
PHYSICAL REVIEW E 103, 062209 (2021)

Amplitude-mediated spiral chimera pattern in a nonlinear reaction-diffusion system

Srilena Kundu,1 Paulsamy Muruganandam ,2 Dibakar Ghosh ,1,* and M. Lakshmanan3

1Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata-700108, India
2Department of Physics, Bharathidasan University, Tiruchirapalli-620024, India

3Department of Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirapalli-620024, India

(Received 5 February 2021; revised 5 May 2021; accepted 21 May 2021; published 8 June 2021)

Formation of diverse patterns in spatially extended reaction-diffusion systems is an important aspect of study
that is pertinent to many chemical and biological processes. Of special interest is the peculiar phenomenon
of chimera state having spatial coexistence of coherent and incoherent dynamics in a system of identically
interacting individuals. In the present article, we report the emergence of various collective dynamical patterns
while considering a system of prey-predator dynamics in the presence of a two-dimensional diffusive envi-
ronment. Particularly, we explore the observance of four distinct categories of spatial arrangements among the
species, namely, spiral wave, spiral chimera, completely synchronized oscillations, and oscillation death states in
a broad region of the diffusion-driven parameter space. Emergence of amplitude-mediated spiral chimera states
displaying drifted amplitudes and phases in the incoherent subpopulation is detected for parameter values beyond
both Turing and Hopf bifurcations. Transition scenarios among all these distinguishable patterns are numerically
demonstrated for a wide range of the diffusion coefficients which reveal that the chimera states arise during the
transition from oscillatory to steady-state dynamics. Furthermore, we characterize the occurrence of each of the
recognizable patterns by estimating the strength of incoherent subpopulations in the two-dimensional space.

DOI: 10.1103/PhysRevE.103.062209

I. INTRODUCTION

Pattern formation in reaction-diffusion (RD) systems has
been a crucial area of research since ages for chemists, bi-
ologists and physicists due to its substantial applications in
understanding the processes associated with morphogenesis in
biology [1,2]. After the discovery of the origination of pattern
formation in RD systems by Alan Turing [3], such models
have been studied extensively to elucidate biological patterns
[4–6] in shell, animal pigmentation, fish skin, and chemical
processes such as the Belousov-Zhabotinsky reaction [7], etc.
Pattern formation in ecology [8–15], especially in the study
of prey-predator systems has received significant attention
among the mathematical biologists to unravel the spatiotem-
poral behavior of interacting species in an ecosystem.

Spatiotemporal patterns emerging in a system of interact-
ing populations can be of either Turing or non-Turing types.
Turing patterns, as discussed in the most celebrated paper
of Turing [3], emerge due to the diffusion driven instabil-
ity of the homogeneous equilibrium state which results in
temporally stable and spatially inhomogeneous solutions of
the RD system. However, spiral wave pattern is one example
of the non-Turing patterns that is usually formed near the
Hopf bifurcation boundary and emerges when the spatially
uniform wave velocity gets locally disrupted. Spirals are pre-
dominantly present in many examples of complex systems
and have widespread applicability in spatially extended sys-
tems of excitable or self-oscillatory units. They have been
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experimentally detected in several chemical processes such
as Belousov-Zhabotinsky reaction [16], carbon monoxide ox-
idation on a platinum surface [17], or in biological processes
of aggregating slime molds [18], Gierer-Meinhardt model
[19], etc. Moreover, they are also pertinent to several patho-
logical and neuronal contexts, such as cardiac arrhythmia
[20], human visual cortex [21], hippocampal slices [22], etc.
Besides individual analysis of the patterns resulting from Tur-
ing or Hopf instabilities, there are also studies involving the
simultaneous interaction of these two instabilities. On this
note, Rovinsky and Menzinger [23] reported that complex
spatiotemporal patterns arise due to the nonlinear interaction
between Hopf and Turing instabilities. Plenty of researchers
explored spatially extended prey-predator systems consider-
ing diverse functional responses and reported the impact of
Turing and Turing-Hopf instabilities [13,24–28].

Furthermore, the emergence patterns of synchronization
among the interacting dynamical units in a large complex sys-
tem has been the focus of research due to its omnipresence in
different contexts of biology, ecology, physiology, technology,
etc. [29]. One of the most captivating phenomena that has
been reported extensively in the last two decades is the emer-
gence of hybrid chimera patterns consisting of both coherent
and incoherent sub-populations. In the coherent region the dy-
namical variables follow a smooth profile whereas a random
distribution of the variables is noticed in the incoherent region.
Primarily observed by Kuramoto and Battogtokh [30] in a net-
work of complex Ginzburg-Landau systems, later such states
have been explored widely in a variety of systems with diverse
interaction topologies. Chimera states are found in the pres-
ence of local [31–34], nonlocal [35–39] and global [40–43]
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interactions among the oscillatory units of phase oscillators,
neuron models, limit cycle oscillators and chaotic oscillators.
Apart from theoretical studies, chimeras have been detected
in several experimental investigations [44–48]. These states
are closely related to several pathological brain conditions
[49], like epilepsy, schizophrenia, etc., and are pertinent to the
phenomenon of unihemispheric slow-wave sleep [50], noticed
in some aquatic animals and migratory birds.

Depending on the attributes of the spatiotemporal distri-
bution of the constituting elements associated with a system
of interacting identical dynamical units, chimera states are
categorized as amplitude chimera [51–54], traveling chimera
[55–57], globally clustered chimera [58], breathing chimera
[59–61], etc. In this regard, exploration on the emergence
of amplitude-mediated chimera state by Sethia et al. [62,63]
is noteworthy. These two articles reported for the first time
the observance of amplitude-mediated chimera states re-
spectively in nonlocally and globally coupled oscillators. In
contrast to classical chimera states, where the coherence-
incoherence behaviors emerge depending on the phases of
the constituents, in amplitude-mediated chimera states [64,65]
both the amplitudes and the phases of the oscillators exhibit
random distribution in the incoherent domain. Interestingly,
the appearance of chimera states has also been explored in a
population exhibiting steady state dynamics, which are termed
as chimera death states [51,66,67]. Like chimera state, in
chimera death state the group of oscillators is subdivided
into coexisting domains of coherent and incoherent steady
states. Besides chimera death, the interacting dynamical units
can also exhibit the appearance of incoherent oscillation
death states when the individual units of the coupled system
populate randomly distributed multiple branches of inhomo-
geneous steady states. Most of the previous findings indicate
the occurrence of such diverse collective phenomena in a
network of coupled dynamical systems interacting through a
nonlocal or a global coupling. However, they are yet to be
observed in a spatially extended system coupled through local
diffusion.

Again, in two-dimensional spatially extended reaction-
diffusion systems nonlocality in the coupling induces spiral
wave chimera states possessing phase randomized units in
the spiral core enclosed by spiral arms containing phase
locked units. Unfolding of such chimera patterns was first
reported by Shima and Kuramoto [68] in a three-component
reaction-diffusion model where the presence of nonlocality in
the coupling induced the anomalous spiral dynamics. Later,
the appearance of such exotic chimera patterns was verified
theoretically in a handful [69–74] of RD and non-RD sys-
tems. Apart from these studies, there exist some experimental
evidences [36,75,76] which reveal the emergence of spiral
chimera states in coupled Belousov-Zhabotinsky chemical os-
cillators.

However, all these explorations, whether in RD or non-RD
systems, primarily focus on the type of coupling configuration
among the interacting units for the development of spiral
chimera states. Nonlocality among the coupled dynamical
elements is believed to be the conventional way for gener-
ating such fascinating patterns. Though later, the authors of
Ref. [77] reported that the spirals with a phase randomized
core can indeed appear in locally coupled reaction-diffusion

systems also, but the interacting population must be communi-
cating indirectly through a diffusive environment. In contrast
to this, recently in Ref. [78], the authors revealed the existence
of anomalous spiral chimera structure in a two-component
prey-predator RD system in the presence of both self- and
cross-diffusion without considering any common diffusive
medium.

