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Flux-augmented bifurcation analysis in chemical reaction network systems
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The dynamics of biochemical reaction networks are considered to be responsible for biological functions in
living systems. Since real networks are immense and complicated, it is difficult to determine which reactions can
cause a significant change of dynamical behaviors, namely, bifurcations. Also to what extent numerical results of
network systems depend on the chosen kinetic rate parameters is not known. In this paper, an analytical setting
that splits the information of the dynamics into the network structure and reaction kinetics is introduced. This
setting possesses a factorization structure for some class of network systems which allows one to determine
which subnetworks are responsible for the occurrence of a bifurcation. Subsequently, the bifurcation criteria are
reformulated in a manner that allows the efficient determination of relevant reactions for bifurcations.
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I. INTRODUCTION

In biochemical systems, it is commonly accepted that the
dynamical behaviors of biochemical reaction networks are
responsible for biological functions, and they can be described
by ordinary differential equations (ODEs). A dramatic change
in dynamical behaviors of a network system indicates a sig-
nificant change in the corresponding biological behaviors. For
instance, bistability, where a system has two stable states,
suggests a switching behavior between states. This switching
behavior is considered to underlie some fundamental biolog-
ical processes, such as cell division, cell differentiation, and
cancer onset [1,2]. The bistability can be realized, for exam-
ple, via a pitchfork bifurcation, where one family of stable
steady states transfers its stability properties to two families
of steady states after the bifurcation point.

In fact, a bifurcation occurs when a slight variation in a
parameter (bifurcation parameter) of a system causes a sudden
qualitative or topological change of its dynamical behavior.
Note that as a bifurcation parameter crosses a critical value,
the local stability properties of steady states or periodic or-
bits can change. The tuning of a bifurcation parameter can
correspond to enzyme modulations or external conditions in
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biochemical systems. A central question is whether or not a
given network system can admit a bifurcation. Chemical reac-
tion networks in biological systems are modeled based on the
mass-action law (see, e.g., [3,4]), and the Michaelis-Menten
and other kinetics [5,6].

To analytically study the dynamical behaviors in reaction
network systems, Clarke [7–9] introduced the stoichiomet-
ric network analysis (SNA) to derive the constraints among
rate parameters for which bistability or oscillations of net-
work systems can occur. His analysis is based on two
assumptions: (i) Each admissible positive steady state can be
characterized as a convex linear combination of nonnegative
kernel vectors of the stoichiometric matrix of the system
(extreme currents); and (ii) the reaction rate kinetics obey
the mass-action law (i.e., reaction rate kinetics are given by
products of positive rate constants and monomials in the
species concentrations). The former assumption was rigor-
ously justified by Gatermann, Eiswirth, and Sensse [10] via
the theory of algebraic geometry in the mass-action scheme.
The latter assumption allows the Jacobian of the system
evaluated at positive steady states to have a form that can
be easily manipulated. Later, under the mass-action kinet-
ics assumption, Feinberg and his coauthors [11–14] studied
the question on whether a given network system can admit
bistability or multiple existences of positive steady states. Fi-
nally, using Clarke’s framework and mass-action assumptions
on rate kinetics, Domijan and Kirkilionis [15] reformulated
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classical bifurcation criteria, such as saddle-node and Hopf
bifurcations.

These previous works are based on the assumption that rate
kinetics obey mass-action law. Further, the stability of steady
states is determined by the Jacobian matrix, J, of network
systems, which could be tedious to analyze systematically,
particularly if the reaction kinetics are not of the mass-action
type and the network size is large. On the other hand, employ-
ing specific reaction kinetics and parameter values, numerical
approaches [16] can efficiently solve the stability of steady
states. However, determining the actual kinetics experimen-
tally is still difficult especially in vivo. In fact, estimated
values of kinetic parameters in the literature can be differ-
ent by orders of magnitude (as can be seen from Refs. [17]
and [18]). Furthermore, novel allosteric regulations continue
to be discovered [19], and there may still exist unidentified
regulations in the central carbon metabolism network. Thus,
the essence of biological systems may not be fully captured
only by numerical methods. Thus, the aim of this study is
twofold: (i) An analytical setting for the stability analysis of
steady states in network systems without mass-action laws
imposed on reaction kinetics is introduced. (ii) With this set-
ting, criteria on whether a change of reaction rate parameters
in a network system can admit a bifurcation are proposed.
The paper is organized as follows. In Sec. II, the augmented
matrix A for the setting of the stability analysis of steady
states is introduced. Next, in Sec. III, a correspondence be-
tween the spectrum of the Jacobian matrix, J, of a network
system and that of the augmented matrix, A, is established.
Section IV contains our main results, where the criteria of
bifurcation (of codimension 1) are reformulated using our
setting. One distinct advantage of the proposed formalism
is that the conditions on bifurcations are rephrased in terms
of reaction rate functions and network topology directly. In
Sec. V, the setting is employed to derive the localization
principle for bifurcations. In Sec. VI, the proposed theory is
illustrated using hypothetical and realistic networks. Finally,
the conclusion and discussion are provided in Sec. VII. To
make the presentation clear, we focus on the saddle-point
bifurcation in the main text which is a typical codimension-1
bifurcation. The reformulation of other codimension-1 bifur-
cations such as transcritical and pitchfork bifurcations and
their demonstrations are presented in Appendixes D and E.

II. THE SETTING AND THE AUGMENTED MATRIX A

In this section, we will lay out our setting and introduce the
key augmented matrix A.

We consider a spatially homogeneous chemical reaction
system consisting of M chemicals and N reactions:

yn
1X1 + · · · + yn

MXM
kn−→ ỹn

1X1 + · · · + ỹn
MXM ,

for n = 1, . . . , N , and the coefficients yn
m and ỹn

m are the
numbers of the chemical Xm participating in the nth reaction
En at reactant and product stages, respectively. We do not
assume specific kinetics such as the mass-action kinetics and
the Michaelis-Menten kinetics, but assume that it depends on
its substrate concentrations and also on some parameter kn.
For example, in metabolic networks, X are metabolites, and
kn are, for example, catalytic enzyme activities.

Let rn(x, kn) denote the reaction rate function of the nth
reaction (n = 1, . . . , N), where x = (x1, . . . , xM )�, xm is the
concentration of chemical Xm, and � denotes the transpose
operator of a matrix. Then the time evolution of the chemical
concentration x is governed by the following ODEs:

dxm

dt
= fm(x1, . . . , xM ; k1, . . . , kn)

:=
N∑

n=1

νmnrn(x; kn), m = 1, . . . , M.

(1)

The matrix ν = (νmn)M×N = (ȳn
m − yn

m)M×N , each of which
represents the net difference of consumption and production
in the reaction, is called the stoichiometric matrix. For ease of
notations, set

f = ( f1, . . . , fM )�, r = (r1, . . . , rN )�,

k = (k1, . . . , kN )�.

Then (1) can be rewritten as follows:

dx
dt

= f (x; k) := νr. (2)

To present the key idea, we assume that the stoichio-
metric matrix ν does not have nonzero cokernel vectors,
implying that

rank(ν) = M � N, (3)

and the steady-state concentrations x̄ and fluxes r̄ are continu-
ous functions of parameters {kn}N

n=1. Nonzero cokernel vectors
of ν correspond to linear combinations of concentrations that
are conserved in time. When a system has nonzero cokernel
vectors, (3) can be satisfied after eliminating some of the
variables. For a steady state x̄, 0 = νr means that the flux r̄ is
expressed, in terms of any basis {cα}N−M

α=1 of the kernel space
of ν, as

r̄ =
K∑

α=1

ζ αcα, K := N − M = dim ker ν. (4)

Note that the basis {cα}N−M
α=1 depends only on the structure of

networks, not on the reaction rate function r. The numbers ζ α

are the coordinates in the space of the steady-state flux.
Note that in monomolecular-reaction systems (see [20]

for examples of monomolecular-reaction systems), the kernel
vectors of ν have an interpretation as “cycles.” Such a graph-
ical interpretation is still useful to find kernel vectors visually
for general reaction systems.

The following augmented N × N matrix A plays a pivotal
role throughout the present paper:

A =
(

∂r
∂x

∣∣∣∣
x=x̄

Kν

)
:=

(
∂r
∂x

∣∣∣∣
x=x̄

− c1 . . . − cK

)
. (5)

The row length is M + dim ker ν = N , because of the as-
sumption dim coker ν = 0. The augmented matrix A consists
of two submatrices: The submatrix ∂r

∂x |x=x̄ = ( ∂rn
∂xm

|x=x̄)N×M
contains the information of reaction rate functions only, while
the submatrix Kν is composed of the kernel vectors of ν and
contains the information of network structure only.

The most important feature of the matrix A is that it pos-
sesses the block structure. To see this, suppose that the whole
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chemical reaction system � has a subnetwork �s consisting of
a subset of species and a subset of reactions. By permutating
the column and row indices of the the matrix A, it can be
rewritten as

A =
(

A�s ∗
0 A�̄s

)
, (6)

where the rows (columns) of A�s are associated with the
reactions (chemicals and cycles) in �s, and those of A�̄s

are associated with the complement �̄s := �\�s. This block
structure of A allows one to deduce the information of �s

without being obscured by the parameters involved in �̄s. For
more details, see Example 1 in Sec. VI.

