, that inertial
effects [35–39] play a significant role in the droplet system,
through both the finite mass of the droplets and the under-
damped Faraday waves excited on each impact with the bath.
These effects contrast with prevailing model systems of active
and driven matter, such as bacterial or colloidal suspensions,
where the particle dynamics and their environment are typi-
cally overdamped [40].

As shown in experiments [24], oscillations of the lat-
tice follow the onset of either a supercritical or subcritical
Andronov-Hopf bifurcation, depending primarily on the prox-
imity of neighboring droplets. Our focus here is on the
supercritical case, for which periodic, small-amplitude, out-
of-phase oscillations, initially uniform over all droplets, arise
beyond a critical decay time of the waves. (When the bifur-
cation is subcritical, the dynamics is profoundly different: in
experiments, the system approaches a distant attractor char-
acterized by a self-sustaining, nonlinear solitary-like wave
[24].) The dependence of the form of these bifurcations on
the parameters of the lattice system, and the ensuing dynamics
of the uniform, periodic state, was recently characterized via a
weakly nonlinear analysis of a mathematical model describing
the droplet lattice [25]. Upon further increase of the vibra-
tional forcing, this periodic state can itself destabilize, leading
to spatial modulations of the droplet oscillation amplitude, a
phenomenon not captured by the analysis presented in [25].
To explore and rationalize the onset and resultant dynamics
of these spatial modulations, we here present a generalized
weakly nonlinear theory of the lattice, in the vicinity of the
supercritical Andronov-Hopf bifurcation. We proceed in Secs.

I B–I D to briefly summarize the results of [25] as they per-
tain to our derivation of the governing amplitude equations
presented herein; the results of our new generalized weakly
nonlinear theory are summarized in Sec. I E.

B. Lattice model

The principal assumption underpinning the hydrodynamic
lattice model [25] is that the horizontal motion of each of the
N droplets in the lattice may be averaged over one bouncing
period, which we denote TF . This averaging, or stroboscopic
approximation [41], eliminates the droplets’ synchronous ver-
tical motion from consideration. To further simplify matters,
we assume that the droplets lie on a circle of constant radius,
R, which, in experiments, is determined by the inner and outer
radii of the annular channel. Combining this motion with the
stroboscopic approximation yields the following equation of
motion for the circumferential position, xn(t ), of each droplet
in the lattice [25]:

mẍn + D̄ẋn = −mg
∂h

∂x
(xn, t ). (1a)

Dots denote differentiation with respect to time, t , and the
space variable, x ∈ [0, L = 2πR], is directed along the cir-
cumference of the circle on which the droplets lie. According
to Eq. (1a), the time-averaged motion of each droplet of mass
m is thus governed by a balance between inertia, a linear
drag with drag coefficient D̄, and the time-averaged propulsive
wave force enacted on each droplet by the local slope of the
lattice wave field, h(x, t ), at position x = xn. By periodicity,
h(x, t ) = h(x + L, t ). The remaining parameter, g, is accel-
eration due to gravity. It is to be understood that h(x, t ) is
the stroboscopic global lattice wave field—the time-averaged
superposition of wave fields generated by each individual
droplet in the lattice—projected onto the circle.

A distinguishing feature of the hydrodynamic lattice is that
the propulsive wave force enacted on each droplet depends
explicitly on the prior trajectory of every droplet in the lattice
[25,32,33,41]. The time-dependent evolution of the lattice
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FIG. 2. (a) Behavior of the real part of the eigenvalues, λk , of the equispaced lattice (computed from (4)) in the case of a supercritical
Andronov-Hopf bifurcation for N = 20 droplets. At a critical memory, M = Mc, a single nonzero, integer wave number kc = 10 first satisfies
Re(λkc ) = 0. The solid curves joining the discrete values of Re(λk ) for each integer k are used as visual guides. (b) The prototypical wave-field
kernel, H(x), used in numerical simulations presented herein (see Sec. IV for details). (c) Regime diagram summarizing the stability of an
equispaced lattice of N = 20 droplets as the parameters l and δ are varied independently [24,25], as derived from (4) and (6). We delineate
regimes of super- and subcritical Andronov-Hopf bifurcations, as well as geometric frustration of the equispaced lattice [25]. The diamond
indicates the parameter values used in (a) and (b), specifically δ = l = 1.6.

wave field, h, may be described by

∂h

∂t
+ 1

TM
h = 1

TF

N∑
m=1

H(x − xm), (1b)

where the wave kernel, H(x), is the quasistatic wave field
generated by stationary bouncing of each individual droplet,
time-averaged over TF and projected onto the circle [25].
Prompted by the fundamental aspects of the fluid system
[24], our theory requires only that H(x) be even, sufficiently
smooth, and periodic with H(x) = H(x + L), exhibiting (1)
variations over a characteristic wavelength λW � L and (2)
exponential spatial decay localized about x = 0, with length
scale ld � L; see Fig. 2(b) and Sec. IV for a prototypical
example. It is worth emphasizing here that the work in [25]
shows that the droplet lattice spacing, L/N , for lattices that
undergo a supercritical Andronov-Hopf bifurcation is on the
same scale as λW [see Sec. I D and Fig. 2(c)]. This, in turn,
is the root cause that forces the need for a discrete Ginzburg-
Landau equation. In summary, Eq. (1b) represents a balance
between the rate of change of h, wave dissipation over the
timescale TM , and the superposition of waves generated about
the instantaneous position of each droplet in the lattice.

The dynamical system (1) is nondimensionalized via the
scalings

t = m

D̄
t̂ = t0t̂, x = λW x̂,

h = λ2
W

gt2
0

ĥ = h0ĥ, H = h0TF

t0
Ĥ.

Upon dropping the carets, we arrive at the dimensionless
lattice system [25]

ẍn + ẋn = −∂h

∂x
(xn, t ), (2a)

∂h

∂t
+ νh =

N∑
m=1

H(x − xm), (2b)

where ν = t0/TM is the dimensionless dissipation rate of the
wave field. Recalling that the decay time, TM , may be regarded
as a proxy for the vertical vibrational acceleration of the bath
[32,33], ν plays the role of a control, or bifurcation, parameter
in the dimensionless system (2). While ν is convenient for
algebraic manipulations, we will interpret our results in terms
of the dimensionless memory parameter, M = 1/ν, where the
influence of prior droplet dynamics increases with M. For
future reference, we provide a list of the salient dimensionless
parameters related to the lattice model (2) in Table I.

C. Linear stability of the equispaced lattice

The critical value of M above which the wave force pro-
motes sustained self-propulsion of the droplets, and hence
oscillations of the lattice, is determined from the linear sta-
bility of the lattice system (2). We summarize the key results;
full details are presented in [25].

Coinciding with experiments [24], we consider the sta-
bility of a static, equispaced lattice with droplet posi-
tions xn = nδ and corresponding free-surface elevation h =
ν−1 ∑N

m=1 H(x − mδ), where δ = 2πr0/N is the droplet arc-
length separation along the circle of dimensionless radius r0 =
R/λW . The droplet positions are subject to small perturbations
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TABLE I. List of salient parameters in the lattice model (2), amplitude equations (8), and stability analysis thereof.

Parameter Definition

Lattice model (2)
xn Droplet positions
N Number of droplets
h Stroboscopic lattice wave field
H Single-droplet, quasistatic wave kernel with characteristic wavelength λW , decay length ld , and amplitude A
α = 2π/N ; δ = αR/λW = αr0 Droplet angular separation; droplet arc-length separation
l = ld/λW Dimensionless spatial decay length of wave kernel
ν; M = 1/ν Dissipation rate of wave field; memory parameter
ε = √

νc − ν; νc = 1/Mc Perturbation parameter; instability threshold for supercritical Andronov-Hopf bifurcation
kc; ωc Critical wave number; angular frequency at supercritical Andronov-Hopf bifurcation
Amplitude equations (8)
μ = α/ε; μc Bifurcation parameter for amplitude equations; threshold for onset of spatial modulations
An; Bn nth droplet oscillation amplitude; rotational drift
cg; σi; γi; Di Group velocity parameter; growth coefficients; coupling coefficients; diffusion coefficients

of the form

xn(t ) = nδ + η[A exp(iknα + λkt ) + c.c.], η � 1, (3)

with a concomitant perturbation to the wave field, h. Here α =
2π/N is the angular spacing of the droplets, A is a complex
amplitude, i is the imaginary unit, and c.c. denotes complex
conjugation of the preceding term. The eigenvalues, λk , for
each integer wave number, k, satisfy the dispersion relation
Dk (λk; ν) = 0 [25], where

Dk (λk; ν) = λ2
k + λk + c0

ν
− ck

λk + ν
(4)

and the real constants ck are defined as

ck =
N∑

n=1

cos(knα)H′′(nδ).

