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Multiple double-pole bright-bright and bright-dark soliton solutions for the multicomponent nonlinear
Schrödinger (MCNLS) system comprising three types of nonlinearities, namely, focusing, defocusing, and
mixed (focusing-defocusing) nonlinearities, arising in different physical settings are constructed. An interesting
type of energy-exchanging phenomenon during collision of these double-pole solitons is unraveled. To explore
the objectives, we consider the general solutions of a set of generalized MCNLS equations and by taking the
long-wavelength limit with proper parameter choices of single-pole bright-bright and bright-dark soliton pairs,
the multiple double-pole bright-bright and bright-dark soliton solutions are constructed in terms of determinants.
The regular double-pole bright-bright solitons exist in the focusing and focusing-defocusing MCNLS equations
and undergo a particular type of energy-sharing collision for M � 2 in addition to the usual elastic collisions.
A striking feature observed in the process of energy-sharing collisions is that the double-pole two-soliton
possessing unequal intensities before collision indeed exactly exchange their intensities after collision. Further,
the existence of double-pole bright-dark solitons in the MCNLS equations with focusing, defocusing, and mixed
(focusing-defocusing) nonlinearities is analyzed by constructing explicit determinant form solutions, where the
double-pole bright solitons exhibit elastic and energy-exchanging collisions while the double-pole dark solitons
undergo mere elastic collision. The double-pole bright-dark solitons possess much richer localized coherent
patterns than their counterpart double-pole bright-bright solitons. For particular choices of parameters, we
demonstrate that the solitons would degenerate into the background, resulting in a lower number of solitons.
Another important observation is the formation of doubly localized rogue waves with extreme amplitude, in
the case of double-pole bright-dark four-solitons. Our results should stimulate interest in such special multipole
localized structures and are expected to have ramifications in nonlinear optics.
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I. INTRODUCTION

Over the past two decades or so, the study of the family
of multiple coupled (vector) nonlinear evolution equations
(NLEEs) has attracted considerable research interest [1–4].
In general, these systems have been studied extensively in
nonlinear optics [1] and in the setting of Bose-Einstein con-
densates [5]. In optics, such multicomponent systems arise
in the description of propagation of orthogonally polarized
pulses in birefringent media [6], fiber Bragg grating [7], meta-
materials [8], parametric three-wave interaction processes [9],
incoherent beam propagation in nonlinear waveguides [10],
etc. In contrast, the dynamics of multiple-species atomic con-
densates or mixtures of spin states of a given atomic species
can be very well described in the framework of such a type
of multicomponent NLEE in the mean-field approximation
[5]. Generally, these systems are nonintegrable and become
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integrable for particular sets of system parameters [2,11],
which are experimentally feasible. One such versatile fam-
ily of NLEEs is the nonlinear Schrödinger-type equations.
These systems feature several intriguing nonlinear coherent
structures that display several interesting dynamical behav-
iors. For example, the bright solitons in the Manakov system
[12], a prototypical system for the multicomponent non-
linear Schrödinger (MCNLS) family of equations, undergo
fascinating shape-changing collisions [13]; the partially co-
herent solitons in such MCNLS equations exhibit variable
shape [14,15]; the symbiotic (bright-dark) solitons in the
2CNLS system can display boomeronic behavior (coherent
structures that reverse their dynamics spontaneously) [16];
and multicomponent rogue waves with exotic profiles appear
[17,18]. In higher dimensions the variants of such multicom-
ponent CNLS systems display still more novel phenomena
such as spatiotemporal multimode optical solitons [19], fis-
sion of solitons into a lump coherent structure and fusion
of a lump into solitons [20], expanding necklace ring soli-
tons [21], and resonant solitons with intricate structures [22]
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(for a detailed review one may refer to [23] and references
therein).

In this work we consider the versatile integrable MCNLS
system

iu�,z + u�,tt + 2u�

M∑
k=1

δk|uk|2 = 0, � = 1, 2, . . . , M, (1)

where u�, � = 1, 2, . . . , M, denotes the complex amplitude
of the �th component, z and t denote the normalized evolu-
tion and spatial coordinates, respectively, and the nonlinearity
coefficients δ� are real parameters. As mentioned before,
the above set of MCNLS equations is of much physical
significance. For example, similar multicomponent nonlin-
ear Schrödinger equations appear in describing the dynamics
of wavelength division multiplexing high-bit-rate commu-
nication systems [24], multichannel bit-parallel wavelength
optical fiber networks [25], ultrashort-pulse propagation in
multimode fibers [26], and the setting of propagation of mu-
tually incoherent wave packets in Kerr-like photorefractive
media [10]. It can be noticed that for M = 2 with all δ�

being equal and positive, the above system (1) reduces to
the celebrated Manakov system [12]. The Manakov system
supports bright solitons that display a kind of fascinating
energy-sharing collision behavior [13], where there is an en-
ergy redistribution among the colliding bright solitons that
takes place with the preservation of total intensity, thereby
changing the amplitude of the solitons before and after colli-
sion. This type of collision was experimentally demonstrated
in Ref. [27]. The 2CNLS system features bright-dark [28–30]
and dark-dark solitons [28] for other sign combinations of
δ�. Interestingly, the 2CNLS system with mixed signs of
(focusing-defocusing) nonlinearity supports bright solitons
that exhibit a special type of energy-exchanging collision sce-
nario that is different from that of the Manakov system [31].
The Manakov system also hosts rogue waves with different
special structures [16,18,32].

It should be noted that not only the 2CNLS system, but
also the 3CNLS as well as MCNLS systems with M > 3
are of considerable importance. Indeed, the MCNLS system
possesses rich dynamical features and shows several distinct
possibilities of energy-sharing collision of bright solitons
[33–35] and bright-dark solitons [30] depending upon the
nature of the nonlinearities (whether they are focusing or
defocusing or mixed type). Thus, following the Manakov
system, an extensive studies of multiple coupled nonlinear
Schrödinger systems have been carried out and the bright
[36,37], dark [38,39], and bright-dark solitons [40,41] of the
MCNLS system have been reported.

This paper is devoted to the study of coherent structures,
specifically double-pole solitons in the MCNLS system (1).
In fact, the higher-order pole solitons have been known
since the seminal work of Zakharov and Shabat [42] on
the standard focusing nonlinear Schrödinger equation [i.e.,
M = 1 with δ1 > 0 in Eq. (1)], where soliton solutions with
spectral data consisting of higher-order poles were reported.
It is important to note the nature of multisoliton collisions
in several physically interesting nonlinear integrable systems
undergone in a pairwise manner, where the phases of each
interacting soliton make them collide at different points during

propagation. Such pairwise soliton collisions exhibiting
systems include the celebrated Korteweg–de Vries model,
sine-Gordon equations, nonlinear Schrödinger (NLS)
equations, the Manakov system, the MCNLS system,
M-component Gross-Pitaevskii equations, M-component
Yajima-Oikawa equations, the higher-dimensional M-
component long-wave–short-wave resonance interaction
model, etc., arising in different contexts like shallow
water waves, nonlinear optics, Bose-Einstein condensates,
hydrodynamics, ion-acoustic waves, and plasma systems.
However, such pairwise interaction can be controlled by
incorporating an additional parameter in the exact solutions,
which tunes the phases of the associated solitons and
introduces multiparticle effects. This idea of manipulating
the phases of interacting solitons to tailor the collision
point was coined in the literature and referred to as the
coalescence of wave numbers and multiple-pole solitons
[43–71]. To be precise, the higher-order pole bright solitons
of the standard focusing NLS equation have been investigated
from different perspectives so far, for example, multipole
N-soliton interaction [43], algebraic aspects of multipole
solitons [44–46], long-time asymptotic behavior for the fixed
pole-order solitons [47,48], and large-order asymptotics
for multiple-pole solitons [49]. The solitons admitting
higher-order poles have also been studied for the modified
Korteweg–de Vries equation [50,51], the sine-Gordon
equation [52–54], the N-wave system [55], the coupled
Sasa-Satsuma system [56], the Hirota equation [57–59], and
several other nonlinear evolution equations [60–69].

Although there exist a number of works on the high-order
pole solitons for the standard focusing NLS equation, results
are scarce for the study of such solitons with higher-order
poles and their subsequent collision dynamics in the MCNLS
equations (1). There exist numerous interesting phenomena
which one has to pay attention to in order to realize the full
potentialities of the multicomponent higher-order pole soli-
tons in the system (1). A double-pole two bright two-soliton
solution has been presented for the focusing 2CNLS equations
[i.e., M = 2 and δ1 = δ2 = 1 in Eq. (1)] in the original study
of Chow and Lai [70], which itself requires further analysis in
view of the intricate dynamical properties of multicomponent
solitons [34,35]. Specifically, in the literature, only the elastic
collision process of double-pole solitons has been addressed;
the energy-sharing collisions of double-pole solitons were not
observed, which is quite possible in multicomponent solitons.
For the double-pole bright-dark solitons, Biondini and Kraus
[71] considered double zeros of the analytic scattering co-
efficients in the inverse scattering transform technique and
presented a double-pole bright-dark soliton solution for the
defocusing Manakov system [i.e., M = 2 and δ1 = δ2 = −1
in Eq. (1)], but the collision behavior of the double-pole
bright-dark solitons was not studied in their work. Apart
from the study of collision dynamics, it is quite natural to
raise the question of the possibility of different types of
shape-changing (energy-sharing) collisions of such double-
pole solitons. Another interesting aspect that needs attention
is to look for the appearance of composite double-pole bright-
dark solitons and to explore their collisional features as well as
their role in the formation of the most recently much studied
objects, namely, Peregrine solitons and rogue waves.
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Thus, the objective of this paper is threefold. First is to con-
struct a double-pole N-soliton solution comprising M bright
components of the integrable MCNLS system (1) and second
is to obtain double-pole N-solitons admitting M − 1 bright
components along with a dark component. Our third aim is
to perform a detailed analysis of their dynamical features,
which includes the interesting energy-sharing collisions of
these bright-bright and bright-dark double-pole solitons.

This paper is organized as follows in order to address
the above-mentioned studies. In Sec. II we first construct
the multiple double-pole bright solitons for the MCNLS
equations (1) in the form of determinants by taking the long-
wavelength limit of bright solitons in a pairwise manner with
proper parameter choices. Then we study the double-pole M
bright two-soliton collision scenario and investigate energy
(intensity)-exchanging collision dynamics in detail in addition
to the double-pole M bright four-soliton collisions. In Sec. III
we present the multiple double-pole bright-dark soliton solu-
tions, comprising bright solitons in M − 1 components and
dark solitons in a single component, for the MCNLS equation
and study the dynamics of the bright-dark soliton collisions as
well as the formation of rogue waves. A brief summary of the
obtained results and certain possible future directions of study
are given in Sec. IV.

II. MULTIPLE DOUBLE-POLE M BRIGHT 2N-SOLITONS
OF THE MCNLS EQUATIONS AND

ENERGY-EXCHANGING COLLISION

In this section we obtain the N double-pole solitons spread
among M bright components (hereafter referred to as double-
pole M bright N-solitons). The idea behind the construction
of these multicomponent double-pole bright solitons from the
general 2N bright soliton solutions of the MCNLS equations
(1) is to select N pairs of wave numbers in which each pair
consists of wave numbers with equal magnitude but of op-
posite signs. Then, considering a special limit, such that their
imaginary parts are very small, and with an appropriate choice
of phase factors, one can arrive at the desired double-pole
M bright N-soliton solution. This is done by choosing the
parameters in Eq. (A2) as

K = 2N,

pN+s = −ps,

eξ j,0 = ξ̃ j,0 p jI e
(π/2)i,

eη
(�)
j,0 = η̃

(�)
j,0 p jI e

(π/2)i,

ξ̃s,0ξ̃N+s,0 +
M∑

k=1

δk η̃
(k)
s,0η̃

(k)
N+s,0 = 0

(2)

and by taking the limit psI → 0 for s = 1, 2, . . . , N . Here and
in the following R and I appearing in the subscript represent
the real and imaginary parts of a given parameter or function,
respectively.