The augmented matrix A allows one to extract qualitative
properties of system (2) without resorting to the specific form
of reaction rate functions. In fact, under perturbation kn̂ →
kn̂ + δkn̂ (n̂ = 1, . . . , N), the augmented matrix A determines
how the concentration changes δn̂xm and the flux changes δn̂rn

are at the steady state x̄. Precisely, Mochizuki and Fiedler
[21] showed that if the augmented matrix A at the steady
state x̄ is nonsingular, then the sensitivities of the chemi-
cal concentrations and the steady-state flux coordinates are
given by

∂ x̄m

∂kn
= −(A−1)mn

(
∂rn(x; kn)

∂kn

)∣∣∣∣
x=x̄

,

∂ζ α

∂kn
= −(A−1)αn

(
∂rn(x; kn)

∂kn

)∣∣∣∣
x=x̄

. (7)

To make the present paper self-contained, we review the
derivation in Appendix A. From (4), the sensitivities of re-
action rates are then obtained as follows:

∂ r̄n

∂kn′
=

K∑
α=1

∂ζ α

∂kn′
cα.

In practical applications, we usually know the signs of the
factors ( ∂rn(x;kn )

∂kn
)|x=x̄. Therefore, the signs of the entries of

the inverse matrix of A completely determine those of the con-
centration changes δn̂xm and the flux changes δn̂rn as reaction
rate parameters are varied. We remark that this method works
away from bifurcation points, where A becomes singular (i.e.,
det A = 0).

Recently, some of the authors have made an observation
[22] that the det A is proportional to the determinant of the
Jacobian matrix J of system (2) at the steady state x̄. This
observation suggests that the augmented matrix A can de-
termine the critical parameter value at which a bifurcation
of system (2) can occur. Further, for reaction networks with
specific topology, the factorization property of the augmented
matrix A will allow one to determine which subnetwork may
exhibit a bifurcation. However, this observation cannot deter-
mine whether the spectrum information of a steady state is
encoded in the augmented matrix A. Also, it does not provide
any information about which type of bifurcation can occur. In
the coming section, we will use the (generalized) spectrum of
A to characterize the spectrum of the Jacobian matrix J.

III. EQUIVALENCE BETWEEN SPECTRUM OF THE
JACOBIAN J AND THE AUGMENTED MATRIX A

In this section, we establish that spectral properties of
steady states of system (2) can be characterized by the
augmented matrix A. In the next section, by using the char-
acterization, we will reformulate the criterion for classical
bifurcations such as saddle-node bifurcation.

In this subsection, we will use the setting of the augmented
matrix A to characterize the stability of steady states. Follow-
ing the standard method, we examine the stability of a steady
state by linearization around it. We write x(t ) = x̄ + δxλeλt ,
where δxλ is the eigenvector of the Jacobian with eigenvalue
λ. By substituting this into (2), we obtain

λδxλ = νDδxλ, (8)

where D is the N × N matrix defined by Dnm = ∂rn
∂xm

|x=x̄. To
proceed, we introduce the pseudoinverse matrix ρ of ν, which
is an N × M matrix defined by

νρ = 1M . (9)

By multiplying the left-hand side of (8) by the identity matrix
1M = νρ, we have

ν(λρ − D)δxλ = 0. (10)

This means that, similarly to (4), we can eliminate ν by ex-
panding the left-hand side in terms of the kernel vectors of ν:

(λρ − D)δxλ = −
K∑

α=1

ζ α
λ cα. (11)

Here, ζ α
λ are the coefficients of the expansion, which depend

on λ. This can be expressed more compactly as

Aρ,λ

(
δxλ

ζλ

)
= 0,

where Aρ,λ is the N × N matrix defined by

Aρ,λ := [D − λρ | Kν]. (12)

To clarify the notation, we show these matrices for an
example network, shown in the top-left panel of Fig. 1. The
stoichiometry matrix ν is given by

ν =
⎛
⎝1 −1 0 0 0

0 1 −1 −1 0
0 0 0 1 −1

⎞
⎠. (13)

The matrix Kν , which consists of kernel vectors of ν, is

Kν =

⎛
⎜⎜⎜⎝

1 1
1 1
1 0
0 1
0 1

⎞
⎟⎟⎟⎠. (14)

These two kernel vectors of ν can be easily constructed by
finding flows such that, for each molecule, its outflow and
inflow are exactly balanced. As we commented, they can also
be regarded as cycles, if we identify the “empty-set node” ∅
appearing in 1: ∅ → A, 3: B → ∅, and 5: C → ∅. The matrix
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FIG. 1. A graphical construction of the matrix ρ. Reaction 1:
∅ → A (inflow), 2: A → B, 3: B → ∅, 4: B → C, 5: C → ∅ (degra-
dation). For each chemical, add an outflow from it (the dashed blue
arrow), and compute the steady-state flux (red double line), which
gives the associated column of ρ.

ρ is given by

ρ =

⎛
⎜⎜⎜⎝

0 0 0
−1 0 0
−1 −1 0
0 0 0
0 0 −1

⎞
⎟⎟⎟⎠. (15)

We remark that ρ is not unique because null vectors of ν can
be added to columns of ρ. We assume that each reaction rate
depends on the concentration of the molecule from which the
reaction edge emanates. The Jacobian is given by

νD =
⎛
⎝−r2,A 0 0

r2,A r4,B − r3,B 0
0 r4,B −r5,C

⎞
⎠, (16)

and the matrix Aρ,λ is given by

Aρ,λ =

⎛
⎜⎜⎜⎝

0 0 0 1 1
r2,A − λ 0 0 1 1

−λ r3,B − λ 0 1 0
0 r4,B 0 0 1
0 0 r5,C − λ 0 1

⎞
⎟⎟⎟⎠. (17)

It turns out that for a given eigenvector u of the Jacobian
νD associated with the eigenvalue λ, there exists a unique
null vector of Aρ,λ. The converse is also true. That is, Aρ,λ

completely encodes the information about the spectrum of
the Jacobian matrix. To state this correspondence explicitly,
we introduce the N × N matrix P0 = 1N − ρν, which is a
projection operator onto ker ν as it satisfies P2

0 = P0 and νP0 =
0M×N . Then, the following theorem holds (see Appendix B for
the proof).

Theorem 1. For each λ ∈ C, the linear mapping

F : ker(νD − λ1M ) → ker(Aρ,λ),

defined by

F (u) = (u, v)� for u ∈ ker(νD − λ1M ),

where v ∈ CN−M is uniquely determined by the equation

Kν(v) = −P0(Du), (18)

is a one-to-one correspondence.
We emphasize here that the spectrum of the Jacobian

matrix νD is not equivalent to the usual spectrum of A, which
is obtained from det(A − λ1N ) = 0, but to a generalized one,
which is obtained from detAρ,λ = det(A − λρ̂) = 0, where
ρ̂ := (ρ | 0N×K ).

In order to establish the criterion for bifurcation in terms
of our setting, we also need the correspondence between the
transposed spaces ker(D�ν� − λ1M ) and ker(A�

ρ,λ). Recall
the N × N matrix Aρ,λ = [D − λρ | Kν]. Thus,

A�
ρ,λ :=

(
D� − λρ�

K�
ν

)
.

Now we state the correspondence between the spaces
ker(D�ν� − λ1M ) and ker(A�

ρ,λ) in the following theorem
(see Appendix C for the proof).

Theorem 2. For each λ ∈ C, the linear mapping

F̃ : ker(D�ν� − λ1M ) → ker(A�
ρ,λ)

defined by

F̃ (w) = ν�w for w ∈ ker(D�ν� − λ1M )

is a one-to-one correspondence.
Interpretation of the map ρ. We note that the matrix ρ has

an intuitive construction as a null vector of a stoichiometry
matrix, namely as a steady-state flux. If we write the ith
column as ρi (i = 1, . . . , M), νρ = 1M is equivalent to

(ν | − ei )

(
ρi
1

)
= 0, (19)

where the first factor is the augmented matrix obtained
by combining ν with the unit column vector −ei =
(0, . . . ,−1

i-th
, . . . , 0)�. The addition of the column −ei is equiv-

alent to adding the decay reaction from the ith chemical,

Xi → φ, to the original reaction network. Therefore, (
ρi
1 ), and

so ρi, can be obtained by considering the underlying network
system with the decay reaction of Xi, and then computing
the steady-state flux vector whose component for the decay
reaction is equal to 1.

As an illustration, consider again the network shown in the
top-left panel of Fig. 1. The matrices ν and ρ are given in (13)
and (15). For example, to obtain the first column of ρ, which is
associated with chemical A, we add an outflow from chemical
A (see the dashed arrow in the bottom-left panel of Fig. 1).
In this modified network, there is a new steady-state flux that
goes through reactions 2, 3 and the added outflow. Therefore,
the first column of ρ is given by (0,−1,−1, 0, 0)�. The sign
is negative since the flux goes though the two reactions in
the opposite direction. Note that ρ is not unique, and corre-
spondingly, there are infinitely many choices of the flux—for
example, the flux going through reaction 1 and the outflow,
which gives (1, 0, 0, 0, 0)�, or one going through reactions 5,
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4, 2 and the outflow, which gives (0,−1, 0,−1,−1)�. The
other columns of ρ can be constructed similarly.