By symmetry considerations, we need only consider discrete
wave numbers in the interval k ∈ [0, N], where N = �N/2�
and �·� denotes the floor function.

The equispaced lattice may destabilize via two distinct
mechanisms, depending primarily on the droplet separation,
δ [25]: (1) a so-called geometric instability, independent of
the memory parameter, M, brought on by geometrical frustra-
tion of the lattice wave field, or (2) an oscillatory instability,
where, for some wave number kc, the real part of a pair of
complex-conjugate eigenvalues transitions from negative to
positive as M increases through a critical value Mc = 1/νc.
We focus our attention in this paper on case (2), which
arises when ck � c0 for all k [25]. We note, however, that
a fundamental property of the lattice system is its rotational
invariance, characterized by the neutrally stable eigenvalue
λ0 = 0. As we shall see in Sec. I E, this invariance gives rise
to a discrete and periodic mean equation coupled to our dpC-
GLE, resulting in a system describing the rotational drift of
the lattice superimposed on the collective droplet oscillations.
In Fig. 2(a) we present an oscillatory instability arising for
N = 20 droplets: as the control parameter, M, is increased,
a single wave number kc = N/2 first satisfies Re(λkc ) = 0
for some critical value of M = Mc, with Im(λkc ) = ±ωc and
ωc = √

c0Mc + 1/Mc.

D. Weakly nonlinear dynamics of spatially uniform oscillations

In the case of an oscillatory instability, that the system
destabilizes to a pair of complex-conjugate eigenvalues points
to an Andronov-Hopf bifurcation [25,42]. The existence of
an Andronov-Hopf bifurcation was confirmed in [25] by an
accompanying weakly nonlinear stability analysis of the eq-
uispaced lattice. The analysis presented in [25] demonstrates
that, in the vicinity of the critical memory (0 < M − Mc �
1), each droplet evolves according to

xn = nδ + [D(T ) + O(ε)] + ε[A(T )ei(kcnα+ωct ) + c.c.]

+ O(ε2), (5)

where 0 < ε = √
νc − ν � 1. The slowly varying complex

amplitude, A(T ), a function of the slow timescale T = ε2t ,
is governed by a Stuart-Landau equation

dA

dT
= σ1A − σ̄2|A|2A (6a)

with an accompanying equation governing the evolution of the
rotational drift, D, of the lattice, namely,

dD

dT
= γ̄3|A|2. (6b)

The origin of this rotational drift may be traced back to
the neutrally stable k = 0 mode of the dispersion relation
(4), corresponding to rotational invariance. As alluded to in
Sec. I C, we will find an analogous equation in the amplitude
equations presented in Sec. I E.

The coefficients σ1, σ̄2 ∈ C, and γ̄3 ∈ R in Eqs. (6) are
defined in terms of the parameters of the lattice system (2) [25]
and are related to the coefficients of the amplitude equations
derived here in Sec. I E. For now, we simply comment that
the direction of rotational drift is given by the sign of γ̄3,
changing direction when ωc → −ωc. [Prompted by experi-
mental observations, note that we only consider unidirectional
waves in Eq. (5).] However, when kc = N/2, it is found that
γ̄3 ≡ 0, in which case D = constant, corresponding to an
arbitrary shift of the droplet equilibrium positions. Further,
consistent with the instability of the equispaced lattice for ν <

νc, we have that Re(σ1) > 0; hence the lattice undergoes a
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super- or subcritical Andronov-Hopf bifurcation for Re(σ̄2) >

0 and Re(σ̄2) < 0, respectively.
The stability of the equispaced lattice and its complex

dependence on the separation distance, δ, and dimensionless
spatial decay length, l = ld/λW , is summarized in Fig. 2(c) for
the particular case of N = 20 droplets. A crucial feature of the
stability analysis just described is the value of the critical wave
number, kc [25]. When the Andronov-Hopf bifurcation is su-
percritical (green regions), it is typically observed that kc =
�N/2� (except near the boundaries with subcritical Andronov-
Hopf bifurcations) [25]. As discussed in Sec. II C, we exploit
this proximity to kc = N/2 in our asymptotic derivation of the
amplitude equations to capture relevant terms promoted from
lower orders that should appear in our dpCGLE and mean
equation.

The analysis presented in [25] accounts for spatially uni-
form oscillations of the lattice in a small window (0 < M −
Mc � 1) beyond the supercritical Andronov-Hopf bifurca-
tion. However, numerical simulations of the hydrodynamic
active lattice (2) reveal the onset of a second bifurcation as
the memory parameter, M, is further increased, where the
spatially uniform, small-amplitude oscillations of the droplet
positions give way to spatio-temporal modulations in the
droplet oscillation amplitude, arising via a long-wavelength
instability [25]. To capture this second bifurcation, and the
ensuing dynamics, the weakly nonlinear analysis leading to
the amplitude equations (6) must be generalized to account
for spatial, as well as temporal, effects.

E. The amplitude equations governing the lattice vibrations

Starting from the lattice system (2), we use the asymptotic
method of multiple scales [43] to derive a generalized set of
amplitude equations, accounting for both spatial and temporal
modulations of the droplet oscillation amplitude and rota-
tional drift. Specifically, we show that each droplet position
evolves according to

xn = nδ + ε[An(T )ei(kcnα+ωct ) + c.c. + Bn(T )] + O(ε2), (7)

where An is the slowly varying complex amplitude of the nth
droplet in the lattice, Bn is the rotational drift, and T = ε2t is
the slow timescale. We emphasize that, in contrast to Eq. (5),
the complex amplitude, An, and rotational drift, Bn, now de-
pend on the droplet number, n. Moreover, spatial periodicity
of the lattice implies that An and Bn are defined as periodic
sequences, specifically An = An+N and Bn = Bn+N for all n.

As is typical in the method of multiple scales, eliminating
secular terms at successive orders of ε yields a coupled system
of equations for An and Bn, resulting in a dpCGLE coupled to
a discrete and periodic mean equation:

dAn

dT
+ μ2cg∇An = σ1An − σ2|An|2An + μγ1An∇Bn

+μ2D1An, (8a)

dBn

dT
= μ2D2Bn + 2μRe[γ2An∇A∗

n] + μγ3|An|2.
(8b)

Our analysis leads us to define the control parameter, μ, ap-
pearing in the amplitude equations (8), defined by

μ = α

ε
= 2π

N
√

νc − ν
.

Our theory is valid for μ = O(1) or, equivalently, for the dom-
inant balance α ∼ ε � 1. (We note that this condition requires
that N be sufficiently large.) Table I provides a reference list
of coefficients appearing in the amplitude equations (8).

Central to the amplitude equations (8) are the first and
second-order difference operators, ∇ and , which may be
regarded as the discrete counterparts of spatial derivatives. As
detailed in Sec. II B, these difference operators are defined in
terms of the discrete Fourier transform (DFT). Specifically,
for a periodic sequence Fn = Fn+N for all n, we first define the
DFT [44]

Fξ [Fn] =
N−1∑
n=0

Fne−inξα for ξ = 0, . . . , N − 1, (9a)

and its inverse

F−1
n [F̂ξ ] = 1

N

N−1∑
ξ=0

F̂ξ einξα for n = 0, . . . , N − 1, (9b)

where we denote F̂ξ = Fξ [Fn]. We then define the difference
operators, ∇ and , in terms of their Fourier symbols, ∇̂ξ

and ̂ξ , so that Fξ [∇Fn] = ∇̂ξ F̂ξ and Fξ [Fn] = ̂ξ F̂ξ , or,
equivalently,

∇Fn =
N∑

m=1

FmF−1
n−m[∇̂ξ ] and Fn =

N∑
m=1

FmF−1
n−m[̂ξ ].

Finally, the periodic Fourier symbols, ∇̂ξ and ̂ξ (satisfying
∇̂ξ = ∇̂ξ+N and ̂ξ = ̂ξ+N ), are derived in Sec. II B and are
defined ∇̂ξ = iξ for |ξ | < N/2 and ̂ξ = −ξ 2 for |ξ | � N/2.

We define ∇̂N/2 = 0 so that the associated difference operator,
∇, is real when N is even [44].

We pause to emphasize a few aspects of the system (8).
With regard to the coefficients, the group velocity parameter,
cg, growth coefficients, σi (i = 1, 2), coupling coefficients, γi

(i = 1, 2, 3), and diffusion coefficients, Di (i = 1, 2), are de-
termined as part of the multiple-scale analysis and are directly
related to the physical parameters of the lattice system (2)
(see Appendix A for their algebraic forms). Notably, D2 > 0
and γ3 are both real, while the remaining parameters are all
complex with Re(σ1) > 0 and Re(D1) > 0.

