
PHYSICAL REVIEW E 103, 062213 (2021)

Harmonic cross-correlation decomposition for multivariate time series
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We introduce harmonic cross-correlation decomposition (HCD) as a tool to detect and visualize fea-
tures in the frequency structure of multivariate time series. HCD decomposes multivariate time series into
spatiotemporal harmonic modes with the leading modes representing dominant oscillatory patterns in the
data. HCD is closely related to data-adaptive harmonic decomposition (DAHD) [Chekroun and Kondrashov,
Chaos 27, 093110 (2017)] in that it performs an eigendecomposition of a grand matrix containing lagged
cross-correlations. As for DAHD, each HCD mode is uniquely associated with a Fourier frequency, which allows
for the definition of multidimensional power and phase spectra. Unlike in DAHD, however, HCD does not exhibit
a systematic dependency on the ordering of the channels within the grand matrix. Further, HCD phase spectra can
be related to the phase relations in the data in an intuitive way. We compare HCD with DAHD and multivariate
singular spectrum analysis, a third related correlation-based decomposition, and we give illustrative applications
to a simple traveling wave, as well as to simulations of three coupled Stuart-Landau oscillators and to human
EEG recordings.
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I. INTRODUCTION

The identification of periodic components in observations
of complex systems can help to improve our understanding
of system dynamics and aid in predictive modeling. Al-
terations of the oscillatory electrical activity of the human
brain, for instance, are linked to a diverse range of neuro-
logical conditions [1,2]. The identification and quantification
of meaningful features in oscillatory brain activity has been
shown to aid EEG-based diagnostics [3–6]. Another example
are periodic variations in atmospheric and oceanic circula-
tions, which affect weather on both regional and global scales
[7–9]. The identification and quantification of these peri-
odicities can aid in empirical-statistical forecasting [10,11].
Data from high-dimensional complex systems such as the
climate system or the human brain, however, are typically
noisy and contain periodicities over a wide range of frequen-
cies, which can make it challenging to extract meaningful
features.

One approach to tackle this challenge is singular spectrum
analysis (SSA). SSA is a nonparametric spectral estimation
method utilizing a delay embedding of a time series sampled
from some dynamical system. SSA has its roots in dynami-
cal systems theory. Since the embedding theorem of Takens
[12], it has been known that it is possible to make faithful
reconstructions of attractors for finite-dimensional dynamical
systems using a delay embedding of a generic observable from
the system. The use of SSA for understanding aspects of the
qualitative dynamics, such as attractor structure and dimen-
sion, is discussed, for instance, in [13,14]. SSA has further
been utilized in signal processing and time-series analysis
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[15,16]. The ability to extract predictable trends and periodic
components from noisy series make SSA and its multivariate
extension M-SSA useful tools in empirical-statistical fore-
casting [10,17–19], noise filtering [20,21], and gap filling of
time-series data with missing values, especially within the
geosciences [22–25]. Also in the biomedical sciences, SSA
and M-SSA have found diverse applications, for instance in
the classification of sleep EEG [26–29] or to separate different
types of murmur from normal heart sounds [30]. Sliding win-
dow versions of SSA or M-SSA provide tools for detecting
nonstationarities in time-series data [31], which have found
applications in the detection of epileptic seizures and seizure-
type identification [32,33].

SSA is closely linked to principal component analy-
sis (PCA) of multivariate time series. PCA is also known
as Karhunen-Loeve transform, Hotelling transform, or, es-
pecially in the atmospheric sciences literature, empirical
orthogonal function (EOF) analysis. PCA of multivariate
time series performs an eigendecomposition of the zero-lag
correlation matrix. The dimension of the PCA eigenvectors
corresponds to the number of series, in the following also
referred to as channels. Each entry of an eigenvector is as-
sociated with a particular channel. For time-series data for
which the channels are associated with points in (Euclidian)
space, EEG recordings of brain electrical activity measured at
electrodes placed on the scalp, or temperature recordings at
stations all over the globe, for instance, the EOFs are thus
spatial. By projecting the original data onto the EOF ba-
sis, one obtains the principal components (PCs), an alternate
representation of the given data set in terms of statistically
independent (uncorrelated at zero lag) series. The associated
eigenvalue provides the variance explained by the respective
PC. The EOF basis is optimal in terms of explained variance,
which makes PCA a popular tool both for data analysis and
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compression in various disciplines including biomedical sci-
ences [34–36] and geosciences [37–39].

SSA may be viewed as the temporal equivalent of PCA.
SSA performs an eigendecomposition of the correlation ma-
trix of a lag-embedded time series. The eigenvectors are thus
temporal and represent statistically persistent temporal pat-
terns in the data, typically trends, oscillatory components, and
noise [40,41]. Multivariate (or multichannel) SSA is thus a
combination of SSA and PCA. Accordingly, M-SSA is also
known as extended EOF (EEOF) analysis in the atmospheric
sciences literature [42]. In M-SSA and EEOF analysis, the
eigenvectors, also called modes, have both a spatial and a
temporal dimension. For the simple traveling wave shown
in Fig. 1, the relation between time-series data [Fig. 1(a)]
and M-SSA modes [Fig. 1(e), left] is apparent. For a simple
traveling wave in which each channel time series is given by
a pure sine, the M-SSA modes take the shape of pure sines
along their temporal dimension. For more complex real-world
data, however, this is typically not the case in M-SSA. Thus
one can usually not uniquely assign an M-SSA mode to a
single frequency.

Aiming at a particular data-driven approach to modeling
observables of real-world complex systems, Ref. [43] recently
introduced data-adaptive harmonic decomposition (DAHD).
Like M-SSA, DAHD is based on an eigendecomposition of
a grand matrix of lagged cross-correlations. In the DAHD
method, this grand matrix is built from (circulant) Hankel
matrices. Unlike M-SSA modes, DAHD modes are pure sines
along their temporal dimension. Each mode can thus be
uniquely assigned to a particular frequency, and by project-
ing the data onto the DAH modes one obtains an alternative
representation of the data in terms of oscillatory pairs that are
in a narrow band around the frequency of the corresponding
mode and approximately in phase quadrature. In [43–46],
the transformed series are then modeled in terms of linearly
coupled Stuart-Landau oscillators, where each pair of oscilla-
tory series is identified with real and imaginary parts of an
oscillator. The harmonic nature of the DAH modes further
allows the definition of high-dimensional DAH power and
phase spectra, which can provide frequency-specific insight
into phase relations and correlation structure in multivariate
time series [43–48]. DAHD is, however, not invariant under
the permutation of the ordering of the individual time series.
In other words, DAH modes and spectra are systematically
affected by the ordering of the channels within the DAHD
grand matrix. For data not embedded in one dimension in Eu-
clidean space, the decomposition is typically not unique. The
described dependency on the channel ordering is caused by a
particular step in the construction of the grand matrix, which
is required to ensure symmetry and thereby ensure that the
eigenvalues and the eigenvectors are real. Figure 1(c) shows
the leading DAH modes for the traveling wave. Unlike for
M-SSA, the relation between DAH modes and the traveling
wave data is not immediately obvious. The symmetrization
step has a distinct effect on the shape of the modes.

In this paper, we propose a spectral decomposition based
on lagged cross-correlations that is closely related to DAHD
and M-SSA. We refer to this technique as harmonic cross-
correlation decomposition (HCD). Like DAHD, HCD allows
the definition of multivariate power and phase spectra and

allows for a data transformation into paired oscillatory series
which are narrowband and approximately in phase quadra-
ture. HCD is invariant under channel permutation, which is
achieved by some modifications in the construction of the
grand matrix. The HCD grand matrix is build from circu-
lant Toeplitz blocks, and therefore it can be constructed as a
symmetric matrix without any explicit symmetrization step.
Similarly to the M-SSA modes, the HCD modes of the trav-
eling wave [Fig. 1(b)] well approximate the data. However,
in HCD they are aligned to the Fourier frequencies of the
embedding interval.