The resulting set of double-pole M bright N-soliton solu-
tions of the MCNLS equations (1) can be cast as

u� = g(�)(t, z)

f (t, z)
, � = 1, 2, . . . , M, (3)

where

f =
∣∣∣∣ m̃s, j m̃s,N+ j

m̃N+s, j m̃N+s,N+ j

∣∣∣∣
1�s, j�N

,

g(�) =

∣∣∣∣∣∣∣
m̃s, j m̃s,N+ j φ̃s

m̃N+s,N+ j m̃N+s,N+ j φ̃N+s

iη̃(�)
j,0 iη̃(�)

N+ j,0 0

∣∣∣∣∣∣∣
1�s, j�N

.

(4)

The matrix elements appearing in Eqs. (4) are given by

m̃s, j = ξ̃s,0ξ̃ j,0e(psR+p jR )t+i(p2
sR−p2

jR )z

psR + p jR
+

∑M
k=1 δk η̃

(k)
s,0η̃

(k)
j,0

psR + p jR
,

m̃N+s,N+ j = − ξ̃N+s,0ξ̃N+ j,0e−(psR+p jR )t+i(p2
sR−p2

jR )z

psR + p jR

−
∑M

k=1 δk η̃
(k)
N+s,0η̃

(k)
N+ j,0

psR + p jR
,

and, for s �= j,

m̃s,N+ j = ξ̃s,0ξ̃N+ j,0e(psR−p jR )t+i(p2
sR−p2

jR )z

psR − p jR

+
∑M

k=1 δk η̃
(k)
s,0η̃

(k)
N+ j,0

psR − p jR
,

m̃N+s, j = ξ̃N+s,0ξ̃ j,0e(−psR+p jR )t+i(p2
sR−p2

jR )z

−psR + p jR

+
∑M

k=1 δk η̃
(k)
N+s,0η̃

(k)
j,0

−psR + p jR

and

m̃s,N+s = ξ̃s,0ξ̃N+s,0(t + 2ipsRz),

m̃N+ j, j = ξ̃N+ j,0ξ̃ j,0(t − 2ip jRz),

along with

φ̃s = iξ̃s,0epsRt+ip2
sRz,

φ̃N+s = iξ̃N+s,0e−psRt+ip2
sRz.

Here psR, ξ̃s,0, η̃
(�)
j,0, ξ̃N+s,0, and η̃

(�)
N+ j,0 (� = 1, 2, . . . , M) are

real parameters and the parameters ξ̃s,0, η̃(�)
j,0, ξ̃N+s,0, and η̃

(�)
N+ j,0

are subject to the following parametric condition:

ξ̃s,0ξ̃N+s,0 +
M∑

k=1

δk η̃
(k)
s,0η̃

(k)
N+s,0 = 0. (5)

In order to explore the salient features of double-pole soli-
tons, in the following section we deduce explicit forms of
double-pole two- and four-soliton solutions from the above
general N-soliton solution and investigate their propagation as
well as collision dynamics in detail with categorical analysis
and graphical demonstrations.

A. Double-pole M bright two-solitons and
energy-exchanging collision

We start with the simplest double-pole M bright two-
soliton solution and their collision dynamics in the MCNLS
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equations (1). By taking N = 1 in the general solution (4), the
double-pole M bright two-soliton solution (3) of the MCNLS
equations (1) can be derived and the determinant forms of the
functions f and g(�) can be explicitly written as

f =
∣∣∣∣m̃1,1 m̃1,2

m̃2,1 m̃2,2

∣∣∣∣, g(�) =

∣∣∣∣∣∣∣
m̃1,1 m̃1,2 φ1

m̃2,1 m̃2,2 φ2

iη̃(�)
1,0 iη̃(�)

2,0 0

∣∣∣∣∣∣∣, (6)

where m̃1,1 = 1
2p1R

(ξ̃ 2
1,0e2p1Rt + ∑M

k=1 δk η̃
(k)2
1,0 ), m̃1,2 =

ξ̃1,0ξ̃2,0(t + 2ip1Rz), m̃2,1 = ξ̃1,0ξ̃2,0(t − 2ip1Rz), m̃2,2 =
− 1

2p1R
(ξ̃ 2

2,0e−2p1Rt + ∑M
k=1 δk η̃

(k)2
2,0 ), φ1 = iξ̃1,0ep1Rt+ip2

1Rz,

φ2 = iξ̃2,0e−p1Rt+ip2
1Rz, and the real parameters ξ̃ j,0, η̃

(�)
j,0

( j = 1, 2) fulfill the parametric constraint defined in (5),
namely, ξ̃1,0ξ̃2,0 + ∑M

k=1 δk η̃
(k)
1,0η̃

(k)
2,0 = 0. Further, the above

double-pole M bright two-soliton solution can be rewritten in
terms of the algebraic-hyperbolic form

f = − 1

2p2
1R

(
M∑

k=1

δk η̃
(k)
1,0η̃

(k)
2,0ξ̃1,0ξ̃2,0

)
cosh

(
2p1Rt + ˜̃η(k)

2,0 − ˜̃η(k)
1,0 + ˜̃ξ1,0 − ˜̃ξ2,0

)

− 1

4p2
1R

(
M∑

k=1

δk η̃
(k)2
1,0

)(
M∑

k=1

δk η̃
(k)2
2,0

)
− ξ̃ 2

1,0ξ̃
2
2,0(t2 + 4p2

1Rz2),

g(�) =
√

η̃
(�)
1,0η̃

(�)
2,0ξ̃1,0ξ̃2,0

eip2
1Rz

p2
1R

[
2ξ̃1,0ξ̃2,0 p1Rt cosh

(
p1Rt + 1

2

(
˜̃η(�)

2,0 − ˜̃η(�)
1,0 + ˜̃ξ1,0 − ˜̃ξ2,0

))
+ (

1 + 4ip2
1Rz

)
ξ̃1,0ξ̃2,0 sinh

(
p1Rt + 1

2

(
˜̃η(�)

2,0 − ˜̃η(�)
1,0 + ˜̃ξ1,0 − ˜̃ξ2,0

))
−

M∑
k=1

δk

√
η̃

(1)
1,0η̃

(1)
2,0η̃

(2)
1,0η̃

(2)
2,0 sinh

(
p1Rt + 1

2

(
2˜̃η(k)

2,0 − 2˜̃η(�)
1,0 − ˜̃η(1)

1,0 + ˜̃η(2)
2,0 + ˜̃ξ1,0 − ˜̃ξ2,0

))]
,

where e
˜̃ξ j,0 = ξ̃ j,0 and e

˜̃η(�)
j,0 = η̃

(�)
j,0 for j = 1, 2 and � =

1, 2, . . . , M.
This double-pole M bright two-soliton solution contains

2M + 3 real soliton parameters (i.e., ξ̃ j,0, p1R, and η̃
(k)
j,0, with

j = 1, 2 and k = 1, 2, . . . , M) and M arbitrary nonlinear-
ity coefficients (i.e., δ1, δ2, . . . , δM). The above double-pole
M bright two-soliton solution is regular for the param-
eters satisfying the condition

∑M
k=1 δk η̃

(k)2
j,0 > 0 ( j = 1, 2).

Here we wish to point out that for defocusing nonlinear-
ity (δ� < 0), the regularity condition fails to hold and does
not admit a double-pole M bright two-soliton. This state-
ment is true for higher-order double-pole 2N-solitons (with
N � 2) too. However, for δ� > 0 or δ�δ

′
� < 0 (�′ �= � and

�′, � = 1, 2, . . . , M), which correspond to focusing and mixed
(focusing-defocusing) nonlinearities, respectively, the regu-
larity condition is satisfied and these result in the existence
of smooth double-pole M bright two-solitons. Such a type of
generalized double-pole soliton solutions have been reported
for the focusing 2CNLS equations [i.e., M = 2, δ1 > 0, and
δ2 > 0 in Eq. (1)] in Ref. [70] without much detail on their
collision dynamics. Hereafter, we consider

∑M
k=1 δk η̃

(k)2
j,0 > 0

( j = 1, 2) to avoid the singular double-pole two-soliton solu-
tions and desist from discussing the double-pole solitons in the
MCNLS system with defocusing nonlinearity (δ� < 0). It is
worth noting that for g(�) = g(1)η̃

(�)
1,0/η̃

(1)
1,0 when η̃

(�)
2,0 = κη̃

(�)
1,0 (κ

is an arbitrary nonzero constant), this double-pole two-soliton
solution of the MCNLS equations (1) would reduce to the
double-pole two-soliton solution of the scalar NLS equation
[i.e., M = 1 in Eq. (1)], where the interesting energy-sharing
collision is not possible.

Since the double-pole two-soliton solution is generated
from the single-pole M bright two-soliton solution (A1), we

can investigate the double-pole M bright two-soliton collision
process from the single-pole M bright two-soliton collision
process. The analysis of single-pole two bright two-soliton
collisions is investigated in Appendix A. To be consistent
with the single-pole M bright two-soliton, we designate the
double-pole two-solitons as soliton 1 and soliton 2, which
correspond to the soliton 1 and soliton 2 in the single-pole
two-soliton discussed in Appendix A. The amplitudes of the
double-pole two-soliton before and after collision are given as

∣∣Ã( j)−
�

∣∣2 = p2
1Rη̃

(�)2
j,0∑M

k=1 δk η̃
(k)2
j,0

,

∣∣Ã( j)+
�

∣∣2 = T̃ ( j)2
�

∣∣Ã( j)−
�

∣∣2
,

j = 1, 2; � = 1, 2, . . . , M.

(7)

Here Ã( j)−
� and Ã( j)+

� denote the amplitude of soliton j of
the double-pole two-soliton in the u� component before and
after collision, respectively, and T̃ ( j)

� represents the transition
amplitude of soliton j (=1, 2) in the u� component. Detailed
derivations of Ã( j)±

� are given in Appendix A. The soliton
transition amplitudes are found to be

T̃ (1)2
� = η̃

(�)2
2,0

∑M
k=1 δk η̃

(k)2
1,0

η̃
(�)2
1,0

∑M
k=1 δk η̃

(k)2
2,0

, T̃ (2)2
� = η̃

(�)2
1,0

∑M
k=1 δk η̃

(k)2
2,0

η̃
(�)2
2,0

∑M
k=1 δk η̃

(k)2
1,0

.

(8)

From the expression of soliton amplitudes (7), we can
deduce the following relations to identify the nature of
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FIG. 1. (a) Elastic collision of the double-pole two bright two-solitons in the focusing 2CNLS equations (1) with the parameters M = 2,
δ1 = 1, δ2 = 1, ξ̃1,0 = −3, ξ̃2,0 = 1, η̃

(1)
1,0 = 1, η̃

(1)
2,0 = −1, η̃

(2)
1,0 = 2, η̃

(2)
2,0 = 2, and p1R = 1. Here we mark both solitons in the double-pole

two-soliton as 1 and 2 for an easy understanding of the collision process. The intensity variations are shown clearly at (b) z = −100 (before
collision) and (c) z = 100 (after collision) in soliton 1 (red line) and soliton 2 (green line).

collision:

T̃ (1)
� T̃ (2)

� = 1,
∣∣Ã(2)+

�

∣∣ = ∣∣Ã(1)−
�

∣∣, ∣∣Ã(1)+
�

∣∣ = ∣∣Ã(2)−
�

∣∣, (9)∣∣Ã(1)−
�

∣∣2 + ∣∣Ã(2)−
�

∣∣2 = ∣∣Ã(1)+
�

∣∣2 + ∣∣Ã(2)+
�

∣∣2
. (10)

We list the physical consequences of the above mathematical
expressions.

(i) From Eq. (9) one can obtain that T̃ ( j)
� can admit only

two possible values, namely, T̃ (1)
� = T̃ (2)

� = 1, and T̃ (1)
� > 1

and T̃ (2)
� < 1 (or T̃ (1)

� < 1 and T̃ (2)
� > 1). When the transition

amplitude T̃ ( j)
� = 1, the collision between the double-pole

bright two-soliton becomes elastic. This occurs only for a
particular choice of parameters meeting the constraint

∑M
k=1

δk (
η̃

(k)2
2,0

η̃
(�)2
2,0

− η̃
(k)2
1,0

η̃
(�)2
1,0

) = 0. Furthermore, the special case

T̃ (1)
1 = T̃ (2)

1 = 1 when M = 1 reminds us that the collision
of the double-pole bright two-soliton is purely elastic
as in the standard focusing NLS equation [i.e., M = 1
and δ1 = 1 in Eq. (1)]. Additionally, in a more general
setting, the double-pole bright two-soliton undergoes the
shape-changing (or energy-sharing) collision as T̃ (1)

� > 1
and T̃ (2)

� < 1 (or T̃ (1)
� < 1 and T̃ (2)

� > 1). In particular, the
relations |Ã(2)+

� | = |Ã(1)−
� | and |Ã(1)+

� | = |Ã(2)−
� | indicate

that the two solitons exchange their intensities exactly after
collision. We call such a special shape-changing collision an
energy-exchanging collision.