In the present article, we uncover the development of
multiple collective dynamics as well as the transition from
spiral motion to chimeric spiral pattern mediated through the
concurrence of Turing and Hopf instabilities of the consid-
ered RD system. Particularly, we investigate a two-component
prey-predator model in the presence of Holling type III func-
tional response where the species are allowed to diffuse over
a two-dimensional landscape. Using linear stability analysis
we derive the necessary parametric conditions for the Hopf
and Turing bifurcations, which play crucial role in forming
patterns in RD systems. We mainly focus on the parameter
space where the spatially homogeneous steady states of the
population dynamics model become unstable in the presence
of both Hopf instability as well as Turing instability. Coher-
ent stationary spirals emanate beyond the Hopf bifurcation
boundary in an extensive region of the parametric domain.
In aquatic species communities, emergence of spiral patterns
can be related with the existence of dipole-like structure in
the plankton distribution which is formed due to the rotary
motions of the plankton patches in the ocean [79]. Spiral
waves are also observed in host-parasitoid systems. Besides
numerical simulation results, we also succeed to derive the
linear amplitude equation to describe the formation of spiral
patterns and validate the results analytically. The interaction
between the oscillatory dynamics appearing due to Hopf bi-
furcation and the inhomogeneous stationary states formed due
to Turing bifurcation combine to result in some complex spa-
tiotemporal patterns which have been reported earlier [24–26].
Here we reveal that the simultaneous interplay of both the
instabilities for suitable choices of parameter values develops
a randomized core inside the coherent spiral arm, resembling
the structure of spiral chimera pattern. Such transition mech-
anism from coherent spiral motion to hybrid spiral chimera
structure through the concurrence of Turing and Hopf instabil-
ities in spatially extended RD systems has not been explored
so far to the best of our knowledge. Moreover, we confirm
that the coexistence of such coherence-incoherence pattern is
not only observed in the phases but also in the amplitudes of
the constituents, thereby resembling an amplitude-mediated
chimera state. We verify this pattern by calculating the finite
time average of the individual dynamical units which reveals
the drift in the average values of the incoherent subpopula-
tion from that of the coherent subpopulation. However, aside
from various spiral dynamics we also notice the occurrence of
several steady state dynamics, such as the coexistence of spa-
tially coherent-incoherent oscillation death states termed as
chimera death states and the existence of spatially incoherent
oscillation death states. In addition, completely synchronized
temporal oscillations are also detected over an adequate re-
gion of the parameter space. In ecological species dispersal
networks, appearance of such multiple dynamical patterns
can be related with the phenomenon of species invasion,
colonization which can explain persistence and diversity of
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species in an ecosystem. We estimate the emergence of these
diversified dynamics by calculating the strength of the inco-
herent subpopulations for each and every recognizable pattern
in the two-dimensional medium. Spatial arrangement of all
such distinguishable patterns along with their spatiotemporal
behaviors are numerically demonstrated for a comprehensive
parametric range.

The rest of the paper is organized as follows. In Sec. II
we introduce the mathematical model for the chosen prey-
predator system over a two-dimensional diffusive medium.
Section III is devoted to the linear stability analysis of the
considered system in the absence or presence of the diffu-
sive terms. Section IV includes a detailed discussion on the
emergence of diverse collective patterns and their characteri-
zation over an extensive parameter region. Finally, in Sec. V
we summarize our results and provide suitable conclusions.
In the Appendix we derive the linear amplitude equation to
analytically deduce the spiral wave pattern.

II. MODEL DESCRIPTION

In ecology, the generalized Lotka-Volterra–type prey-
predator models are used widely to understand the complex
interaction behavior in multispecies population dynamics in
a better way. For our study, we choose a modified prey-
predator population model in the presence of Holling type
III functional response. Specifically, here we incorporate one
additional term in the predator equation that corresponds to
the intraspecific competition between the predators [80,81].
The intrapredator interaction term helps in reducing the rate of
predation by decreasing the predator density and at the same
time increasing their mortality rates. The above-mentioned as-
sumptions in the presence of diffusion lead to the formulation
of a mathematical model which takes the form of a RD system
as given by

∂u

∂t
= a

[
u
(

1 − u

k

)
− bu2v

1 + u2

]
+ Du∇2u,

∂v

∂t
= cu2v

1 + u2
− dv − ηv2 + Dv∇2v. (1)

Here u(x, y, t ) and v(x, y, t ) correspond to the prey and
predator population densities, respectively, at position (x, y)
and time t , on a bounded domain D ∈ R2 with closed bound-
ary ∂D. The prey species follows a logistic growth with
carrying capacity k. The consumption of prey by the preda-
tor is represented by a Holling III functional response u2v

1+u2 .
Here, b is the maximum per capita predation rate and a is a
multiplicative factor associated with the prey growth equa-
tion. The scalar c denotes the fraction of prey’s biomass
converted into predator’s biomass via predation, d is the
natural mortality rate of the predator, and η corresponds
to the intrapredator interaction. The diffusion of both the
species over the two-dimensional domain D is represented
by the Laplacian operator ∇2, where Du, Dv , respectively
signify the diffusivity coefficients of prey and predator pop-
ulations. We analyze the model under the assumption of
nonnegative initial conditions along with zero-flux boundary

conditions

u(x, y, 0) > 0, v(x, y, 0) > 0, (x, y) ∈ D,

∂u

∂ n̂
= ∂v

∂ n̂
= 0, (x, y) ∈ ∂D, (2)

where n̂ is the outward unit normal vector of the boundary
∂D. For numerical simulations, we discretize the domain on
a N × N two-dimensional lattice with N = 249 lattice points
in each direction. To solve Eq. (1) numerically, we adopt
the predictor-corrector method [82] with alternating directions
approach considering spatial step h = 0.25 and integration
time step dt = 0.025. Other appropriate choices of N, h and
dt could also give rise to the desired dynamics.

III. LINEAR STABILITY ANALYSIS

In the following subsections, we will analyze the equi-
librium points and the stability of the temporal (i.e., Du =
Dv = 0) as well as the spatiotemporal (i.e., Du �= 0, Dv �= 0)
systems.

A. Temporal model

The equilibrium point (u∗, v∗) of the system Eq. (1) in the
absence of diffusion (i.e., Du = Dv = 0) is given by the solu-
tion of the equations f (u∗, v∗) = 0 and g(u∗, v∗) = 0, where

f (u, v) = u

(
1 − u

k

)
− bu2v

1 + u2
,

g(u, v) = cu2v

1 + u2
− dv − ηv2. (3)

Solving Eq. (3) we can easily detect the following different
possible equilibrium points of the system:

(i) Extinction of both the prey and predator population:
E00 = (0, 0).

(ii) Existence of only prey population: Eu0 = (k, 0), where
the prey population varies depending on the carrying capacity
k.

(iii) Coexistence of both the populations: Euv = (us, vs),

where vs = 1
η

( cu2
s

1+u2
s
− d ) and us is a positive root of the fol-

lowing quintic equation:

u5
s − ku4

s +
(

2 + kb(c − d )

η

)
u3

s − 2ku2
s +

(
1 − kbd

η

)
us − k

= 0. (4)

Based on the parametric constraints, the number of interior
equilibrium points (coexistence of both the prey and predator
populations) can vary from zero to five. Here we plot the
number of feasible co-existence equilibrium points (us, vs) in
different parameter spaces as depicted in Fig. 1. The following
parameter values k = 6.5, b = 0.1923, c = 0.8, d = 0.5 [83]
are fixed in such a manner that the system Eq. (1) exhibits
oscillatory dynamics in the absence of diffusion with proper
choice of the parameters a and η. Looking into the k − η

parameter space plotted in Fig. 1(a), we fix the value of in-
trapredator interaction rate η at η = 0.018 for the remaining
numerical simulations. In the figure, the red region corre-
sponds to the existence of only one interior equilibrium point
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FIG. 1. The number of feasible spatially homogeneous coexis-
tence equilibrium points of the system (1) in (a) k − η, (b) k − d ,
and (c) b − c parameter spaces. The parameter values are fixed at
k = 6.5, b = 0.1923, c = 0.8, d = 0.5 and η = 0.018 when any two
of them are varied. Red and black colors correspond to the existence
of only one and zero number of coexistence solution, respectively.

while the black region signifies the absence of coexistence
solution [i.e., negative real roots of Eq. (4)]. Thus, the pa-
rameter spaces depicted in all the figures in Fig. 1 indicate
that the system Eq. (1) has maximally one interior equilibrium
point in the absence of diffusion for our chosen values of the
parameters.

The eigenvalue λ of the Jacobian matrix J of the linearized
system determining the stability [84] of the coexistence equi-
librium (us, vs), satisfies the equation λ2 − Tr(J )λ + �J = 0.
Thus,

λ1,2 = Tr(J ) ±
√

Tr(J )2 − 4�J

2
, (5)

where Tr(J ) and �J are the trace and determinant of the
Jacobian matrix given by

Tr(J ) = a fu + gv, �J = a( fugv − fvgu). (6)

In Eq. (6) fu, fv, gu, gv are the partial derivatives of the func-
tions f , g with respect to u, v, respectively. The equilibrium
point is stable if Tr(J ) and �J evaluated at (us, vs) neces-
sarily satisfy the conditions Tr(J ) < 0, �J > 0, and unstable
otherwise. The system exhibits a Hopf bifurcation when the
eigenvalues cross the imaginary axis at a point where Tr(J ) =
0, and the threshold for the bifurcation is derived as a0 = − gv

fu
.