It should be pointed out here that HCD as introduced in this
paper is the time domain equivalent of the Hermitian DAHD
formulation in the frequency domain recently introduced in
[49]. The Hermitian DAHD formulation is not equivalent to
the original DAHD from [43–48]. In the Supplemental Ma-
terial, we demonstrate the systematic difference between the
frequency domain formulation of the original DAHD and the
Hermitian DAHD formulation using an example from [49].
In the body of the manuscript, “DAHD” refers to the original
DAHD method as introduced in [43] and applied in [44–48].
A list of all decomposition methods discussed in this paper is
provided in Table I.

The rest of the paper is organized as follows. In Sec. II
we introduce HCD assuming no prior knowledge of M-SSA
or DAHD. The simple traveling wave from the Introduction
is used to illustrate HCD modes, power, and phase spectra.
Section III briefly recalls DAHD and M-SSA and discusses
the computational differences and their implications in ap-
plications to data using the traveling wave as an example.
Section IV provides two further example applications of
HCD: observations of a system of three linearly coupled
Stuart-Landau oscillators and resting-state EEG data. For the
latter, we also provide a comparison between HCD, M-SSA,
and DAHD. In Sec. V we summarize the intercomparison of
HCD, DAHD, and M-SSA, and we discuss our findings and
perspectives for future work.

II. HARMONIC CROSS-CORRELATION
DECOMPOSITION

Harmonic cross-correlation decomposition (HCD) is in-
spired by data-adaptive harmonic decomposition (DAHD)
first introduced in [43]. This section, therefore, follows [43]
in large parts. We discuss the differences between HCD and
DAHD and their implications in Sec. III A. As outlined in the
Introduction, HCD is indeed the time domain equivalent of the
Hermitian DAHD formulation from [49]. The original DAHD
and the Hermitian DAHD formulation systematically differ
(see the Supplemental Material).

For illustrative purposes, we apply the HCD method to a
simple traveling sine wave with constant frequency and con-
stant traveling speed recorded at d = 40 equidistant channels.
The time series of each channel are thus pure sinusoids at a
fixed frequency that are shifted in phase across channels ac-
cording to the traveling speed [Fig. 1(a)]. Section IV provides
further example applications of the HCD method to multivari-
ate time-series data of increasing complexity, time-series data
sampled from three coupled Stuart-Landau oscillators, and
finally human EEG recordings.
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FIG. 1. A traveling wave sampled at 40 equidistant channels p (a) and the leading modes of its spectral decomposition. Shown are the two
leading mode pairs across all frequencies (i.e., the modes associated with the largest absolute eigenvalues |λ|) from the different decomposition
techniques: (b) HCD, (c) DAHD, (d) DAHD*, and (e) M-SSA. DAHD* refers to a modified version of the DAHD method where the grand
matrix is symmetrized by Eq. (18).

A. Eigendecomposition of the HCD grand matrix

The HCD method decomposes multivariate time series.
Therefore, let x be some multivariate time series, i.e.,

x = {xp
i : p = 1, . . . , d, i = 1, . . . , N}, where d denotes the

number of time series, which we also refer to as channels,
and N is the number of data points in each time series.
Each series is centralized to zero mean, such that the lagged
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TABLE I. List of correlation (or covariance) -based decompositions discussed in this paper. The left column contains the abbreviation used
in this paper, the middle column additionally lists alternative names for the respective method.

PCA Principal component analysis, empirical orthogonal function (EOF) analysis,
proper orthogonal decomposition,
discrete Karhunen-Loeve transform, discrete Hotelling transform (e.g., Refs. [68,69])

SSA Singular spectrum analysis (e.g., Refs. [40,41,50])
M-SSA Multivariate–singular spectrum analysis, extended EOF analysis (e.g., Refs. [40–42])
DAHD Data-adaptive harmonic decomposition [43–48]
HCD Harmonic cross-correlation decomposition, Hermitian DAHD (time domain [this paper])

(frequency domain [49])

cross-covariances ρ
(p,q)
+s , ρ

(p,q)
−s between channel pairs (p, q)

can be computed as

ρ
(p,q)
+s = 1

N − s

N−s∑
i=1

xp
i xq

i+s, ρ
(p,q)
−s = 1

N − s

N∑
i=s+1

xp
i xq

i−s, (1)

where series xq is shifted with respect to xp by ±s. In this pa-
per, precisely in the examples therein, the HCD grand matrix
is built from lagged cross-covariances. By additionally nor-

malizing the time series to unit variance, one can alternatively
use the cross-correlations to perform an HCD. This is up to the
user as it might depend on the data set studied, if correlations
or covariances are more suitable. The covariances ρ

(p,q)
±s up to

a maximum lag of ±M provide the entries of the HCD grand
matrix. The choice of M can be guided by the decay of the
autocorrelation function as suggested in [43].

The HCD grand matrix is built in two steps. For each
channel pair (p, q) we first build a Toeplitz matrix T(p,q) as

T(p,q) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ
(p,q)
+0 ρ

(p,q)
+1 · · · ρ

(p,q)
+M−1 ρ

(p,q)
−M+1 · · · ρ

(p,q)
−1

ρ
(p,q)
−1 ρ

(p,q)
0 · · · ρ

(p,q)
+M−2 ρ

(p,q)
+M−1 · · · ρ

(p,q)
−2

...
...

. . .
...

...
. . .

...

ρ
(p,q)
−M+1 ρ

(p,q)
−M+2 · · · ρ

(p,q)
0 ρ

(p,q)
+1 · · · ρ

(p,q)
+M−1

...
...

. . .
...

...
. . .

...

ρ
(p,q)
+1 ρ

(p,q)
+2 · · · ρ

(p,q)
−M+1 ρ

(p,q)
−M+2 · · · ρ

(p,q)
+0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2)

The T(p,q) are circulant. That is, starting from the top each
row is obtained by a cyclic shift of the row above to the right.
From the d channel time series we obtain in total d2 such
matrices, each of dimension (2M − 1) × (2M − 1).

Circulant matrices are diagonalized by the discrete Fourier
transform, or in other words one can obtain the discrete
Fourier transform of the first row of T(p,q) by performing an
eigendecomposition of T(p,q). The Fourier transform of auto-
and cross-correlation functions is further linked to the Fourier
transform of the time series through the Wiener-Khinchin
theorem (for p = q) and the cross-correlation theorem (for
p �= q).

The T(p,q) serve as building blocks to construct the HCD
grand matrix T as

T =

⎛
⎜⎜⎜⎝
T(1,1) T(1,2) · · · T(1,d )

T(2,1) T(2,2) · · · T(2,d )

...
...

. . .
...

T(d,1) T(d,2) · · · T(d,d )

⎞
⎟⎟⎟⎠. (3)

As ρ
(p,p)
+s = ρ

(p,p)
−s , the blocks on the diagonal which con-

tain the autocovariances are symmetric, i.e., T(p,p) = T(p,p)T .

The off-diagonal blocks which contain the cross-covariances
are in general not symmetric, but as T(p,q) = T(q,p)T the HCD
grand matrix is symmetric and thus has real eigenvalues and
eigenvectors.