(ii) Next, Eq. (10) implies that the total intensity of both
colliding solitons is conserved in each component u�. Fur-
thermore, from Eq. (7) we can obtain the amplitudes of the
double-pole two bright two-soliton before collision and after
collision and the nonlinear coefficients satisfy the following

relation:

M∑
k=1

δk

∣∣Ã( j)−
k

∣∣2 =
M∑

k=1

δk

∣∣Ã( j)+
k

∣∣2 = p2
1R, j = 1, 2. (11)

The above relation indicates that, for each soliton in the
double-pole bright two-soliton, the total amplitude before
or after collision in all components u� (� = 1, 2, . . . , M)
is only related to the parameter p1R and the nonlinearity
coefficients δk . In the mixed focusing-defocusing MCNLS
equation, if for simplicity we take δ1, δ2, . . . , δk > 0 and
δk+1, . . . , δM < 0 in Eq. (1), the total amplitude of the fo-
cusing components is larger than the defocusing components
when the absolute values of nonlinear coefficients are equal,
namely,

∑k
s=1 |Ã( j)±

s |2 >
∑M

s=k+1 |Ã( j)±
s |2 when |δ1| = |δ2| =

· · · = |δM |.
Figure 1 shows an elastic collision of the double-pole

two bright two-soliton in the focusing 2CNLS equations
[M = 2 and δ1 = δ2 = 1 in Eq. (1)], where the amplitudes
of both solitons in the u1 and u2 components are

√
5

5 units

and 2
√

5
5 units, respectively, and remain the same before and

after collision. Figures 2 and 3 show the interesting en-
ergy (intensity)-exchanging collisions of the double-pole two
bright two-soliton for the focusing 2CNLS equations [M =
2, δ1 = 1, and δ2 = 1 in Eq. (1)] and the mixed focusing-
defocusing 2CNLS equations [M = 2, δ1 = 1, and δ2 = −1
in Eq. (1)], respectively, for an easy understanding of the
difference in the collision dynamics between the two models.
We can see that these two solitons exactly exchange their
intensities after collision such that the amplitude value of
soliton 1 (soliton 2) after collision is equal to the amplitude
value of soliton 2 (soliton 1) before collision in both focusing
and mixed 2CNLS equations. However, the types of change
in these two models are different due to the nature of nonlin-
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FIG. 2. (a) Energy-exchanging collisions of the double-pole two bright two-solitons in the focusing 2CNLS equations (1) with the
parameters M = 2, δ1 = 1, δ2 = 1, p1R = 1, ξ̃1,0 = − 29

10 , ξ̃2,0 = 1, η̃
(1)
1,0 = 2, η̃

(1)
2,0 = 1, η̃

(2)
1,0 = 9

5 , and η̃
(2)
2,0 = 1

2 . Here we mark the two solitons in
the double-pole two-soliton as 1 and 2 in order to understand the energy-exchanging collision processes more clearly. The intensity exchange
between the solitons is shown (b) before collision (at z = −100) and (c) after collision (at z = 100), with soliton 1 marked by the red line and
soliton 2 by the green line.

earities (δ�). To be specific, a given soliton experiences the
opposite intensity variation after collision between the two
components in the focusing 2CNLS equations: The amplitude
of soliton 1 increases after collision in the u1 component, but
its amplitude decreases in the u2 component. In contrast to
soliton 1, the amplitude of soliton 2 decreases after collision
in the u1 component, while it increases in the u2 component.
Such opposite changes in amplitude and intensity of solitons

can be referred to as type-I energy-sharing collisions as in
the case of standard or single-pole soliton collision dynamics
[35], which is shown to be present or possible here in the
double-pole bright soliton collision. Further, the intensity con-
servation is taking place in individual components apart from
the conservation of the total intensity of double-pole solitons
among all components for the MCNLS system with focusing
nonlinearities. To elucidate the understanding, such a type-I

FIG. 3. (a) Energy-exchanging collisions of the double-pole two bright two-solitons in the mixed focusing-defocusing 2CNLS equations
(1) with the parameters M = 2, δ1 = 1, δ2 = −1, p1R = 1, ξ̃1,0 = − 11

10 , ξ̃2,0 = 1, η̃
(1)
1,0 = 2, η̃

(1)
2,0 = 1, η̃

(2)
1,0 = 9

5 , and η̃
(2)
2,0 = 1

2 . Here we mark the
two solitons in the double-pole two-soliton as 1 and 2 in order to understand the energy-exchanging collision processes clearly. The intensity
exchange between the solitons are shown (b) before collision (at z = −100) and (c) after collision (at z = 100), with soliton 1 marked by the
red line and soliton 2 by the green line.
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energy-sharing collision of double-pole solitons is shown in
Fig. 2, where the amplitude of soliton 1 increases from 10

√
181

181

units to 2
√

5
5 units and that of soliton 2 decreases from 2

√
5

5

units to 10
√

181
181 units during the collision process in the u1

component. The opposite type of change happens in the u2

component, where the amplitude of soliton 1 decreases from
9
√

181
181 units to

√
5

5 units and that of soliton 2 increases from
√

5
5

units to 9
√

181
181 units.

On the other hand, one can note that the nature of sharing
or exchange of intensity for a given soliton is the same in
both components for the mixed focusing-defocusing 2CNLS
equations. For example, the intensity of soliton 1 (soliton
2) decreases (increases) after collision in both the u1 and
u2 components. Here the intensity is conserved in individual
components separately in addition to the difference in intensi-
ties between the components, instead of the total intensity, due
to the mixed type of nonlinearities (δ1 > 0 and δ2 < 0); such a
scenario is referred to as type-II energy-sharing collision as in
the standard single-pole collision [35]. This is demonstrated
in Fig. 3, where the intensity of soliton 1 decreases from
10

√
19

19 units to 2
√

3
3 units and soliton 2 increases from 2

√
3

3

units to 10
√

19
19 units during the collision process in the u1

(focusing) component. The change of the intensities in the
u2 (defocusing) component is also similar, but with different
magnitudes, such that the intensity of soliton 1 decreases from
9
√

19
19 units to

√
3

3 units and that of soliton 2 increases from
√

3
3

units to 9
√

19
19 units, corresponding to mixed 2CNLS soliton

collisions.
In these energy-exchanging collisions, the two bright soli-

tons possessing unequal amplitudes before collision exchange
their intensities after collision. This is a unique (but ex-
pected) phenomenon of the multicomponent NLS equations
as compared with their single-component counterpart. A
double-pole two-soliton in the standard scalar NLS equation
was reported in [43] which undergoes only elastic collision
without any change in amplitude before and after colli-
sion. We wish to stress that here we report the inelastic
(shape-changing or energy-sharing) interaction of the bright
double-pole solitons. Earlier in the literature such inelastic
collisions were reported only for the standard (pairwise) colli-
sion of single-pole bright solitons. One can witness another
important difference between the present double-pole and
standard (single-pole) two-soliton energy-sharing collisions.
In the standard two-soliton case, the intensity of a given
soliton after collision need not be exactly the same as that
of another soliton’s intensity before collision (to be precise,
it does not need to be the exact exchange of intensity).
However, here in the present double-pole soliton collision,
the amplitude or intensity is exactly exchanged such that
|A(2)+

� | = |A(1)−
� | and |A(1)+

� | = |A(2)−
� |. This can be viewed as

the state of the first soliton before interaction being copied
to the state of the second soliton after collision and vice
versa. Further, by adjusting the additional parameters suitably,
here the pairwise nature of collision can be transformed to
single-point collision in the higher-order double-pole soli-
ton interactions, which we will address in the forthcoming
section. This process of single-point collision of multiple

solitons can also be referred to as phase-synchronized soliton
collisions.

B. Multiple double-pole M bright 2N-solitons and collisions

The multiple (higher-order) double-pole M bright 2N-
soliton solution can be obtained by taking N > 1 in Eq. (4),
which describes the collision of N pairs of double-pole two-
solitons. The superposition of these N individual double-pole
two-solitons can generate nontrivial wave patterns that are
completely different from that of interacting 2N-solitons, al-
though this N double-pole soliton solution is generated from
the 2N-soliton solution.

To demonstrate the intricate behavior of such multiple
double-pole bright 2N-solitons (N � 2) in the MCNLS equa-
tions (1), we consider the double-pole four-solitons as an
example. By taking N = 2 in Eq. (4), the functions f and g(�)

of the double-pole four-soliton solution (3) can be expressed
as

f =

∣∣∣∣∣∣∣∣
m̃1,1 m̃1,2 m̃1,3 m̃1,4

m̃2,1 m̃2,2 m̃2,3 m̃2,4

m̃3,1 m̃3,2 m̃3,3 m̃3,4

m̃4,1 m̃4,2 m̃4,3 m̃4,4

∣∣∣∣∣∣∣∣
,

g(�) =

∣∣∣∣∣∣∣∣∣∣∣

m̃1,1 m̃1,2 m̃1,3 m̃1,4 φ1

m̃2,1 m̃2,2 m̃2,3 m̃2,4 φ2

m̃3,1 m̃3,2 m̃3,3 m̃3,4 φ3

m̃4,1 m̃4,2 m̃4,3 m̃4,4 φ4

iη̃(�)
1,0 iη̃(�)

2,0 iη̃(�)
3,0 iη̃(�)

4,0 0

∣∣∣∣∣∣∣∣∣∣∣
,

(12)

where the matrix elements m̃s, j and φs are given below Eq. (4)
for s, j = 1, 2, 3, 4. A categorical analysis of the collision
process of the above double-pole bright four-solitons can be
done along the lines of the double-pole bright two-soliton in
such a way that the former is a superposition of the latter.
Note that the transition amplitudes T̃ ( j)

� and T̃ (2+ j)
� admit

the relation T̃ (2+ j)
� = 1/T̃ ( j)

� , where j = 1, 2. As a conse-
quence, we obtain three types of double-pole four-soliton
collisions for different choice combinations of the transi-
tion amplitudes T̃ (1)

� and T̃ (2)
� : (i) elastic collisions, which

require T̃ (1)
� = 1 and T̃ (2)

� = 1, where T̃ (1)
� = η̃

(�)2
3,0

∑M
k=1 δk η̃

(k)2
1,0

η̃
(�)2
1,0

∑M
k=1 δk η̃

(k)2
3,0

and T̃ (2)
� = η̃

(�)2
4,0

∑M
k=1 δk η̃

(k)2
2,0

η̃
(�)2
2,0

∑M
k=1 δk η̃

(k)2
4,0

; (ii) energy-exchanging collisions,

which take place for T̃ (1)
� �= 1 and T̃ (2)

� �= 1; and (iii) a mix-
ture of elastic and energy-exchanging collisions for T̃ (1)

� = 1
and T̃ (2)

� �= 1 or for T̃ (1)
� �= 1 and T̃ (2)

� = 1. This implies that
only two solitons can experience energy-exchanging colli-
sions while the other two remain intact.