B. Spatiotemporal model

Now we investigate the condition for Turing instability of
the spatiotemporal system Eq. (1) where the spatially homo-
geneous stable steady state (us, vs) becomes unstable to small
amplitude perturbations in the presence of diffusion coeffi-
cients Du and Dv . Linearizing the system around the interior
equilibrium point (us, vs), we can write

∂ ũ

∂t
= a fuũ + a fvṽ + Du∇2ũ,

∂ ṽ

∂t
= guũ + gvṽ + Dv∇2ṽ, (7)

where (ũ, ṽ) is the small perturbation around (us, vs) such that
u = us + ũ and v = vs + ṽ. We consider(

ũ
ṽ

)
=

(
ũσ

ṽσ

)
eλt+i�σ .�r (8)

FIG. 2. Plot of h(p) with respect to p for different values of the
system parameter a. (a) As a increases the width of the interval for
which h(p) < 0 increases, (b) zoomed version of the red rectangu-
lar region in panel (a). Here the black dotted line corresponds to
h(p) = 0. The parameter values considered here are k = 6.5, b =
0.1923, c = 0.8, d = 0.5, η = 0.018, Du = 0.01, and Dv = 1.8.

as the solution of the linearized system Eq. (7). Here, λ de-
termines the rate of evolution of the perturbation over time
t , �σ = (σx, σy) is the wave number such that �σ .�σ = σ 2 and
�r = (x, y) is the spatial position in two dimensions. In Eq. (8),
ũσ , ṽσ are the amplitudes of the perturbation. The Jacobian JD

of the linearized system Eq. (7) is therefore given by

JD =
(

a fu − Duσ
2 a fv

gu gv − Dvσ
2

)
. (9)

Hence, the characteristic equation can be written as

λ2 − Tr(JD) + �JD = 0, (10)

where Tr(JD) = Tr(J ) − (Du + Dv )σ 2 and �JD = DuDvσ
4 −

(Dugv + aDv fu)σ 2 + �J . For the emergence of Turing insta-
bility, (us, vs) must be stable in the absence of diffusion which
guarantees that Tr(J ) < 0 and �J > 0. Therefore, from the
expression of Tr(JD), it is clear that Tr(JD) < 0. Obviously,
to induce instability in the spatiotemporal model Eq. (1) in
the presence of diffusion coefficients Du and Dv , �JD must be
negative, i.e., DuDvσ

4 − (Dugv + aDv fu)σ 2 + �J < 0. But,
the diffusion coefficients Du, Dv as well as �J all are positive,
so necessarily the coefficient of σ 2 in the expression of �JD

should be positive to generate Turing instability. Thus,

(Dugv + aDv fu) > 0 (11)

is the necessary condition for the instability of the equilib-
rium point (us, vs) in the presence of diffusion. Combining
the condition Eq. (11) and Tr(J ) < 0, it eventually implies
that Dv > Du [since fu(us, vs) > 0 and gv (us, vs) < 0] for the
equilibrium to be unstable.

Now, we consider the expression

h(p) = DuDv p2 − (Dugv + aDv fu)p + �J , (12)

which is a quadratic equation in p with p = σ 2. Here we plot
the quadratic expression h(p) with respect to p in Fig. 2(a)
for different values of the parameter a. It is easily discernible
from the figure that as the value of a increases the curve of
h(p) moves downwards and thereby the width of the inter-
val for which h(p) < 0 increases. So, it is evident that the
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FIG. 3. Critical curves for the Hopf and Turing bifurcations in
a − Dv parameter space of the system Eq. (1). Blue dashed ver-
tical line corresponds to the Hopf bifurcation threshold a0 and
the red curve is associated with the Turing condition obtained in
Eq. (14). Region I: system reaches the spatially homogeneous sta-
tionary state (us, vs ); Region II: spatially homogeneous steady state
loses its stability and the system reaches inhomogeneous steady
states confirming the appearance of Turing patterns; Region III: Hopf
instability occurs and the system exhibits limit cycle oscillations;
Region IV: both Hopf and Turing instabilities occur. Other parameter
values are same as mentioned in Fig. 2. Markers plotted in the figure
correspond to the parameter values used in Fig. 4.

possibility of occurrence of Turing instability increases as
the system parameter a is increased. For better visibility in
Fig. 2(b), we show the zoomed version of the red rectangular
region near p = 1 depicted in Fig. 2(a). This figure confirms
that the determinant h(0) of the Jacobian of the nonspatial
system is positive for all considered values of a. The graph
of h(p) with respect to p represents a parabolic structure
for which the minimum is reached at p = pm, following the
relation dh(p)

d p = 0. Solving this we obtain the threshold of p as

pm = Dugv+aDv fu

2DuDv
at which the function h(p) attains its minima,

as d2h(p)
d p2 > 0, and the minimum value is given by

hmin(pm) = −DuDv p2
m + �J . (13)

Using the condition Eq. (13) we can derive the expression for
the critical value of diffusion coefficient Dv beyond which
Turing instability emerges in the spatiotemporal system and
this value is obtained as

DCrit
v = Du

a f 2
u

[( fugv − 2 fvgu) ± 2
√

fvgu( fvgu − fugv )]. (14)

Figure 3 depicts the critical value Eq. (14) in red for a
wide range of the parameter values of a. Here the blue dashed
vertical line corresponds to the Hopf bifurcation threshold a0.
These two Hopf and Turing instability curves intersect at a
particular point and divide the whole parametric space into
four distinct domains. Below the Turing curve in the domain
I, the system reaches the spatially homogeneous stationary
state (us, vs), while in domain II above the Turing curve the
spatially homogeneous steady state loses its stability and the
system reaches inhomogeneous steady states which confirms

FIG. 4. Spatial patterns of the prey species observed in the re-
gions I, II, and III of Fig. 3 for which the parameter values are
fixed at (a) a = 1.3, Du = 0.01, Dv = 0.3 (black circle in Fig. 3):
spatially homogeneous stable stationary state, (b) a = 1.3, Du =
0.01, Dv = 0.8 (blue square in Fig. 3): stripes pattern, (c) a =
1.3, Du = 0.01, Dv = 1.2 (cyan square in Fig. 3): combination of
stripes and spots, and (d) a = 4.0, Du = 0.01, Dv = 0.01 (red tri-
angle in Fig. 3): spiral pattern. Other parameter values are same
as mentioned earlier in the text. The color bars represent the prey
population density u.

the appearance of Turing patterns. On the other side, beyond
the Hopf boundary in domain III, Hopf instability occurs
and the system exhibits limit cycle oscillations, whereas the
most interesting nontrivial dynamics is observed in domain
IV where both Hopf and Turing instabilities take place. Fig-
ure 4 depicts the spatial patterns of the prey species for some
exemplary parameter values from the regions I, II, and III.
To generate the spatial patterns, the initial distribution of the
species is considered as

u(x, y, 0) = us − ε1[y − 0.5(N − 1)],

v(x, y, 0) = vs − ε2[x − 0.5(N − 1)], (15)

where (x, y) is considered as the grid index and ε1, ε2 are small
fluctuations added to the homogeneous steady state. We take
ε1 = ε2 = 10−4. The appearance of spatially homogeneous
steady state in region I is portrayed in Fig. 4(a) for the param-
eter value a = 1.3 and diffusion strengths Du = 0.01, Dv =
0.3. Figures 4(b) and 4(c) correspond to the Turing patterns
when the parameter values are chosen from region II. Stripe
pattern is depicted in Fig. 4(b) for the parameter values a =
1.3, Du = 0.01, and Dv = 0.8 while a combination of stripes
and spots is detected for the parameter values a = 1.3, Du =
0.01 and Dv = 1.2 in Fig. 4(c). An intriguing spiral pattern is
illustrated in Fig. 4(d) for the parameter values a = 4.0, Du =
0.01, Dv = 0.01 set in region III. In the following section, we
will explore the rich dynamical patterns observed on the right
of the Hopf boundary below and above the Turing curve.
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FIG. 5. Emergence of different spatial patterns in Du − Dv pa-
rameter space for parameter value a = 2.0. The regions shaded with
sky blue, pink and yellow colors correspond to the regions of spiral
wave (SW) oscillations, completely synchronized (CS) oscillations
and inhomogeneous steady states (OD), respectively. Red dashed
line represents the critical boundary above which Turing instability
persists in the system. Spatiotemporal evolution of the system cor-
responding to the parameter values marked with triangle, circle and
square are depicted in Fig. 6.