We compute the sets of eigenvalues {λ j} and the associated
eigenvectors {Wj} of the HCD grand matrix T. Each eigen-
vector is of length (2M − 1)d and can be rearranged into a
spatiotemporal d × (2M − 1) HCD mode where the spatial
dimension d corresponds to the d channels. The temporal
dimension 2M − 1 is determined by the maximum lag M
considered. Each mode Wj can thus be split into d snippets E j

p

of length 2M − 1, such that each snippet vector is associated
with a particular channel p. The full mode Wj can then be
written as

W j = (
E j

1, . . . , E j
p, . . . , E j

d

)T
. (4)

Similarly to the DAHD modes, we observe that each snippet
vector E j

p of an HCD mode takes the following shape:

E j
p(s) = B j

p cos
(

f js + θ j
p

)
with 1 � s � 2M − 1, (5)
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FIG. 2. HCD of a traveling wave with constant frequency and traveling speed sampled at 40 equidistant channels. Shown is the leading
mode pair (i.e., the pair of modes associated with the largest absolute eigenvalues |λ|) and the corresponding coefficient time series ξ j (t ) at
four different frequencies: (a) f1, (b) f4, (c) f5, and (d) f8. The frequency f5 is closest to the wave frequency and hence corresponds to the peak
in the HCD power spectrum shown in Fig. 3(a).

where f j is the mode-specific frequency, meaning f j is the
same across all snippets of a single mode W j . The amplitudes
B j

p and phases θ
j
p are snippet-specific, meaning amplitudes

and phases can vary across the snippets of a single mode W j .
Amplitudes and phases depend on the data.

Figure 2 shows the leading two HCD modes for the
traveling wave at f1 = 0 and the leading mode pairs at
three different fl �= 0, i.e., the modes corresponding to the
largest eigenvalues at the respective frequency. The oscillatory
modes show constant amplitudes Bj across all snippets. The
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FIG. 3. Multidimensional power spectra (top) and leading mode phase spectra (bottom) from the spectral decomposition of the traveling
wave: (a) shows the HCD spectra, (b) shows the DAHD spectra, and (c) shows the spectra form the modified version of the DAHD method
where the grand matrix is symmetrized by Eq. (18). The back line in the upper panels shows the average over the eigenvalues at the respective
frequency.

constant traveling speed induces constant phase differences
�θ = θp+1 − θp between neighboring channels.

B. HCD power and phase spectra

The frequencies of the eigenvectors of the HCD grand
matrix f j align with the Fourier frequencies fl ,

fl = π (l − 1)

M − 1
with l = 1, . . . , M (6)

such that we obtain 2d eigenvalues and vectors at each fl > 0
(similar to Theorem V.1 of [43]). These 2d eigenvalues come
in pairs of equal values with the corresponding eigenvectors
differing solely by a phase shift of π/2. At f1 = 0 we obtain
d unpaired eigenvalues and vectors. Because each mode Wj
is associated with a Fourier frequency through Eq. (5), this
allows the definition of multivariate power and phase spectra.
The eigenvalues sorted according to the frequencies of the
associated modes form the HCD power spectrum. Because of
the eigenvalue pairing, the power spectrum is of dimension
d × M and linearly spaced in frequency [Eq. (6)].

Computationally, the HCD power spectrum is derived by
rearranging the eigenvalues {λ j} into M sets

Pl := {|λ j | : j ∈ I ( fl )}, (7)

each containing all eigenvalues associated with the respec-
tive fl , i.e., I ( fl ) := { j : s.t. f j = fl}. This can be realized by
carrying out the following successive steps for each mode

W j : (i) Compute the discrete Fourier transform Ê j
p of each

mode snippet E j
p. (ii) Take the average of the power spec-

tral density over all snippets of W j , i.e., � j = 1
d

∑d
p=1 |Ê j

p|.
(iii) Identify the frequency fl = f j at which the average power

spectral density � j exhibits a dominant peak. (iv) Sort the
corresponding eigenvalue λ j into the respective set Pl . Note
that eigenvectors associated with eigenvalues that are numeri-
cally zero do not fulfill Eq. (5) and thus cannot be assigned a
frequency.

The HCD power spectrum of the traveling sine wave is
shown in Fig. 3. It peaks at the frequency fl closest to the
frequency of the wave. The steepness of the decay from the
peak is related to the distance between wave frequency and
closest fl . The smaller the difference, the more narrow the
power spectrum becomes. For strongly correlated data, such
as a traveling wave, a great portion of the d (2M − 1) eigenval-
ues are numerically zero. For the traveling wave we find two
nonzero pairs of eigenvalues at each fl . One might expect only
one nonzero pair per frequency. In fact, for a standing wave
with the same frequency we indeed find only one nonzero pair
of eigenvalues at each frequency (not shown). The occurrence
of two nonzero pairs for the traveling wave appears to be a
consequence of the wave being sampled at different phases at
different channels.

The snippet phases θ
j
p [compare Eq. (5)] form the HCD

phase spectrum, i.e.,

�l := {
θ j

p ( fl ) : j ∈ I ( fl )
}
. (8)

The snippet phases θ
j
p are computed by taking the angle of the

discrete Fourier transform at the mode frequency fl , i.e.,

θ j
p ( fl ) = arg

(
Êj

p( fl )
)
. (9)

The full phase spectrum is of dimension d × d × (M − 1).
When plotting the phase spectra, we restrict ourselves to the
leading modes, i.e., the modes with the largest eigenvalue at
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each fl . The part of the phase spectrum plotted is thus of
dimension d × (M − 1). As the leading modes contain the
dominant oscillatory signals present in the data, such phase
spectra can provide insight into characteristic phase differ-
ences between the time series recorded at distinct channels.

Figure 3 shows the leading mode phase spectrum of the
traveling wave. As expected, we find the phases distributed
equidistantly within each frequency as the wave is recorded at
equidistant channels and traveling with a constant speed.

C. Data transformation

HCD modes, power, and phase spectra provide tools for
obtaining frequency-specific insight into correlation structure
and phase relations in multivariate time-series data. The HCD
modes further provide an orthogonal basis allowing an alter-
native representation of a multivariate time series x though a
projection onto the HCD modes {Wj} as

ξ
j

i :=
2M−1∑

s=1

d∑
p=1

xp
i+s−1E j

p(s) with 1 � i � N − 2M + 2.

(10)

The ξ i
j are referred to as HCD coefficients. From the original

time series x one obtains d (2M − 1) HCD coefficient series
ξ i

j . The representation of x in terms of HCD coefficients,
therefore, comes with an increase of dimension. The potential
usefulness of this representation lies in the particular char-
acteristics of the coefficient series. For frequency-rich data
with a non-narrow (Fourier) power spectrum (such as the
EEG recordings discussed in Sec. IV B), the paired oscillatory
coefficient series are typically narrowband around the mode
frequency f j and approximately in phase quadrature. For the
traveling sine wave, however, which only contains a single
frequency, the coefficient series oscillate with the frequency
of the wave (Fig. 2).

The back transformation of the coefficient time series into
channels space can accordingly be obtained by

R j
pi := 1

mi

ui∑
s=li

ξ
j

i−s+1E j
p(s) (11)

with normalization factor 1
mi

and summation bounds li, ui

differing between the center of the time series and its edges
(see, e.g., Ref. [50]) as

mi = 2M − 1, li = 1, ui = 2M − 1 for 2M − 1 � i � N − 2M + 2,

mi = i, li = 1, ui = i for 1 � i � 2M − 2,

mi = N − i + 1, li = i − N + (2M − 1), ui = 2M − 1 for N − 2M + 3 � i � N. (12)

The multivariate time series represented by a single co-
efficient series ξ j is thus R j = [R j

1, . . . , R j
p, . . . , R j

d ]. Sum-
mation over all j gives back the original data time series
x, i.e.,

x =
d (2M−1)∑

j=1

R j . (13)

Summation over a subset of the coefficient series such as the
series corresponding to the leading n modes or a particular

frequency j ∈ I ( fl ) (or a range of frequencies) allows us to
obtain filtered versions of x.