Next, we highlight a key assumption involved in deriving
the amplitude equations (8) that was not present in deriving
the spatially uniform Stuart-Landau and drift equations (6):
namely, that α � 1, which is required for the concept of slow
variation of An and Bn with n. A keen eye will note that
Eqs. (8) do not immediately reduce to Eqs. (6) when solu-
tions independent of n are considered. However, consistency
between (8) and (6) is achieved in the limit α → 0 when spa-
tial variations are absent, since we find that σ2 = σ̄2 + O(α).
Further, as discussed in Appendix A, γ̄3 = αγ3 = O(α) when
kc � �N/2�, and hence the drift, D, appearing in the expansion
(5) is promoted to O(ε) when α ∼ ε � 1; consequently, D is
replaced by εBn in the expansion (7).
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Finally, we note that, in our system, discreteness origi-
nates at the level of the underlying microscopic equations
(2), and thus is a connate characteristic of the resultant am-
plitude equations (8). This fundamental discreteness is in
contrast with discrete versions of the CGLE motivated by
a direct discretization of the continuous CGLE using stan-
dard finite difference operators [20–23]. Similarly, periodicity
arises from the periodicity of the lattice, rather than being
later imposed through periodic boundary conditions [45,46].
Interestingly, the system (8) is the discrete and periodic ana-
log of the amplitude equations describing a host of disparate
physical phenomena presented elsewhere [47–50].

F. Outline

This paper is organized as follows. For the interested
reader, in Sec. II we provide further details of the multiple-
scale procedure involved in deriving the amplitude equations
(8) from the lattice model (2). We then proceed to analyze
the successive bifurcations of the amplitude equations (8)
in Sec. III, rationalizing the onset of the second bifurcation
leading to a long-wavelength instability of time-periodic os-
cillations of the lattice. Numerical solutions of the amplitude
equations (8) beyond the second bifurcation are presented in
Sec. IV, demonstrating their rich dynamical behavior in the
form of traveling waves, dark solitons, and dark breathers,
prompting future comparison with experiments. A review of
our results is presented in Sec. V, along with a discussion of
future directions.

II. MECHANICS OF THE WEAKLY NONLINEAR
ANALYSIS

The weakly nonlinear analysis leading to the deriva-
tion of the amplitude equations (8) assumes slowly varying
spatial and temporal modulations of the oscillation ampli-
tude and rotational drift of each droplet. For a supercritical
Andronov-Hopf bifurcation, stable, small-amplitude oscilla-
tions arise when ν is only slightly below the critical threshold,
νc (corresponding to M slightly above Mc); specifically
we consider 0 < ε = √

νc − ν � 1 and small perturbations
from the equispaced lattice configuration xn = nδ and h =
ν−1

c

∑N
m=1 H(x − mδ). We then pose the following asymptotic

multiple-scale expansions:

xn ∼ nδ +
∞∑

i=1

εix(i)
n (t, T ),

h ∼ 1

νc

N∑
m=1

H(x − mδ) +
∞∑

i=1

εih(i)(x, t, T ), (10)

where the slow timescale is T = ε2t .
As described fully in Appendix A, inserting (10) into the

lattice system (2) leads to a hierarchy of problems for x(i)
n and

h(i) at successive orders of ε. A series of solvability conditions
must then be satisfied at each order of ε to guarantee the
suppression of secular terms that would otherwise lead to un-
bounded solutions and a violation of the multiple-scale ansatz
(10). Satisfying the solvability condition arising at O(ε3) leads
to the amplitude equations (8). Before arriving there, however,

there are several aspects of the current problem that com-
plicate the weakly nonlinear, multiple-scale analysis of the
lattice system (2). Our derivation falls into three stages: (1)
we first solve for the wave-field perturbations, h(i), allowing
us to project the wave force onto the droplet trajectories, x(i)

n ;
(2) we next exploit the spatial decay of the wave kernel, H,
and the assumed slowly varying spatial effects to develop an
asymptotic approximation of the nonlocal interdroplet cou-
pling; (3) finally, we consider the limit of weak asymmetry
when the number of droplets is large (equivalently, when kc

departs slightly from N/2). We elaborate on these three key
ideas below.

A. Solving for the wave field

Our first point of interest is at O(ε), where the lattice
equations (2) yield

∂2x(1)
n

∂t2
+ ∂x(1)

n

∂t
= −x(1)

n

νc

N∑
m=1

H′′[(n − m)δ] − ∂h(1)

∂x

∣∣∣∣
x=nδ

,

(11a)

∂h(1)

∂t
+ νch(1) = −

N∑
m=1

x(1)
m H′(x − mδ). (11b)

At this stage in conventional multiple-scale analyses of
nonlinear oscillators [42,43], one is typically interested in
solving for the perturbed oscillator position, x(1)

n , alone. In the
present case, however, we must also contend with Eq. (11b)
governing the free-surface perturbation, h(1). In order to
project the dynamics entirely onto the droplet trajectories, x(1)

n ,
our first key idea is to use the form of (11b) to define the
auxiliary variables, Xn, satisfying [25]

∂Xn

∂t
+ νcXn = x(1)

n . (12)

A particular solution of (11b) is then

h(1) = −
N∑

m=1

XmH′(x − mδ). (13)

We neglect the homogeneous solution of (11b), which decays
exponentially on the fast time-scale, t [25]. Now that h(1)

is expressed in terms of the auxiliary variables, Xn, through
Eq. (13), the linear system (11) may be recast as a dynamical
system for x(1)

n and Xn. Specifically, substituting (13) into
(11a) yields Lnx(1) = 0, where x(1) = (x(1)

1 , . . . , x(1)
N ) and the

linear operator, Ln, is defined as

Lnx(1) = ∂2x(1)
n

∂t2
+ ∂x(1)

n

∂t
+

N∑
m=1

(
x(1)

n

νc
− Xm

)
H′′[δ(n − m)].

(14)
Informed by the ansatz (3), we now seek a solution to

Lnx(1) = 0 of the form

x(1)
n = An(T )ei(kcnα+ωct ) + c.c. + Bn(T ),

Xn = An(T )

νc + iωc
ei(kcnα+ωct ) + c.c. + 1

νc
Bn(T ), (15)

where we recall that the critical wave number of instability, kc,
and angular frequency, ωc, are determined from linear theory
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(Sec. I C). We note that the presence of the subscript n in
both the complex amplitude, An, and mean, Bn, generalizes the
spatially uniform expansion (5) considered in prior work [25],
which leads to the derivation of the Stuart-Landau equation
(6a) and the drift equation (6b). By inserting (15) into (14),
we find that

Lnx(1) =
{

eiφn

νc + iωc

N∑
m=1

(An − An−m)e−ikcmαH′′(mδ)

}
+ c.c.

+ 1

νc

N∑
m=1

(Bn − Bn−m)H ′′(mδ), (16)

where φn = kcnα + ωct . We note that, en route to obtain-
ing (16), we first write An−m = (An−m − An) + An and then
simplify the resultant expression using the properties of the
dispersion relation, namely, Dkc (λkc ; νc) = D0(0; νc) = 0.

B. Approximating discrete convolutions

We now arrive at the second key idea, which lies at the
heart of our analysis: approximating the discrete convolutions
arising in Eq. (16). When An and Bn are spatially uniform (i.e.,
independent of n), the right-hand side of (16) is identically
zero. To allow for spatial variations, we approximately satisfy
(16) at this order by considering the leading-order terms of an
asymptotic expansion of each discrete convolution in terms of
α � 1, where α = 2π/N is the angular spacing parameter.
We then assume a distinguished limit between the relative
sizes of α and ε; specifically, we consider α ∼ ε and thus
define α = με, where μ = O(1) is the control parameter ap-
pearing in the amplitude equations (8).

Motivated by the discrete convolutions appearing in (16),
we proceed to derive an asymptotic expansion for the convo-
lution

In =
N∑

m=1

Fn−mGm

in terms of the small parameter α � 1, where Fn = Fn+N

and Gn = Gn+N are given periodic sequences. For the active
lattice under consideration, Fn plays the role of the complex
amplitude, An, or the drift, Bn, while Gn plays the role of
H′′(nδ), or similarly for higher-order derivatives of H. We
therefore suppose that Fn is slowly varying in n, resulting in
its DFT, F̂ξ , being localized around ξ = 0. We consider here
the regime where the exponential decay length of the wave
kernel, H, is comparable to the droplet separation distance, so
δ ∼ l . As a consequence, Gn may be assumed to be localized
around n = 0, resulting in Ĝξ being slowly varying in ξ .