IV. DIVERSE COLLECTIVE STATES BEYOND
HOPF BOUNDARY

In this section, we explore the emergence of various spa-
tiotemporal patterns and their dynamical characteristics in a
broad region of the parameter space spanned by the diffusion
coefficients.

A. Emergence of spatial patterns for a = 2.0

From a detailed numerical analysis, we find that three
different spatial patterns arise in the Du − Dv parameter space
near the Hopf boundary for the parameter value a = 2.0 as
presented in Fig. 5. The regime diagram is obtained by look-
ing into the snapshot at the corresponding diffusion parameter
values at the final time when the system is simulated up
to t = 5 × 104 time units. In addition, we also checked the
temporal as well as the spatiotemporal dynamics in the time
interval [4.99 × 104, 5 × 104] to classify the states as oscil-
latory or nonoscillatory. The red dashed line corresponds to
the critical threshold DCrit

v for Turing instability as obtained
from Eq. (14). The region below the critical line corresponds
to the parameter values for which oscillatory dynamics is
present, whereas in the region above the critical line steady
state dynamics persists. For comparatively smaller values of
diffusion coefficients Du, Dv , spiral wave pattern is noticed.
The corresponding parameter region is shaded with sky blue
color. Higher values of prey and predator diffusion strengths
(the region shaded in pink) below the red dashed line lead to a
pattern where completely synchronized temporal oscillations
are obtained. The region shaded in yellow corresponds to
the Turing instability region where the system settles down
to inhomogeneous steady state dynamics confirming the ap-
pearance of various Turing patterns. From the figure it is
evident that the analytically derived boundary (marked with

FIG. 6. Evolution of various spatial patterns corresponding to the
markers in Fig. 5 for prey growth rate a = 2.0. (a–c) Snapshots of the
prey species in the two-dimensional diffusive medium at a particular
time instant t = 5 × 104, (d–f) horizontal cross-section along the
center is plotted in red dots with respect to the number of discretized
grids in each direction, (g–i) temporal dynamics of prey species of all
the 249 sites along the cross-section corresponding to each pattern,
(j–l) spatiotemporal evolution of the corresponding prey densities.
Diffusion coefficients are fixed at Du = 0.01, Dv = 0.001 (left panel,
corresponding to red triangle in Fig. 5), Du = 1.0, Dv = 0.1 (middle
panel, corresponding to black circle in Fig. 5), and Du = 0.001, Dv =
1.0 (right panel, corresponding to blue square in Fig. 5). The asso-
ciated colorbars quantify the prey densities u at that instant of time.
The color codings for the bottom row figures are same as that of the
corresponding upper row figures.

red dashed line) partitioning the oscillatory and the nonoscil-
latory regimes is in perfect accordance with the numerically
simulated parameter space.

In Fig. 6, we demonstrate the spatial snapshots of the
various patterns as mentioned in Fig. 5 and their evolution
over time. Left, middle, and right columns correspond to the
evolution of the prey species exhibiting spiral, synchronized
oscillatory and inhomogeneous steady state dynamics, re-
spectively. Snapshots of these patterns in the prey population
over a two-dimensional diffusive medium are presented in
Figs. 6(a)–6(c) at a particular instant of time. The correspond-
ing colorbars quantify the densities of the prey population
u at that time instant. To better understand the organization
among the species for each pattern we have taken a horizon-
tal cross-section along the central line and plotted them in
Figs. 6(d)–6(f) with respect to the number of discretized grids
in each direction. Figures 6(g)–6(i) in the third row exhibit the
temporal dynamics of the prey species along the horizontal
cross section and finally, Figs. 6(j)–6(l) in the bottom row
correspond to the spatiotemporal evolution of the patterns
among the prey species along the cross-section. Existence
of stable spiral pattern is depicted in Fig. 6(a) for diffusion
coefficients Du = 0.01 and Dv = 0.001. The frequency of
rotation of the spiral wave decreases and the wavelength of the
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spiral increases when either one or both the diffusion strengths
are increased (figure not shown here). The one dimensional
cross-section of the spiral pattern presented in Fig. 6(d) re-
flects a coherent oscillatory structure among the species in the
discrete grids. Temporal dynamics in the form of limit cycle
oscillations of these species along the cross section is clearly
visible in Fig. 6(g). The observed spiral wave starts to propa-
gate from the core and expands in the outward direction which
can be perceived from the spatiotemporal evolution of the
prey species along the cross-section depicted in Fig. 6(j). Fig-
ure 6(b) reveals the uniform spatial density of the prey species
in the two-dimensional medium for diffusion strengths Du =
1.0 and Dv = 0.1 and their corresponding horizontal cross-
section along the center line is presented in Fig. 6(e). The
temporal as well as the spatiotemporal evolutions depicted in
Figs. 6(h) and 6(k) confirm the existence of completely syn-
chronized limit cycle oscillations with uniform spatial density
of all the species. These two figures clearly depict that at
any particular instant of time the spatial densities of all the
species remain constant. That is why the spatial snapshot in
Fig. 6(b) takes only a single value corresponding to the light
green color from the colorbar. Emergence of inhomogeneous
steady states in the two-dimensional diffusive environment is
demonstrated in Fig. 6(c) resulting from the Turing instability
at the diffusion coefficient values Du = 0.001 and Dv = 1.0.
Horizontal cross-section of the prey species u along the center
line presented in Fig. 6(f) signifies that the species density
keeps fluctuating between the upper and the lower branches
while maintaining a steady state temporal dynamics. Two
distinguishable clusters of prey densities are clearly visible
from the temporal dynamics presented in Fig. 6(i). Such kind
of temporal pattern where the inhomogeneous steady states
are subdivided into more than one distinguishable clusters
are known as multicluster oscillation death states [85]. The
corresponding spatiotemporal evolution of these multicluster
oscillation death states is portrayed in Fig. 6(l).

B. Emergence of amplitude-mediated spiral chimera

Besides the above-mentioned three distinct categories
of spatial patterns, another fascinating spatial organization
among the dynamical elements is noticed as the parameter a
is shifted away from the Hopf bifurcation boundary. For ap-
propriate choices of prey and predator diffusion strengths Du

and Dv , the core of the spiral motion in the two-dimensional
space starts to expand. The dynamical units inside the spiral
core exhibit anomalous behavior which differentiates the core
region from that of the spiral arm where the constituents
follow a smooth motion. Simultaneous occurrence of coher-
ent dynamics in the spiral arm and incoherent dynamics in
the spiral core discriminates the spatial pattern from that of
the ordinary spiral dynamics. Such coexistence of coherent
and incoherent behaviors within a spiral structure develops
the captivating spiral chimera pattern. Emergence of spiral
chimera patterns in Du − Dv parameter space is manifested in
Fig. 7 through the parametric region shaded with green color.
Other parameter regions shaded with sky blue, pink and yel-
low colors correspond to similar spatial dynamics as discussed
earlier in Fig. 5. Apart from the diffusion strengths associated
with the yellow shaded region all other diffusion strengths

FIG. 7. Emergence of diverse spatial patterns in Du − Dv param-
eter space for prey growth rate (a) a = 4.0, (b) a = 6.0. Regions
shaded with sky blue, green, pink and yellow colors respectively
correspond to the regions of spiral wave oscillations, spiral chimera,
completely synchronized oscillations and inhomogeneous steady
states. Red dashed line corresponds to the analytically derived criti-
cal boundary above which inhomogeneous steady state dynamics is
expected in the system. Markers plotted in Fig. 7(a) correspond to
the parameter values used in Figs. 8, 9, and 10.