IV. CRITERIA ON BIFURCATION WITH SIMPLE ZERO
EIGENVALUE

A change of kinetic rate parameter in a biochemical reac-
tion network can correspond to an experimental protocol such
as enzyme knockdown of some specific reaction or the tran-
script inhibition of target proteins on microRNAs. Therefore,
in this section, we study codimension-1 bifurcations. To clar-
ify the essence of our approach, the saddle-node bifurcation,
which is the typical codimension-1 bifurcation, is presented
in the main text, and other codimension-1 bifurcations with
specific symmetries such as transcritical and pitchfork bifur-
cations are presented in Appendixes D–F.

We will use our setting to give conditions under which a
bifurcation can occur, by using the correspondence between
the spectrum of the Jacobian matrix and that of the aug-
mented matrix A defined in the previous subsection. These
reformulated bifurcation criteria are not only elegant, but also
identify which reactions can cause a bifurcation of the un-
derlying system. Below, we use Dxg to denote the matrix
of partial derivatives of the components of g with respect to
the components of x, and gμ to denote the vector of par-
tial derivatives of the components of g with respect to the
scalar parameter μ, namely, (Dxg)mm′ = ∂gm

∂xm′ and (gμ)m =
∂gm

∂μ
. Also, D2

xg(x0; k0)(u, u) = ∑
m,m′

∂2g(x0;k0 )
∂xm∂xm′ umum′ is an

N-dimensional vector obtained by contracting the tensor
D2

xg(x0; k0) with u.

Saddle-node bifurcation

We begin with the following classical theorem by
Sotomayer, which gives a sufficient condition under which
the system undergoes a saddle-node bifurcation. See [[23],
Theorem 8.12] and [[24], Theorem 3.4.1] for a proof.

Theorem by Sotomayer [25]. Let ẋ = g(x; μ) be a system
of differential equations in RM depending on the single pa-
rameter μ. When μ = μ0, assume that there is a steady state
x0 for which the following hypotheses are satisfied:

(SN1◦) Dxg(x0; μ0) has a simple eigenvalue 0 with left
eigenvector w and right eigenvector u.

(SN2◦) The left eigenvector w satisfies w�gμ(x0; μ0) 	= 0.
(SN3◦) The eigenvectors w and u satisfy

w�[D2
xg(x0; k0)(u, u)] 	= 0.

Then system ẋ = g(x; μ) exhibits a saddle-node bifurca-
tion at the steady state x0 as the parameter μ varies through
the bifurcation value μ = μ0. Precisely, there exist a δ > 0
and a smooth curve ϒ : J = (−δ, δ) → RM × R such that the
following holds:

ϒ(s) = (x̄(s), μ(s)) and g(x̄(s); μ(s)) = 0 for s ∈ J,

(x̄(0), μ(0)) = (x0, μ0) and ˙̄x(0) = u,

μ̇(0) = 0 and μ̈(0) = −w�[D2
xg(x0; μ0)(u, u)

]
w�gμ(x0; μ0)

.

Moreover, each of the steady states x̄(s) with s > 0 and with
s < 0 is hyperbolic.

If we apply this classical theorem to a chemical reaction
system, the information on the network structure and that on
the kinetics will be mixed up since the theorem is formulated
in terms of the product of them, i.e., Dxg = νDxr. On the
other hand, our setting deals with these two separately, and
the Sotomayer theorem can be reformulated as follows.

Criteria on a saddle-node bifurcation. Suppose that system
(2) admits a steady state x̄b at kn = kb

n associated with the nth
reaction rn. Assume that the following conditions hold:

(SN1) The augmented matrix A at (x̄b, kb
n ) has a simple

eigenvalue 0 with left eigenvector W and right eigenvector U.
(SN2) The quantity Wn

∂rn
∂kn

(x̄b; kb
n ) is nonzero.

(SN3) The eigenvectors W and U satisfy W�[D2
xr(x̄b; kb

n )
(u, u)] 	= 0 where U = (u�, v�)� with u ∈ CM and v ∈
CN−M determined by Theorem 1.

Then system (2) exhibits a saddle-node bifurcation at the
steady state x̄b as the parameter kn varies through the bi-
furcation value kn = kb

n . Precisely, there exist a δ > 0 and
a smooth curve ϒ : J := (−δ, δ) → RM × R such that the
following holds:

ϒ(s) = (x̄(s), kn(s)) and f (x̄(s); kn(s)) = 0 for s ∈ J,

(x̄(0), kn(0)) = (x̄b, kb
n ) and ˙̄x(0) = u,

k̇n(0) = 0 and k̈n(0) = −W�[D2
xr(x̄b; kb

n )(u, u)
]

∂rn
∂kn

(x̄b; kb
n )

,

where u and U are related through the decomposition U =
(u�, v�)� with u ∈ CM and v ∈ CN−M determined by The-
orem 1. Moreover, each steady state x̄(s) with s 	= 0 is
hyperbolic.

Proof. From Theorem 1 (with λ = 0), Dx f (x̄b; kb
n ) has a

simple eigenvalue 0. Write U as U = (u, v)� with u ∈ CM

and v ∈ CN−M . Then u is a right eigenvector of Dx f (x̄b; kb
n )

by Theorem 1. Let w be its corresponding left eigenvector.
Then applying Theorem 2 (with λ = 0) and using a suitable
scaling if necessary, we may assume that W = ν�w. Thus,
we can conclude that (SN1) implies (SN1◦).

Now we claim that (SN2) implies (SN2◦). To see this,
recall that f = νr, so fkn (x̄b; kb

n ) = νrkn (x̄b; kb
n ). Then it

follows that

w� fkn (x̄b; kb
n ) = W�rkn (x̄b; kb

n ) = Wn
∂rn

∂kn
(x̄b; kb

n ),

where in the last equality we have used the fact that
∂rn′/∂kn = 0 for each n′ 	= n. Thus (SN2) implies (SN2◦).

Finally, we claim that (SN3) implies (SN3◦). Indeed, from
D2

x f (x̄b; kb
n ) = νD2

xr(x̄b; kb
n ) it thus follows that

w�[D2
x f (x̄b; kb

n )(u, u)
] = W�[D2

xr(x̄b; kb
n )(u, u)

]
.

Hence (SN3) implies (SN3◦).
Therefore, all of the conditions of Sotomayer’s theorem

are fulfilled. Hence, an application of Sotomayer’s theorem
establishes the assertions of this theorem.

V. BIFURCATION THEORY FOR BUFFERING
STRUCTURE

In Sec. V A, we review a theorem called the localization
principle [26,27], which states that for a subnetwork � satis-
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fying a certain topological condition, the concentrations and
fluxes outside � are independent of the values of parameters
inside �. An important remark is that this principle is proved
under the assumption that the augmented matrix A is non-
singular. A natural question is what happens at a bifurcation
point, where this assumption breaks down. In Sec. V B, we
show that the localization principle can be extended including
bifurcation points.

A. Review of localization principle

In order to explain the localization principle, we introduce
some definitions. Construct a subnetwork � = (m, n), a pair
of chemicals and reactions, as follows:

(1) Choose a subset m of chemicals.
(2) Choose a subset n of reactions such that n includes all

reactions whose reaction rates rn(x) depend on at least one
member in m.

In other words, we construct n by collecting all the reac-
tions whose rates depend on at least one of m and any other
reactions. Note that for a given m, n is not unique since we can
add any other reactions to n. Below, we consider a subnetwork
constructed this way and simply call it a subnetwork.

We then count the number, # cycles(n), of independent
cycles constructed from reaction arrows in n. More precisely,
# cycles(n) is defined as follows: For a reaction subset n, we
introduce an associated vector space V (n) ⊂ RN :

V (n) := span
{
v| v ∈ ker ν, Pnv = v

}
.

Here, Pn is an N × N projection matrix onto the space asso-
ciated with n defined by

Pn
n,n′ = δn,n′ if n, n′ ∈ n, and Pn

n,n′ = 0 otherwise.

In other words, V (n) is a vector space kernel consisting of
kernel vectors of ν whose supports are contained in n. Then,
the number of cycles, # cycles(n), is defined as the dimension
of the vector space, dim V (n).

The localization principle. Now, we state the theorem,
which was originally proved in [26] (see also Appendix A for
the review of the proof). For a subnetwork � = (m, n), we
define a nonpositive index by

χ (�) = |m| − |n| + (# cycles). (20)

If χ (�) = 0, we call the subnetwork a buffering struc-
ture. The localization principle states that parameters outside
a buffering structure � do not influence values of steady-
state concentrations and fluxes outside �. More precisely, it
holds that

∂ x̄m

∂kn′
= 0,

∂ r̄n

∂kn′
= 0, (21)

for any n′ ∈ n, m ∈ mc, and n ∈ nc, where mc = X \ m
and nc = E \ n are the complementary set of m and n,
respectively.

B. Localization principle for bifurcation arising from
buffering structure

Here, we prove that, when a bifurcation is caused by a
reaction parameter inside �, then concentrations outside �

will remain constant as the bifurcation parameter is varied

(see below for the precise statement). Note that this fact was
observed numerically in a previous work [22], but a formal
proof has been missing.

Localization principle for bifurcation arising from buffer-
ing structure. Let � = (m, n) be a buffering structure with
rn ∈ n. Suppose that a bifurcation of system (2) occurs at
the bifurcation point (x, kn) = (x̄b, kb

n ) as the the rate pa-
rameter kn associated with the reaction rate function rn is
varied through kb

n . Also suppose that system (2) possesses a
smooth bifurcation curve (x̄(s), kn(s)) [here s ∈ J := (−δ, δ)
for some δ > 0] of steady states in the (x, kn) space, such that
(x̄(0), kn(0)) = (x̄b, kb

n ) and the augmented matrix A associ-
ated with (x̄(s), kn(s)) is nonsingular for s ∈ J \ {0}. Then it
holds that

xm(s) = x̄b
m for each m 	∈ m and s ∈ J .