By the convolution theorem, it follows that Îξ ≡ Fξ [In]
satisfies Îξ = F̂ξ Ĝξ . As F̂ξ is localized around ξ = 0, we aim
to expand Ĝξ about ξ = 0 with ξ = O(1). We first recast the
DFT (9a) as

Ĝξ =
∑
n∈I

Gne−inξα for ξ ∈ I,

where the set I is defined I = {− 1
2 N, . . . , 1

2 N − 1} for N
even and I = {− 1

2 (N − 1), . . . , 1
2 (N − 1)} for N odd. We

then Taylor expand

e−inξα ∼ 1 − inαξ − 1

2
n2α2ξ 2 + O(α3),

valid for n, ξ = O(1). By exploiting the assumed exponential
localization of Gn around n = 0, we obtain

Ĝξ ∼
∑
n∈I

Gn

(
1 − inαξ − 1

2
n2α2ξ 2

)
+ O(α3),

valid for ξ = O(1), incurring only exponentially small errors
when including terms with n �= O(1) in the sum. It then fol-
lows that

Îξ ∼ F̂ξ

∑
n∈I

Gn − α(iξ F̂ξ )
∑
n∈I

nGn + α2(−ξ 2F̂ξ )

×
∑
n∈I

n2

2
Gn + O(α3) (17)

for ξ ∈ I, where we again incur only exponentially small
errors when ξ �= O(1) due to the exponential localization of
F̂ξ around ξ = 0.

By applying the inverse DFT (9b) to Eq. (17), we obtain
the asymptotic expansion

In ∼ Fn

N∑
m=1

Gm−α∇Fn

N∑
m=1

amGm+α2Fn

N∑
m=1

bmGm+O(α3),

(18)
where the difference operators, ∇ and , are defined in
Sec. I E. Finally, the weights an and bn are periodic in n
(so an = an+N and bn = bn+N ) and are defined as an = n for
|n| < 1

2 N and bn = 1
2 n2 for |n| � 1

2 N . We define aN/2 = 0 to
avoid bias arising in the sum

∑
n∈I nGn when N is even, since

one could equally include n = −N/2 or n = +N/2 in the set
I. Setting aN/2 = 0 incurs only exponentially small errors in
the sum

∑N
m=1 amGm due to the exponential localization of Gm

around m = 0. We note that, under these definitions, an is an
odd sequence in n, while bn is an even sequence in n.

Applying the asymptotic expansion (18) to the convolu-
tions in (16) yields the sought-after approximation

Lnx(1) +
{

− α
∇Aneiφn

νc + iωc

N∑
m=1

ame−ikcmαH′′(mδ)

+ α2 Aneiφn

νc + iωc

N∑
m=1

bme−ikcmαH′′(mδ)

}
+ c.c.

+ α2 Bn

νc

N∑
m=1

bmH′′(mδ) = O(α3). (19)

We note that there is not a ∇Bn term in (19) as the
symmetry of the wave kernel, H, and the oddness of the
sequence, an, determines that its coefficient vanishes, specif-
ically

∑N
m=1 amH′′(mδ) = 0. Recalling our assumption that

α ∼ ε, terms of O(αn) in Eq. (19) are consequently promoted
to O(εn+1), appearing as secular terms (either those constant
in t or proportional to eiφn ) on the right-hand side of the expan-
sion of Eq. (2a). Thus, the An and Bn terms in Eq. (19) are
destined to become the diffusion-like terms in the amplitude
equations (8).
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C. The limit of weak asymmetry

Finally, our third key idea exploits the observed cor-
respondence between kc � �N/2� and the emergence of a
supercritical Andronov-Hopf bifurcation [see Fig. 2(a)]. We
first define χ = N/2 − kc, where we typically find that χ = 0
or χ = 1/2, and then observe that αχ � 1 for χ = O(1) and
α � 1. Then, by recalling that α = 2π/N , we use the form
kc = N/2 − χ to recast the ∇An coefficient in (19) as

α

νc + iωc

N∑
m=1

ame−ikcmαH′′(mδ)

= iα

νc + iωc

N∑
m=1

am(−1)m sin(mαχ )H′′(mδ),

which is an even function of α for χ > 0, and vanishes for
χ = 0. In the former case, this coefficient is expected to be
of size O(α2) as α → 0, which may be verified numerically.
Further, we are prompted to define the O(1) complex group
velocity parameter

ĉg = 1

α

N∑
m=1

ame−ikcmαH′′(mδ)

νc + iωc
,

which vanishes when kc = N/2. The parameter ĉg is di-
vided by a further coefficient to yield the cg in (8); see
Appendix A for clarification. [Note that Re(cg) plays the role
of a true group velocity, while Im(cg) is related to the asym-
metric growth rate of perturbations to kc.] Since we consider
α ∼ ε, we then acknowledge that the term α2ĉg∇An in (19)
appears as a secular term at O(ε3), ultimately resulting in the
advective term in our dpCGLE (8a). In this final step, Eq. (19)
reduces to Lnx(1) = O(ε3), verifying our ansatz for x(1)

n .

D. Summary

As shown in Appendix A, a combination of the foregoing
three key ideas is used to systematically derive the amplitude
equations (8) from the lattice system (2). The time deriva-
tives and the nonlinear coupling terms in (8) are obtained
by eliminating higher-order secular terms, both those that are
promoted from O(ε2) and others that appear at O(ε3). We now
proceed to analyze the stability of the amplitude equations (8),
elucidating the second bifurcation leading to spatiotemporal
modulations of the droplet oscillation amplitude and drift as
the control parameter, μ, is decreased from infinity (corre-
sponding to ν < νc).

III. STABILITY OF PERIODIC OSCILLATIONS

As discussed in Sec. I D, we are concerned with the sta-
bility of the hydrodynamic lattice beyond the threshold of
the supercritical Andronov-Hopf bifurcation, specifically for
ν < νc, or equivalently, for μ < ∞. In this section, we elu-
cidate the mechanism leading to a modulational instability
of the spatially uniform solution of the amplitude equations
(8). The onset of spatial amplitude modulations in the canon-
ical complex Ginzburg-Landau equation is the eponymous
Benjamin-Feir-Newell (BFN) instability, after its discovery in
describing the instability of periodic surface gravity (Stokes)
waves [51,52]. As we shall see, in our system, this instability
takes a slightly different form due to the coupling of the
complex amplitude, An, with the mean, Bn. In what follows,
we conduct a linear stability of the amplitude equations (8),
the computations for which are standard [6] but lengthy. We
therefore highlight only the key features here.

A. Linear stability

A supercritical Andronov-Hopf bifurcation arising in the
limit α � 1 corresponds to Re(σ2) > 0. In this case, there
exists a spatially uniform solution to (8) of the form

A(0)
n (T ) = ρ exp(i�T ) and B(0)

n (T ) = μγ3ρ
2T + const,

(20)
where the modulus and angular frequency of the complex
amplitude are

ρ =
√

Re(σ1)/Re(σ2) and � = Im(σ1σ
∗
2 )/Re(σ2).

We now consider small perturbations about the spatially
uniform state (20) of the form

An(T ) = A(0)
n (T )(1 + An(T )), Bn(T ) = B(0)

n (T ) + Bn(T ),

where 0 < |An| ∼ |Bn| � 1. Substituting this ansatz into (8)
and neglecting terms of quadratic order and higher, we obtain
a linear system governing the perturbations An and Bn, supple-
mented by an additional equation for A

∗
n . The resulting linear

system may then be diagonalized by applying a DFT in n [see
Eq. (9a)]. Specifically, we define Âξ = Fξ [An], B̂ξ = Fξ [Bn]
and Ĉξ = Fξ [A

∗
n], where ξ = 0, . . . , N − 1. Under this trans-

formation, we obtain

dÂξ

dT
= Mξ (μ)Âξ , (21)

where Âξ = (Âξ , B̂ξ , Ĉξ )T and

Mξ (μ) =
⎛
⎝−μ2cg∇̂ξ − ρ2σ2 + μ2D1̂ξ μγ1∇̂ξ −ρ2σ2

μρ2(γ ∗
2 ∇̂ξ + γ3) μ2D2̂ξ μρ2(γ2∇̂ξ + γ3)

−ρ2σ ∗
2 μγ ∗

1 ∇̂ξ −μ2c∗
g∇̂ξ − ρ2σ ∗

2 + μ2D∗
1̂ξ

⎞
⎠. (22)

We recall that ∇̂ξ and ̂ξ are the Fourier symbols of the differ-
ence operators ∇ and , respectively, as defined in Sec. I E.