III. RELATION TO EXISTING SPECTRAL
DECOMPOSITIONS

A. DAHD

Computationally, DAHD as introduced in [43] differs from
HCD introduced in this paper in the construction of the grand
matrix. The DAHD grand matrix H is built from Hankel
blocks H(p,q) given by

H(p,q) =

⎛
⎜⎜⎜⎜⎜⎝

ρ
(p,q)
−M+1 ρ

(p,q)
−M+2 . . . ρ

(p,q)
0 ρ

(p,q)
1 . . . ρ

(p,q)
M−1

ρ
(p,q)
−M+2 ρ

(p,q)
−M+3 . . . ρ

(p,q)
1 ρ

(p,q)
2 . . . ρ

(p,q)
−M+2

...
...

. . .
...

...
. . .

...

ρ
(p,q)
M−1 ρ

(p,q)
−M+1 . . . ρ

(p,q)
−1 ρ

(p,q)
0 . . . . . . ρ

(p,q)
M−2

⎞
⎟⎟⎟⎟⎟⎠

, (14)

where again ρ
(p,q)
+s , ρ

(p,q)
−s denote the lagged cross-covariances

(or correlations) between the time series recorded at channels
p and q [Eq. (1)]. The Hankel blocks H(p,q) are left-circulant.
That is, starting from the top each row is obtained by a cyclic
shift of the row above to the left. As shown in Theorem IV.1
of [43], left-circulants H(p,q) and Fourier transform are closely

linked, in the sense that one can recover the Fourier transform
of the first row of H(p,q) from the eigendecomposition of
H(p,q).

Left-circulant matrices are by construction symmetric.
Each H(p,q) thus has real eigenvalues and eigenvectors. It
may therefore appear favorable to build a grand matrix from
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left-circulant blocks H(p,q) when aiming at a real valued de-
composition. However, the construction of a symmetric grand
matrix from left-circulants is not straightforward. The DAHD
grand matrix H is a block matrix similar to the HCD grand
matrix, i.e.,

H =

⎛
⎜⎜⎝
H(1,1) H(1,2) · · · H(1,d )

H(2,1) H(2,2) · · · H(2,d )

...
...

. . .
...

H(d,1) H(d,2) · · · H(d,d )

⎞
⎟⎟⎠, (15)

but to ensure eigenvalues and eigenvectors of H are real, the
grand matrix blocks H(p,q) are identified with the H(p,q) from
Eq. (14) as

H(p,q) = H(p,q) for p � q, H(p,q) = H(q,p) for q < p.

(16)

This permutation of the indices in the lower triangle is needed
to ensure that the DAHD grand matrix is symmetric, because
H(p,q) �= H(q,p)T for nonsymmetric ρ (p,q).

The eigendecomposition of the DAHD grand matrix gives
(2M − 1)d eigenvectors Wj. The eigenvectors are rearranged
into spatiotemporal DAHD modes of dimension d × (2M −
1), such that each mode can be split into snippets [compare
Eq. (4)]. The snippets can then be written as cosines of the
Fourier frequency fl of the respective mode with a snippet-
specific amplitude and phase [compare Eq. (5)]. According to
the variational principle of [43], there are 2d pairs of eigen-
values and eigenvectors at each Fourier frequency fl , and d
unpaired eigenvalues at f1 = 0, which gives rise to DAHD
power and phase spectra. The projection of the multivariate
time series onto the DAHD modes provides an alternative
representation of the data in terms of oscillatory pairs narrow-
band around the mode frequency and approximately in phase
quadrature [compare Eq. (10)]. The only immediately obvious
difference between DAHD and HCD here lies in the signs of
the eigenvalues. The eigenvalues of the DAHD grand matrix
come in pairs with the same value but opposite sign, whereas
the eigenvalue pairs of the HCD grand matrix are equal in
value and sign.

When aiming for frequency-specific analyses of correlation
and phase relation structure in multivariate time-series data,
DAHD comes with a drawback. DAHD modes, power, and
phase spectra are systematically influenced by the ordering
of the channels within the DAHD grand matrix. Or in other
words, DAHD modes, power, and phase spectra are not in-
variant under a permutation of channels. The dependency of
the DAHD on channel ordering is a consequence of the sym-
metrization of the DAHD grand matrix according to Eq. (16).
We illustrate this using time series from EEG recordings. De-
tails about data and further analysis are given in Sec. IV B. For
the illustrative example in this section, we construct a reduced
data set x̃ from the original 64-channel EEG recordings x by
setting

x̃p(t ) = x1(t ) for p = 1, . . . , 29, 41, . . . , 64,

x̃p(t ) = x2(t ) for p = 30, . . . , 40. (17)

That is, the reduced 64-channel data practically contain only
two different time series.

Figure 4(b) shows the DAHD power and (leading mode)
phase spectra from the reduced EEG data x̃. For each fl �= 0
we find three pairs of nonzero eigenvalues. This is surprising.
As x̃ contains only two different series, we would expect
two pairs of nonzero eigenvalues at each fl �= 0. Looking
at the DAHD modes in Fig. 5 provides a bit more insight.
In Fig. 5 we show the DAHD modes associated with the
four largest eigenvalues at f5 = 2.02 Hz. The series at p =
1, . . . , 29, 41, . . . , 64, though all exactly the same [Eq. (17)],
appear differently in the DAHD modes for p > 30 and p <

40. Most prominently, the mode snippets of channels 1–29
are shifted in phase with respect to the snippets of channels
41–64 in panels (b) and (c), which is not meaningful as the
corresponding time series are exactly the same. The position
of the channels within the grand matrix affects their relation
(relative amplitude and phase) within the modes. In the HCD
method this is not the case (Fig. 6). Without symmetrization,
i.e., by building the full DAHD grand matrix as H(p,q) =
H(p,q), one obtains only two nonzero pairs at each frequency
(not shown), but as H(q,p) �= H(p,q)T for nonsymmetric ρ (p,q)

such a grand matrix is not symmetric and can therefore have
nonreal eigenvalues and eigenvectors.

Looking at the DAHD spectra for the traveling sine wave
(Fig. 3) allows us to obtain more insight into the above find-
ing. For constant traveling speed and equidistant channels,
one would expect the constant phase differences between
neighboring channels to be reproduced in the phase spec-
trum. However, we do find a qualitatively different shape
in the DAHD phase spectrum. The DAHD phase spectrum
converges for fl → fmax.

By looking at the DAHD modes of the traveling wave in
Fig. 1, it becomes obvious that the modes do not reflect the
phase structure of the original data. In fact, the upper half
(channels 1–10) is found to be the negative mirror image of
the lower half of the mode (channels 11–20). Only at the
bottom end of the mode (≈ channels 16–20) do we observe
approximately the expected structure. The top (≈ channels
1–4) approximately resembles a traveling wave in the opposite
direction.

When we go back to the symmetrization of the DAHD
grand matrix [Eq. (16)] and the definition of the Hankel blocks
[Eq. (14)], we see that the permutation of the indices p and
q in the blocks on the lower triangle of the DAHD grand
matrix is in fact equivalent to reversing the cross-correlation
function. A shift of +1 of channel p with respect to channel
q is equivalent to shifting q by −1 with respect to p. It is
therefore unsurprising that the symmetrization of the grand
matrix systematically impacts the representation of phase re-
lationships.