Proof. Since the A matrix is nonsingular for s ∈ (−δ, δ) \
{0}, the Localization principle (21) holds;

dx̄m(s)

dkn
= 0 ∀ m 	∈ m and s ∈ J \ {0}.

With the use of the chain rule, this implies

dx̄m(s)

ds
= dx̄m(s)

dkn
· dkn(s)

ds
= 0

for m 	∈ m and s ∈ J \ {0}. Since (x̄(s), kn(s)) is smooth by
assumption, we have dx̄m

ds (0) = 0 for m 	∈ m. Taken together, it
follows that x̄m(s) = x̄m(0) = x̄b

m for all m 	∈ m and s ∈ J . The
proof is thus completed.

VI. EXAMPLES

In this section, we illustrate our theory using hypothetical
and real networks.

A. Saddle-node bifurcation: Example 1

Consider the following reaction system whose reaction
scheme is depicted in Fig. 2:

d

dt

⎛
⎝xA

xB

xC

⎞
⎠ =

⎛
⎝1 −1 0 1 0

0 1 −1 0 0
0 0 1 −1 −1

⎞
⎠
⎛
⎜⎜⎜⎝

r1

r2

r3

r4

r5

⎞
⎟⎟⎟⎠

=
⎛
⎝1 −1 0 1 0

0 1 −1 0 0
0 0 1 −1 −1

⎞
⎠
⎛
⎜⎜⎜⎝

k1

k2xA

k3xB

f (xA; k4)xc

k5xC

⎞
⎟⎟⎟⎠

=
⎛
⎝ k1 − k2xA + f (xA; k4)xc

k2xA − k3xB

k3xB − f (xA; k4)xc − k5xC

⎞
⎠. (22)

Here we assume mass-action kinetics for rate functions ri,
except that r4 = xC f (xA; k4) is regulated by chemical A
through the function f (xA; k4). We use the parameter k4 as
a bifurcation parameter, and fix a set of positive parameters
(k1, k2, k3, k5). As we described in Sec. IV, our formalism
allows us to express the condition of a bifurcation occurrence
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FIG. 2. Reaction scheme consisting of five reactions: 1: ∅ → A,
2: A → B, 3: B → C, 4: C → A, 5: C → ∅. The fourth reaction is
positively regulated by A, i.e., r4 = r4(xA, xC).

in terms of reactions. As demonstrated below, the bifurcation
condition is expressed as a constraint on reaction r4 (or equiv-
alently on f4).

The steady state x̄ = (x̄A, x̄B, x̄C) is given by

k2k5

k1
x̄A − k5 = f (x̄A; k4), x̄B = k2

k3
x̄A, x̄C = k1

k5
. (23)

By permutating the row indices as {2, 3, 4, 5, 1} and the col-
umn indices as {A, B, c1, C, c2}, the matrix A becomes

A =

⎛
⎜⎜⎜⎜⎝

k2 0 1 0 1
0 k3 1 0 1

x̄C
∂ f
∂xA

(x̄A; k4) 0 1 f (x̄A; k4) 0
0 0 0 k5 1
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠. (24)

Since the determinant is det A = (k2 − x̄C
∂ f
∂ x̄A

)k3k5, a bifur-
cation occurs provided that the bifurcation parameter value
k4 = kb

4 is determined by the constraint

k2 − xb
C

∂ f

∂xA

(
xb

A; kb
4

) = 0. (25)

Then, for such a bifurcation parameter value kb
4, the matrix A

given by (24) becomes

A =

⎛
⎜⎜⎜⎝

k2 0 1 0 1
0 k3 1 0 1
k2 0 1 f (xb

A; kb
4 ) 0

0 0 0 k5 1
0 0 0 0 1

⎞
⎟⎟⎟⎠. (26)

One can verify that 0 is a simple eigenvalue of A, and the
corresponding right and left null vectors are, respectively,
given by

U =

⎛
⎜⎜⎜⎝

uA

uB

v1

uC

v2

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

− 1
k2− 1
k3

1
0
0

⎞
⎟⎟⎟⎟⎠, W� =

⎛
⎜⎜⎜⎝

W2

W3

W4

W5

W1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

−k5

0
k5

− f (xb
A; kb

4 )
k5 + f (xb

A; kb
4 )

⎞
⎟⎟⎟⎟⎠.

(27)

Next, we will examine (SN2) and (SN3), which can be
regarded as constraints on the reaction rate function, r4 ∝

0 1 2 3 4 5 6
0
5
10
15
20
25

k4

x A

0 1 2 3 4 5 6
0
5
10
15
20
25

k4

x B

0 1 2 3 4 5 6
0.0
0.5
1.0
1.5
2.0

k4

x C

FIG. 3. Bifurcation diagram of steady states (x̄A, x̄B, x̄C) as the
bifurcation parameter k4 is varied. The stable branches and unstable
one are represented by solid and dashed lines, respectively. The mid-
dle branch and the lower one collide around k4 = 2.8303. Here, we
choose k1 = 1, k2 = 1, k3 = 1, k5 = 1, and f = 20 (0.1xA )2

1+(0.1xA )2 + k4.

f (xA, k4). The condition (SN2), W4
∂r4
∂k4

	= 0, gives

∂ f (xA; k4)

∂k4

∣∣∣∣
xA=xb

A,k4=kb
4

	= 0. (28)

The condition (SN3) is
∑5

n=1

∑
m,m′=A,B,C Wn

∂2rn
∂xm∂xm′ umum′ 	=

0. Note that only the reaction r4 = f (xA; k4)xc is a non-
linear function and contributes to the sum on the left-hand
side. Further, since ∂r4

∂xB
= 0 and uC = 0, only the contribution

from m, m′ = A is nonzero. Thus, the condition (SN3) is
equivalent to

∂2 f (xA; k4)

∂x2
A

∣∣∣∣
xA=xb

A,k4=kb
4

	= 0. (29)

Therefore, for f (xA; k4) satisfying the conditions (25) and
(28)–(29), the system (22) exhibits a saddle-node bifurcation.
Figure 3 shows a numerical illustration, assuming a particular
choice of f (xA, k4).

The conditions (25) and (28)–(29) give local behaviors of
the function f (x̄A; k4) near (xb

A, kb
4 ). From (23), the component

x̄A of the steady states is given by the intersection point of
the line l: y = k2k5

k1
x̄A − k5 and the curve Ck4 : y = f (x̄A; k4) in

the x̄Ay plane (see Fig. 4). Then, these conditions mean that
the line l is the tangent line to the curve Ck4 , and, as k4 is
varied, the line l is passed by the curve Ck4 locally, leaving a
pair of fixed points.

The numerical result in Fig. 3 shows that for the bifurcation
triggered by the parameter k4 associated with the reaction

y =
k2k5

k1
x̄A − k5

x̄A

y = f(x̄A; k4)

k4 = kb
4

FIG. 4. The intersection of the curve Ck4 : y = f (x̄A; k4) and the
line l: y = k2k5

k1
x̄A − k5 gives the component x̄A of the steady states.

The green curves represent the curve Ck4 for different values of k4.
When a saddle-node bifurcation occurs, the number of intersection
points changes from zero to two as the parameter k4 is varied.
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r4, the bifurcating behavior is observed only in chemicals A
and B. In fact, this is the case independently of the choice
about detailed kinetics, such as the mass-action or Michaelis-
Menten types. To see this, we use the localization principle
(see Sec. V). In this system, � = ({A, B}, {2, 3, 4}) is a buffer-
ing structure since � contains two chemicals, three reactions,
and one cycle, composed of the reactions 2, 3, 4, i.e., χ =
2 − 3 + 1 = 0. Therefore, according to the localization prin-
ciple, any parameter associated with a reaction inside � does
not trigger a bifurcation of the species outside �, namely
C (and also fluxes r̄1 and r̄5). Thus, when k4, which is a
parameter inside �, is used as a bifurcation parameter, x̄C

cannot exhibit bifurcations (see the third panel of Fig. 3).
Hence, the localization of bifurcating behavior in a buffering
structure is due to the structural property of networks, that
is, independent of the choice of reaction kinetics. We remark
that, although we employed k4 as a bifurcation parameter,
a qualitatively similar bifurcation may also be observed by
changing the other parameters. In general, different param-
eters may trigger qualitatively different bifurcations. On the
other hand, we can systematically determine from network
topology the set of parameters that can trigger qualitatively
similar bifurcation behaviors which are shared by the same set

of chemicals, by examining the inclusion relationship among
buffering structures (see [22] for details).