correspond to oscillatory dynamics of the considered reaction-
diffusion system. Two different parameter spaces are depicted
in Figs. 7(a) and 7(b), respectively, for two different values of
the multiplicative factor a = 4.0 and a = 6.0. As mentioned
already, the red dashed line delimits the analytically obtained
bound DCrit

v for Turing instability. Although, contrary to the
case of Fig. 5, where the red boundary perfectly matches with
the numerically simulated parameter region, a discrepancy is
noticed in Fig. 7 between the analytical and numerical bounds
separating the oscillatory and nonoscillatory regimes. From
the figure it is visible that the analytically derived red bound-
ary fails to determine the critical threshold beyond which
oscillatory dynamics vanishes and steady state dynamics (yel-
low shaded region) begins. Such inconsistency is triggered by
the simultaneous occurrence of both the Hopf and the Turing
instabilities for the considered parameter values of a. In the
right hand side of the blue vertical line displayed in Fig. 3,
whenever a remains very close to the critical value a0, the
emergence of Turing instability overrules the Hopf instability,
i.e., the oscillatory dynamics is suppressed and the steady state
dynamics arises as soon as the diffusion coefficients satisfy
the Turing instability condition. That is why for a = 2.0, once
the diffusion coefficients reach the Turing instability condi-
tion [Eq. (14)], steady-state dynamics replaces the oscillatory
dynamics which is reflected perfectly in the parameter space
of Fig. 5. However, when a moves away further from a0,
the appearance of oscillations due to Hopf bifurcation reveals
dominating characteristic and as a result, Eq. (14) fails to
predict the emergence of steady state dynamics of the system
Eq. (1). This scenario is demonstrated through the parameter
spaces in Fig. 7 as there is appreciable difference between the
numerically obtained parameter values (yellow region) and
the analytically derived bounds for the appearance of steady
state dynamics.

The interplay between the two different instabilities where
the oscillations caused by the Hopf bifurcation interact with
the inhomogeneous steady states arising due to the Turing
bifurcation leads to a fascinatingly complex spiral chimera
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FIG. 8. Evolution of amplitude-mediated spiral chimera pattern:
(a) snapshot of the prey density u in the two-dimensional space at a
particular time instant t = 5 × 104 depicting incoherence in the spi-
ral core, (b) corresponding finite-time average 〈u〉 over T = 103 time
iterations, (c) spatiotemporal behavior of the species density along
the horizontal cross-section through the line y = 124, (d) snapshot
along the horizontal cross-section for a better visualization of the
incoherence dynamics around the center, (e) amplitude difference
�〈u〉 between two adjacent species densities along the horizontal
cross-section, (f) corresponding phase difference �φ between two
adjacent constituents along the cross-sectioned profile, (g) temporal
dynamics of the coherent subpopulations along the line y = 124,
(h) temporal dynamics of the incoherent subpopulation along the
line y = 124, (i) attractors corresponding to the amplitude-mediated
chimera state along the cross-section through y = 124. Prey and
predator diffusion strengths are fixed at Du = 0.01 and Dv = 1.0
corresponding to the orange diamond marker plotted in Fig. 7(a).

pattern. We carry out a detailed numerical simulation to
analyze the characteristics of such an exotic chimera struc-
ture as presented in Fig. 8. Figure 8(a) depicts the typical
snapshot of the spiral chimera pattern at a particular time
instant t = 5 × 104 for a = 4.0, when the diffusion coeffi-
cients are fixed at Du = 0.01 and Dv = 1.0. For a better
understanding of the correlation among the species we take
a horizontal cross-section along the center line and plot them
in Fig. 8(d). Anomalous species densities around the spiral
core surrounded by coherent densities of the prey species is
detectable from both the Figs. 8(a) and 8(d). To get further in-
sight about the amplitude of the oscillatory prey densities over
the two-dimensional medium, we calculate the finite-time av-
erage of the prey densities u(x, y, t ) at each grid index (x, y)
over T = 103 time iterations using the formula 〈u(x, y, t )〉 =
1
T

∫ T
0 u(x, y, t )dt . We plot the estimated average prey densities

〈u〉 in the two-dimensional x − y plane in Fig. 8(b) which
depicts that apart from the species situated in the spiral core
all the remaining prey species oscillate with a nearly identical
amplitude, whereas random fluctuations are noticed around
the core region. For a clear visualization here also we take
the horizontal cross-section along the center line and plot the
amplitude differences between two adjacent species densities

in Fig. 8(e). Zero values of the amplitude difference �〈u〉 sug-
gest coherent amplitude of the prey species densities outside
the spiral core while nonzero values of �〈u〉 around the core
corresponds to incoherent species amplitude. The correspond-
ing spatiotemporal evolution of the species densities along
the horizontal cross-section is presented in Fig. 8(c) which
reveals that the observed chimera pattern is stationary with
respect to time. We further calculate the phases of each of the
individual components available in the two-dimensional dif-

fusive medium using the formula φ(x, y) = tan−1 ( v(x,y)−vs

u(x,y)−us
).

Figure 8(f) delineates the phase differences �φ between two
adjacent units situated along the cross-sectioned profile in
Fig. 8(d). Again a zero value of �φ characterizes coherent
subpopulation whereas a nonzero value of the phase differ-
ence confirms the presence of incoherent dynamics. Thus
the observed chimera pattern exhibits coherence-incoherence
dynamics in both the phases and the amplitudes of the con-
stituent elements, and hence resembles the structure of an
amplitude-mediated chimera state. Besides, we also explore
the temporal dynamics of each of the individual elements
along the cross-sectioned profile. From the cross-sectioned
prey densities it is evident that the coherent subpopulations are
separated into two disjoint clusters by the incoherent subpop-
ulations. The time series for the coherent subpopulations are
presented in Fig. 8(g), where the two distinct clusters follow
two distinguishabe temporal patterns marked with blue and
black curves. The figure indicates that the two disjoint clusters
of coherent subpopulations are in opposite phases with each
other. However, the randomness in the temporal dynamics of
the incoherent subpopulations is presented by red curves in
Fig. 8(h). The corresponding phase space dynamics of the
amplitude-mediated chimera state along the cross-section is
portrayed in Fig. 8(i). Positive correlation among the coherent
subpopulations are prominent from the attractors plotted with
blue and black curves, while randomness is detectable among
the incoherent group through the plotted attractors in red.

C. Multiple oscillatory and nonoscillatory dynamics for a = 4.0

Further, we also scrutinize the development of other oscil-
latory patterns for a = 4.0 in terms of their average amplitude
as illustrated in Fig. 9. The upper panel depicts the typical
snapshots of distinct spatial patterns that are oscillating in
time for different combinations of the diffusion strengths at
a particular time instant t = 5 × 104. The finite-time averages
of each of these individual patterns over T = 103 time iter-
ations are presented in the middle row, while the amplitude
differences between the adjacent nodes along the horizon-
tal cross-sections through the center lines are presented in
the bottom row. Snapshot of an ordinary spiral is portrayed
in Fig. 9(a) for lower values of both the diffusion coeffi-
cients Du = Dv = 0.01. Figure 9(d) shows the corresponding
time average 〈u〉 of each individual prey species in the two-
dimensional space. The figure reveals that except at the center
where the average amplitude is low (around 2.3) compared
to the remaining space that is occupied with average ampli-
tude of species ranging between 2.5 to 2.6. The amplitude
difference �〈u〉 plotted in Fig. 9(g) along the horizontal cross-
section through y = 124 takes approximately zero value for
all the spatial positions except for very few nodes at the center.
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FIG. 9. (a–c) Snapshots of temporally oscillating prey densities
u, displaying various spatial patterns for different combinations of
diffusion strengths at a particular time instant t = 5 × 104, (d–f)
corresponding finite-time average 〈u〉 of the prey densities associ-
ated with each individual pattern over T = 103 time iterations, (g–i)
amplitude difference �〈u〉 between two adjacent species densities
along the horizontal cross-section through the line y = 124. Diffu-
sion coefficients are fixed at values corresponding to the markers
depicted in Fig. 7(a): (a, d, g) Du = Dv = 0.01 (red triangle), (b, e, h)
Du = 0.01, Dv = 0.1 (yellow triangle), (c, f, i) Du = 0.1, Dv = 1.0
(black circle).

The frequency of rotation of the spiral wave decreases as one
or both the diffusion strengths are increased and an exemplary
snapshot of the spatial pattern is presented in Fig. 9(b) for dif-
fusion strengths Du = 0.01 and Dv = 0.1. The corresponding
finite-time average 〈u〉 represented in Fig. 9(e) again confirms
that the species densities oscillate with nearly identical am-
plitude throughout the two-dimensional space except at the
center. However, the size of the core with drifted amplitude
starts to increase as the diffusion strengths increase which is
apparent from Fig. 9(h). Finally, Fig. 9(c) in the right panel
corresponds to uniform spatial densities of the prey species
throughout the two-dimensional space for Du = 0.1 and Dv =
1.0. The identical amplitude of oscillating species densities
throughout the space is easily recognizable from the Figs. 9(f)
and 9(i).