When building a grand matrix from Toeplitz blocks, or
more precisely right-circulant matrices, as done in the HCD
method, there is no need for an explicit symmetrization. Un-
like the Hankel blocks, the (off-diagonal) Toeplitz blocks are
not symmetric, but as already noted in Sec. II due to T(p,q) =
T(q,p)T the HCD grand matrix constructed according to Eq. (3)
is symmetric and thereby has real eigenvalues and eigen-
vectors. It thus appears that we can keep the advantageous
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FIG. 4. Multidimensional power spectra (top) and leading mode phase spectra (bottom) from the spectral decomposition of the reduced
EEG recordings constructed according to Eq. (17): (a) shows the HCD spectra from the EEG recording, (b) shows the DAHD spectra, and
(c) shows the spectra form the modified version of the DAHD method where the grand matrix is symmetrized by Eq. (18). The back line in the
upper panels shows the average over the eigenvalues at the respective frequency.

features of the DAHD method in the sense that we obtain a
real multivariate harmonic decomposition that allows us to
express a given data set in terms of narrowband oscillatory
pairs. But by ensuring invariance under channel permutation,
we achieve an intuitive relation between the HCD phases and
the phase relations in the actual traveling wave data. Further,
in the HCD method one obtains only two pairs of nonzero
eigenvalues at each nonzero fl [Fig. 3(a)], meaning the trav-
eling wave can be fully described by 2(2M − 1) coefficient
series in the space spanned by the HCD modes, while in the
space spanned by the DAHD modes all d (2M − 1) coefficient
series are needed.

Equation (16) is not the only way to obtain a symmetric
grand matrix from Hankel blocks. Alternatively, one may
identify the grand matrix blocks H(p,q) from Eq. (15) with the
Hankel blocks H(q,p) from Eq. (14) as

H(p,q) = 1
2 (H(p,q) + H(q,p) ). (18)

The eigendecomposition of such a grand matrix is invari-
ant under channel permutation. However, the symmetrization
according to Eq. (18) is equivalent to symmetrizing the cross-
correlation functions. Accordingly, the snippets of the modes
obtained from the eigendecomposition of such a grand matrix
are all perfectly in phase or antiphase and are therefore not
capable of capturing phase relations between time series. Ex-
ample modes from the traveling wave illustrating this behavior
are shown in Fig. 1(d). For the traveling wave one obtains, as
for HCD, two pairs of nonzero eigenvalues at each nonzero
fl , but as the actual phase relations of the data are not cap-
tured in the modes, the two pairs are almost equal in value
[Figs. 3(c) and 1(d)]. As expected, the corresponding phase
spectra are not meaningful. We solely find phase differences
of �θ ∈ {0, π} across all frequencies fl > 0 [Fig. 3(c)].

B. M-SSA

Like DAHD and HCD, multichannel (or multivariate) sin-
gular spectrum analysis (M-SSA) utilizes an eigendecompo-
sition of a grand matrix containing lagged cross-correlations.
M-SSA can be performed by building a grand matrix from
Toeplitz blocks or via a delay embedding. Note that in contrast
to the blocks of the HCD grand matrix, the Toeplitz blocks
occurring in M-SSA are not circulant. Again, let x = {xp

i :
p = 1, . . . , d, i = 1, . . . , N} be some multivariate time series,
where d denotes the number of channels, N denotes the length
of the series, and each series is centralized to zero mean. In
the delay embedding approach to M-SSA, each channel of the
multivariate time series is embedded into an M-dimensional
phase space as

X p
i = [

xp
i , xp

i+1, . . . , xp
i+M−1

]
with i = 1, . . . , N − M + 1.

(19)
The full trajectory matrix of the delay embedded series X =
(X 1, X 2, . . . , X d ) is thus of dimension (N − M + 1) × dM.
The covariance matrix

C = XTX/(N − M + 1) (20)

from the trajectory matrix is thus of dimension dM × dM.
When writing out the covariance matrix, we see that C consists
of d2 square blocks C(p,q),

C =

⎛
⎜⎜⎝

C(1,1) C(1,2) · · · C(1,d )

C(2,1) C(2,2) · · · C(2,d )

...
...

. . .
...

C(d,1) C(d,2) · · · C(d,d )

⎞
⎟⎟⎠, (21)
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FIG. 5. DAHD of the reduced EEG recordings constructed according to Eq. (17): Shown are the leading four mode pairs (i.e., the mode
pairs associated with the four largest absolute eigenvalues |λ|) and the corresponding coefficient time series ξ j (t ) (right) at f5 = 2.02 Hz.

with each M × M block being of the following shape:

C(p,q) =

⎛
⎜⎜⎜⎝

ρ
(
xp
+0, xq

+0

)
ρ
(
xp
+0, xq

+1

) · · · ρ
(
xp
+0, xq

+M−1

)
ρ
(
xp
+1, xq

+0

)
ρ
(
xp
+1, xq

+1

) · · · ρ
(
xp
+1, xq

+M−1

)
...

...
. . .

...

ρ
(
xp
+M−1, xq

+M−1

)
ρ
(
xp
+M−1, xq

+1

) · · · ρ
(
xp
+M−1, xq

+M−1

)

⎞
⎟⎟⎟⎠ (22)
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FIG. 6. HCD of the reduced EEG recordings constructed according to Eq. (17): Shown are the leading four mode pairs (i.e., the mode pairs
associated with the four largest absolute eigenvalues |λ|) and the corresponding coefficient time series ξ j (t ) (right) at f5 = 2.02 Hz.

with entries given by

ρ
(
xp
+s1

, xq
+s2

) =
N−M+1∑

i=1

xp
i+s1

xq
i+s2

N − M + 1
. (23)

The M-SSA modes can then be obtained either from an
eigendecomposition of the above covariance matrix or from

a singular value decomposition C = U	V T as the columns of
U (see, e.g., Ref. [40]). Due to Eq. (20), C is symmetric and
thereby has real eigenvalues and eigenvectors.

The block structure of C [Eq. (21)] reminds one of
HCD and DAHD grand matrices [Eqs. (3) and (15)]. With
an embedding dimension of M the M-SSA blocks are of
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dimension M × M instead of (2M − 1) × (2M − 1) as in
HCD and DAHD.

Accordingly, the M-SSA modes are of lower (spatial) di-
mension than in HCD and DAHD when choosing M to be
equal. For all example applications of M-SSA we pick a larger
M for M-SSA, such that the M-SSA modes we obtain have the
same dimension as DAHD and HCD modes.

The blocks C(p,q) [Eq. (22)] of the M-SSA grand ma-
trix obtained from the embedding approach are not Toeplitz.
They can, however, be made Toeplitz by replacing the covari-
ance (or correlation) estimates ρ(xp

+s1
, xq

+s2
) from Eq. (23) by

ρ(xp
0 , xq

s ) as defined in Eq. (1) with s = s2 − s1,

C(p,q) =

⎛
⎜⎜⎜⎜⎝

ρ
(p,q)
+0 ρ

(p,q)
+1 · · · ρ

(p,q)
+M−1

ρ
(p,q)
−1 ρ

(p,q)
0 · · · ρ

(p,q)
+M−2

...
...

. . .
...

ρ
(p,q)
−M+1 ρ

(p,q)
−M+2 · · · ρ

(p,q)
0

⎞
⎟⎟⎟⎟⎠. (24)

Due to ρ
(p,q)
s = ρ

(q,p)
−s and thereby C(p,q) = C(q,p)T

, the
M-SSA grand matrix built from the Toeplitz blocks is by con-
struction symmetric. The correlation estimates from Eqs. (23)
and (1) are different for finite time series. Therefore, embed-
ding M-SSA and Toeplitz M-SSA are not fully equivalent.