Figures 4–6 show these three types of double-pole four-
soliton collisions. Figure 4 shows the elastic collision of
double-pole four-solitons for the parameters ξ̃k,0 = −3, ξ̃l,0 =
1, η̃(1)

k,0 = 1, η̃(1)
l,0 = −1, η̃(2)

k,0 = 2, η̃(2)
l,0 = 2, p1R = 1, and p2R =

9
10 (k = 1, 2 and l = 3, 4). This particular parameter choice
also induces oscillations far from the interaction regime where
four waves cross. Another important observation here is a
special type of synchronization behavior. The four localized
nonlinear waves arrive in a common phase at the interac-
tion point, thereby producing a large-amplitude nonlinear
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FIG. 4. (a) and (b) Elastic collisions of the double-pole bright four-soliton with oscillating patterns in the focusing 2CNLS equation (1) with
the parameters M = 2, δ1 = 1, δ2 = 1, ξ̃1,0 = −3, ξ̃2,0 = −3, ξ̃3,0 = 1, ξ̃4,0 = 1, η̃

(1)
1,0 = 1, η̃

(1)
2,0 = 1, η̃

(1)
3,0 = −1, η̃

(1)
4,0 = −1, η̃

(2)
1,0 = 2, η̃

(2)
2,0 = 2,

η̃
(2)
3,0 = 2, η̃

(2)
4,0 = 2, p1R = 1, and p2R = 9

10 . (c) and (d) Density plots of (a) and (b), respectively.

wave at that position. Afterward, they get separated and re-
tain their original profile of periodically oscillating pairs of
solitons. Further, the nonlinear wave appearing at the interac-
tion regime or point admits a higher intensity in the second
component than that of the first component. In fact, at the
interaction junction, the u2 component attains a very high
amplitude which can exceed three units, whereas the u1 com-
ponent can have an intensity only below a single unit. By
properly tuning the parameters, one can control the amplifi-
cation of these synchronized structures.

Figure 5 displays the energy-exchanging collision of
double-pole four-solitons, in which the two solitons of each
double-pole two-soliton exchange their intensities after col-
lision. Here too the synchronization process takes place as
demonstrated in Fig. 4. This suggests that such a type of syn-
chronization can be one of the physical mechanisms behind
the sudden formation and disappearance of huge-amplitude
nonlinear waves in different physical contexts such as ocean
waves and nonlinear optics. Figure 6 displays the mixed-type
collision scenario of the double-pole four-solitons, in which

FIG. 5. (a) and (b) Energy-exchanging collisions of the double-pole bright four-solitons in the focusing 2CNLS equation (1) with the
parameters M = 2, δ1 = 1, δ2 = 1, ξ̃1,0 = 199

200 , ξ̃2,0 = 599
600 , ξ̃3,0 = 1, ξ̃4,0 = 1, η̃

(1)
1,0 = 1, η̃

(1)
2,0 = 1, η̃

(1)
3,0 = −1, η̃

(1)
4,0 = −1, η̃

(2)
1,0 = 1

10 , η̃
(2)
2,0 = 1

20 ,
η̃

(2)
3,0 = 1

20 , η̃
(2)
4,0 = 1

30 , p1R = 5, and p2R = 3. (c) and (d) Density plots of (a) and (b), respectively.
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FIG. 6. (a) and (b) Mixture of energy-exchanging collision of the double-pole bright two-soliton and elastic collision of the double-pole
bright two-soliton in the focusing 2CNLS equations (1) with the parameters M = 2, δ1 = 1, δ2 = 1, ξ̃1,0 = −1.1 × 1014, ξ̃2,0 = −3, ξ̃3,0 = 1,
ξ̃4,0 = 1, η̃

(1)
1,0 = 106, η̃

(1)
2,0 = 1, η̃

(1)
3,0 = 107, η̃

(1)
4,0 = −1, η̃

(2)
1,0 = 107, η̃

(2)
2,0 = 2, η̃

(2)
3,0 = 107, η̃

(2)
4,0 = 2, p1R = 1, and p2R = 2. (c) and (d) Density

plots of (a) and (b), respectively.

the two-soliton located around t < −5 [left pair in the two-
dimensional density plot in Figs. 6(c) and 6(d)] experiences
energy-exchanging collisions while the other two-soliton pair
located around t > −5 [right pair in the two-dimensional
density plot in Figs. 6(c) and 6(d)] displays mere elastic
collisions in both components u1 and u2. These collision sce-
narios are applicable for the remaining components in the
case of the MCNLS model. It should be noted that these
second-order (N = 2) double-pole four-soliton collisions can
be further extended to generalized multiple double-pole 2N-
soliton interactions with a synchronized phase resulting in
a much-higher-amplitude and much-higher-intensity doubly
localized wave at the point of collision, similar to the rogue
wave with extreme amplitudes. Such a phase synchronized
collision is one of the possible routes to achieve the generation
of rogue waves and extreme waves with huge amplitudes,
through multiple (double-pole or standard) soliton interac-
tions. This can form another interesting study, but a more
detailed investigation is beyond the scope of the present work.

III. MULTIPLE DOUBLE-POLE M − 1 BRIGHT-DARK
SOLITONS AND ENERGY-EXCHANGING COLLISION IN

MCNLS EQUATIONS

In this section we intend to investigate the dynamics of
multiple double-pole bright-dark 2N-solitons for the MCNLS
equations (1). As in the case of general multiple M bright
double-pole 2N-soliton solutions constructed from the stan-
dard M-component bright 2N-soliton solutions, one can also
obtain general multiple double-pole M − 1 bright, one dark
2N-soliton solutions from the standard M − 1 bright, one dark
2N-soliton solutions by taking the long-wave limiting proce-
dure. The explicit form of such standard bright-dark K-soliton

solutions along with all parameters is given in Appendix B.
Indeed, in Eq. (B2), by choosing the parameters as

K = 2N,

pN+s = −ps,

eξ j,0 = ξ̃ j,0 p jI e
(π/2)i,

eη
(�)
j,0 = η̃

(�)
j,0 p jI e

(π/2)i,

ξ̃s,0ξ̃N+s,0 − p2
sR

∑M−1
k=1 δk η̃

(k)
s,0η̃

(k)
N+s,0

δM − p2
sR

= 0

(13)

and then by considering the limits psI → 0 for s =
1, 2, . . . , N , the double-pole M − 1 bright, one dark 2N-
soliton solutions to the MCNLS equations (1) can be deduced
in the form

u� = e2iδM z g(�)(t, z)

f (t, z)
,

� = 1, 2, . . . , M − 1,

uM = e2iδM z g(M )(t, z)

f (t, z)
,

(14)

where

f =
∣∣∣∣∣ m̂(0)

s, j m̂(0)
s,N+ j

m̂(0)
N+s, j m̂(0)

N+s,N+ j

∣∣∣∣∣
1�s, j�N

,

g(�) =

∣∣∣∣∣∣∣
m̂(0)

s, j m̂(0)
s,N+ j φ̃s

m̂(0)
N+s, j m̂(0)

N+s,N+ j φ̃N+s

iη̂(�)
j,0 iη̂(�)

N+ j,0 0

∣∣∣∣∣∣∣
1�s, j�N

,
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g(M ) =
∣∣∣∣∣ m̂(1)

s, j m̂(1)
s,N+ j

m̂(1)
N+s, j m̂(1)

N+s,N+ j

∣∣∣∣∣
1�s, j�N

,

� = 1, 2, . . . , M, (15)

and the matrix elements are given by

m̂(n)
s, j = (−1)nξ̃s,0ξ̃ j,0e(psR+p jR )t+i(p2

sR−p2
jR )z

psR + p jR

+
∑M−1

k=1 δk η̃
(k)
s,0η̃

(k)
j,0

(psR + p jR) + (
δM
psR

+ δM
pjR

) ,

m̂(n)
N+s,N+ j = − (−1)nξ̃N+s,0ξ̃N+ j,0e−(psR+p jR )t+i(p2

sR−p2
jR )z

psR + p jR

−
∑M−1

k=1 δk η̃
(k)
N+s,0η̃

(k)
N+ j,0

(psR + p jR) + (
δM
psR

+ δM
pjR

) .

In addition,

m̂(n)
s,N+ j = (−1)nξ̃s,0ξ̃N+ j,0e(psR−p jR )t+i(p2

sR−p2
jR )z

(psR − p jR)

+
∑M−1

k=1 δk η̃
(k)
s,0η̃

(k)
N+ j,0

(psR − p jR) + (
δM
psR

− δM
pjR

) ,

m̂(n)
N+s, j = − (−1)nξ̃N+s,0ξ̃ j,0e−(psR−p jR )t+i(p2

sR−p2
jR )z

(psR − p jR)

−
∑M−1

k=1 δk η̃
(k)
N+s,0η̃

(k)
j,0

(psR − p jR) + (
δM
psR

− δM
pjR

)
for s �= j and

m̂(n)
s,N+s = ξ̃s,0ξ̃N+s,0

(
t + 2ipsRz + n

psR

)
,

m̂(n)
N+ j, j = ξ̃N+ j,0ξ̃ j,0

(
t − 2ip jRz − n

psR

)
,

while φ̃s and φ̃N+s take the form as given below Eq. (4). Here
psR, ξ̃s,0, η̃

(�)
j,0, ξ̃N+s,0, and η̃

(�)
N+ j,0 are arbitrary real parameters

for � = 1, 2, . . . , M − 1 and some of them have to satisfy the
condition

ξ̃s,0ξ̃N+s,0 − p2
sR

∑M−1
k=1 δk η̃

(k)
s,0η̃

(k)
N+s,0

δM − p2
sR

= 0. (16)

Note that the M − 1 components admit bright solitons (u� for
� = 1, 2, . . . , M − 1) and the uM th component corresponds to
the dark solitons.

A. Double-pole bright-dark two-soliton and
energy-exchanging collision

In this section we consider the double-pole M − 1 bright,
one dark two-soliton arising as in the above solution (14) and
(15) to explain the simplest possible energy-sharing collision
of the double-pole bright-dark two-soliton in the MCNLS
equations (1). Such a first-order double-pole bright-dark two-
soliton solution can be obtained from Eq. (15) with N = 1,

and the determinant forms of functions f , g(�), and g(M ) ex-
plicitly read

f =
∣∣∣∣m̂

(0)
1,1 m̂(0)

1,2

m̂(0)
2,1 m̂(0)

2,2

∣∣∣∣,

g(�) =

∣∣∣∣∣∣∣
m̂(0)

1,1 m̂(0)
1,2 φ̃1

m̂(0)
2,1 m̂(0)

2,2 φ̃2

iη̂(�)
1,0 iη̂(�)

2,0 0

∣∣∣∣∣∣∣,

g(M ) =
∣∣∣∣m̂

(1)
1,1 m̂(1)

1,2

m̂(1)
2,1 m̂(1)

2,2

∣∣∣∣,

(17)

where m̂(n)
1,1 = (−1)n ξ̃ 2

1,0e2p1Rt

2p1R
+

∑M−1
k=1 δk η̃

(k)2
1,0

2(p1R+ δM
p1R

)
, m̂(n)

1,2 = ξ̃1,0ξ̃2,0(t +
2ip1Rz + n

p1R
), m̂(n)

2,1 = ξ̃1,0ξ̃2,0(t − 2ip1Rz − n
p1R

), m̂(n)
2,2 =

(−1)n+1 ξ̃ 2
2,0e2p1Rt

2p1R
−

∑M−1
k=1 δk η̃

(k)2
2,0

2(p1R+ δM
p1R

)
, φ̃1 = iξ̃1,0ep1R (t+ip1Rz), and

φ̃2 = iξ̃2,0e−p1R (t−ip1Rz). This double-pole bright-dark
two-soliton solution contains a sum of 3M + 1 real arbitrary
parameters: 2M + 1 soliton parameters (p1R, ξ̃ j,0, and η̃

(�)
j,0,

with j = 1, 2 and � = 1, 2, . . . , M − 1) and M nonlinearity
coefficients (δ1, δ2, . . . , δM). As mentioned in Eq. (16),
these parameters have to obey the parametric condition

ξ̃1,0ξ̃2,0 − p2
1R

∑M−1
k=1 δk η̃

(k)
1,0η̃

(k)
2,0

δM−p2
1R

= 0.
This double-pole bright-dark two-soliton solution would

be regular when the arbitrary parameters satisfy the condi-

tion
∑M−1

k=1
δk η̃

(k)2
j,0

1+ δM
p2

1R

> 0 ( j = 1, 2), which is considered for our

further analysis and discussion to avoid singular solutions.
Furthermore, by taking appropriate choices of the parameters
η̃

(�)
j,0 and p1R, this regularity condition can very well be satis-

fied for the MCNLS equations (1) for all three different types
of nonlinearity coefficients, namely, the focusing [δk > 0 in
Eq. (1)], the defocusing [δk < 0 in Eq. (1)], and the mixed
focusing-defocusing [δk > 0, δk′ < 0, and k �= k′ in Eq. (1)]
cases. This is a salient feature of the present general double-
pole bright-dark soliton solution.