The eigenvalues, �
( j)
ξ (for j = 1, 2, 3), of Mξ (μ) deter-

mine the stability of the spatially uniform state (20), where
the dependence of �

( j)
ξ on μ is presented in Fig. 3. The onset

of instability is determined by the eigenvalue (or one of a pair
of complex-conjugate eigenvalues) of Mξ (μ) with maximal
real part; we denote this eigenvalue as �ξ (μ) for each ξ . At
a given value of μ > 0, the perturbed system (21) is neutrally
stable if Re[�ξ (μ)] � 0 for all ξ , and unstable otherwise. We
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FIG. 3. The linear stability of the periodic state for N = 36 (left) and N = 37 (right). (a) The case ξ = 1. The real part of the eigenvalues
�

( j)
1 for j = 1, 2, 3 as a function of μ. The transition from stable (gray shading) to unstable as μ decreases determines the instability threshold

for ξ = 1 (red circle). For N = 37, instability is predicted by the amplitude equations (8) for μ � 1, a regime inconsistent with the μ = O(1)
assumption. (b) The instability threshold, μξ , for each integer wave number, ξ , for ξ � N/2. The long-wave mode, ξ = 1 (red circle), is the
first to destabilize as μ is decreased.

first note, however, that the rotational and temporal invari-
ance of the spatially uniform state (20) implies that �0 = 0
has multiplicity two. The remaining eigenvalue for ξ = 0 is
−2Re(σ1) < 0, corresponding to a stable perturbation from
the spatially uniform state for all μ > 0. Hence, if an insta-
bility to the spatially uniform state arises, then it is for ξ > 0,
corresponding to the emergence of a nontrivial spatial pattern.

Numerically we observe that, for any ξ > 0, there is an
unstable range of μ (for which Re[�ξ (μ)] > 0) of the form
0 < μ < μξ for some μξ > 0. It follows that the spatially
uniform state is stable for μ � μξ . We note that the eigen-
values computed for μ � 1 arise in a regime inconsistent
with our μ = O(1) assumption (see Sec. I E), so we consider
only μ = O(1) when determining the instability threshold,
μξ [see Fig. 3(a) for reference]. In the μ = O(1) regime of
interest, the spatially uniform state is therefore unstable to
perturbations for μ < μc = maxξ μξ .

B. The onset of spatial amplitude modulations

A crucial feature of the system (8) is the coupling of the
complex amplitude, An, with the mean, Bn, which acts to drive
the instability of the spatially uniform state (20). We observe
that variations in Bn act as a source term in the amplitude, An,
thus promoting spatial variations in An. For large μ, the diffu-
sion term in (8a) counteracts the growth of spatial variations of
An, but this smoothing effect may become subdominant to the
source term when μ is sufficiently small. Likewise, a similar
competition between diffusion and the excitation of spatial
variations in Bn, driven by variations in An, is apparent in
Eq. (8b). As a consequence, this coupling provides a positive
feedback loop for the emergence of spatial variations, whereas
a BFN-like mechanism instead relies on sufficiently small
dissipation [52]. In fact, a true BFN instability only arises
in the system (8) when the coupling coefficients, γi, and the
group velocity parameter, cg, vanish. A necessary condition
for instability in this artificial case is Re(σ2D∗

1 ) < 0 [21]. By

numerically computing the eigenvalues of Mξ (μ), we observe
that, similar to the BFN instability, the amplitude equations (8)
exhibit a long-wave instability at ξ = 1 [see Fig. 3(b)]; hence,
in the cases considered here, we have μc = μ1. Finally, as dis-
cussed in Appendix B, we observe good agreement between
the value of μc predicted by the linear stability analysis of
Sec. III A and by direct numerical simulations of the lattice
equations (2) for α � 1, consistent with the validity of our
weakly nonlinear theory (see Sec. I E).

IV. NUMERICAL SOLUTIONS

We now explore the nonlinear dynamics predicted by the
amplitude equations (8) beyond the onset of spatial mod-
ulations, μ < μc. To proceed, we must select a particular
choice for the wave kernel, H. Motivated by the form of
the wave field arising in the bouncing-droplet system [32], a
candidate wave kernel that satisfies the assumed periodicity,
exponential decay and quasi-monochromaticity may be pos-
tulated by projecting the form of the dimensionless radially
symmetric wave F (r) = AJ0(2πr)sech(r/l ) onto a circle of
circumference 2πr0 = Nδ, where r0 = R/λW [25]. Here J0

is the Bessel function of the first kind with order zero and
A is the dimensionless amplitude of the wave. The resultant
algebraic form of the wave kernel is then taken to be

H(x) = F

(
2r0 sin

x

2r0

)
, (23)

where an example of this wave kernel is given in Fig. 2(b). For
the numerical results presented herein, we consider A = 0.1
[25]. We note that the qualitative features of these results do
not depend on the value of A; increasing A simply serves
to increase the amplitude of the wave field accompanying
the equispaced lattice, the main consequence of which is a
concomitant decrease in the critical memory, Mc. As discussed
in Appendix C, there is a vast parameter space we could
explore with equations (8) by varying the parameters l , δ,
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FIG. 4. The nonlinear dynamics predicted by the amplitude equations (8) for N = 40 droplets and μ < μc = 0.852. The system parameters
here are l = δ = 2.6, yielding kc = 20 and νc = 1.585. (a) The upper and lower bounds of |An(T )| attained over the entire simulation. We
identify four dynamical regimes, which are denoted by Roman numerals and divided by the dotted vertical lines. (b) The upper and lower
bounds of δBn(T ) = Bn(T ) − 〈Bn(T )〉 attained over the entire simulation, where angled brackets denote the average over n. (c) Snapshots of
|An| at time T = 1200 for each dynamical regime, where μc − μ takes values (i) 0.03, (ii) 0.08, (iii) 0.12, and (iv) 0.14. (d) Corresponding
space-time plots of |An(T )| for the same parameter values as (c). The dashed lines correspond to the snapshot time, T = 1200.

and N . We here consider l = δ = 2.6 and explore the effect
of decreasing μ below μc (equivalently, increasing M) for
two adjacent droplet numbers, N = 40 and N = 41. These
two cases serve to elucidate the key phenomenology exhibited
by the amplitude equations (8). A deeper exploration of the
parameter space is reserved for future work. Before we present
the solutions, we note that the only control parameter in the
amplitude equations (8) is μ, since the coefficients are fixed
for a particular choice of wave kernel (23) and its constituent
parameters, specifically l , δ, and N . Thus, varying μ cor-
responds to traversing a particular path through parameter
space, in contrast to varying each coefficient in the amplitude
equations independently. As we shall see, this variation in
μ gives rise to a series of bifurcations between qualitatively
different dynamical behaviors.

The amplitude equations are evolved using a spectral
method over the droplet number, n, and a fourth-order Runge-
Kutta method in time, for which the linear terms are evolved
analytically using an integrating factor (see Appendix D for
details) [53]. Initially considering μ just below the instability
threshold, 0 < μc − μ � 1, we evolve the amplitude equa-
tions (8) from the initial condition An = ρ + ζ sin(nα) and
Bn = ζ sin(nα) with ζ = 0.05 and continue the simulations
until a periodic state is attained. Thereafter, we decrement
μ by 0.02 and initialize the following simulation at the final

values obtained in the preceding simulation. The MATLAB
code used to simulate these dynamical states is provided in
the Supplemental Material [54].

In the case of N = 40 droplets (see Fig. 4), close to the
onset of spatial modulations at μ = μc, we first observe a
time-independent solution for |An| [panel (i)], which destabi-
lizes into a periodic, breather-like state [panel (ii)] with slight
dips apparent in |An|. These dips persist as μc − μ is increased
[panels (iii) and (iv)], but the solution is instead constant in
time. We note that when N = 40, the group velocity param-
eter, cg, is identically zero. For N = 41 droplets and cg �= 0
(Fig. 5), similar dynamical transitions occur, although the
asymmetry of the system instead yields traveling waves [panel
(i)] and propagating states. Notably, we observe parameter
regimes for which dark breathers [panel (ii)] and dark solitons
[panels (iii)–(v)] arise, characterized by the sharp dips in the
amplitude, |An(T )|, towards zero, features that are not present
when N = 40. All of the aforementioned features arise over
a large range of N , and thus appear to be canonical features
of the discrete amplitude equations (8). We also note that the
jumps in the bounds of |An| and Bn are indicative of hysteresis
between dynamical states, an effect to be explored in greater
detail elsewhere.