B. Saddle-node bifurcation: Example 2: Glycolysis network

Consider the glycolysis network with outflow from PYR
and outflow from G6P as depicted in Fig. 5, with allosteric
regulations. This is a part of the central carbon metabolism
pathway, wherein the glucose taken from the environment is
decomposed into the metabolite pyruvate. The basic network
structure is shared between bacteria and human. The details
of the kinetics and parameter values in the glycolysis have
not been fully understood. In fact, the reported values of pa-
rameters vary by orders of magnitude, depending on literature
[17,18]. Here, we will examine the occurrence of bifurcations
by using the information of the glycolysis network struc-
ture, without resorting to specific forms of reaction rates and
parameter values. To do this, we only assume that ∂rn

∂xm
> 0

when νm,n < 0, as in the mass-action kinetics, and also take
into account the three allosteric regulations [18]: ∂r5

∂xF26BP
> 0,

∂r6
∂xPEP

< 0, and ∂r14
∂xF16BP

> 0.
The stoichiometry matrix ν for this reaction network is

given by

ν =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 −1 1 0 0 0 0 0 0 0 0 0 0 −1 0
0 0 1 −1 −1 −1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (30)

where the row indices are {GLC, G6P, F6P, F26BP, F16BP, DHAP, GAP, G13BPG, 3PG, 2PG, PEP, PYR}. The matrix A is

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
r2,1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 r3,2 0 0 0 0 0 0 0 0 0 0 1 1 0 1
0 0 r4,3 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 r5,3 ř5,4 0 0 0 0 0 0 0 0 1 1 0 0
0 0 r6,3 0 0 0 0 0 0 0 ř6,11 0 0 0 1 0
0 0 0 r7,4 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 r8,5 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 r9,6 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 r10,7 0 0 0 0 0 2 2 0 0
0 0 0 0 0 0 0 r11,8 0 0 0 0 2 2 0 0
0 0 0 0 0 0 0 0 r12,9 0 0 0 2 2 0 0
0 0 0 0 0 0 0 0 0 r13,10 0 0 2 2 0 0
0 0 0 0 ř14,5 0 0 0 0 0 r14,11 0 2 2 0 0
0 r15,2 0 0 0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 r16,12 2 2 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (31)
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FIG. 5. Reaction network of the glycolysis pathway. The red
and the blue dashed lines represent positive and negative allosteric
regulations, respectively.

where rn,m = ∂rn
∂xm

|x=x̄. In order to emphasize the allosteric
regulations rn(n = 5, 6, 14), we use řn,m instead of rn,m. The

determinant of the matrix A is

detA = r2,1r9,6r10,7r11,8r12,9r13,10r16,12{r7,4r8,5r14,11[r3,2r5,3

+ (r4,3 + r5,3)r15,2] + ř5,4(r3,2r6,3r8,5r14,11

+ r15,2[r6,3r8,5r14,11 + r4,3ř6,11(−2r8,5 + ř14,5)])}.
(32)

Since only ř6,11 = ∂r6
∂xPEP

is negative, this expression has a
form like detA = C1 + C2ř5,4ř6,11ř14,5 with Ci > 0, where the
product ř5,4ř6,11ř14,5, coming from the three allosteric regula-
tions, is negative. Therefore, the sign of det A is generally
indefinite, and so there is a possibility that the matrix A
has a null eigenvector at some point of the parameter space.
Note that for occurrence of bifurcations, the existence of all
three allosteric regulations is necessary because otherwise the
determinant would be detA = C1, which is always positive.

For the mass-action kinetics or the Michaelis-Menten ki-
netics, the dependence of reaction rates on parameters is
monotonic, and so ∂rn

∂kn
|x=x̄ 	= 0 for x̄ > 0. Therefore, we can

exclude possibilities of transcritical and pitchfork bifurcations
as long as the concentrations of steady states are positive.
In fact, the system can exhibit saddle-node bifurcations as
shown Fig. 6, where, for illustration purposes, we assume the
following simple kinetics:

r =
{

k1, k2xGLC, k3xG6P, k4xF6P,

k5xF6P
(
1 + R5x2

F26BP

)
,

k6xF6P

1 + R6x2
PEP

,

k7xF26BP, k8xF16BP, k9xDHAP, k10xGAP,

k11xG13BPG, k12x3PG, k13x2PG,

k14xPEP
(
1 + R14x2

F16BP

)
, k15xG6P, k16xPYR

}
(33)
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FIG. 6. Bifurcation diagram for the glycolysis network. The bifurcation parameter μ is the rate parameter for the allosteric regulation of
reaction 6 by PEP, and the system exhibits saddle-node bifurcations at μ ≈ 12.99 and μ = 33.49. Note that GLC does not exhibit bifurcations
due to the localization principle.
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with parameter values

k = {10., 4.6, 0.54, 12., 0.16, 6.5, 0.055, 0.45, 8.7,

0.33, 0.050, 3.6, 1.1, 0.14, 0.38, 0.14},
{R5, R6, R14} = {0.1, μ, 18},

(34)

and use the strength of allosteric regulation of reaction 6
by PEP as a bifurcation parameter. One can confirm the
conditions (SN2) and (SN3) for the saddle-node bifurcation
numerically.

Note that the component x̄GLC of steady states remains
constant as μ = R6 is varied (see the upper leftmost panel of
Fig. 6). This can be again understood from the localization
principle. In this network system, the subnetwork � = (m, r),
where the set m consists of all of the chemicals except GLC,
and the set r consists of reaction arrows emanating from
all of the chemicals in m (i.e., r = {3, 4, . . . , 16}), forms a
large buffering structure because the subnetwork � has 11
chemicals, 14 reactions, and 3 cycles, and so χ = 11 − 14 +
3 = 0. Note that the cycles are given by the last three columns
in (31), whose components are nonzero only for reactions
within �. Therefore, from the localization principle, R6, which
is a parameter inside this buffering structure, does not influ-
ence the concentration x̄GLC (and also the fluxes r̄1, r̄2), which
is outside the buffering structure �.

VII. CONCLUSION AND DISCUSSION

In modern biology, many reactions and their vast networks
have been identified through the progress of biochemistry
and molecular biology. In contrast, since the number of the
ordinary differential equations (ODEs) associated with such
network systems is extremely large, it is a challenging task
to determine which rate parameter change can provide sig-
nificant change in dynamical behavior, i.e., the occurrence of
bifurcations. In this paper, a setting for bifurcation analysis
of reaction networks is presented. Specifically, an augmented
matrix, A, is introduced, which splits the information of the
reaction networks into two parts: the network structure and
the reaction kinetics of networks. Then, a correspondence
between the spectrum of the Jacobian matrix of a network sys-
tem and that of the augmented matrix, A, is established. This
correspondence allows us to reformulate classical bifurcation
criteria in terms of reaction kinetics and network structures
(kernel and cokernel of A) directly.

One of the advantages of the proposed setting is that
the augmented matrix A allows us to distinguish between
topology-dependent predictions and model-dependent ones.
The reaction kinetics of the network systems do not neces-
sarily obey mass-action laws, which are assumed in a number
of previous theoretical studies (e.g., Clarke [7–9] and Fein-
berg and Craciun [11–14,28]). This feature of our approach
is crucial in analyzing realistic network systems since it is
difficult to determine the actual forms of reaction kinetics and
rate parameter values in living cells.

Another advantage of this formalism is that the bifurcation
criteria in terms of this framework not only appear elegant, but
also indicate which reaction may cause specific bifurcations.
For example, suppose that system (2) admits a steady state,
x̄b, at kn = kb

n , associated with the nth reaction, rn. Then,

the proposed theory indicates that depending on whether the
quantity, ∂rn

∂kn
(x̄b; kb

n ), is nonzero, system (2) admits a saddle-
node bifurcation or transcritical/pitchfork bifurcation. Hence,
this formalism enables efficient determination of relevant re-
actions for bifurcations.

We can expect that our method is useful to identify im-
portant regulations and reactions for biological functions. Our
prior knowledge of network topology is possibly incomplete.
By formulating bifurcation phenomena in terms of network
structures, we can determine which reactions or subnetworks
are responsible for considered biological functions. Our struc-
tural approach may also suggest a structural origin of the
robustness and plasticity of biological systems, because pa-
rameters ki for living cells can be affected by environmental
and extrinsic factors.

In this study, Hopf bifurcations are not investigated, which
are essential for oscillatory behavior of network systems.
For Hopf bifurcations, the corresponding eigenspace of the
Jacobian matrix, J, and augmented matrix, A, are not isomor-
phic. The fundamental theorem (Theorem 1) indicates that
to fix this issue, an additional structure matrix, ρ, has to be
employed to form matrix Aρ,λ defined by (12). Although the
modified matrix, Aρ,λ, may not share desirable properties of
matrix A, such as factorization, its eigenspace is isomorphic
to that of the Jacobian matrix, J. The Hopf bifurcations using
the proposed setting will be investigated in a future study.

ACKNOWLEDGMENTS

This work was supported by the RIKEN iTHEMS pro-
gram, JSPS KAKENHI (Grants No. 17H06461 and No.
19K03663), MOST 109-2115-M-007-013-MY2, NCTS and
the Brain Research Center, the CREST program (Grants No.
JPMJCR13W6 and No. JPMJCR1922) of the Japan Science
and Technology Agency (JST), a Grant-in-Aid for Scientific
Research on Innovative Areas (Grant No. 19H05670), and
the Joint Usage/Research Center program of the Institute for
Frontier Life and Medical Sciences at Kyoto University.

APPENDIX A: REVIEW OF SOME PREVIOUS RESULTS

In order to make the paper self-contained, we review some
of the previous results which we use in the main text.

1. Derivation of (7)

We review the derivation of (7) following [21]. Here, as in
the main text, we assume that the stoichiometry matrix ν does
not have nonzero cokernel vectors. See [27] for the general-
ization to the case of dim coker ν > 0, namely, systems with
conserved quantities.