The double-pole bright-dark two-soliton solution describes
different collision dynamics depending on the parameters ξ̃1,0

and ξ̃2,0 that are discussed below.
Case 1. The first type of collision results when the param-

eters ξ̃1,0 and ξ̃2,0 are finite; this can be achieved by choosing
p2

1R �= δM [see Eq. (16)]. In this case, the collision process
of the double-pole bright-dark two-soliton can be studied by
using the asymptotic analysis of the bright-dark two-soliton
collision provided in Appendix B. Equations (B10)–(B13),
with the parameters as given in Eq. (13) with the limit p1R →
0, result in the relation between the intensities of the two
interacting double-pole bright-dark solitons before and after
collision

∣∣ ˆ̂A( j)−
�

∣∣2 = (p2
1R + δM )η̃(�)2

j,0∑M−1
k=1 δk η̃

(k)2
j,0

,

∣∣ ˆ̂A( j)+
�

∣∣2 = ˆ̂T ( j)2
�

∣∣ ˆ̂A( j)−
�

∣∣2
,∣∣ ˆ̂A( j)−

M

∣∣2 = ∣∣ ˆ̂A( j)+
M

∣∣2 = 0

(18)
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for � = 1, 2, . . . , M − 1; j = 1, 2; and the soliton transition
amplitudes

ˆ̂T (1)2
� = η̃

(�)2
2,0

∑M−1
k=1 δk η̃

(k)2
1,0

η̃
(�)2
1,0

∑M−1
k=1 δk η̃

(k)2
2,0

, ˆ̂T (2)2
� = η̃

(�)2
1,0

∑M−1
k=1 δk η̃

(k)2
2,0

η̃
(�)2
2,0

∑M−1
k=1 δk η̃

(k)2
1,0

.

(19)

Here the double-pole bright two-soliton appears in u�

(� = 1, 2, . . . , M − 1) components, while the double-pole
dark two-soliton arises in the uM component alone. These
quantities imply the following features of the double-pole
bright-dark two-soliton collision dynamics.

(i) For the uM component, corresponding to double-pole
dark two-soliton, the relation | ˆ̂A( j)−

M |2 = | ˆ̂A( j)+
M |2 indicates that

the intensities of the double-pole dark two-soliton remain
unchanged after collision, namely, the darkness of this dark
two-soliton is invariant before and after collision. Hence, the
double-pole dark two-soliton displays only elastic collision
due to the identical transition amplitudes ˆ̂T (1)

M = ˆ̂T (2)
M = 1.

(ii) Except for the uM component, all the remaining u� com-
ponents admit double-pole bright two-solitons. Further, the
relations explaining the collisions of the double-pole bright
two-solitons given by Eqs. (9) and (10) still hold for the
bright component u� (� = 1, 2, . . . , M − 1) in the double-pole
bright-dark two-soliton case, namely,

ˆ̂T (1)
�

ˆ̂T (2)
� = 1,

∣∣ ˆ̂A(2)+
�

∣∣ = ∣∣ ˆ̂A(1)−
�

∣∣, ∣∣ ˆ̂A(1)+
�

∣∣ = ∣∣ ˆ̂A(2)−
�

∣∣, (20)∣∣ ˆ̂A(1)−
�

∣∣2 + ∣∣ ˆ̂A(2)−
�

∣∣2 = ∣∣ ˆ̂A(1)+
�

∣∣2 + ∣∣ ˆ̂A(2)+
�

∣∣2
,

� = 1, 2, . . . , M − 1. (21)

These relations indicate that the double-pole M − 1 bright
two-solitons also exhibit two-types of collisions: elastic colli-
sion for ˆ̂T ( j)

� = 1 and energy-exchanging collision for ˆ̂T ( j)
� �=

1. In particular, when M = 2, we can obtain ˆ̂T (1)
1 = ˆ̂T (2)

1 = 1
due to the existence of bright solitons in only the u1 com-
ponent. Hence the double-pole bright-dark two-soliton in
the 2CNLS equations only admits elastic collisions. From
Eq. (18) we can infer that the nonlinearity coefficients of
the dark-component (δM) directly and strongly influence the
intensities of the double-pole bright solitons. In each bright
component u�, the intensities of the double-pole bright soli-
tons are larger for the positive nonlinearity coefficient of the
dark component uM (i.e., δM > 0) than that of the negative
nonlinearity coefficient (i.e., δM < 0). Additionally, the total
intensity of solitons j (=1, 2) arising among all the u� (� =
1, 2, . . . , M − 1) bright components obeys the relation

M−1∑
k=1

δk

∣∣ ˆ̂A( j)−
k

∣∣2 =
M−1∑
k=1

δk

∣∣ ˆ̂A( j)+
k

∣∣2 = p2
1R + δM, j = 1, 2.

(22)

From this relation one can observe that the total intensity of
the bright soliton j in all bright components is also strongly
affected by the nonlinear coefficient δM of the dark component
uM . Additionally, this total intensity is very different from that
of the double-pole bright soliton j in all components discussed
in Sec. II, which is only related to the parameter p1R and is
independent of the nonlinear coefficients δ� [see Eq. (11)].

Furthermore, since the intensity of the double-pole dark two-
soliton is a constant and independent of any parameters, the
nonlinearity coefficients δ� (� = 1, 2, . . . , M − 1) of bright
components u� do not affect the intensities of the double-pole
dark two-soliton in the uM component.

Figure 7 shows the double-pole bright-dark two-soliton
for the defocusing 2CNLS equations (i.e., M = 2, δ1 < 0,
and δ2 < 0). As discussed above, one can observe that the
double-pole bright-dark two-soliton in the 2CNLS equations
only admits elastic collisions. Thus both the bright and dark
double-pole solitons appearing in the u1 and u2 components,
respectively, retain their intensities and travel unaltered before
and after collision. Indeed, from Eq. (18) with the parameters
given in Fig. 7(a), one can calculate the intensity (darkness)
of the bright (dark) two-soliton appearing in the u1 (u2) com-
ponent as

√
5

3 (0). Here we note that the defocusing 2CNLS
equations do not admit a regular multicomponent double-pole
bright-two-soliton solution, which was discussed in Sec. II,
and hence the energy-sharing collisions are not possible.

Figures 8 and 9 show the energy-exchanging collisions of
double-pole bright-dark two-solitons for the focusing 3CNLS
equations and the mixed focusing-defocusing 3CNLS equa-
tions, respectively, with same choice of parameters p1R, ξ2,0,
and η

(k)
j,0 ( j, k = 1, 2). We note that one can calculate the

value of ξ1,0 corresponding to Figs. 8 and 9 from Eq. (16),
which results in different values due to the different choices of
nonlinearity coefficients δ3, even with the same choice of p1R,
ξ2,0, and η

(k)
j,0. In these two figures and cases the nonlinearity

coefficients of bright components (u1 and u2) are equal and
positive (i.e., δ1 = δ2 = 1), while that of the dark component
(u3) is opposite, namely, δ3 = 1 in Fig. 8 (focusing 3CNLS)
and δ3 = −1 in Fig. 9 (mixed 3CLNS). From Eq. (18) we
can obtain the changes in intensities of the double-pole bright
two-soliton in the focusing 3CNLS equations (i.e., in Fig. 8):
The intensity of soliton 1 increases from

√
2

2 units to 2 units in

the u1 component and decreases from 3
√

2
2 unit to 1 unit in the

u2 component, while the intensity of soliton 2 changes in the
opposite manner in such a way that it decreases from 2 units
to

√
2

2 units in the u1 component and increases from 1 unit to
3
√

2
2 units in the u2 component. In the case of mixed focusing-

defocusing 3CNLS equations, as shown in Fig. 9, the nature
of the amplitude changes is similar to that of Fig. 8, but with
different magnitudes: The intensity of soliton 1 increases from√

3
10 units to 2

√
3
5 units in the u1 component and decreases

from 3
√

3
10 units to

√
3
5 units in the u2 component, whereas

the intensity of soliton 2 decreases from 2
√

3
5 units to

√
3

10

units in the u1 component and increases from
√

3
5 units to

3
√

3
10 units in the u2 component. Thus, we can understand that

in these collision processes, the double-pole bright solitons
1 and 2 exactly exchange their intensities after collision in
the bright components (i.e., u1 and u2), whereas the intensity
of double-pole dark solitons remains unchanged in the u3

component. To sum up, one can easily understand that the
bright-dark double-pole two-solitons in MCNLS equations
with M � 3 show energy-exchanging collisions in the u� (� =
1, 2, . . . , M − 1) bright components accompanied by elastic
collision in the only dark (uM) component.
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FIG. 7. (a) Elastic collision of the double-pole bright-dark two-soliton in the defocusing 2CNLS equations (1) with the parameters M = 2,
δ1 = −1, δ2 = −1, ξ̃1,0 = 16

13 , ξ̃2,0 = 2, η̃
(1)
1,0 = 2, η̃

(1)
2,0 = 4, and p1R = 2

3 . The intensity variations are shown at (b) z = −100 (before collision)
and (c) z = 100 (after collision) in soliton 1 (red line) and soliton 2 (green line).

FIG. 8. (a) Energy-exchanging elastic collision of the double-pole bright-dark two-soliton in the focusing 3CNLS equations (1) with the
parameters M = 3, δ1 = 1, δ2 = 1, δ3 = 1, ξ̃1,0 = − 20

3 , ξ̃2,0 = 1, η̃
(1)
1,0 = 1, η̃

(1)
2,0 = 2, η̃

(2)
1,0 = 3, η̃

(2)
2,0 = 1, and p1R = 2. The intensity variations

are shown clearly at (b) z = −100 (before collision) and (c) z = 100 (after collision) in soliton 1 (red line) and soliton 2 (green line).
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FIG. 9. (a) Energy-exchanging elastic collision of the double-pole bright-dark two-soliton in the mixed focusing-defocusing 3CNLS
equation (1) with the parameters M = 3, δ1 = 1, δ2 = 1, δ3 = −1, ξ̃1,0 = −4, ξ̃2,0 = 1, η̃

(1)
1,0 = 1, η̃

(1)
2,0 = 2, η̃

(2)
1,0 = 3, η̃

(2)
2,0 = 1, and p1R = 2.

The intensity variations are shown at (b) z = −100 (before collision) and (c) z = 100 (after collision) in soliton 1 (red line) and soliton 2
(green line).

Case 2. A different class of collision features results
when either of the parameters ξ̃1,0 and ξ̃2,0 approaches
infinity (namely, either ξ̃1 → ∞ or ξ̃2 → ∞), which can
be realized by taking p2

1R = δM [see Eq. (13)]. When
ξ̃ j is finite and ξ̃ j̃ → ∞ ( j �= j̃ = 1, 2), one can obtain

from Eqs. (B5)–(B8) that u( j̃)±
� → 0 and u( j)±

M → e2iδM z

for � = 1, 2, . . . , M − 1, which indicates that the soliton j̃
degenerates into the constant background, and the double-
pole bright-dark soliton solution only consists of soliton
j. In this case, the functions f , g(�), and g(M ) of the
double-pole bright-dark soliton solution can be written
as

f = −e(−1) j 2p1Rt

4p2
1R

M−1∑
k=1

δk η̃
(k)2
j,0

1 + δM

p2
1R

− ξ̃ 2
j,0

(
t2 + 4p2

1Rz2 + 1

4p2
1R

)
,

g(�) = (−1) j ξ̃ j,0η̃
(�)
j,0

(
2ip1Rz + (−1) j−1t + 1

2p1R

)
ep1R[ip1Rz+(−1) j t],

g(M ) = e(−1) j 2p1Rt

4p2
1R

M−1∑
k=1

δk η̃
(k)2
j,0

1 + δM

p2
1R

− ξ̃ 2
j,0

[
t2 +

(
2p1Rz − i

p1R

)2

+ 1

4p2
1R

]
.

(23)

Since such a double-pole bright-dark two-soliton solution is
derived by taking p2

1R = δM > 0, the regularity condition be-
comes

∑M−1
k=1 δk η̃

(k)2
j,0 > 0 and the nonlinearity coefficient of

the dark-component should be positive, namely, δM > 0.