Finally, we recall that the difference operators, ∇
and , are derived systematically from the DFT. In
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FIG. 5. The nonlinear dynamics predicted by the amplitude equations (8) for N = 41 droplets and μ < μc = 0.853. The system parameters
here are l = δ = 2.6, yielding kc = 20 and νc = 1.582. (a) The upper and lower bounds of |An(T )| attained over the entire simulation. We
identify five dynamical regimes, which are denoted by Roman numerals and divided by the dotted vertical lines. (b) The upper and lower bounds
of δBn(T ) = Bn(T ) − 〈Bn(T )〉 attained over the entire simulation, where angled brackets denote the average over n. (c) Snapshots of |An| at
time T = 1200 for each dynamical regime, where μc − μ takes values (i) 0.014, (ii) 0.046, (iii) 0.06, (iv) 0.08, and (v) 0.1. (d) Corresponding
spacetime plots of |An(T )| for the same parameter values in (c). The dashed lines correspond to the snapshot time, T = 1200.

Appendix E, we consider the dynamics predicted by the am-
plitude equations (8) when the difference operators are instead
replaced by local central finite difference operators. A stencil
of 2p + 1 points therefore gives rise to explicit interaction of
a particular droplet with its p-nearest neighbors. We generally
observe qualitatively similar dynamics arising for p = 1, with
apparent convergence to the results computed with the DFT
difference operators as p is successively increased. However,
one surprising feature is the emergence of stable bright soli-
tons for p = 1, a feature not apparent for p > 1 or for the
DFT difference operators. We conclude, therefore, that the dy-
namics predicted by the amplitude equations (8) may change
profoundly if one considers different couplings between
droplets, an effect to be explored in greater detail elsewhere.

V. DISCUSSION AND CONCLUSION

In this paper, we have presented a rigorous mathematical
framework to derive a discrete and periodic set of ampli-
tude equations from a driven and dissipative oscillator model,
inspired by the physics of droplet lattices bouncing on a vi-
brating fluid bath [24]. Our systematic derivation provides a
direct link between the constitutive properties of the lattice
model (2) (specifically, the wave kernel, H) and the coeffi-

cients arising in the amplitude equations (8). A linear stability
analysis of the amplitude equations (8) reveals the importance
of the coupling to the discrete mean equation (8b) in desta-
bilizing the system from a spatially uniform state, leading
to spatial modulations in the droplet oscillation amplitude
following a second bifurcation, similar in spirit to the BFN
instability.

Beyond this second bifurcation, numerical solutions of the
amplitude equations (8) reveal a fascinating family of dynam-
ical behaviors including dark solitons, breather states, and
traveling waves. It remains an open question as to whether
such states are robust when considering the continuous analog
of the amplitude equations (8) [55–57]. As computational
models of the droplet system advance [58], the predictions
of the amplitude equations may be compared against direct
numerical simulations of the droplet dynamics, paving the
way for further experimental investigation [24]. In particular,
a tantalizing prospect is to hunt for the emergence of so-called
chimera states [59,60], thought to be ubiquitous in coupled
oscillators subject to nonlocal coupling, but have been shown
to exist in only a handful of experimental systems to date
[61–64].

We conclude with the proposition that the framework used
to derive the amplitude equations (8) applies to a more general
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class of periodic oscillator models of canonical form

ẍn + ẋn = −∂h

∂x
(xn, t ), (24a)

Ph =
N∑

m=1

H(x − xm), (24b)

with the linear operator P = ∂/∂t + ν in Eq. (2b) serving as
a particular example. The novelty of the model (24) is that
the interparticle coupling potential, h, is dynamic, continu-
ously evolving with the particle motion, rather than being
fixed in space or with respect to the particles. Other poten-
tial choices of P are numerous and could lead to an even
richer family of dynamics. For a particular choice of P , if
the bifurcation leading to instability of the oscillator is of
supercritical Andronov-Hopf type, then one should expect
a complex Ginzburg-Landau equation in the vicinity of the
bifurcation point. However, the precise form of the amplitude
equations will change depending on the type of primary bifur-
cation that arises and the inherent symmetries of the system
[5,7]. Such an investigation may lead to further theoretical
insights into the dynamics and pattern-forming behavior of
active particles in complex environments [35,65].
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APPENDIX A: DERIVATION OF THE GINZBURG-LANDAU
AND MEAN EQUATIONS

Further details are here provided of the multiple-scale ex-
pansion leading to the complex Ginzburg-Landau and mean
equations (8). The general procedure toward obtaining equa-
tions (8) is to substitute the asymptotic expansions (10) into
the lattice equations (2) and gather successive powers of ε.
At each successive order, we suppress resonant terms propor-
tional to eiφn(t ) [where φn(t ) = kcnα + ωct] or those constant
in t . To extract all relevant terms at each order, we must
introduce auxiliary variables to solve for the free surface
(see Sec. II A), expand convolutions in the manner summa-
rized in Sec. II B, and consider the limit of weak asymmetry
(Sec. II C). For notational efficiency, we denote Hm = H(mδ),
H′

m = H′(mδ), and so forth.
At leading order we obtain

∂h(0)

∂x

∣∣∣∣
x=nδ

= 0, h(0)(x) = 1

νc

N∑
m=1

H(x − mδ), (A1)

reflecting the fact that the free-surface gradient beneath each
droplet vanishes in the steady-state. It may be readily verified
that all odd derivatives of h(0) vanish beneath each droplet at
equilibrium, a fact we will make repeated use of in simplifying
the forthcoming terms arising in our expansion.

The problem at O(ε) has already been discussed in Sec. II,
and thus we proceed directly to O(ε2), remembering that
terms from the right-hand side of Eq. (19) are promoted to
O(ε3) after setting α = με. The lattice equations at O(ε2)
are

∂2x(2)
n

∂t2
+ ∂x(2)

n

∂t
= −

[
∂h(2)

∂x
+ x(2)

n

∂2h(0)

∂x2
+ x(1)

n

∂2h(1)

∂x2

]∣∣∣
x=nδ

, (A2)

∂h(2)

∂t
+ νch(2) = h(0) +

N∑
m=1

[
1

2

(
x(1)

m

)2H′′(x − mδ) − x(2)
m H′(x − mδ)

]
. (A3)

Following the procedure outlined in Sec. II A, we solve for h(2) by introducing two further auxiliary variables, Yn and Zn,
satisfying

∂Yn

∂t
+ νcYn = 1

2

(
x(1)

n

)2
,

∂Zn

∂t
+ νcZn = x(2)

n , (A4)

chosen to match the coefficients of the wave kernel on the right-hand side of (A3). Hence, a particular solution of (A3) is

h(2) = 1

νc
h(0) +

N∑
m=1

[YmH′′(x − mδ) − ZmH′(x − mδ)]. (A5)

By substituting the form of x(1)
n , given by Eq. (15), into the first equation of (A4), we obtain the particular solution

Yn = 1

νc

(
|An|2 + 1

2
B2

n

)
+ Bn

( An

νc + iωc
eiφn + c.c.

)
+ 1

2

(
A2

n

νc + 2iωc
e2iφn + c.c.

)
. (A6)
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Substituting (A5) and (A6) into (A2), and then using (A1), yields

Lnx(2) = [Bn + (Aneiφn + c.c.)]

[
1

νc

N∑
m=1

Bn−mH′′′
m +

(
eiφn

N∑
m=1

An−me−ikcmα

νc + iωc
H′′′

m + c.c.

)]

− 1

νc

N∑
m=1

(
1

2
B2

n−m + |An−m|2
)
H′′′

m−
(

eiφn

N∑
m=1

An−mBn−m

νc + iωc
e−ikcmαH′′′

m + c.c.

)
− 1

2

(
e2iφn

N∑
m=1

A2
n−me−2ikcmαH′′′

m

νc+2iωc
+ c.c.

)
.