As in HCD and DAHD, a portion of the M-SSA modes are
typically oscillatory pairs approximately in phase quadrature.
But unlike for HCD and DAHD modes, there is no exact
pairing in M-SSA. Pairs can typically only be made in terms
of similar eigenvalues and eigenvectors. The identification
of pairs in M-SSA is thus not necessarily straightforward.
One may view M-SSA as the most data-adaptive of three
correlation-based decompositions discussed in this paper in
the sense that not only phases and amplitudes of the modes but
also their temporal structure is data-adaptive. M-SSA modes
do not necessarily fall onto Fourier frequencies. The frequen-
cies of the M-SSA modes depend on the data.

M-SSA of a traveling sine wave yields only two nonzero
eigenvalues belonging to a single oscillatory pair of modes
with the frequency of the wave (Fig. 1). For the traveling
wave data, the M-SSA modes are sinusoids along the temporal
dimension. This is, however, due to the sinusoidal channel
time series for the traveling wave. Unlike HCD and DAHD
modes, the oscillatory M-SSA modes are typically neither
sinusoids nor uniquely assigned to a specific frequency, as
can be seen in our subsequent example application to EEG
data. The identification of phase relation from M-SSA modes
is therefore less straightforward.

IV. EXAMPLES

A. Stuart-Landau oscillators

As a test scenario of intermediate complexity, we con-
sider a system of coupled Stuart-Landau (Hopf normal form)
oscillators that are linearly combined to produce channel
observations. A system of n linearly coupled Stuart-Landau
oscillators zk ∈ C with k = 1, . . . , n is governed by

żk = (ρk + iωk )zk − |zk|2zk + ε

⎛
⎝E +

n∑
j �=k, j=1

Ak jRe(z j )

⎞
⎠.

(25)

We simulate this system of n = 3 Stuart-Landau oscillators
with natural angular frequencies ωk chosen to be

ω1 = 3, ω2 = 6.04, ω3 = 9.11

close to a 1 : 2 : 3 resonance. We choose linear growth rates
ρk = 1 and identical coupling Ak j = 1 for all j, k. The con-
stant E = 1 breaks the rotational symmetry z �→ eiψz of the
Stuart-Landau system and ensures a generic breakdown of the
three-frequency motion on increasing the coupling strength ε.
We choose two different values of ε to obtain two qualitatively
different attractors for the coupled system:

ε = 1 (QP1), ε = 0.15 (QP3).

On increasing coupling strength ε, there is a sequence of
bifurcations (not shown here) leading to full mode-locking
[51]. For strong coupling (ε = 1), all three oscillators are fully
mode-locked into a periodic behavior (QP1) with a 1 : 2 : 3
ratio of frequencies. For small coupling (ε = 0.15), there is
no locking of oscillators and the attractor is three frequency
quasiperiodic (QP3).

To obtain time series zk
i with i = 1, . . . , N we integrate

Eq. (25) for all three scenarios over a time span of T = 5000
(dt = 0.05). Thus we obtain series of length N = 10 000 from
which we generate a three-channel observation (d = 3) and an
eight-channel observation (d = 8) xp

i ∈ R as

xp
i =

n∑
k=1

PpkRe
(
zk

i

) + QpkIm
(
zk

i

)
. (26)

See the Supplemental Material [52] for figures showing the
observation time series. In the three-channel observation, each
channel records signals from a single oscillator only. In the
eight-channel observation, the channels record mixed signals.
Precisely, our three-channel recording corresponds to picking
Ppk and Qpk as

Ppk =
⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠, Qpk =

⎛
⎝0 0 0

0 0 0
0 0 0

⎞
⎠. (27)

That is, the three-channel observations are given by the real
part of the oscillator time series xp

i = Re(zp
i ).

To generate an eight-channel observation, we pick

Ppk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.5 0.5 0
0.5 0.5 0
0 0.2 0.4
0 0.1 0.3
0 0 1
0 0 0

0.1 0.4 0.8
0.9 0.6 0.2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Qpk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
0.5 0.5 0
0 0.7 1.2
0 0.3 0.4
0 0 0
0 0 1

0.3 0.7 2
0.9 1.4 0.3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(28)
That is, channels 1–4 record signals from two oscillators.
Channels 5–6 record signals from a single oscillator only.
Channels 7–8 record signals from all three oscillators. The
oscillators contribute to the different channel observations
with different phases, as we use different weightings of real
and imaginary parts. The above choices of Ppk and Qpk are
arbitrary and solely aimed at emulating observations in which
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FIG. 7. HCD power spectra (top) and leading mode phase spectra (bottom) of the three-oscillator system: (a) shows the spectra from the
three-channel recording of configuration QP1, (b) shows the spectra from the three-channel recording of configuration QP3, (c) shows the
spectra from the eight-channel recording of configuration QP1 (for details, see Sec. IV A).

channels record different combinations of the three oscilla-
tors.

We perform an HCD with M = 100. With M ≈ 100 (or
larger) we clearly identify three separate distinct peaks of
approximately equal size in the HCD power spectra (Fig. 7).
These peaks correspond to the dominant frequencies of the
three oscillators. From the peaks the spectrum decays in a
similar manner to that for the traveling wave (compare Fig. 2),
such that for the three oscillators with three distinct frequen-
cies, we find all three eigenvalue pairs to be greater than
0 for all ωk > 0. HCD power and phase spectra from the
three-channel recordings of QP1 and QP3 exhibit the same
qualitative shape. The periodic behavior of all three oscillators
in QP1 does not lead to a simpler HCD spectrum compared to
QP3 as the nonrandom phase relations in QP1 occur between
signal components at distinct frequencies.

The HCD spectra of the eight-channel observation of
QP1 is shown in Fig. 7(c). The HCD power spectrum of
the eight-channel observation resembles the spectrum of the
three-channel observation in the sense that again we find three
peaks near the dominant frequencies of the three oscillators
and a smooth decay from the peaks similar to the traveling
wave spectra. At ω1 = 0 we observe six nonzero eigenvalues,
and for ωl > 0 six nonzero pairs of eigenvalues at each fre-
quency. For the eight-channel observation this means that for
ωl > 0 two eigenvalue pairs at each frequency are numerically
zero. Three pairs are expected as we are observing signals
from three oscillators with distinct frequencies. The addi-
tional three smaller nonzero pairs result, as in the case of the
traveling wave, from the discretization. For an eight-channel
observation without phase lags, e.g., by setting Qpk = 0 for all
p, k, the HCD power spectrum reduces to three nonzero eigen-
value pairs for ωl > 0 (not shown). The HCD power spectrum
may thus be viewed as foremost characterizing the underlying

oscillatory system rather than a particular observation (i.e.,
linear combination of the oscillator series). The heights of the
power spectral peaks are, however, determined by the weights
of the different oscillators in Ppk and Qpk . The HCD spectrum
is thus not unaffected by the choices made when observing the
system.

The mixing of the oscillator time series in the channel
observations becomes apparent in the HCD modes. Figure 8
shows the leading HCD modes from QP1 at four different
frequencies. We first take a closer look at the mode snippets
corresponding to channels 5 and 6. Channels 5 and 6 only ob-
serve oscillator number 3, i.e., the oscillator with the highest
natural frequency (ω3 = 9.11). Accordingly, channels 5 and 6
show up in the leading mode at the third power spectral peak
[Fig. 8(d)]. In the leading modes at the first and second peak
[Figs. 8(b) and 8(c)], the snippets corresponding to channels
5 and 6 exhibit an amplitude close to 0. As the observations at
channels 5 and 6 are approximately in phase quadrature, the
corresponding mode snippets are shifted by π/2 accordingly.
Channel 8 observes signals from all three oscillators, with par-
ticularly strong contributions from oscillators 1 and 2. Thus
the channel 8 snippet has a comparably large amplitude in
the leading modes at the first and second peak [Figs. 8(b) and
8(c)] and visibly smaller amplitude in the leading modes at the
third peak [Fig. 8(d)]. The mode shapes are thus indicative of
the presence (or absence) of an oscillator in the observations
at a particular channel.