Consider the steady-state x̄ of the system (2). In (4), the
steady-state reaction rate r̄n depends not only on its own
parameter kn but also on other parameters through x, namely
r̄n = r̄n(x̄; (k)kn), and ζ α also depends on k. By differentiating
the nth component of (4) with respect to the parameter kn′ of
the n′th reaction, we have

M∑
m=1

∂rn

∂xm

∣∣∣∣
x=x̄

∂ x̄m

∂kn′
+ δnn′

∂rn

∂kn′

∣∣∣∣
x=x̄

=
∑

α

∂ζ α

∂kn′
(cα )n. (A1)
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By using the augmented matrix A defined in (5), this equation
can be rewritten in matrix notation as

A

(
∂x
∂kn′
∂ζ

∂kn′

)
= −diag

⎛
⎜⎜⎝0, . . . ,

∂rn′

∂kn′

∣∣
x=x̄︸ ︷︷ ︸

n′th

, . . . , 0

⎞
⎟⎟⎠, (A2)

where the right-hand side is the diagonal matrix whose n′th
element is nonzero and given by ∂ r̄′

n
∂k′

n
|x=x̄. If A is nonsingular,

by inverting the matrix, we obtain (7).

2. Derivation of (21)

Here, we prove (21) assuming that the stoichiometry
matrix ν does not have nonzero cokernel vectors. See [27] for
the generalization to the case of dim coker ν > 0.

Suppose that the system (1) has a buffering structure �.
By permutating the column and row indices, the augmented
matrix A can be written as follows [26]:

(A3)

where the rows (columns) of A� are associated with the reac-
tions (chemicals and cycles) in �. Similarly, those of A�̄ are
associated with the complement �̄ of the subnetwork �. The
fact that the bottom-left block of (A3) is the zero matrix comes
from the following two properties: (i) From the construction
of the subnetwork �, the reactions that are regulated by m

must be included in n. In other words, rates of reactions in nc

are independent of chemicals in m, that is, ∂rn
∂xm

= 0 for n ∈ nc

and m ∈ m. (ii) By definition, the cycles in �, which appear in
columns in the left part of (A3), do not have support in nc.

The condition χ (�) = 0 of a buffering structure implies
that the upper-left matrix of (A3) is a square matrix, and so is
the bottom-right matrix. A matrix with such a block structure
can be easily inverted, and the inverse also preserves the same
block structure,

A−1 =
(

A−1
� ∗
0 A−1

�̄

)
. (A4)

Recall that the steady-state sensitivity is given by inverting
the augmented matrix A [see (7)]. The zero matrix appearing
in the left-bottom corner of (A4), in particular, implies the
first equation of (21), ∂ x̄m

∂kn′ = 0 for m ∈ mc and n′ ∈ n. Then,
the second equation immediately follows since, for n ∈ n′
and n ∈ nc,

∂rn

∂kn′
=

M∑
m=1

∂rn

∂xm

∣∣∣∣
x=x̄

∂ x̄m

∂kn′
=

∑
m∈mc

∂rn

∂xm

∣∣∣∣
x=x̄

∂ x̄m

∂kn′
= 0. (A5)

APPENDIX B: PROOF OF THEOREM 1

In order to facilitate notations, we will not distinguish the
linear transformation from its matrix representation.

Consider the linear transformations

Kν : CN−M → CN , with Im(Kν ) = ker(ν), and

ρ : CM → CN , with νρ = idCM ,

where Im(Kν ) is the image of Kν. Note that due to the one-to-
one property of ν and the relation νρ = ICM , ρ is one-to-one
and its image Im(ρ) is equal to the row space row(ν) of ν.
Thus, CN is the direct sum of Im(ρ) and ker(ν), i.e.,

CN = Im(ρ) ⊕ ker(ν).

Thus, each u ∈ CN can be uniquely expressed as u = x + y
with x ∈ ker(ν) and y ∈ Im(ρ). This allows us to define the
following two projection maps:

P0: CN → ker(ν), P0(u) = x, and

P1: CN → Im(ρ), P1(u) = y.

Therefore, P0 is the projection of CN onto ker(ν) along Im(ρ),
while P1 is the projection of CN onto Im(ρ) along ker(ν). In
the proof of the following theorem, we will see that

P1 ≡ ρ ◦ ν on CN .

Also recall the following N × N matrix:

Aρ,λ := [D − λρ | Kν].

First, we show that F is well defined. Indeed, for each
u ∈ CM , since P0 is the projection onto ker(ν) and Kν is
one-to-one, the existence and uniqueness of v determined by
(18) is guaranteed. Also the v depends linearly on u since
the map D, P0, and Kν are linear. Next, we claim that for
each u ∈ ker(νD − λ1M ), (u, v) ∈ ker(Aρ,λ) with v ∈ CN−M

defined by (18). Indeed, νDu − λu = 0, and so

ρ(νDu) − λρ(u) = 0. (B1)

Let {e1, . . . , eM} be the canonical basis of CM , and set ρm =
ρ(em) for m = 1, . . . , M. Thus, {ρ1, . . . , ρM} is a basis of
Im(ρ), and so P1(Du) = ∑M

m=1 bmρm for some bm ∈ C and
m = 1, . . . , M. Then we have

ρ(νDu) = ρ(ν(P0(Du) + P1(Du)))

= ρ(ν(P1(Du)))

=
M∑

m=1

bmρ(νρm)

=
M∑

m=1

bmρ(em) (by νρ = ICM )

= P1(Du).

This, together with (18) and (B1), gives

Du = P1(Du) + P0(Du)

= ρ(νDu) − Kν(v)

= λρ(u) − Kν(v).

Thus, we have (D − λρ)(u) + Kν(v) = 0, so (u, v) ∈
ker(Aρ,λ).

Now we show that F is one-to-one. For this, let (u, v) ∈
ker(Aρ,λ) with v ∈ CN−M defined by (18). We claim that u ∈
ker(νD − λ1M ). Indeed, we have (D − λρ)(u) + Kν(v) = 0.
Now applying ν to this equation and using the relations
Im(Kν ) = ker(ν) and νρ = ICM , we have νDu − λu = 0. This
establishes u ∈ ker(νD − λ1M ). Finally, from the definition
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of F it follows that F is one-to-one. The proof is thus
completed.

APPENDIX C: PROOF OF THEOREM 2

Here, we give a proof of Theorem 2, which states the
correspondence between the spaces ker(D�ν� − λ1M ) and
ker(A�

ρ,λ). To proceed, recall that the linear transformation
ρ: CM → CN satisfies νρ = ICM . Thus,

ρ�: CN → CM satisfies ρ�ν� = ICM .

Note that due to the fact that ker(ν�) = 0, we have

Im(ρ�) = CM.

Also recall the N × N matrix Aρ,λ := [D − λρ | Kν]. Thus,

A�
ρ,λ :=

(
D� − λρ�

K�
ν

)
.

We first show that F̃ is well defined. For this, we claim
that ν�w ∈ ker(A�

ρ,λ) for w ∈ ker(D�ν� − λ1M ). Indeed,
D�ν�w − λw = 0 by the definition of w. Now apply-
ing ρ�ν� to this equation and using the relation ρ�ν� =
ICM , we have D�(ν�w) − λρ�(ν�w) = 0. This establishes
ν�w ∈ ker(D� − λρ�). Also from Im(Kν ) = ker(ν), it fol-
lows that ν�w ∈ ker(K�

ν ). Taken together, these establish
ν�w ∈ ker(A�

ρ,λ).

Now we show that F̃ is one-to-one. Let W ∈ ker(A�
ρ,λ).

Then K�
ν (W) = 0, and so u�W = 0 for each u ∈ Im(Kν ) =

ker(ν). Thus W is in the row space row(ν), and so W =
ν�w for some w ∈ CM . This, together with W ∈ ker(D� −
λρ�), gives D�(ν�w) − λρ�ν�w = 0. Recall that ρ�ν� =
ICM . This in turn implies w ∈ ker(D�ν� − λ1M ), and so F̃
is one-to-one.

Finally, F̃ is one-to-one since ν� is one-to-one. The proof
is thus completed.

APPENDIX D: REFORMULATION OF BIFURCATION
CRITERIA OF TRANSCRITICAL AND PITCHFORK

BIFURCATIONS

1. Transcritical bifurcation

As with the saddle-node bifurcation, we can reformulate
the classical theorems on the other two types of bifurcations
in terms of the augmented matrix A. The following theorem
states the conditions for a transcritical bifurcation in terms of
our setting. The proof is given in Appendix E.

Criteria on a transcritical bifurcation. Suppose that system
(2) admits a steady state x̄b at kn = kb

n associated with the nth
reaction rn. Assume that the following conditions hold:

(T1) The augmented matrix A at (x̄b, kb
n ) has a sim-

ple eigenvalue 0 with left eigenvector W and right
eigenvector U.

(T2) The quantity ∂rn
∂kn

(x̄b; kb
n ) is zero.

(T3) The eigenvectors W and U satisfy{
Wn

[∇x
(

∂rn
∂kn

)
(x̄b; kb

n ) · u
] 	= 0,

W�[D2
xr(x̄b; kb

n )(u, u)
] 	= 0,

where the vectors u and U are related through the decomposi-
tion U = (u�, v�)� with u ∈ CM and v ∈ CN−M determined
by Theorem 1.