(A7)

Analogous to Sec. II B, we now use the asymptotic expansion (18) to express convolutions on the right-hand side of (A7) in
powers of α. After some arduous algebra, we reduce (A7) to the highly simplified form

Lnx(2) = 2Re

( N∑
m=1

e−ikcmαH′′′
m

νc + iωc

)
|An|2 + α(γ̂1eiφn An∇Bn + c.c.) + 2αRe(γ̂2An∇A∗

n )

+ (
ĉ1A2

ne2iφn + c.c.
) + α(ĉ2e2iφn An∇An + c.c.) + O(α2), (A8)

where the complex coefficients are defined as

γ̂1 =
N∑

m=1

(
e−ikcmα

νc + iωc
− 1

νc

)
amH′′′

m , γ̂2 =
N∑

m=1

(
1

νc
− eikcmα

νc − iωc

)
amH′′′

m ,

ĉ1 =
N∑

m=1

[
e−ikcmα

νc + iωc
− e−2ikcmα

2(νc + 2iωc)

]
H′′′

m , ĉ2 =
N∑

m=1

(
e−2ikcmα

νc + 2iωc
− e−ikcmα

νc + iωc

)
amH′′′

m . (A9)

To apply the weak-asymmetry approximation developed in Sec. II C to the coefficient of |An|2 on the right-hand side of
Eq. (A8), we first note that

2Re

( N∑
m=1

e−ikcmαH′′′
m

νc + iωc

)
= 2Re

(
i

νc + iωc

) N∑
m=1

(−1)m sin(mαχ )H′′′
m ,

where χ = N/2 − kc. By a similar argument to which the group velocity was promoted to O(ε3) in Sec. II C, the coefficient of
|An|2 has size O(α) for α � 1 and χ = O(1), so the corresponding term in (A8) should likewise appear at O(ε3). We thus write

2Re

( N∑
m=1

e−ikcmαH′′′
m

νc + iωc

)
|An|2 = αγ̂3|An|2,

where the O(1) real coefficient γ̂3 is defined as

γ̂3 = 2

α
Re

( N∑
m=1

e−ikcmαH′′′
m

νc + iωc

)
. (A10)

In a similar spirit, we deduce that the coefficient ĉ1 is size O(α) when χ > 0 and zero otherwise. Therefore the nonsecular
terms in (A8) (those that are proportional to e2iφn ) are both of size O(α) and so should actually appear at O(ε3). However, as
these terms will still be nonsecular at that order, they play no role in the derived amplitude equations for An and Bn. We conclude
that all the inhomogeneities in (A8) [each of which is of size O(α)] should instead appear at O(ε3). Hence, at O(ε2), we have
Lnx(2) = 0, which is identical to the problem for x(1). Akin to the solution ansatz at O(ε), we therefore pose

x(2)
n = En(T ) + [Cn(T )eiφn + c.c.], Zn = 1

νc
En(T ) +

[
Cn(T )

νc + iωc
eiφn + c.c.

]
,

which, when applying the asymptotic expansion of the convolution (see Sec. II B), satisfies the inhomogeneous problem to
leading order. The O(α2) terms that arise out of the expansion of this convolution appear at O(ε4), which is beyond the order
presented in this calculation.

At O(ε3), the lattice equations (2) yield a system for x(3)
n and h(3), namely,

∂2x(3)
n

∂t2
+ ∂x(3)

n

∂t
+ x(3)

n

∂2h(0)

∂x2

∣∣∣∣
x=nδ

= −
(

2
∂2x(1)

n

∂t∂T
+ ∂x(1)

n

∂T

)
−

[
∂h(3)

∂x
+ x(1)

n

∂2h(2)

∂x2
+ 1

2

(
x(1)

n

)2 ∂3h(1)

∂x3
+ x(2)

n

∂2h(1)

∂x2
+ 1

6

(
x(1)

n

)3 ∂4h(0)

∂x4

]∣∣∣
x=nδ

(A11)
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and

∂h(3)

∂t
+ νch(3) = −

(
∂h(1)

∂T
− h(1)

)

+
N∑

m=1

[
x(1)

m x(2)
m H′′(x − mδ) − x(3)

m H′(x − mδ) − 1

6

(
x(1)

m

)3H′′′(x − mδ)

]
. (A12)

Appended to the right-hand side of (A11) will be the terms promoted from both O(ε) and O(ε2). We follow an identical
procedure to our analysis at O(ε) and O(ε2). First we introduce three auxiliary variables (Sec. II A), one for each of the three
inhomogeneities in square brackets on the right-hand side of Eq. (A12), and then solve for h(3). We then substitute this solution
into (A11), along with the droplet positions and wave field terms computed from lower orders, and then apply the slowly varying
approximation (Sec. II B) to reduce discrete convolutions to an asymptotic expansion in powers of α. This procedure gives rise
to a system of the form Lnx(3) = RHS, where the right-hand side (RHS) is composed of terms that are constant in t , terms with
coefficients e±iφn (t ), and nonsecular terms (whose form can be ignored at this stage). For a bounded solution, we require that
the constant and eiφn secular terms have vanishing coefficients, which yields the following evolution equations for the complex
amplitude, An, and the real drift, Bn:

σ̂0
dAn

dT
+μ2ĉg∇An = σ̂1An − σ̂2|An|2An + μγ̂1An∇Bn + μ2D̂1An, (A13a)

b̂0
dBn

dT
= μ2D̂2Bn + 2μRe(γ̂2An∇A∗

n )+μγ̂3|An|2, (A13b)

where μ = α/ε and we have neglected terms whose coefficients are of size O(α) at O(ε3) (Sec. II C). We note that we
cannot determine the higher-order corrections (Cn and En) without proceeding to O(ε4) and higher. However, a satisfactory
approximation is obtained by considering An and Bn alone, which form a closed system.

Recalling that Dk (λ; ν) is the dispersion relation (4), the coefficients (other than the γ̂i defined in Eqs. (A9) and (A10))
appearing in (A13a) are as follows:

σ̂0 = ∂Dkc

∂λ
(iωc; νc), σ̂1 = ∂Dkc

∂ν
(iωc; νc),

σ̂2 = 3

2νc

N∑
m=1

H′′′′
m −

N∑
m=1

H′′′′
m Re

(
e−ikcmα

νc + iωc

)
+ 1

2

N∑
m=1

e−2ikcmαH′′′′
m

νc + 2iωc
−

N∑
m=1

H′′′′
m e−ikcmα

νc + iωc
,

D̂1 = 1

νc + iωc

N∑
m=1

bme−ikcmαH′′
m,

while those that appear in (A13b) are

b̂0 = ∂D0

∂λ
(0; νc) = 1 + 1

ν2
c

N∑
m=1

H′′
m, D̂2 = 1

νc

N∑
m=1

bmH′′
m.

Upon dividing (A13a) by σ̂0 and (A13b) by b̂0, we arrive at Eqs. (8), where (cg, σ1, σ2, γ1, D1) = (ĉg, σ̂1, σ̂2, γ̂1, D̂1)/σ̂0 and
(D2, γ2, γ3) = (D̂2, γ̂2, γ̂3)/b̂0.

APPENDIX B: THE ONSET OF SPATIAL MODULATIONS

We here consider the predicted value of the instability
threshold, μc, at which the periodic lattice destabilizes and
spatial modulations emerge (μ < μc). We compare the values
of μc obtained by directly simulating the lattice equations
(2), and those computed using the linear stability analysis of
the derived amplitude equations in Sec. III. The lattice equa-
tions are simulated using the spectral code presented in [25].
We initialized the system with μ > μc (for which the spa-
tially uniform state is stable) and successively decremented
μ, starting each simulation from the final values of the system
variables (xn, ẋn, h) attained with the previous value of μ.
The value of μc was then estimated by the threshold at which

spatial modulations emerged in our simulations, with a typical
error estimated to be ±0.01.

The results of this study are presented in Table II for
A = 0.1, δ = 1.6, and l = 1.6. As the number of droplets,

TABLE II. Comparison between the numerical (Num.) and theo-
retical (Theor.) predictions of the instability threshold, μc, computed
with the difference operators, ∇ and , derived from the DFT.

N 30 40 50 60 70

Num. (±0.01) 1.28 1.16 1.15 1.19 1.21
Theor. 0.85 0.98 1.10 1.18 1.23

α = 2π/N 0.21 0.16 0.13 0.10 0.09
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FIG. 6. The onset of spatial modulations for N = 40 droplets, as predicted by the linear stability analysis of the amplitude equations (8) (see
Sec. III) for the wave kernel defined in Eq. (23). (a) When the initial instability of the equidistant lattice arises via a supercritical Andronov-Hopf
bifurcation, we color code each value of the spacing parameter, δ, and the decay length, l , by min(μc, 2), where spatial instabilities arise for
μ < μc. Our theory is valid when μc = O(1). When μc = 0, the periodic state is predicted to be unconditionally stable. Large values of μc

(i.e., those exceeding the plotting threshold of 2) arise near the boundary between super- and subcritical Andronov-Hopf bifurcations. (b) The
corresponding value of kc, as predicted by the linear stability analysis summarized in Sec. I C, demonstrating the correlation between large μc

and kc < N/2.

N , is increased, the agreement between the numerical (lattice
simulations) and theoretical (linear stability analysis) results
improves, consistent with the validity of our weakly nonlinear
theory, α = 2π/N � 1. Similar convergence between theory
and simulations was also verified for N odd.