B. EEG and surrogate EEG data

As a real-world example, we apply HCD and DAHD to
human EEG recordings. We use a 20-s epoch of a 64-channel
resting-state scalp EEG recording from a healthy subject.
The data have been sampled at 1 kHz and preprocessed, in-
cluding artifact removal and bandpass filtering to 1–200 Hz,
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FIG. 8. HCD of the eight-channel recording of the three-oscillator system in configuration QP1 (for details, see Sec. IV A). Shown is the
leading mode pair (i.e., the pair of modes associated with the largest absolute eigenvalues |λ|) and the corresponding coefficient time series
ξ j (t ) (right) at four different frequencies: (a) ω5 = 2.54, (b) ω6 = 3.17, (c) ω10 = 5.71, and (d) ω15 = 8.89. The frequencies shown in panels
(b)–(d) correspond to the peaks in the HCD power spectrum shown in Fig. 7(c).

by [53]. Before we apply the spectral decompositions, we
down-sample the data to 0.1 kHz. The autocorrelations of the
down-sampled EEG data are shown in Fig. 9. The autocorre-
lations decay quickly and become flat at about 0.4 s, therefore
we choose M = 40.

For comparison, we generated surrogate data following
[54]. In the surrogates, Fourier power spectral density and
amplitude distribution of each channel series resemble those
of the actual EEG recording, but the phases are drawn ran-
domly from a uniform distribution on [0, 2π ). We thus expect
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FIG. 9. Autocorrelations of the 64-channel EEG recording of a
single subject (for details, see Sec. IV B). The shaded areas indicate
the distribution, i.e., 20% of the plotted autocorrelations lie within
the area with the darkest shading, and so on.

the phase spectra from the surrogate data to be random and
to not exhibit any distinct structure. The correlations in the
actual EEG recordings are a mixture of correlations in brain
electrical activity, common signals being recorded at multi-
ple channels and random correlations that arise due to finite
window length. In the surrogate data, solely the random cor-
relations, attributed to the finite length and frequency content
of the series [55], remain. The correlations in the surrogate
data are thus expected to be (on average) smaller than for the
actual EEG data for a given window size.

With a sampling rate of 0.1 kHz and M = 40, the frequen-
cies of the HCD modes range from f1 = 0 Hz to f40 = 50 Hz
with � f ≈ 1.28 Hz. Figure 10 shows the leading HCD modes
from the EEG data at 0, 2.56, 5.12 and 8.97 Hz. The phase
differences between the snippets appear to be concentrated
around 0 and π . In other words, the snippets are close to being
in phase or antiphase. The structure of the leading modes
thus appears to be dominated by nonrandom correlations, i.e.,
actual correlations of electrical brain activity and/or signals
from common sources recorded at distinct channels.

The HCD power and phase spectra are shown in Fig. 11.
The black line corresponds to the average over the eigenvalues
at each frequency, i.e., 	l = ∑

j∈I( fl ) |λ j |/2d . As expected,
the averages are of the same shape in both EEG and sur-
rogate spectra as the surrogates are constructed to have the
same Fourier power spectral density as the actual EEG. In the
y-direction, EEG and surrogate spectra differ. The surrogate
spectrum is narrower than the EEG spectrum.

For the zero-lag correlation matrix, the eigenvalue spec-
trum has been extensively studied. The eigenvalue spectrum
provides information on the presence of genuine, i.e., nonran-
dom, cross-correlation in multivariate time-series data (see,
e.g., Refs. [56,57]). The parts of the spectrum dominated by
random correlations have been found to match predictions
from random matrix theory [58], while genuine correlations
have been found to imprint on the spectrum in the form of
repulsions between particular eigenvalues [59–61]. Typically,
the repulsion of eigenvalues leads to a broadening of the
spectrum. Hence, the finding of a wider HCD spectrum (in

the y-direction) for the actual EEG compared to surrogates
appears to be in line with [59–61].

Next we examine the HCD phase spectra (Fig. 11). The
(leading mode) phase spectrum from the actual EEG has the
majority of phases organized into short (vertical) lines indicat-
ing the phases of the mode snippets to be concentrated around
particular phases at each frequency. Looking closely, we see
that the snippets are close to being either in phase or antiphase
as we have already observed in the example modes in Fig. 10.
As expected, the HCD phase spectrum from the surrogate data
does not exhibit any visible structure.

The DAHD phase spectrum from the EEG data shares
some of the features of the HCD spectrum. In both cases,
the snippet phases at each frequency are concentrated around
some θ . The DAHD phase spectrum, however, further exhibits
a linelike structure in the x-direction, which is even more
obvious for the modified DAHD with the alternate grand
matrix symmetrization from Eq. (18), which in the follow-
ing we abbreviate as DAHD*. For the DAHD* the phase
spectrum collapses to these linelike patterns, i.e., the mode
snippets are exactly in phase or antiphase, which is expected
as our alternate grand matrix symmetrization is analogous
to symmetrizing the cross-correlations. This affects EEG and
surrogate spectra alike. Surprisingly, however, the phase spec-
trum for the surrogates obtained from the original DAHD
exhibits a nonrandom structure as well. The surrogate spec-
trum appears to contain a stronger random component than
the DAHD spectrum from the actual EEG, but some of the
structure remains for the surrogate data. This is counterintu-
itive as the surrogate data have been constructed by randomly
drawing the phases from a uniform distribution.

Finally, Fig. 12 compares the leading modes from HCD,
DAHD, and M-SSA. This example illustrates how DAHD and
HCD differ from M-SSA. DAHD and HCD modes exhibit
unique frequencies, in the sense that the mode snippets are
pure sines with a single frequency. The oscillatory DAHD
and HCD modes come as distinct pairs in phase quadrature
and associated with eigenvalues of the same absolute value
and opposite sign for DAHD and the same value and same
sign for HCD. The oscillatory pairs from M-SSA are also
approximately in phase quadrature, but associated only with
similar eigenvalues, making the identification of the oscil-
latory pairs less straightforward than in DAHD and HCD.
Further, a mixing of frequencies can occur in the M-SSA
modes. In Fig. 12(e) this is most obvious in the two panels on
the right. A structured varimax rotation as proposed by [62],
however, allows us to visibly reduce the mixing of frequencies
within the M-SSA modes [Fig. 12(f)].

Unlike for the traveling wave in Fig. 1, the leading
modes from HCD and DAHD look similar for the EEG
data. The difference between HCD and DAHD modes for
a given data set appears to be related to the asymmetry of
cross-correlations. The stronger the asymmetries in cross-
correlations, the stronger the effect that the DAHD grand
matrix symmetrization has on the shape of the DAHD modes.
For the EEG recordings, the cross-correlations exhibit less
asymmetry than in the case of the traveling wave. In other
words, the dominant oscillatory components in the EEG
recordings that are shared by distinct channels seem to appear
at zero or near-zero lag, as seen in the phase spectra.
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FIG. 10. HCD of a 64-channel EEG recording. Shown is the leading mode pair (i.e., the pair of modes associated with the largest
eigenvalues λ) and the corresponding coefficient time series ξ j (t ) (right) at four different frequencies: (a) f1 = 0 Hz, (b) f3 = 2.56 Hz,
(c) f5 = 5.12 Hz, and (d) f8 = 8.97 Hz.