Next, we also demonstrate the spatial arrangement as
well as the spatiotemporal organization of the prey densities
when they are in the steady state regime. The emergence
of Turing instability for suitable combinations of prey and
predator diffusion coefficients drives the system to exhibit
inhomogeneous steady state dynamics. The transition from
amplitude-mediated spiral chimeras to inhomogeneous steady
states results in two different types of oscillation death states.
One is the chimera death state, where a coexistence of coher-
ent and incoherent oscillation death states is observed just like
the oscillatory chimera states, and the other is the incoherent
oscillation death state, where no coherent behavior is detected
among the constituents. Two distinct snapshots of the spatial
organization among the prey species in oscillation death state
are presented in Figs. 10(a) and 10(b) for diffusion strengths
Du = 0.0018, Dv = 1.0 and Du = 0.0056, Dv = 1.0, respec-

FIG. 10. (a, b) Snapshots of the spatial distribution of the prey
species u at a particular time instant t = 5 × 104 in two-dimensional
diffusive space exhibiting inhomogeneous steady state dynamics,
(c, d) corresponding snapshots along the horizontal cross-section
through the line y = 125, (e, f) spatiotemporal behavior of the
states presented in (c, d). Diffusion strengths are fixed at Du =
0.0018, Dv = 1.0 [blue square in Fig. 7(a)] for the left panel and
Du = 0.0056, Dv = 1.0 [cyan square in Fig. 7(a)] for the right panel.

tively. In the middle panel the corresponding snapshots along
the horizontal cross-sections through the line y = 125 are
presented. Coexistence of coherent and incoherent oscillation
death states is prominent from Fig. 10(c) which characterizes
the state as chimera death state. However, Fig. 10(d) clearly
demonstrates the presence of incoherent oscillation death
states which keeps on fluctuating randomly between the upper
and the lower branches of the inhomogeneous steady states.
The stationary behavior of such states is further confirmed
from the spatiotemporal dynamics presented in Figs. 10(e)
and 10(f), respectively.

D. Characterization of distinct dynamical states

In order to characterize the occurrence of all such diverse
patterns, we introduce a measure to estimate the strength of
incoherent populations in a particular pattern arising in the
two-dimensional space. On the basis of the computed finite-
time average of the species densities for each pattern, we
calculate the strength of incoherent subpopulation for each of
those dynamical patterns using the following relation:

S = 1 − 1

N2

∑
x

∑
y

H[ū(x, y)], H (ū) = 	(δ − |ū|), (16)

generalizing the notion of strength of incoherence introduced
by Gopal et al. [37] to characterize chimera states in one
dimensional arrays. Here ū(x, y) = 〈u(x, y)〉 − 〈uc〉 measures
the deviation of each of the species densities situated at po-
sition (x, y) from that of the coherent subpopulations. 〈uc〉
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FIG. 11. Strength of incoherent subpopulations S in the RD sys-
tem Eq. (1) (a) for varying prey diffusion rate Du and fixed predator
diffusion rate Dv = 0.56, (b) for varying predator diffusion rate Dv

and fixed prey diffusion rate Du = 0.01. δ = 0.035 is considered
here. Presence of four different dynamical states, namely, oscillation
death (OD), spiral wave (SW), spiral chimera (SC), and complete
synchronization (CS) states are distinguished with yellow, sky blue,
green, and pink shaded regions, respectively.

represents the average amplitude of the coherent subpopu-
lations throughout the two-dimensional space which is kept
fixed at 〈uc〉 = 2.55. ū = 0 corresponds to the coherent sub-
population whereas the nonzero values of ū signify the species
belonging to the incoherent group. δ is a predefined threshold
value and 	(·) denotes the Heaviside step function. The
measure for the estimation of strength of incoherent subpop-
ulations S lies in the range [0,1]. Zero value of S is attained
when the system exhibits completely synchronized temporally
oscillating uniform spatial densities of the species, while S =
1 stands for the oscillation death states or the inhomogeneous
steady states. Various spiral dynamics are represented by the
nonzero and nonunit values of S, i.e., 0 < S < 1. However, for
ordinary spirals due to the presence of very little incoherence
around the core, S takes values close to zero. Existence of
amplitude-mediated spiral chimera states is determined by
sufficiently large values of S lying between 0 and 1. In Fig. 11
the transitions among different dynamical states are illustrated
by plotting the measure S with respect to the diffusion coef-
ficients Du, Dv . Three distinct collective dynamics, namely,
oscillation death (OD), spiral chimera (SC), and completely
synchronized oscillation (CS), are observed when the strength
of incoherent subpopulations are plotted in Fig. 11(a) with
respect to varying prey diffusion rate Du for fixed value of the
predator diffusion rate Dv = 0.56. Additionally, in Fig. 11(b)
we plot the measure S for varying predator diffusion strength
Dv at fixed value of prey diffusion strength Du = 0.01. Here
also three distinct dynamical states are detected, namely, spi-
ral wave (SW), spiral chimera (SC), and oscillation death
(OD) states. From the figure it is evident that the amplitude-
mediated spiral chimera states appear during the transition
from oscillatory motion to steady state dynamics.

E. Effect of spatial geometry

Throughout the article, all the numerical simulations are
carried out using the fixed grid size N2 = 2492, spatial step
h = 0.25 and integration time step dt = 0.025. Now, we

FIG. 12. Effect of grid size N2 and spatial step size h on the
spiral chimera dynamics. Snapshots of the spatial patterns are taken
at (a) t = 5 × 104 for N = 401, h = 0.25, and dt = 0.025, (b) t =
5.25 × 104 for N = 415, h = 0.15, and dt = 0.015. Diffusion coef-
ficients are fixed at Du = 0.01, Dv = 1.0.

check the effect of varying N and h on the observed patterns
of the considered system. For this, we fix the diffusion coeffi-
cients at Du = 0.01 and Dv = 1.0 for which spiral chimera
pattern was observed in Fig. 8 with N = 249. Now, if the
value of N is reduced gradually, the dynamics changes from
spiral chimera to completely synchronized oscillation states
(figure not shown), whereas increasing N retains the dynamics
unchanged as obtained in Fig. 8(a). It should be noted that
varying only N alters the spatial distance N × h. Thus, lower-
ing N reduces the spatial distance which may not be sufficient
for the emergence of the spiral pattern which is why the
dynamics gets changed for smaller values of N . Figure 12(a)
displays the snapshot of the spatial evolution of the pattern
obtained for N = 401 at a particular time instant t = 5 × 104.
Obviously, the pattern is same as depicted in Fig. 8(a) since
the spatial length N × h is sufficiently large here. However,
we have also verified that similar spatial patterns can be ob-
served by varying the spatial step size h, but the time step
dt , time iteration and N should also be changed accordingly.
For example, we choose h = 0.15, dt = 0.015, N = 415 and
time iteration = 3.5 × 106 such that the spatial distance N × h
and the time t (iteration×dt) at which the snapshot is recorded
remains almost unchanged. The snapshot of the spatial pattern
is depicted in Fig. 12(b). Therefore, other choices of N, h, dt
may also give rise to the similar dynamics as long as the
spatial distance N × h and the time iteration t/dt remains
sufficient for the emergence of the respective patterns.

V. CONCLUSION

In summary, through this article, we have established a
connection between the different instabilities, namely, Tur-
ing and Hopf instabilities that are responsible for pattern
formation in spatially extended reaction-diffusion systems
and the emergence of chimera patterns in such systems.
Unfolding of diverse collective dynamics including the ex-
otic chimera states has been reported by considering a two
component prey-predator model over a two-dimensional dif-
fusive medium. We have performed a detailed linear stability
analysis of the considered RD system to derive the con-
ditions for both the onset of Turing and Hopf bifurcations
which enable us to explore the parametric region where the
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stability of the homogeneous steady state of the system is
lost. Emergence of coherent spiral waves has been detected
in a broad region of the diffusion driven parameter space
where the system exhibits temporal oscillations beyond the
Hopf bifurcation. Besides numerical simulations, develop-
ment of this spiral pattern has been verified analytically by
deriving the appropriate linear amplitude equation (in the
Appendix). The most interesting phenomenon that we have
observed is the appearance of random fluctuations around the
spiral core for parameter values exceeding both the Turing and
Hopf bifurcations. Simultaneous interplay of the oscillatory
dynamics formed due to Hopf bifurcation and the emergence
of inhomogeneous steady states caused by the Turing bifur-
cation combinedly generates a randomized core inside the
coherent spiral arm. Such coexistence of coherent-incoherent
dynamics within a spiral structure is represented as spiral
chimera pattern and their presence is manifested for suitable
combinations of the prey and predator diffusion coefficients
in the parametric space.