Then similar conclusions in Theorem I hold for sys-
tem (2). Precisely, there exist a δ ∈ (0, δ0) and two smooth
functions x̄±: J := (kb

n − δ, kb
n + δ) → RM such that the fol-

lowing holds:

x̄±(kb
n ) = x̄b and f (x̄±(kn); kn) = 0 for kn ∈ J,

and

⎧⎨
⎩

˙̄x−(kb
n ) = 0,

˙̄x+(kb
n ) = −2Wn

[
∇x

(
∂rn
∂kn

)
(x̄b;kb

n )·u
]

W�
[

D2
xr(x̄b;kb

n )(u,u)
] .

Moreover, each steady state x̄±(kn) with kn 	= kb
n is hyperbolic.

2. Pitchfork bifurcation

The following theorem states the conditions for a pitchfork
bifurcation in terms of our setting.

Criteria on a pitchfork bifurcation. Suppose that system
(2) admits a steady state x̄b at kn = kb

n associated with the nth
reaction rn. Assume that the following conditions hold:

(P1) The augmented matrix A at (x̄b, kb
n ) has a sim-

ple eigenvalue 0 with left eigenvector W and right
eigenvector U.

(P2) The quantity ∂rn
∂kn

(x̄b; kb
n ) is zero.

(P3) The eigenvectors W and U satisfy⎧⎪⎨
⎪⎩

Wn
[∇x

(
∂rn
∂kn

)
(x̄b; kb

n ) · u
] 	= 0,

W�[D2
xr(x̄b; kb

n )(u, u)
] = 0,

W�[D3
xr(x̄b; kb

n )(u, u, u)
] 	= 0,

where the vectors u and U are related through the decomposi-
tion U = (u�, v�)� with u ∈ CM and v ∈ CN−M determined
by Theorem 1.

Then similar conclusions in Theorem II hold for system
(2). Precisely, there exist a δ > 0, a smooth curve ϒ : J1 :=
(−δ, δ) → RM × R, and a smooth function z: J2 := (kb

n −
δ, kb

n + δ) → RM such that the following hold:
(i)

ϒ(s) = (x̄(s), kn(s)) and f (x̄(s); kn(s)) = 0 for s ∈ J1,

(x̄(0), kn(0)) = (x̄b, kb
n ) and ˙̄x(0) = u,

k̇n(0) = 0 and k̈n(0) = −W�[D3
xr(x̄b; kb

n )(u, u, u)
]

3Wn
[∇x

(
∂rn
∂kn

)
(x̄b; kb

n ) · u
] .

(ii)

z(kb
n ) = x̄b, ż(kb

n ) = 0, and f (z(kn); kn) = 0 for kn ∈ J2.

Moreover, the steady states x̄(s) with s 	= 0 and z(kn) with
kn 	= kb

n are hyperbolic.

APPENDIX E: PROOF OF THE REFORMULATED
CRITERIA OF TRANSCRITICAL AND PITCHFORK

BIFURCATIONS

Here, we write the classical theorems which give sufficient
conditions for the occurrence of transcritical or pitchfork bi-
furcation. For the transcritical bifurcation, we also provide the
proof of their reformulation in terms of A written in the main
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text. The reformulation for the pitchfork bifurcation can be
proved in a similar way.

1. Transcritical bifurcation

The following classical theorem [[29], p. 338] (see also
[[23], Chap. 8]) gives a sufficient condition under which the
system undergoes a transcritical bifurcation.

Theorem I. Let ẋ = g(x; μ) be a system of differential
equations in RM depending on the single parameter μ ∈ E :=
(−δ0, δ0) for some δ0 > 0. When μ = μ0 ∈ E , assume that
there is a steady state x0 for which the following hypotheses
are satisfied:

(T1◦) Dxg(x0; μ0) has a simple eigenvalue 0 with left
eigenvector w and right eigenvector u.

(T2◦) The left eigenvector w satisfies w�gμ(x0; μ0) = 0.
(T3◦) The eigenvectors w and u satisfy{

w�[Dxgμ(x0; μ0)u
] 	= 0,

w�[D2
xg(x0; μ0)(u, u)

] 	= 0.

Then system ẋ = g(x; μ) exhibits a transcritical bifurcation
at the steady state x0 as the parameter μ varies through the
bifurcation value μ = μ0. Precisely, there exist a δ ∈ (0, δ0)
and two smooth functions x̄±: J := (μ0 − δ, μ0 + δ) → RM

such that the following holds:

x̄±(μ0) = x0 and g(x̄±(μ); μ) = 0 for μ ∈ J,

and

⎧⎨
⎩

˙̄x−(μ0) = 0,

˙̄x+(μ0) = −2w�
[

Dxg
μ

(x0;μ0 )u
]

w�
[

D2
xg(x0;μ0 )(u,u)

] u.

Moreover, each steady state x̄±(μ) with μ 	= μ0 is hyperbolic.
Proof of the criteria in Appendix D1. In this proof, we use

the same notations as in Sec. IV A. Then the same arguments
in the proof in Sec. IV A show that (T1) and (T2) imply (T1◦)
and (T2◦).

Next, we claim that (T3) implies (T3◦). Indeed, we have

w�[Dx fkn (x̄b; kb
n )u

] = W�[Dxrkn (x̄b; kb
n )u

]
= Wn

[∇x
( ∂rn

∂kn

)
(x̄b; kb

n ) · u
]
,

where in the last equality we have used the fact that
∂rn′/∂kn = 0 for each n′ 	= n. Also one has

w�[D2
x f (x̄b; kb

n )(u, u)
] = W�[D2

xr(x̄b; kb
n )(u, u)

]
.

Thus (T3) implies (T3◦).
Finally, an application of Theorem I proves the assertions

of this theorem.

2. Pitchfork bifurcation

The following classical theorem [[29], p. 339] (see also
[[23], Chap. 8]) gives a sufficient condition under which the
system undergoes a pitchfork bifurcation.

Theorem II. Let ẋ = g(x; μ) be a system of differential
equations in RM depending on the single parameter k. When
μ = μ0, assume that there is a steady state x0 for which the
following hypotheses are satisfied:

(P1◦) Dxg(x0; μ0) has a simple eigenvalue 0 with left
eigenvector w and right eigenvector u.

(P2◦) The left eigenvector w satisfies w�gμ(x0; μ0) = 0.
(P3◦) The eigenvectors w and u satisfy⎧⎨

⎩
w�[Dxgμ(x0; μ0)u

] 	= 0,

w�[D2
xg(x0; μ0)(u, u)

] = 0,

w�[D3
xg(x0; μ0)(u, u, u)

] 	= 0.

Then system ẋ = g(x; μ) exhibits a pitchfork bifurcation
at the steady state x0 as the parameter μ varies through
the bifurcation value μ = μ0. Precisely, there exist a δ > 0,
a smooth curve ϒ : J1 := (−δ, δ) → RM × R, and a smooth
function z: J2 := (μ0 − δ, μ0 + δ) → RM such that the fol-
lowing hold:

(i)

ϒ(s) = (x̄(s), μ(s)) and g(x̄(s); μ(s)) = 0 for s ∈ J1,

(x̄(0), μ(0)) = (x0, μ0) and ˙̄x(0) = u,

μ̇(0) = 0 and μ̈(0) = −w�[D3
xg(x0; μ0)(u, u, u)

]
3w�[Dxgμ(x0; μ0)u

] .

(ii)

z(μ0) = x0, ż(μ0) = 0, and g(z(μ); μ) = 0 for μ ∈ J2.

Moreover, the steady states x̄(s) with s 	= 0 and z(μ) with
μ 	= μ0 are hyperbolic.

These conditions can be reformulated in term of A simi-
larly to the other two types of bifurcations.

APPENDIX F: EXAMPLES OF TRANSCRITICAL AND
PITCHFORK BIFURCATIONS

1. Transcritical bifurcation

We consider the following system, which is designed by
modifying the first Schlögl model [30]:

U
k1→ U + A, A

k2→ B, B
k3→ U, U

k4→ A,

2U
k5→ U, U

k6→ ∅. (F1)

The dynamics are described by

⎛
⎝ẋA

ẋB

ẋU

⎞
⎠ =

⎛
⎝1 −1 0 1 0 0

0 1 −1 0 0 0
0 0 1 −1 −1 −1

⎞
⎠
⎛
⎜⎜⎜⎜⎜⎝

r1

r2

r3

r4

r5

r6

⎞
⎟⎟⎟⎟⎟⎠. (F2)

The stoichiometric matrix ν has three independent kernel
vectors c1 = (1, 1, 1, 0, 0, 1)�, c2 = (1, 1, 1, 0, 1, 0)�, c3 =
(0, 1, 1, 1, 0, 0)�. It contains a buffering structure � =
({A, B}, {2, 3}), since χ = 2 − 2 + 0 = 0.

Under the mass-action kinetics, reaction rate functions read
as follows:

(r1, . . . , r6) = (
k1xU, k2xA, k3xB, k4xU, k5x2

U, k6xU
)
.

The steady states x̄ = (x̄A, x̄B, x̄U ) are (Fig. 7)

x̄ =
(

(k1 + k4)(k1 − k6)

k2k5
,

(k1 + k4)(k1 − k6)

k3k5
,

k1 − k6

k5

)
,

(0, 0, 0). (F3)
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FIG. 7. Bifurcation diagram for system (F1). x+ and x− represent
the two solutions in (F4). The solid and dashed branches are stable
and unstable, respectively. The parameter values are k2 = 2, k4 =
1, k3 = 1, k5 = 1, and k6 = 1.