From the analysis of the double-pole bright-dark two-
soliton solution with ξ̃ j,0 being finite and ξ̃ j̃,0 → ∞ ( j �=
j̃ and j, j̃ = 1, 2), we can obtain the intensity of such
a double-pole bright two-soliton in the u� (� = 1, 2, . . . ,
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FIG. 10. Double-pole bright-dark two-soliton solution (17) in the focusing 2CNLS equations (1) with the parameters M = 2, δ1 = 1,
δ2 = 1, and p1R = 1. The case of ξ̃1,0 = 1 and ξ̃2,0 → ∞ leads to soliton 2 degenerating into the (a) zero and (b) nonzero backgrounds and
only soliton 1 exists on the background with parameters η̃

(1)
1,0 = 10, η̃(1)

2,0 = 1. The case of ξ̃1,0 → ∞ and ξ̃2,0 = 1 leads to soliton 1 disappearing
into the (c) zero and (d) nonzero backgrounds and only soliton 2 propagates on the background with parameters η̃

(1)
1,0 = 1, η̃

(1)
2,0 = 10.

M − 1) component as

∣∣A( j)
�

∣∣2 = 2δM η̃
(�)2
j,0∑M−1

k=1 δk η̃
(k)2
j,0

. (24)

However, the intensity or depth of the double-pole dark soliton
in the dark component uM approaches zero (|A( j)

M | → 0) on
the constant nonvanishing background intensity of one unit.
Figure 10 shows such collisions of double-pole bright-dark
two-solitons in the defocusing 2CNLS equations for finite
ξ̃1,0 with ξ̃2,0 → ∞ [Figs. 10(a) and 10(b)] and finite ξ̃2,0

with ξ̃1,0 → ∞ [Figs. 10(c) and 10(d)]. Thus, one can un-
derstand from this discussion and demonstrations that this
double-pole bright-dark two-soliton is completely different
from the double-pole bright-dark two-soliton arising when
both ξ̃ j,0 and ξ̃ j̃,0 are finite as shown in case 1 and through
Figs. 6–9, where a pair of bright and dark solitons exists
in a given u� component and uM component, respectively,
while the present double-pole bright-dark two-soliton con-
tains only one soliton profile taking a curved path around
z → 0 as depicted in Fig. 10. To be precise, only soliton 1
exists and propagates on the zero (nonzero) background, while
soliton 2 degenerates into the zero (nonzero) background in
Fig. 10(a) [Fig. 10(b)]. In contrast, in Fig. 10(c) [Fig. 10(d)],
soliton 2 only propagates on the zero (nonzero) background
and soliton 1 disappears into the zero (nonzero) background.

Additionally, we note that, since the regularity condition
requires δ1 > 0 and δ2 > 0 for M = 2, only the focusing
2CNLS equations [i.e., M = 2, δ1 > 0, and δ2 > 0 in (1)]
can feature such a regular double-pole bright-dark two-soliton
solution, whereas the mixed focusing-defocusing 2CNLS
equations [i.e., M = 2 and δ1δ2 < 0 in (1)] and the defo-
cusing 2CNLS equations [i.e., M = 2, δ1 < 0, and δ2 < 0 in
(1)] do not admit such regular bright-dark two-soliton struc-
tures. However, when M > 2, the regularity condition can be
very well satisfied for δ j > 0 or δkδ j < 0 (k �= j and k, j =
1, 2, . . . , M − 1) and such a regular double-pole bright-dark
two-soliton exists in the focusing MCNLS system or in the
mixed focusing-defocusing MCNLS system for M � 3.

In particular, when both parameters ξ̃1,0 and ξ̃2,0 approach
infinity (ξ̃1,0 → ∞ and ξ̃2,0 → ∞), the double-pole bright-
dark two-soliton solution (17) becomes

u� = 0,

� = 1, 2, . . . , M − 1,

uM = e2iδM z

(
1 − 4(4iz + 1)

4t2 + 16z2 + 1

)
.

(25)

This represents that the double-pole soliton in the bright com-
ponent u� completely degenerates to the zero background,
while the dark component uM gets shaped as an interesting
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FIG. 11. The top row shows the elastic collision of the double-pole bright-dark four-soliton in the focusing 3NLS equation (1) with the
parameters M = 3, δ1 = 1, δ2 = 1, δ3 = 1, ξ̃1,0 = 12

5 , ξ̃2,0 = 27
7 , ξ̃3,0 = 1, ξ̃4,0 = 1, η̃(1)

1,0 = 1, η̃(1)
2,0 = 1, η̃(1)

3,0 = −1, η̃(1)
4,0 = −1, η̃(2)

1,0 = 2, η̃(2)
2,0 = 2,

η̃
(2)
3,0 = 2, η̃

(2)
4,0 = 2, p1R = 2

3 , and p2R = 3
4 . The bottom row is the density plot of the top row.

Peregrine soliton (i.e., fundamental rogue wave solution).
This feature indicates that the collision of the double-
pole two-soliton can generate a rogue wave, an alternate
mechanism to achieve rogue waves, which has been an ex-
citing notion of research in recent years. Proceeding further,
one can look for the generation of such rogue waves during
the collision of multiple double-pole solitons as well.

B. Multiple double-pole bright-dark solitons and their collisions

The multiple double-pole bright-dark soliton solution de-
scribes the superposition of several individual double-pole
bright-dark two-solitons, which are generated from Eq. (15)

with N � 2. Our analysis of the dynamics of the double-pole
bright-dark two-soliton reveals that the multiple double-pole
bright-dark 2N-soliton possesses three different dynamical
behaviors under different parametric conditions: (i) the exis-
tence of 2N soliton wave profiles for ξ j,0 �= ∞ and ξN+ j,0 �=
∞ (1 � j � N), (ii) the presence of 2N − 1 soliton wave pro-
files for ξ j,0 → ∞ or ξN+ j,0 → ∞, and (iii) the coexistence of
2(N − 1) soliton waves with a Peregrine soliton for ξ j,0 → ∞
and ξN+ j,0 → ∞.

To demonstrate the multiple double-pole bright-dark 2N-
soliton solutions, we consider the bright-dark four-soliton as
an example; this can be obtained from Eqs. (14) and (15) by
taking N = 2. The determinant forms of the functions f , g(�),

FIG. 12. The top row shows the energy-exchanging collision of the double-pole bright-dark four-soliton in the focusing 3-NLS equation
(1) with the parameters M = 3, δ1 = 1, δ2 = 1, δ3 = 1, ξ̃1,0 = − 44

3 × 1012, ξ̃2,0 = − 51
160 , ξ̃3,0 = 1, ξ̃4,0 = 1, η̃

(1)
1,0 = 106, η̃

(1)
2,0 = 1

20 , η̃
(1)
3,0 = 107,

η̃
(1)
4,0 = −1, η̃

(2)
1,0 = 106, η̃

(2)
2,0 = 1

3 , η̃
(2)
3,0 = 106, η̃

(2)
4,0 = 1, p1R = 2, and p2R = 3. The bottom row is the density plot of the top row.
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FIG. 13. The top row shows the energy-exchanging collision of the double-pole bright-dark four-soliton in the focusing 3NLS equation (1)
with the parameters M = 3, δ1 = 1, δ2 = 1, δ3 = 1, ξ̃1,0 = 64

75 , ξ̃2,0 = 891
800 , ξ̃3,0 = 1, ξ̃4,0 = 1, η̃(1)

1,0 = 1, η̃(1)
2,0 = 1, η̃(1)

3,0 = −1, η̃(1)
4,0 = −1, η̃(2)

1,0 = 2,
η̃

(2)
2,0 = 1

5 , η̃
(2)
3,0 = 1

10 , η̃
(2)
4,0 = 1

20 , p1R = 4, and p2R = 3. The bottom row is the density plot of the top row.

and g(M ) of the double-pole bright-dark four-soliton solution
can be written explicitly as

f =

∣∣∣∣∣∣∣∣∣

m̂(0)
1,1 m̂(0)

1,2 m̂(0)
1,3 m̂(0)

1,4

m̂(0)
2,1 m̂(0)

2,2 m̂(0)
2,3 m̂(0)

2,4

m̂(0)
3,1 m̂(0)

3,2 m̂(0)
3,3 m̂(0)

3,4

m̂(0)
4,1 m̂(0)

4,2 m̂(0)
4,3 m̂(0)

4,4

∣∣∣∣∣∣∣∣∣
,

g(M ) =

∣∣∣∣∣∣∣∣∣

m̂(1)
1,1 m̂(1)

1,2 m̂(1)
1,3 m̂(1)

1,4

m̂(1)
2,1 m̂(1)

2,2 m̂(1)
2,3 m̂(1)

2,4

m̂(1)
3,1 m̂(1)

3,2 m̂(1)
3,3 m̂(1)

3,4

m̂(1)
4,1 m̂(1)

4,2 m̂(1)
4,3 m̂(1)

4,4

∣∣∣∣∣∣∣∣∣
,

g(�) =

∣∣∣∣∣∣∣∣∣∣∣∣

m̂(0)
1,1 m̂(0)

1,2 m̂(0)
1,3 m̂(0)

1,4 φ̃1

m̂(0)
2,1 m̂(0)

2,2 m̂(0)
2,3 m̂(0)

2,4 φ̃2

m̂(0)
3,1 m̂(0)

3,2 m̂(0)
3,3 m̂(0)

3,4 φ̃3

m̂(0)
4,1 m̂(0)

4,2 m̂(0)
4,3 m̂(0)

4,4 φ̃4

iη̂(�)
1,0 iη̂(�)

2,0 iη̂(�)
3,0 iη̂(�)

4,0 0

∣∣∣∣∣∣∣∣∣∣∣∣
,

� = 1, 2, . . . , M,

(26)

where the matrix elements m̂(n)
s, j (n = 0, 1 and s, j = 1, 2, 3, 4)

take the form as given below Eq. (15). This bright-dark four-
soliton solution contains 4M + 2 soliton parameters (i.e., ξ̃ j,0,
η̃

(�)
j,0, p1R, and p2R) and M is the number of nonlinearity coeffi-

cients (δ1, δ2, . . . , δM) among which the parameters ξ̃1,0, η̃
(�)
1,0,

ξ̃3,0, η̃(�)
3,0, and p1R mainly control one double-pole two-soliton,

while the remaining parameters (i.e., ξ̃2,0, η̃
(�)
2,0, ξ̃4,0, η̃

(�)
4,0, and

p2R) determine the nature of other double-pole two-solitons.
For appropriate choices of ξ̃ j,0 ( j = 1, 2, 3, 4) the double-pole
bright-dark four-soliton describes three different dynamical
behaviors during collision as discussed below.

Case 1. When all ξ̃ j,0 ( j = 1, 2, 3, 4) are finite, the
double-pole four-soliton solution results in the four-soliton

excitations. In this case, the double-pole four-soliton in the
dark component uM only reveals elastic collision, whereas
the double-pole four-soliton in the bright components u�

(� = 1, 2, . . . , M − 1) can exhibit three different types of
collision under different parametric conditions: (i) elastic col-

lision for ˆ̂T (1)
� = 1 and ˆ̂T (2)

� = 1, where ˆ̂T (1)
� = η̃

(�)2
3,0

∑M−1
k=1 δk η̃

(k)2
1,0

η̃
(�)2
1,0

∑M−1
k=1 δk η̃

(k)2
3,0

and ˆ̂T (2)
� = η̃

(�)2
4,0

∑M−1
k=1 δk η̃

(k)2
2,0

η̃
(�)2
2,0

∑M−1
k=1 δk η̃

(k)2
4,0

; (ii) energy-exchanging collision

for ˆ̂T (1)
� �= 1 and ˆ̂T (2)

� �= 1; and (iii) a mixture of energy-

exchanging and elastic collisions for ˆ̂T (1)
� = 1 and ˆ̂T (2)

� �= 1

or for ˆ̂T (1)
� �= 1 and ˆ̂T (2)

� = 1. Since ˆ̂T (3)
� = 1/ ˆ̂T (1)

� and ˆ̂T (4)
� =

1/ ˆ̂T (2)
� , we do not list the expressions of ˆ̂T (3)

� and ˆ̂T (4)
� in the

above parametric conditions. These three collision scenarios
of double-pole bright four-solitons are very similar to that
of multicomponent double-pole bright four-solitons discussed
in the preceding section, except for their existence in M − 1
components here. Figure 11 displays the elastic collision
of the double-pole four-soliton. It is quite evident that the
collision of the four-solitons would generate periodic line
waves in the interaction region. Figure 12 portrays the energy-
exchanging collision of the double-pole four-soliton, where
the two-soliton waves of each two-soliton exchange their in-
tensities after collision. However, one can witness that the
combination of elastic collision and the energy-exchanging
collision of double-pole four-solitons takes place as shown in
Fig. 13, where the double-pole two-solitons located around
t < −3 exchange their intensities after collision, while other
double-pole two-solitons located around t > −3 retain their
intensities and reemerge unchanged after collision.