Previously, spiral chimera states were observed in a sim-
ilar model [78] in the absence of intrapredator interaction
term, where the coherent-incoherent dynamics was observed
only on the phases of the oscillators. In contrast to this,
the inclusion of the term ηv2 in our current study develops
an amplitude-mediated spiral chimera displaying randomness
both in phases and amplitudes of the constituents. We con-
firmed the occurrence of such states by looking into the
finite-time averages and the phases of the individual dy-
namical units. In fact, the additional term also helped in
the analytical derivation of the linear amplitude equation
corresponding to the spiral pattern presented in the Ap-
pendix. Instead of incoherent oscillatory states observed in
Ref. [78], here we obtained various oscillation death states
owing to the amplitude variations. Concurrence of both Hopf
and Turing instabilities promotes the emergence of diverse
dynamical states, precisely, spiral wave, spiral chimera, syn-
chronized oscillation and oscillation death states. We found
that the amplitude-mediated spiral chimera states appear
during the transition from temporally oscillating states to in-
homogeneous steady states with respect to varying diffusion
coefficients. The occurrence of all these states are charac-
terized by defining a measure S, to estimate the strength of
incoherent subpopulations corresponding to a particular pat-
tern. Moreover, we also verified that the spiral chimera pattern
emerges for other appropriate choices of N, h, and dt . Previ-
ous studies on the emergence of spiral chimera states either
in RD or non-RD systems have revealed the appearance of
incoherent dynamics only in the phases of the constituting ele-
ments. Surprisingly, the emergence of an amplitude-mediated
spiral chimera state revealing incoherent behavior both in
terms of the phases and the amplitudes of the composing units
have not been reported earlier. Such fascinating dynamics
arises for parameter values surpassing both the Turing and
Hopf bifurcations, which we believe to be an important ob-
servation of our current study.

In ecology, dispersal of species in terms of diffusion not
only helps in maintaining species diversity and species persis-
tence, but also supports various self-organization phenomena
associated with species invasion, colony formation or extinc-
tion in ecosystems. Ref. [86] suggests that the synchronization

in coupled ecological dispersal networks might get disrupted
by species invasion which can be related with the occurrence
of chimera like behavior.
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APPENDIX: AMPLITUDE EQUATION FOR
SPIRAL PATTERN

For further understanding on the development of spiral pat-
tern beyond the Hopf bifurcation boundary, here, we proceed
through the derivation of the amplitude equation for spiral
pattern following a multiscale analysis procedure [87,88].
For this, we take the linearized system Eq. (7) to find the
amplitude equation. For our system, we consider a to be
the bifurcation parameter and a0 is the value of a at which
Hopf bifurcation occurs, as obtained in Sec.III A. We can
tune the control parameter as a = a0 + εa1 close to the bi-
furcation boundary for the spiral wave solution, where ε is
the smallness parameter such that 0 < ε 	 1. Now, we scale
the two-dimensional space coordinates as r = r0 + εr1 and
θ = θ0 + √

εθ1 and the time variable as t = t0 + ετ , which
give

∂

∂r
= ∂

∂r0
+ ε

∂

∂r1
,

∂

∂θ
= ∂

∂θ0
+ √

ε
∂

∂θ1
,

∂

∂t

= ∂

∂t0
+ ε

∂

∂τ
. (A1)

The perturbation terms ũ and ṽ can be expressed as

ũ = εu1 + ε2u2 + . . . ,

ṽ = εv1 + ε2v2 + . . . . (A2)

Substituting the multiple scale expansion given by
Eq. (A2) along with the rescaled coordinates into Eq. (7),
we get

ε
[∂u1

∂t0
− a0( fuu1 + fvv1) − Du∇2

0 u1

]

+ ε2
[∂u1

∂τ
+ ∂u2

∂t0
− a0( fuu2 + fvv2) − a1( fuu1 + fvv1)

− Du(∇2
0 u2 + ∇2

1 u1)
]

= 0, (A3)

and

ε
[∂v1

∂t0
− (guu1 + gvv1) − Dv∇2

0v1

]

+ ε2
[∂v1

∂τ
+ ∂v2

∂t0

− (guu2 + gvv2) − Dv

(∇2
0v2 + ∇2

1v1
)]

= 0. (A4)
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Here the Laplacian ∇2 is expanded as

∇2 = ∇2
0 + ε∇2

1 , (A5)

considering terms only up to O(ε), where

∇2
0 =

[
1

r0

∂

∂r0

(
r0

∂

∂r0

)
+ 1

r2
0

∂2

∂θ2
0

]
,

∇2
1 =

[
1

r0

∂

∂r0

(
r0

∂

∂r1

)
+ 1

r2
0

∂2

∂θ2
1

]
. (A6)

Collecting the O(ε) terms from Eqs. (A3) and (A4) we get

L
(

u1

v1

)
=

(
0
0

)
, (A7)

where

L =
( ∂

∂t0
− a0 fu − Du∇2

0 −a0 fv
−gu

∂
∂t0

− gv − Dv∇2
0

)
. (A8)

Assuming the trial solution of the following form,(
u1

v1

)
= A(r1, θ1, τ )

(
ũ1

ṽ1

)
eλt0 , (A9)

we obtain the eigenvalue λ in the absence of diffusion as
given by Eq. (5). Eigenvalues become purely imaginary at
the Hopf boundary a0 and the Hopf frequency is given by
ωH = √

a0( fugv − fvgu).
Substituting Eq. (A9) into (A7) we obtain ũ1

ṽ1
= λ−gv

gu
,

which yields the explicit solutions of u1 and v1 as(
u1

v1

)
= A(r1, θ1, τ )

(
λ − gv

gu

)
eλt0 + c.c., (A10)

where c.c. stands for the complex conjugate of the preceding
term.

Now, we solve the equation for the next order, O(ε2).
Collecting the coefficients from Eqs. (A3) and (A4), we obtain
the coupled equations

L
(

u2

v2

)
=

(− ∂
∂τ

+ a1 fu + Du∇2
1 a1 fv

0 − ∂
∂τ

+ Dv∇2
1

)(
u1

v1

)
.

(A11)

Since the operator L has zero eigenvalue corresponding to the
eigenstate

(u1
v1

)
, we must apply Fredholm solvability condition

to Eq. (A11) for the existence of a solution. Accordingly, the
right-hand side of Eq. (A11) and the left eigenvector of L
associated with the zero eigenvalue must be orthogonal, which
gives

(
u†

1 v
†
1

)(− ∂
∂τ

+ a1 fu + Du∇2
1 a1 fv

0 − ∂
∂τ

+ Dv∇2
1

)(
u1

v1

)
= 0,

(A12)

where “†” denotes the complex conjugate. Substituting
Eq. (A10) into Eq. (A12), we obtain

∂A

∂τ
= C1∇2

1 A + a1(C2 + iC3)A, (A13)

where C1 = Du (ω2
H +g2

v )+Dvg2
u

g2
u+g2

v+ω2
H

, C2 = fu (ω2
H +g2

v )−gu fvgv

g2
u+g2

v+ω2
H

, and C3 =
fvguωH

g2
u+g2

v+ω2
H

. Transforming back to the original scales finally we

obtain the desired amplitude equation,

∂A

∂t
= C1

(1

r

∂A

∂r
+ 1

r2

∂2A

∂θ2

)
+ εa1C2A + iεa1C3A. (A14)

The derived equation now can be solved to obtain spirals for
which a general solution is assumed of the following form:

A(r, θ, t ) = Ã(r)ei(ωt+ψ (r)+mθ ). (A15)

The distance of any point from the core is given by r and the
polar angle around the core is θ . Ã(r) and ψ (r), respectively
represent the amplitude and phase of the spiral wave, ω is the
wave frequency and m is the spiral-arm number.