From these two solutions, this system exhibits a transcritical
bifurcation as the parameter k1 is varied through the bifurca-
tion value kb

1 = k6.
We now confirm the transcritical bifurcation by using

our formulation. First, by permutating the row index as
{2, 3, 1, 4, 5, 6} and the column index as {A, B, U, c1, c2, c3},
the matrix A becomes

(F4)

where the upper-left and lower-right blocks, enclosed by lines,
correspond to the buffering structure � and its complement �̄,
respectively. The determinant of the matrix A evaluated at the
steady states is then factorized and given by

det A = k2k3︸︷︷︸
det A�

(2k5x̄U − k1 + k6)︸ ︷︷ ︸
det A�̄

= ±k2k3(k1 − k6),

(F5)

where + and − correspond to the first and the second solution
in (F3), respectively. At the bifurcation point k1 = k6, the
determinant det A vanishes, and the left eigenvector W and

FIG. 8. r1: 3A → A + 2B, r2: A + 2B → 3B, r3: 3B →
2A + B, r4: 2A + B → 3A, r5: ∅ → A, r6: A → ∅, r7: ∅ →
B, r8: B → ∅.

the right eigenvector U are given by

W = (0, 0,−1, 0, 1, 1)�,

U = (U1,U2,U3,U4,U5,U6)�

= (u1, u2, u3, v1, v2, v3)�

=

⎛
⎜⎜⎝k4 + k6

k2k4
,

k4 + k6

k3k4
,

1

k4︸ ︷︷ ︸
u

,−k6

k4
, 0,−1︸ ︷︷ ︸
v

⎞
⎟⎟⎠

�

∈ R6.

(F6)

Now we verify the three conditions (T1)–(T3) in
Appendix D 1. First, recall that r1 = k1xU and the bifurcation
point (x̄b, kb

1 ) = (0, k6). Thus

∂r1

∂k1

(
x̄b; kb

1

) = x̄b
U

(
kb

1

) = 0, (F7)

where we used x̄b
U(kb

1 ) = 0 at the bifurcation point. Hence, the
condition (T1) holds. Second, using r1 = k1xU, we have

W3

[
∇x

(
∂r1

∂k1

)
(x̄b; kb

1 ) · u
]

=W3

[
DxU

(
∂r1

∂k1

)
(x̄b; kb

1 )U3

]
= (−1) × 1

k4
	= 0.

(F8)

Thus, the condition (T2) holds. Finally, by noting that only
r5 = k5x2

U is a quadratic function,

W�[D2
xr(x̄b; kb

1 )(u, u)
] = W�(0, 0, 0, 0, 2k5, 0)�(u3)2

= W5 × 2k5 × (u3)2 = 2k5

k2
4

	= 0.

Therefore, the condition (T3) holds.

2. Pitchfork bifurcation

Consider the reaction system shown in Fig. 8. Un-
der the mass-action kinetics, the dynamics are described
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FIG. 9. Bifurcation diagram for the system (F9). The solid lines represent stable branches, while the dashed line represents an unstable
one. β = 1 and γ = 1.

by

(
ẋA

ẋB

)
=
(−2 −1 2 1 1 −1 0 0

2 1 −2 −1 0 0 1 −1

)
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r1(xA)
r2(xA, xB)

r3(xB)
r4(xA, xB)

r5

r6(xA)
r7

r8(xB)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (F9)

where r1 = βx3
A, r2 = αxAx2

B, r3 = βx3
B, r4 = αx2

AxB, r5 = γ , r6 = γ xA, r7 = γ , r8 = γ xB. A similar model was first
presented by Feinberg [28], which corresponds to the case without the inflows, r5, r7 and the outflows, r6, r8, namely γ = 0. In
the original model, the dynamics are essentially one-dimensional since the sum xA + xB is conserved and determined from an
initial condition. Here, due to the presence of the inflows and outflows, the sum is no longer conserved and the dynamics are
indeed two-dimensional. The matrix A is

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3βx2
A 0 −1 1 0 −1 −1 1

αx2
B 2αxAxB 0 0 0 0 0 −2

0 3βx2
B 0 0 0 0 −1 0

2αxAxB αx2
A 0 0 0 −2 0 0

0 0 −2 2 −1 0 0 0
γ 0 0 0 −1 0 0 0
0 0 0 −2 0 0 0 0
0 γ −2 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (F10)

The steady states are given by

(x̄A, x̄B) =(1, 1), or

(
1 ±

√
2α − 12β − γ√

2
√

α + 2β
, 1 ∓

√
2α − 12β − γ√

2
√

α + 2β

)
. (F11)

When α < 1
2 (12β + γ ), only the first solution x̄ = (1, 1) exists and it is stable. When α > 1

2 (12β + γ ), all of the three solution
exist and the first solution is unstable and the other two are stable. See Fig. 9 for the plot of the steady-state concentrations.

We will use α, which enters both of rate functions r2 and r4, as a bifurcation parameter μ. Then the parameter value μ

associated with the occurrence of bifurcation is given by μb = αb = 1
2 (12β + γ ). For this parameter value μ, all of the three
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steady states in (F11) are equal to x̄b = (1, 1), and the matrix A given by (F10) becomes

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3β 0 −1 1 0 −1 −1 1
6β + γ

2 12β + γ 0 0 0 0 0 −2
0 3β 0 0 0 0 −1 0

12β + γ 6β + γ

2 0 0 0 −2 0 0
0 0 −2 2 −1 0 0 0
γ 0 0 0 −1 0 0 0
0 0 0 −2 0 0 0 0
0 γ −2 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The right eigenvector U and the left eigenvector W are then
given by

U� =
(

−1, 1,
γ

2
, 0,−γ ,−12β + γ

4
, 3β,

12β + γ

4

)�
,

W� = (−4,−2, 4, 2, 1,−1,−1, 1). (F12)

In particular, u = (uA, uB) = (−1, 1).
In the following, we will show that system (F9) ex-

hibits a pitchfork bifurcation at the bifurcation point (x̄, μ) =
(x̄b, αb). Note that in this example, the bifurcation param-
eter μ appears in the expressions of both of reaction rate
functions r2 and r4, and therefore, one cannot apply the cri-
teria (P1), (P2), and (P3) directly. However, the argument in
Appendix D 2 suggests that the conditions of (P2) and (P3)
should be replaced by (P2′) and (P3′), as stated here:

(P2’) The quantity W · ∂r
∂μ

(x̄b; μb) is zero.
(P3’) The eigenvectors W and U satisfy⎧⎪⎨

⎪⎩
W�[Dx

(
∂r
∂μ

)
(x̄b; kb

n ) · u
] 	= 0,

W�[D2
xr(x̄b; kb

n )(u, u)
] = 0,

W�[D3
xr(x̄b; kb

n )(u, u, u)
] 	= 0,

where the vectors u and U are related through the decomposi-
tion U = (u�, v�)� with u ∈ CM and v ∈ CN−M determined
by Theorem 1.

To verify these two conditions, we first note that
∂r
∂μ

= ∂r
∂α

=(0, xAx2
B, 0, x2

AxB, 0, 0, 0, 0)�|x=x̄b=(1,1)

=(0, 1, 0, 1, 0, 0, 0, 0)�,

and so W · ∂r
∂μ

= −2 + 2 = 0. Therefore, (P2′) is satisfied.

As for (P3′), since ∂
∂xA

∂r
∂μ

= (0, x2
B, 0, 2xAxB, 0, 0, 0, 0)�,

∂
∂xB

∂r
∂μ

= (0, 2xAxB, 0, x2
A, 0, 0, 0, 0)�, and u = (uA, uB)� =

(−1, 1)�, it follows that

W�
[

Dx(
∂r
∂μ

)u
]

= (
4xAxB − 2x2

B

)
uA + ( − 4xAxB + 2x2

A

)
uB

∣∣∣∣
x=x̄b

= 2uA − 2uB = −4 	= 0.

Next, since ∂r
∂x2

A
= (6βxA, 0, 0, 2αxB, 0, 0, 0, 0), ∂r

∂x2
B

= (0, 2α

xA, 6βxB, 0, 0, 0, 0, 0), and ∂r
∂xA∂xB

= (0, 2αxB, 0, 2αxA, 0, 0,

0, 0), it follows that

W�[D2
xr(u, u)

]
= (4αxB − 24βxA)u2

A + (24βxB − 4αxA)u2
B

+ (4αxA − 4αxB)uAuB|x=(1,1) = 0.

Finally, since ∂r
∂x3

A
= (6β, 0, 0, 0, 0, 0, 0, 0), ∂r

∂x3
B

= (0, 0, 6β,

0, 0, 0, 0, 0), ∂r
∂x2

A∂xB
= (0, 0, 0, 2α, 0, 0, 0, 0), and ∂r

∂xA∂x2
B

=
(0, 2α, 0, 0, 0, 0, 0, 0), it follows that

W�[D3
xr(u, u, u)

]
= (−24β )u3

A + 24βu3
B + 4αbu2

AuB + (−4αb)uAu2
B

= 8αb + 48β 	= 0.

Thus, all of the conditions in (P3′) have been confirmed.
Finally, we remark that the symmetric kinetics between A

and B are necessary for the pitchfork bifurcation. Asymmetry
would generally lead to a saddle-node bifurcation.
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