Case 2. When ξ̃ j,0 → ∞ and ξ̃s,0 are finite (for s = 1 or
3 and j = 2, 4) or ξ̃ j,0 are finite and ξ̃s,0 → ∞ (for j = 1, 3
and s = 2 or 4), the resulting double-pole four-soliton consists
of only three-soliton waves and the fourth soliton vanishes
or degenerates. Figure 14 shows the case of ξ̃1,0 → ∞ and
finite ξ̃l,0 (l = 2, 3, 4). One can notice that the two-soliton
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FIG. 14. The top row shows the double-pole bright-dark four-soliton in the focusing 3NLS equation (1) with the parameters M = 3, δ1 = 1,
δ2 = 1, δ3 = 1, ξ̃2,0 = − 16

5 , ξ̃3,0 = 3, ξ̃4,0 = 1, η̃(1)
2,0 = 1, η̃(1)

3,0 = 104, η̃(1)
4,0 = 2, η̃(2)

2,0 = 1, η̃(2)
3,0 = 104, η̃(2)

4,0 = 1, p1R = 1, and p2R = 4. The bottom
row is the density plot of the top row.

determined by the parameters η̃
(�)
1,0, ξ̃3,0, η̃

(�)
3,0, and p1R only

consists of a single-hump profile and the left two-soliton
consists of double-hump solitons. The intensity of the double-
pole two-soliton consisting of a degenerated single-hump
profile remains the same throughout its propagation and it
takes a curved path around the interaction regime z ≈ 0. On
the other hand, the other double-pole bright two-soliton can
show two types of collision behavior in the bright compo-
nents u� (� = 1, 2, . . . , M − 1): energy-exchanging collision
(for ˆ̂T (2)

� �= 1) and elastic collision (for ˆ̂T (2)
� = 1). However,

in the dark component uM the double-pole dark four-soliton
admits elastic collision alone and the degenerated soliton
takes a curved path propagation similar to that of the bright
soliton.

Case 3. When ξ̃ j,0 are finite and ξ̃s,0 → ∞ ( j = 1, 3
and s = 2, 4) or ξ̃ j,0 → ∞ and ξ̃s,0 are finite ( j = 1, 3 and
s = 2, 4), the bright components u� and dark component
uM possess completely different dynamical behaviors. In the
bright components u�, one double-pole bright two-soliton
completely degenerates into the zero background without any
trace. Hence the bright four-soliton behaves similarly to the
double-pole two-soliton. However, in the dark component,
one dark double-pole two-soliton is transformed into a Pere-
grine soliton (simplest rogue wave) and the other double-pole
dark two-soliton retains its own soliton profile exhibiting
elastic interaction. Hence, the dark component uM supports
the coexistence of a dark two-soliton along with a Peregrine
soliton. Figure 15 shows such a demonstration resulting for

FIG. 15. The top row shows the double-pole bright-dark four-soliton in the focusing 3NLS equation (1) with the parameters M = 3, δ1 = 1,
δ2 = 1, δ3 = 1, ξ̃2,0 = −3.2 × 108, ξ̃4,0 = 4, η̃

(1)
2,0 = 2, η̃

(1)
4,0 = 108, η̃

(2)
2,0 = 1, η̃

(2)
4,0 = 109, p1R = 1, and p2R = 4. The bottom row is the density

plot of the top row.
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the choice of ξ̃1,0 → ∞ and ξ̃3,0 → ∞ with ξ̃2,0 and ξ̃4,0

chosen to be finite. One can observe the double-pole bright
two-soliton in the u1 and u2 components and double-pole dark
two-soliton coexisting with the Peregrine soliton in the dark
component u3.

The above analysis of the first-order and second-order mul-
ticomponent double-pole bright and bright-dark solitons can
be straightforwardly extended to an arbitrary N th-order case
with N � 3 too, where several combinations of interaction
pictures can be identified along with the collision behaviors
discussed in this work. It will be tedious mathematically but
will result in interesting outcomes, especially along the direc-
tion of rogue wave generation or existence with double-pole
dark solitons. Here we have addressed this point with a brief
study, but a deeper investigation would be of interest. Further,
such rogue wave formation resulting from the double-pole
bright solitons is yet another question that needs to be an-
swered through a detailed analysis.

IV. CONCLUSION

In this work we have systematically constructed multi-
component double-pole bright and bright-dark 2N-solitons
of the MCNLS equations (1) comprising all possible combi-
nations of nonlinearities, namely, focusing, defocusing, and
mixed nonlinearities arising in different physical settings.
This is achieved by taking the long-wavelength limit of
the single-pole multicomponent bright-bright and bright-dark
soliton pairs through proper parametric choices, which display
completely different collision behaviors compared with the
standard single-pole solitons. Our analysis of the multicompo-
nent, multiple double-pole bright 2N-solitons reveals that the
focusing and mixed focusing-defocusing MCNLS equations
admit the smooth multiple double-pole bright-solitons, while
the defocusing MCNLS equations do not have such regular
soliton solutions. By analyzing the intensities before and af-
ter collision through asymptotic analysis, we have identified
two different types of collisions: standard elastic collision
and energy-exchanging collision for the first-order double-
pole bright (two-soliton with N = 1) solitons in the MCNLS
equations (1) with M � 2. Additionally, the multiple (second
order with N = 2 having four-solitons) double-pole two bright
2N-solitons exhibit the superposition of several individual
double-pole two bright two-solitons and possess three types
of collisions: elastic collisions, energy-exchanging collisions,
and a mixture of elastic collisions and energy-exchanging
collisions.

Further in our study we investigated the multiple double-
pole bright-dark 2N-solitons in the MCNLS equations. There
exist two types of double-pole bright-dark two-solitons de-
pending on the parameters ξ̃ j,0 ( j = 1, 2). When ξ̃1,0 and
ξ̃2,0 are finite the double-pole bright-dark two-soliton has two
soliton waves and a solution exists in the MCNLS equations
(1) for all types of nonlinearities, namely, focusing, defocus-
ing, and mixed focusing and defocusing. When ξ̃1,0 → ∞,
ξ̃2,0 is finite or ξ̃1,0 is finite and ξ̃2,0 → ∞, the double-pole
bright-dark two-solitons only possess a single-soliton wave
profile and such a solution exists only for the focusing and
mixed (focusing and defocusing) types of MCNLS equa-
tions. In the double-pole bright-dark two-soliton, the bright

two-solitons can exhibit energy-exchanging collisions when
the bright solitons appear in at least two components apart
from the elastic collision under different parametric condi-
tions similar to pure bright double-pole solitons, whereas the
double-pole dark two-soliton exhibits a mere elastic collision.
Further, the multiple (higher-order with N � 2) double-pole
bright-dark 2N-solitons exhibit the superposition of several
individual double-pole bright-dark two-solitons, where they
possess rich soliton patterns, starting from the degeneration
or disappearance of solitons and generation or formation of
Peregrine solitons or rogue waves coexisting with double-
pole dark soliton pairs. The presented results will be useful
to the understanding of multicomponent double-pole bright
and bright-dark solitons in the MCNLS equations (1) that
appear in different contexts such as nonlinear optics, atomic
condensates, and plasma systems and corresponding possible
experimental realizations. Further, these outcomes will pro-
vide a fundamental platform for investigating various other
coupled nonlinear soliton models. An interesting open ques-
tion about the generation of rogue waves through soliton
collisions, which we have addressed here briefly for one case
only, can be explored further in detail.
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APPENDIX A: BRIGHT SOLITON SOLUTION OF THE
MCNLS EQUATIONS

In this Appendix we present the general bright K-soliton
solutions to the MCNLS equations (1), where K is an arbitrary
positive integer. The MCNLS equations (1) have the bright
K-soliton solutions

u�so = g(�)(t, z)

f (t, z)
, � = 1, 2, . . . , M, (A1)

where

f (t, z) = |M|, g(�)(t, z) =
∣∣∣∣ M 	T

−
̄(�) 0

∣∣∣∣. (A2)

The elements of the matrix M are obtained as

ms, j = 1

ps + p∗
j

eξs+ξ∗
j +

M∑
�=1

δ�

ps + p∗
j

eη
(�)
s,0+η

(�)∗
j,0 ,

ξs =pst + ip2
s z + ξs,0; s, j = 1, 2, . . . , K,

(A3)
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while 	 and 
̄(�) are row vectors defined by

	 = (eξ1 , eξ2 , . . . , eξK ),


̄(�) = (eη
(�)∗
1,0 , eη

(�)∗
2,0 , . . . , eη

(�)∗
K,0 ),

� = 1, 2, . . . , M.

(A4)

The superscript T represents the transpose.
We note that the above bright K-soliton solution (A1)

and the bright-dark K-soliton solution given in Eq. (B1) are
obtained by using the Kadomtsev-Petviashvili hierarchy re-
duction technique [72–74] combined with Hirota’s bilinear
method [75]. We only use the 2N-soliton (i.e., K = 2N) solu-
tion to derive the double-pole 2N-soliton solution. The bright
and bright-dark K-soliton solutions have also been reported in
Refs. [34,37]. Although the determinant forms of the func-
tions f and g(�) considered in this work are different, the
bright and bright-dark soliton solutions of the present paper
can be related to those of Refs. [34,37] by making appropriate
transformations to the determinant forms of the functions f
and g(�). Hence, we refrain from deriving these solutions and
will concentrate only on the double-pole solutions and their
dynamics in this work.

The double-pole M bright two-soliton is derived by tak-
ing the long-wave limit of the bright two-soliton, which is
discussed in Sec. II. To realize the conversion from the single-
pole two bright two-soliton to the double-pole two bright
two-soliton in the MCNLS equations (1) and to identify the
complete nature of their collision dynamics, we have dis-
cussed the asymptotic behaviors of the bright two-soliton
solution with p2 = −p1. Without loss of generality, we as-
sume p1R > 0 and p1I > 0, and for convenience we define the
right-moving soliton along the line ξ̃1 = t − 2p1I z as soliton
1 and the left-moving soliton along the line ξ̃2 = t + 2p1I z as
soliton 2. The asymptotic expression of the bright two-soliton
solution (A1) can be written in the following forms: (a) before
collision (z → −∞), for soliton 1 (ξ̃1 ≈ 0 and ξ̃2 → −∞),

u(1)−
� 	 A(1)−

� eiv(1)
� sech

(
p1Rξ̃1 + 2ξ1,0R + R1 − R2

2

)
, (A5)

and for soliton 2 (ξ̃2 ≈ 0 and ξ̃1 → +∞),

u(2)−
� 	 A(2)−

� eiv(2)
� sech

(
p1Rξ̃2 + R̃2 − R1 − 2ξ2,0R

2

)
, (A6)

and (b) after collision (z → +∞), for soliton 1 (ξ̃1 ≈ 0 and
ξ̃2 → +∞),

u(1)+
� 	 A(1)+

� eiṽ(1)
� sech

(
p1Rξ̃1 + 2ξ1,0R + R̃2 − R̃1

2

)
, (A7)

and for soliton 2 (ξ̃2 ≈ 0 and ξ̃1 → −∞),

u(2)+
� 	 A(2)+

� eiṽ(2)
� sech

(
p1Rξ̃2 + R̃1 − R2 − 2ξ2,0R

2

)
. (A8)

The auxiliary functions and quantities appearing in the above
expressions are defined as