V. DISCUSSION

A comparison of the main features of HCD, DAHD, and
M-SSA is summarized in Table II. Central to all three spec-

tral decomposition techniques is an eigendecomposition of
a grand matrix containing lagged cross-correlations (or co-
variances). The differences between the decompositions arise
from the different ways in which the cross-correlations are
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FIG. 11. Multidimensional power spectra (top) and leading mode phase spectra (bottom) from the spectral decomposition of the 64-channel
EEG recording (a)–(c) and surrogate EEG (d)–(f): (a), (d) show the HCD spectra from the EEG recording, (b), (e) show the DAHD spectra,
and (c), (f) show the spectra form the modified version of the DAHD method where the grand matrix is symmetrized by Eq. (18). The back
line in the upper panels shows the average over all eigenvalues at the respective frequency.

arranged within the matrix. In M-SSA, the grand matrix is
either obtained as the correlation matrix of the lag-embedded
multivariate series or as a block matrix of Toeplitz blocks.
The DAHD grand matrix is built from left-circulant blocks
(i.e., circulant Hankel matrices). The HCD grand matrix
is built from right-circulant blocks (i.e., circulant Toeplitz
matrices).

The eigenvectors of the grand matrices can be rearranged
into spatiotemporal modes, and for time series containing
some sort of oscillatory behavior a subset of the modes ex-
hibits an oscillatory pattern along the temporal dimension.
The oscillatory modes come in pairs that can be identified
via the corresponding eigenvalues. In the HCD method, the
eigenvalues of an oscillatory pair have the same value and

sign. In the DAHD method, the eigenvalues of an oscillatory
pair have the same value but opposite signs. In M-SSA, the
mode pairing is only approximate. The modes associated with
an eigenvalue pair exhibit the same (for HCD and DAHD) or
a similar (for M-SSA) spatiotemporal pattern solely shifted by
π/2 in the temporal direction.

Along the temporal dimension, HCD and DAHD modes
are pure sinusoids with the Fourier frequencies on the embed-
ding interval. The data-adaptive nature of HCD and DAHD
manifests in the amplitudes and phases of the sinusoids,
while in M-SSA amplitudes, phases and frequencies are data-
adaptive. In that sense, one may view M-SSA as the most
data-adaptive. The advantage of HCD and DAHD is that each
mode can be uniquely assigned to a particular frequency,
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FIG. 12. Excerpt of a 64-channel EEG recording (a) and the leading modes of its spectral decomposition. Shown are the two leading
mode pairs across all frequencies (i.e., the pair of modes associated with the largest absolute eigenvalues |λ|) from the different decomposition
techniques: (b) HCD, (c) DAHD, (d) DAHD*, (e) M-SSA, and (f) varimax rotated M-SSA. DAHD* refers to a modified version of the DAHD
method where the grand matrix is symmetrized by Eq. (18). For panel (f) the structured varimax rotation of [62] has been applied to the leading
50 M-SSA modes.
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TABLE II. Comparison of the main characteristics of the lagged cross-correlation-based spectral decomposition techniques: multivariate
singular spectrum analysis (M-SSA [50]), data-adaptive harmonic decomposition (DAHD [43]), and harmonic cross-correlation decomposition
(HCD [this paper]).

M-SSA DAHD HCD

grand matrix correlation matrix or Toeplitz blocks left-circulant (Hankel) blocks (right-)circulant (Toeplitz) blocks
oscillatory modes data adaptive (mixtures possiblea) sinusoids sinusoids
mode frequencies data adaptive (mixtures possiblea) Fourier frequencies Fourier frequencies
mode pairing approximate (similar in eigenvalue) exact (opposite sign) exact (same sign)
multivariate power no yes yes

and phase spectra
data adaptive phase, amplitude and frequency/shape phase and amplitude phase and amplitude
invariance under yes no yes

channel permutation

aMixtures can be reduced by a structured varimax rotation of the M-SSA modes [62].

which, along with their particular ordering (d mode pairs at
each Fourier frequency and d nonoscillatory modes at f = 0),
gives rise to multivariate power and phase spectra. This power
and phase spectra can be useful tools for exploratory analysis
of multivariate time-series data.

The DAHD spectra, however, do not uniquely characterize
correlation and phase relations in multivariate time-series data
as the DAHD spectra are not invariant under channel permu-
tation. That is, a reordering of the channels within the DAHD
grand matrix will typically give different DAHD modes and
spectra. This is a side effect of the explicit symmetrization
required to ensure that the grand matrix from Hankel blocks
is symmetric. When constructing a grand matrix from Toeplitz
blocks, no explicit symmetrization is needed. The HCD is
accordingly invariant under channel permutation. HCD power
and phase spectra uniquely characterize correlation and phase
relations in multivariate time-series data in an intuitive way.

The eigenvalue spectrum of the zero-lag correlation matrix
has gained a lot of attention in the literature, for instance in
the analysis of EEG data, as it can provide information on
correlation strengths and correlation structure within multi-
variate time-series data [56,57,61,63–66]. The HCD power
spectra may thus offer a tool to obtain frequency-specific
insight into correlation structure and strengths not restricted
to correlations at zero-lag and without filtering to a particular
frequency band beforehand.

The HCD phase spectra depict predominant phase relations
between time series sampled at distinct channels, and they can
thereby be useful in identifying how oscillatory signals prop-
agate through a system. The amplitudes of the mode snippets
associated with the channels is linked to the magnitude of
the respective oscillatory pattern at the respective channels.
Especially in cases in which the relative amplitudes of the
channel time series are considered important, as might be the
case for measurement data, it may be more suitable to perform
the HCD based on covariances rather than correlations, or in
other words to only centralize the data to zero mean, but not
to normalize it to unit variance before applying Eq. (1). A
varimax rotation as commonly applied to PCA to simplify the
leading EOFs by enhancing sparseness may further allow us to
simplify and improve the interpretability of the HCD modes.
The varimax rotation used in PCA is not directly transferable
to spatiotemporal modes. However, Ref. [62] introduced a
modified varimax rotation (for M-SSA) that increases sparsity

along the spatial dimension of the leading n modes while
preserving the oscillation along the temporal dimension.

As outlined in the Introduction, Ref. [49] recently intro-
duced a Hermitian frequency domain formulation of DAHD.
The Hermitian DAHD formulation systematically differs from
the original DAHD method in that is does not include an
explicit symmetrization step. See the Supplemental Material
[52] for an intercomparison of the frequency domain formula-
tion of the original DAHD (equivalent to time domain DAHD)
and the Hermitian DAHD formulation (equivalent to HCD)
by means of an example data set studied in [49]. Further
recent studies have introduced spectral empirical orthogonal
function (SEOF) analysis [11] and spectral proper orthogonal
decomposition (SPOD) [67] as spectral decomposition tech-
niques for multivariate time series. Both decompositions are
derived in the frequency domain. An intercomparison of the
above techniques with DAHD and HCD is a future challenge.

DAHD has been developed as part of an inverse modeling
framework in which the paired oscillatory DAHD coefficient
series are identified with the real and imaginary parts of
Stuart-Landau oscillators [43]. Real-world applications of that
modeling framework include stochastic modeling of Arctic
sea ice extent [46], solar wind-magnetosphere coupling [44],
and ocean gyres [45]. Future work may address a similar
modeling approach based on the HCD method or the equiv-
alent Hermitian DAHD formulation of [49]. Especially when
aiming to obtain insights into the system dynamics from
data-driven modeling, the independence of the channel order-
ing may be advantageous. The more efficient representation of
the data in the HCD mode space that we have observed for the
traveling wave (see also the Rossby waves example discussed
in the Supplemental Material [52]) may further allow one to
reduce the dimension, i.e., to use fewer oscillators, in model-
ing. It should, however, be noted that the linear relationship
between eigenvalues and explained variance from M-SSA
appears not to be directly transferable to the HCD method.
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