APPENDIX C: DEPENDENCE OF μc ON CHANGES TO
THE WAVE FIELD AND LATTICE PARAMETERS

In this section, we explore the dependence of μc on the
interdroplet spacing, δ, and spatial decay length, l , of the
wave kernel, H, defined by Eq. (23). As presented in Fig. 6,
the dependence of the onset of spatial modulations on the
system parameters, l and δ, can be quite intricate. Near the
boundaries between super- and subcritical Andronov-Hopf
bifurcations (where geometric and subcritical Andronov-Hopf
instabilities arise in the white regions in Figure 6), μc can
be very large—a feature that appears to be correlated with
kc departing from N/2—inconsistent with the μ = O(1) as-
sumption under which the amplitude equations (8) were
derived. Away from these boundaries, we observe regions
in which μc = O(1); indeed, simulation of the lattice sys-
tem (2) reveals favorable agreement of the numerical and
theoretical instability threshold. (This agreement improves as
α = 2π/N becomes smaller, consistent with our assumptions;
see Appendix B.) Near the middle of each “band” in which
supercritical Andronov-Hopf bifurcations arise, we observe
that μc = 0, corresponding to the prediction of unconditional
stability of the spatially uniform solution (20). Finally, we
remark that μc = O(1) is most apparent for l ∼ δ, a regime

consistent with the validity of our asymptotic expansion of
convolutions (see Sec. II B).

APPENDIX D: NUMERICAL IMPLEMENTATION

To evolve the amplitude equations (8), we apply the DFT,
Fξ , to each equation, and then introduce an integrating
factor to integrate the linear components exactly [53]. Specif-
ically, we denote Âξ = Fξ [An] and B̂ξ = Fξ [Bn] for ξ =
0, . . . , N − 1 [see Eq. (9a) for details]. By applying the DFT
to the amplitude equations (8), we obtain
dÂξ

dT
+ Mξ Âk = Fξ (μγ1An∇Bn−σ2|An|2An), (D1a)

dB̂ξ

dT
+Nξ B̂ξ = Fξ [2μRe(γ2An∇A∗

n ) + μγ3|An|2], (D1b)

where
Mξ = μ2cg∇̂ξ − σ1 − μ2D1̂ξ and Nξ = −μ2D2̂ξ .

We recall that ∇̂ξ and ̂ξ are the Fourier symbols of the
difference operators ∇ and , respectively (see Sec. I E). To
account for the stiffness manifest in the operators Mξ and Nξ ,
we introduce an integrating factor. When evolving from time
T = Tn to T = Tn+1, we recast (D1) as

d

dT
(Âξ eMξ (T −Tn ) ) = Fξ [μγ1An∇Bn − σ2|An|2An]

× eMξ (T −Tn ), (D2a)

d

dT
(B̂ξ eNξ (T −Tn ) ) = Fξ [2μRe(γ2An∇A∗

n ) + μγ3|An|2]

× eNξ (T −Tn ), (D2b)
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FIG. 7. Evolution of the complex amplitude, |An(T )|, over the slow timescale, T , for a dark breather arising for N = 40 droplets with
μc − μ = 0.08. We compute the period, Pp, for p-nearest neighbors and compare the results to the period, PDFT, computed using the difference
operators derived from the DFT. The corresponding parameter values are listed in Sec. E 1. The differences between P2, P3 and PDFT are on the
order of the numerical time step, 0.02, forming a lower bound for the precision of the computation of the period.

and then evolve the variables Âξ eMξ (T −Tn ) and B̂ξ eNξ (T −Tn )

using a fourth-order Runge-Kutta method. For the numerical
results presented in Sec. IV, we consider the fixed time step
Tn+1 − Tn = 0.02. MATLAB code implementing this numeri-
cal scheme is provided in the Supplemental Material [54].

APPENDIX E: ALTERNATIVE DIFFERENCE STENCILS

We consider here how the dynamics predicted by the am-
plitude equations (8) depend on the form of the difference
operators, ∇ and . In Sec. II B, we derived ∇ and  using
the discrete Fourier transform (DFT); here we consider the
dynamics arising when ∇ and  are replaced with symmetric
first- and second-order finite difference stencils for p-nearest
neighbors (see Sec. E 2).

1. Dependence on the number of nearest neighbors

In the following series of tests, we define the wave ker-
nel using l = 2.6, δ = 2.6, and A = 0.1 (see Sec. IV). We
then fix the distance from the onset of spatial modulations
(the BFN-like instability), μc − μ, and simulate the system
until a periodic state is obtained. In all cases considered, we
initialize from a small perturbation about the spatially uni-
form state (see Sec. III A), namely, An(0) = ρ + 0.05 sin(αn)
and Bn(0) = 0.05 sin(αn). Finally, we measure characteristic
properties of the long-time dynamics, comparing the mea-

sured values for different values of p and the difference
operators derived from the DFT.

In Fig. 7 we present the dynamics of a dark breather arising
for N = 40 droplets with μc − μ = 0.08. We here charac-
terize the dynamics in terms of the breather period, Pp. We
note that the change in the period is much smaller when p is
increased from 2 to 3, as compared to when p is increased
from 1 to 2. In particular, we observe that Pp approaches the
period, PDFT, computed using the DFT difference operators.

Likewise, in Fig. 8 we present the dynamics of a dark
soliton arising for N = 41 droplets with μc − μ = 0.06.
Specifically, we measure the asymptotic wave speed, Cp, de-
fined as the reciprocal of the time between which the integer
argminn|An(T )| changes. In other words, when taking an inte-
ger to be the unit of length, the slope apparent in each panel
of Fig. 8 is 1/Cp. We note that the wave speed approximately
halves as p is increased from 1 to 2, but is almost identical
for p equal to 2 or 3. Again, Cp approaches the speed, CDFT,
computed for the difference operators derived using the DFT.

Finally, we note that μc also depends weakly on p, as is
evident from the linear stability analysis outlined in Sec. III A.
For the case of N = 40 droplets with the foregoing param-
eters, we compute the following values: μc = 0.85066 for
p = 1; μc = 0.85179 for p = 2; μc = 0.85180 for p = 3; and
μc = 0.85180 for the DFT difference operators. For the case
of N = 41 droplets, we likewise compute μc = 0.85153 for
p = 1; μc = 0.85279 for p = 2; μc = 0.85280 for p = 3; and
μc = 0.85280 for the DFT difference operators. In both cases,
we observe convergence in the value of μc as p is increased,
towards that computed using the DFT difference operators.

2. Finite difference stencils

For a sequence, Fn, with Fn = Fn+N and α = 2π/N , we proceed to define the difference operators, ∇ and , for p-nearest
neighbor interactions, and the respective Fourier symbols, ∇̂ξ and ̂ξ .
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FIG. 8. Evolution of the complex amplitude, |An(T )|, over the slow timescale, T , for a dark soliton arising for N = 41 droplets with
μc − μ = 0.06. We compute the wave speed, Cp, for p-nearest neighbors and compare the results to the wave speed, CDFT, computed using the
difference operators derived from the DFT. The corresponding parameter values are listed in Sec. E 1.

For p = 1, we define

∇Fn = 1

2α
(Fn+1 − Fn−1)

and

Fn = 1

α2
(Fn+1 − 2Fn + Fn−1).

The corresponding Fourier symbols are

∇̂ξ = i sin(ξα)

α

and

̂ξ = 2[cos(ξα) − 1]

α2
,

respectively.
For p = 2, we define

∇Fn = 1

α

(
1

12
Fn−2 − 2

3
Fn−1 + 2

3
Fn+1 − 1

12
Fn+2

)
and

Fn = 1

α2

(
− 1

12
Fn−2 + 4

3
Fn−1 − 5

2
Fn + 4

3
Fn+1 − 1

12
Fn+2

)
.

The corresponding Fourier symbols are

∇̂ξ = i

α

[
4

3
sin(ξα) − 1

6
sin(2ξα)

]
and

̂ξ = 1

α2

[
− 5

2
+ 8

3
cos(ξα) − 1

6
cos(2ξα)

]
,

respectively.
For p = 3, we define

∇Fn = 1

α

(
− 1

60
Fn−3 + 3

20
Fn−2 − 3

4
Fn−1 + 3

4
Fn+1 − 3

20
Fn+2 + 1

60
Fn+3

)
and

Fn = 1

α2

(
1

90
Fn−3 − 3

20
Fn−2 + 3

2
Fn−1 − 49

18
Fn + 3

2
Fn+1 − 3

20
Fn+2 + 1

90
Fn+3

)
.

The corresponding Fourier symbols are

∇̂ξ = i

α

[
3

2
sin(ξα) − 3

10
sin(2ξα) + 1

30
sin(3ξα)

]
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and

̂ξ = 1

α2

[
− 49

18
+ 3 cos(ξα) − 3

10
cos(2ξα) + 1

45
cos(3ξα)

]
,

respectively.
The difference stencils for p > 3 may be found elsewhere [66].
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