A(1)−
� = p2

1R

(
1

p1R
+ 1

ip1I

)
eη

(�)
1,0R−(R1+R2 )/2,

v
(1)
� = ξ1,0I + 	̃1 − η

(�)
1I ,

A(2)−
� = p2

1R

(
1

p1R
+ 1

ip1I

)
eη

(�)
2,0R−(R1+R̃2 )/2,

v
(1)
� = ξ2,0I + 	̃2 − η

(�)
2,0I ,

A(1)+
� = p2

1Re−(R̃1+R̃2 )/2

(
−

˜̃m22

p1R
eη

(�)∗
1,0 +

˜̃m∗
12

ip1I
eη

(�)∗
2,0

)
,

ṽ
(1)
� = 	̃1 + ξ1,0I ,

A(2)+
� = p2

1Re−(R̃1+R2 )/2

(
−

˜̃m12

ip1I
eη

(�)∗
1,0 +

˜̃m11

p1R
eη

(�)∗
2,0

)
,

ṽ
(2)
� = 	̃2 + ξ2,0I ,

R1 = ln

(
1 + p2

1R

p2
1I

)
, R2 = ln( ˜̃m11), R̃2 = ln( ˜̃m22),

	̃1 = p1I t + (
p2

1R − p2
1I

)
z,

	̃2 = −p1I t + (
p2

1R − p2
1I

)
t,

R̃1 = ln

(
˜̃m11 ˜̃m22 + p2

1R

p2
1I

˜̃m12 ˜̃m∗
12

)
, ˜̃m11 =

M∑
k=1

δke2η
(k)
1,0R ,

˜̃m22 =
M∑

k=1

δke2η
(k)
2,0R , ˜̃m12 =

M∑
k=1

δkeη
(k)
1,0+η

(k)∗
2,0 . (A9)

From the above asymptotic analysis, we can obtain the de-
tails about the following three quantities due to the collision
process. (i) The amplitudes of the jth soliton before and
after collision in the �th component are |A( j)−

� | and |A( j)+
� |,

respectively, while the change in these amplitudes is written
in terms of the transition relation as

|A( j)+
� | = T ( j)

� |A( j)−
� |, j = 1, 2; � = 1, 2, . . . , M. (A10)

In an alternate way the transition amplitude takes the form

T ( j)
� =

∣∣A( j)+
�

∣∣∣∣A( j)−
�

∣∣ . (A11)

(ii) The phase shifts for soliton 1 and soliton 2 are 	1 and 	2,
respectively, which read

	1 = −	2 = 1
2 (R2 + R̃2 − R1 − R̃1). (A12)

(iii) The change in the relative separation distance between the
two bright interacting solitons is

�t12 = 2

p1R
(R2 + R̃2 − R1 − R̃1) = 2

p1R
	1. (A13)

In what follows, we consider intensities of the double-pole
bright-bright two-soliton solutions given by Eq. (7) before and
after collision. Since the double-pole bright-bright two-soliton
solutions are translated from the usual (single-pole) bright-
bright two-soliton solutions in Eq. (A1) with the parameter
conditions given by Eq. (2) through the limiting procedure as
p1I → 0, the intensity values of the double-pole bright-bright
two solitons can also be converted from the intensity values of
the usual (i.e., single-pole) bright-bright two-solitons by the
same procedures. Below we calculate the intensity value of
soliton 1 before and after collision as an example. To this end,
we first insert the parametric condition (2) with K = 2 (i.e.,

062214-19



RAO, KANNA, SAKKARAVARTHI, AND HE PHYSICAL REVIEW E 103, 062214 (2021)

N = 1) into A(1)−
� ; then the expression of A(1)−

� is rewritten as

A(1)−
� = p2

1R

(
1

p1R
+ 1

ip1I

)
p1I η̃

(�)
1,0

×
[(

1 + p2
1R

p2
1I

) M∑
k=1

δk η̃
(k)2
1,0 p2

1I

]−1/2

. (A14)

By implementing the limiting producer as p1I → 0 in
Eq. (A14), we can obtain the expression of the intensity of
the double-pole soliton 1 before collision denoted by Ã(1)−

� in
Sec. II in the form

Ã(1)−
� = A(1)−

�

∣∣
p1I →0 = − |p1R|η̃(�)

1,0i√∑M
k=1 δk η̃

(k)2
1,0

. (A15)

Similarly, we can obtain the expression of intensity of the
double-pole soliton 2 after collision in the form

Ã(1)+
� = − |p1R|η̃(�)

2,0√∑M
k=1 δk η̃

(k)2
2,0

. (A16)

In this way, the intensity of the double-pole soliton 2 before
and after collision can also be as converted from the intensity
of the usual (i.e., single-pole) soliton 2, which reads

Ã(2)−
� = − |p1R|η̃(�)

2,0i√∑M
k=1 δk η̃

(k)2
2,0

, Ã(2)+
� = − |p1R|η̃(�)

1,0√∑M
k=1 δk η̃

(k)2
1,0

.

(A17)

APPENDIX B: BRIGHT-DARK SOLITON SOLUTION OF
THE MCNLS EQUATIONS

In this Appendix we present the bright-dark K-soliton so-
lution consisting of M − 1 bright solitons and one dark soliton

to the vector MCNLS equations (1). The MCNLS equations
(1) have the K th-order M − 1 bright, one dark soliton solution

u�so = e2iδM z g(�)(t, z)

f (t, z)
, � = 1, 2, . . . , M − 1,

uMso = e2iδM z g(M )(t, z)

f (t, z)
,

(B1)

where

f = |M (0)|, g(�) =
∣∣∣∣ M (0) 	T

−
̄(�) 0

∣∣∣∣, g(M ) = |M (1)|. (B2)

The elements of the matrix M (n) are

m(n)
s, j = 1

ps + p∗
j

(
− ps

p∗
j

)n

eξs+ξ∗
j

+
M−1∑
�=1

δ�(
ps + δM

ps

) + (
p∗

j + δM
p∗

j

)eη
(�)
s,0+η

(�)∗
j,0 ,

ξs =pst + ip2
s z + ξs,0; s, j = 1, 2, . . . , K,

(B3)

while 	 and 
̄(�) are row vectors defined by

	 = (eξ1 , eξ2 , . . . , eξK ),


̄(�) = (eη
(�)∗
1,0 , eη

(�)∗
2,0 , . . . , eη

(�)∗
K,0 ),

� = 1, 2, . . . , M − 1. (B4)

We note that, throughout our analysis, we have considered
the case where all u� (for � = 1, 2, . . . , M − 1) components
admit bright solitons and only the uM component carries dark
solitons.

To understand the single-pole bright-dark two-soliton to
double-pole bright-dark two-soliton conversions, first we
present the following asymptotic forms of single-pole bright-
dark two-soliton [which corresponds to N = 2 in Eq. (B2)]:
(a) before collision (z → −∞), for soliton 1 (ξ̃1 ≈ 0 and
ξ̃2 → −∞),

u(1)−
� 	 Â(1)−

� eiv(1)
� sech

(
p1Rξ̃1 + 2ξ1,0R + R1 − R̂1

2

)
,

u(1)−
M 	 y1

2

[
(y1 + 1) + (y1 − 1) tanh

(
p1Rξ̃1 + 2ξ1,0R + R1 − R̂1

2

)]
,

(B5)

and for soliton 2 (ξ̃2 ≈ 0 and ξ̃1 → +∞),

u(2)−
� 	 Â(2)−

� eiv(2)
� sech

(
p1Rξ̃2 + R̂2 − R1 − 2ξ2,0R

2

)
,

u(2)−
M 	 y1

2

[
y1 + 1 + (y1 − 1) tanh

(
p1Rξ̃2 + R̂2 − R1 − 2ξ2,0R

2

)]
,

(B6)

and (b) after collision (z → +∞), for soliton 1 (ξ̃1 ≈ 0 and ξ̃2 → +∞),

u(1)+
� 	 Â(1)+

� eiṽ(1)
� sech

(
p1Rξ̃1 + 2ξ1,0R + R̂2 − R̂0

2

)
,

u(1)+
M 	 1

2

[
y1 + 1 + (y1 − 1) tanh

(
p1Rξ̃1 + 2ξ1,0R + R̂2 − R̂0

2

)]
,

(B7)
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and for soliton 2 (ξ̃2 ≈ 0 and ξ̃1 → −∞),

u(2)+
� 	 Â(2)+

� eiṽ(2)
� sech

(
p1Rξ̃2 + R̂0 − R̂1 − 2ξ2,0R

2

)
,

u(2)+
M 	 1

2

[
y1 + 1 + (y1 − 1) tanh

(
p1Rξ̃2 + R̂0 − R̂1 − 2ξ2,0R

2

)]
.

(B8)

The auxiliary functions and the various quantities in these expressions are defined by

Â(1)−
� = p2

1R

(
1

p1R
+ 1

ip1I

)
eη

(�)
1,0R−(R̂1+R1 )/2, v

(1)
� = ξ1,0I + 	̃1 − η

(�)
1I ,

Â(2)−
� = p2

1R

(
1

p1R
+ 1

ip1I

)
eη

(�)
2,0R−(R̂2+R1 )/2, v

(1)
� = ξ2,0I + 	̃2 − η

(�)
2,0I ,

Â(1)+
� = p2

1Re−(R̂2+R̂0 )/2

(
−

ˆ̂m22

q1R
eη

(�)∗
1,0 +

ˆ̂m∗
12

iq1I
eη

(�)∗
2,0

)
, ṽ

(1)
� = 	̃1 + ξ1,0I ,

Â(2)+
� = p2

1Re−(R̂0+R̂1 )/2

(
−

ˆ̂m12

iq1I
eη

(�)∗
1,0 +

ˆ̂m11

q1R
eη

(�)∗
2,0

)
, ṽ

(2)
� = 	̃2 + ξ2,0I ,

R̂1 = ln

(
p1R

q1R

ˆ̂m11

)
, R̂2 = ln

(
p1R

q1R

ˆ̂m22

)
,

	̃1 = p1I t + (
p2

1R − p2
1I

)
z, 	̃2 = −p1I t + (

p2
1R − p2

1I

)
t,

R̂0 = ln

(
p2

1R

q2
1R

ˆ̂m11 ˆ̂m22 + p2
1R

q2
1I

ˆ̂m12 ˆ̂m∗
12

)
, ˆ̂m11 =

M−1∑
k=1

δke2η
(k)
1,0R ,

ˆ̂m22 =
M−1∑
k=1

δke2η
(k)
2,0R , ˆ̂m12 =

M−1∑
k=1

δkeη
(k)
1,0+η

(k)∗
2,0 ,

y1 = − p1

p∗
1

, q1 = p1 + δM

p1
.

(B9)

From the above asymptotic analysis, we can obtain that for the
component u� (� = 1, 2, . . . , M − 1), corresponding to bright
solitons, the amplitudes of the jth soliton before and after
collision are |Â( j)−

� | and |Â( j)+
� |, respectively, and the transition

amplitudes of jth soliton are

∣∣Â( j)+
�

∣∣ = T̂ ( j)
�

∣∣Â( j)−
�

∣∣, ∣∣Â( j)+
M

∣∣ = ∣∣ 1

y1
||Â( j)−

M

∣∣, (B10)

namely,

T̂ ( j)
� =

∣∣Â( j)+
�

∣∣∣∣Â( j)−
�

∣∣ , T̂ ( j)
M =

∣∣∣∣ 1

y1

∣∣∣∣, (B11)

where j = 1, 2 and � = 1, 2, . . . , M − 1. For the uM compo-
nent, corresponding to dark solitons, the amplitudes of the jth

dark soliton before and after collision are∣∣Â( j)−
M

∣∣ = 1
2 |y1(y1 + 1)|, ∣∣Â( j)+

M

∣∣ = 1
2 |y1 + 1| (B12)

and the transition amplitude of the jth dark soliton is

T̂ ( j)
M =

∣∣∣∣ 1

y1

∣∣∣∣. (B13)

Since |y1| = 1, i.e., TM = 1, the dark two-soliton undergoes
elastic collision in the uM component. Additionally, the phase
shifts for the two-soliton solution are given by the expression

	̂1 = −	̂2 = 1
2 (R̂2 + R̂1 − R̂0 − R1), (B14)

where 	̂ j denotes the phase shift for the jth soliton. The
exact form of the changes in relative distance between the
two-soliton reads

�̂t12 = 2

p1R
(R̂2 + R̂1 − R̂0 − R̂1) = 2

p1R
	1. (B15)
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