Substituting the general solution Eq. (A15) into Eq. (A14)
and equating the coefficients of the real and imaginary parts,
we obtain

C1m2

r2
= C1

rÃ

dÃ

dr
+ εa1C2,

ω = C1

r

dψ

dr
+ εa1C3. (A16)

Now, solving Eq. (A16) for Ã and ψ we derive the approxi-
mated expression for spiral pattern as

Ã(r) = I1rm2
e−εa1C2r2/2C1 ,

ψ (r) = ω − εa1C3

C1

r2

2
+ I2, (A17)

where I1 and I2 are integration constants.
For validation of the obtained solutions we consider as an

illustrative example the choice m = 1, ε = 0.01, a1 = 27.21
and calculate C1 = 3.06 × 10−3,C2 = 4.493 × 10−7,C3 =
−0.0635, ωH = 0.4788, a0 = 1.7279 for the chosen parame-
ter values and we find

Ã(r) = I1re−εa1(7.342×10−5 )r2
,

ψ (r) = ω + 0.0635εa1

6.12 × 10−3
r2 + I2. (A18)

As the spiral pattern in the reaction-diffusion system emerges
due to the occurrence of Hopf bifurcation, the frequency ω for
the spiral pattern is controlled by the Hopf frequency ωH . So,
we choose ω close to ωH and taking specific values of t, I1, I2,
we get O(ε) approximated solution as u = us + εRe(u1), v =

FIG. 13. Verification of the numerically simulated spiral pattern
with the analytically derived solution. Parameter values are fixed at
a = 2.0, Du = 0.01, Dv = 0.001. (a) Spiral pattern obtained directly
from numerical simulation, (b) spiral obtained by taking the approx-
imate expression Eq. (A18) as the initial condition for I1 = I2 = 1.0.
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vs + εRe(v1). We consider this approximate expression as
the initial condition and perform numerical simulation of
the model Eq. (1). The resultant spiral pattern as depicted

in Fig. 13(b) closely matches with the spiral pattern pre-
sented in Fig. 13(a) that is obtained directly from numerical
simulation.

[1] M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys. 65, 851
(1993).

[2] A. J. Koch and H. Meinhardt, Rev. Mod. Phys. 66, 1481 (1994).
[3] A. M. Turing, Philos. Trans. R. Soc. London, Ser. B 327, 37

(1952).
[4] J. D. Murray, Mathematical Biology, 2nd ed. (Springer-Verlag,

Berlin, 1993).
[5] H. Meinhardt, Models of Biological Pattern Formation (Aca-

demic Press, New York, 1982).
[6] S. Kondo and R. Asai, Nature 376, 765 (1995).
[7] A. T. Winfree and W. Jahnke, J. Phys. Chem. 93, 2823 (1989).
[8] L. Segel and J. Jackson, J. Theor. Biol. 37, 545 (1972).
[9] M. Mimura and J. Murray, J. Theor. Biol. 75, 249 (1978).

[10] H. Malchow, Proc. R. Soc. Lond. B 251, 103 (1993).
[11] M. Banerjee and S. Petrovskii, Theor. Ecol. 4, 37 (2011).
[12] X. Lian, H. Wang, and W. Wang, J. Stat. Mech. (2013) P04006.
[13] X. Wang and F. Lutscher, J. Math. Biol. 78, 711 (2019).
[14] X.-C. Zhang, G.-Q. Sun, and Z. Jin, Phys. Rev. E 85, 021924

(2012).
[15] C. Wang, L. Chang, and H. Liu, PLoS ONE 11, e0150503

(2016).
[16] T. Plesser, S. C. Müller, and B. Hess, J. Phys. Chem. 94, 7501

(1990).
[17] S. Jakubith, H. H. Rotermund, W. Engel, A. von Oertzen, and

G. Ertl, Phys. Rev. Lett. 65, 3013 (1990).
[18] F. Siegert and C. Wejer, J. Cell. Sci. 93, 325 (1989).
[19] A. Bhattacharyay, Phys. Rev. E 64, 016113 (2001).
[20] A. T. Winfree, When Time Breaks Down: The Three-

Dimensional Dynamics of Electrochemical Waves and Cardiac
Arrhythmias (Princeton University Press, Princeton, NJ, 1987).

[21] X. Huang, W. C. Troy, Q. Yang, H. Ma, C. R. Laing, S. J. Schiff,
and J.-Y. Wu, J. Neurosci. 24, 9897 (2004).

[22] M. E. Harris-White, S. A. Zanotti, S. A. Frautschy, and A. C.
Charles, J. Neurophysiol. 79, 1045 (1998).

[23] A. Rovinsky and M. Menzinger, Phys. Rev. A 46, 6315
(1992).

[24] M. Baurmann, T. Gross, and U. Feudel, J. Theor. Biol. 245, 220
(2007).

[25] W. Just, M. Bose, S. Bose, H. Engel, and E. Schöll, Phys. Rev.
E 64, 026219 (2001).

[26] M. Meixner, A. De Wit, S. Bose, and E. Schöll, Phys. Rev. E
55, 6690 (1997).

[27] F. Bartumeus, D. Alonso, and J. Catalan, Physica A 295, 53
(2001).

[28] D. Jana, S. Batabyal, and M. Lakshmanan, Eur. Phys. J. Plus
135, 884 (2020).

[29] A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A
Universal Concept in Nonlinear Sciences (Cambridge Univer-
sity Press, Cambridge, 2001), Series 12.

[30] Y. Kuramoto and D. Battogtokh, Nonlinear Phenom. Complex
Syst. 5, 380 (2002).

[31] C. R. Laing, Phys. Rev. E 92, 050904(R) (2015).
[32] B. K. Bera and D. Ghosh, Phys. Rev. E 93, 052223 (2016).

[33] S. Kundu, S. Majhi, B. K. Bera, D. Ghosh, and M. Lakshmanan,
Phys. Rev. E 97, 022201 (2018).

[34] S. Kundu, B. K. Bera, D. Ghosh, and M. Lakshmanan, Phys.
Rev. E 99, 022204 (2019).

[35] D. M. Abrams and S. H. Strogatz, Phys. Rev. Lett. 93, 174102
(2004).

[36] S. Nkomo, M. R. Tinsley, and K. Showalter, Phys. Rev. Lett.
110, 244102 (2013).

[37] R. Gopal, V. K. Chandrasekar, A. Venkatesan, and M.
Lakshmanan, Phys. Rev. E 89, 052914 (2014).

[38] I. Omelchenko, Y. Maistrenko, P. Hövel, and E. Schöll, Phys.
Rev. Lett. 106, 234102 (2011).

[39] J. Hizanidis, V. Kanas, A. Bezerianos, and T. Bountis, Int. J.
Bifurcat. Chaos 24, 1450030 (2014).

[40] L. Schmidt and K. Krischer, Phys. Rev. Lett. 114, 034101
(2015).

[41] F. Böhm, A. Zakharova, E. Schöll, and K. Lüdge, Phys. Rev. E
91, 040901(R) (2015).

[42] V. K. Chandrasekar, R. Gopal, A. Venkatesan, and M.
Lakshmanan, Phys. Rev. E 90, 062913 (2014).

[43] A. Mishra, C. Hens, M. Bose, P. K. Roy, and S. K. Dana, Phys.
Rev. E 92, 062920 (2015).

[44] M. R. Tinsley, S. Nkomo, and K. Showalter, Nat. Phys. 8, 662
(2012).

[45] A. M. Hagerstrom, T. E. Murphy, R. Roy, P. Hövel, I.
Omelchenko, and E. Schöll, Nat. Phys. 8, 658 (2012).

[46] L. Schmidt, K. Schönleber, K. Krischer, and V. García-Morales,
Chaos 24, 013102 (2014).

[47] E. A. Martens, S. Thutupalli, A. Fourrière, and O. Hal-latschek,
Proc. Natl. Acad. Sci. U.S.A. 110, 10563 (2013).

[48] L. Larger, B. Penkovsky, and Y. L. Maistrenko, Phys. Rev. Lett.
111, 054103 (2013).

[49] A. Rothkegel and K. Lehnertz, New J. Phys. 16, 055006 (2014).
[50] N. C. Rattenborg, C. J. Amlaner, and S. L. Lima, Neurosci.

Biobehav. Rev. 24, 817 (2000).
[51] A. Zakharova, M. Kapeller, and E. Schöll, Phys. Rev. Lett. 112,

154101 (2014).
[52] K. Sathiyadevi, V. K. Chandrasekar, and D. V. Senthilkumar,

Phys. Rev. E 98, 032301 (2018).
[53] U. K. Verma and G. Ambika, Chaos 30, 043104 (2020).
[54] T. Banerjee, D. Biswas, D. Ghosh, E. Schöll, and A. Zakharova,

Chaos 28, 113124 (2018).
[55] B. K. Bera, D. Ghosh, and T. Banerjee, Phys. Rev. E 94, 012215

(2016).
[56] O. E. Omel’chenko, J. Phys. A: Math. Theor. 52, 104001

(2019).
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