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Numerical analysis of grasshopper escapement
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The dynamics of a driven, damped pendulum as used in mechanical clocks is numerically investigated. In
addition to the analysis of well-known mechanisms such as chronometer escapement, the unusual properties of
Harrison’s grasshopper escapement are explored, giving some insights regarding the dynamics of this system.
Both the steady-state operation and transient effects are discussed, indicating the optimal condition for stable
long-term clock accuracy. The possibility of chaotic motion is investigated.
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I. INTRODUCTION

A weight-driven pendulum clock is a nonlinear, dynamic
system consisting of a damped, driven pendulum and the so-
called escapement mechanism. The role of the mechanism is
twofold. It regulates the speed of the clock by binding it to
the period of the pendulum. The second function is to provide
the energy to the pendulum, so that a nonzero oscillation am-
plitude can be maintained despite the friction. The energy is
added by pushing the pendulum along some part of its motion,
geometrically determined by escapement construction. Thus,
the frequency of the force is always the same as the pendulum
itself, making it a self-excited oscillator [1]. An extensive
overview of the physics of pendulum clocks is presented
in [2].

The long historical struggle to attain the highest possible
accuracy (stability of the period) consists of devising new
ways to separate the pendulum from various disturbances,
including the effect of escapement itself; the same mechanism
that keeps the pendulum in motion is also responsible for in-
stability. The accuracy of many popular escapement types has
been extensively analyzed; recent studies include dead-beat
escapement, gravity escapement [3,4], and anchor escapement
[1,5]. Some research covers mechanisms of historical sig-
nificance, but relatively poor timekeeping properties such as
verge and foliot [6,7]. The closely related field of the dynam-
ics of mechanical watches is still dynamically developing [8].
By moving from an idealized pendulum to a physical one,
a large number of factors need to be taken into account [9],
which can be roughly divided into three categories depending
on the source of error: pendulum, environment, and escape-
ment mechanism. The focus of this paper is the interaction
between the pendulum circular error present for any nonzero
swing angle and the escapement error caused by the distur-
bance of the pendulum motion by the clock mechanism.

In [10], the author used an approach that averages the
force over period to study the long-term effects on the pen-
dulum, on timescales much longer than a single period. The
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method of averaging is a well-developed approach to analyze
periodic, nonlinear systems [11]. On the other hand, recent ad-
vancements in computer technology make a direct numerical
integration of the partial differential equations of pendulum
motion, with resolution much smaller than a single period,
a practical approach, even for extended timescales spanning
weeks or months. The advantage of such calculation lies in its
flexibility and amount of provided data; the fine structure of
the motion on a timescale smaller than the period is preserved.

The aim of this study is to provide a numerical analysis
of the grasshopper escapement accuracy, including transient
processes and chaotic dynamics beyond the scope of asymp-
totic analytical approaches [3,10]. The calculation results
are compared with Harrison’s observations [12] and later
experimental studies [13]. The devised expression for an
escapement-induced change of pendulum period provides an
explanation for how the recently reported clock accuracy on
the level of 1 second in 100 days could be achieved [14].
Basic design principles for optimum escapement geometry are
provided.

Finally, the chaotic dynamics of the whole pendulum-
escapement system is explored for the specific case of
grasshopper escapement. The pendulum is an excellent tool
to study chaotic motion; such a behavior may emerge in
systems with mass suspended on an elastic string [15], as
well as periodically driven [16], parametrically damped [17],
and double [18] pendulums. Strongly damped pendulums may
exhibit symmetry breaking [19]. In a clock, the mechanical
oscillations of the mechanism coupled to the pendulum pro-
vide a nonlinear system with chaotic dynamics [20]. Such a
double oscillator model is adapted here to study the dynamics
of grasshopper escapement. It should be mentioned that a
system of two coupled oscillators is a flexible tool applicable
to many physical systems. Some notable examples include
Josephson junctions [21], modeling of nonlinear gravitational
interactions [22], and applications in computing and neural
network simulations [23]. It is also prominent in plasmonics;
a system of two resonant structures coupled by capacitance or
inductance provides a classical analog of electromagnetically
induced transparency [24], while a single electric oscillator in
the form of the so-called split-ring resonator is one of the basic
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FIG. 1. The analytically calculated [black line: arithmetic-
geometric mean; red line: first order approximation from Eq. (2)]
and numerically simulated (dots) pendulum period as a function of
amplitude.

building blocks of negative refraction index metamaterials
[25].

II. CIRCULAR ERROR

The equation of motion for a pendulum modeled as a point
mass m, suspended on a weightless string with length L, is

mα̈ + γ α̇ = −M

I
= − g

L
sin(α), (1)

where α is the pendulum angle, γ is a damping constant,
M = mgL sin(α) is the total moment of force, and I = mL2 is
the moment of inertia. In a physical pendulum, M and I have
more complicated forms. By substituting sin(α) ≈ α, one ob-
tains an equation for the harmonic oscillator with period T0 =
2π

√
L/g and angle α = A sin(ω0t + φ0), where ω0 = 2π/T0,

A is the amplitude, and φ0 is the starting phase. The exact
solution of Eq. (1) involves a complete elliptic integral [26].
The period of the real pendulum T is always larger than T0

and the difference is called the circular error. The value of T
can be expressed as a series [27],

T = T0

[
1 +

(
1

2

)2

sin2 A

2
+

(
1 × 3

2 × 4

)2

sin4 A

2
+ · · ·

]
. (2)

As a first approximation, the error is proportional to the square
of the amplitude. Another approach, which will be used in this
manuscript, is the arithmetic-geometric mean (AGM) [26],
which provides a particularly accurate estimation of circular
error. Both methods are shown in Fig. 1, along with the results
of numerical simulation of pendulum motion. There is excel-
lent agreement between the theory and simulation results. A

detailed simulation description and accuracy estimations are
presented in Appendix A. Naturally, to minimize the influence
of circular error, one should aim for the smallest practical
swing angle. However, even for A = 2 degrees, the circular er-
ror EC ∼ 7 × 10−5, which corresponds to a nontrivial change
of rate of the order of 6 seconds/day. One way to correct the
circular arc is to modify the pendulum suspension in such a
way that it follows a cycloid instead of circular arc, as shown
by Hyugens in 1673 [28]. Interestingly, as it will be shown,
the elimination of circular error is not always beneficial to the
clock accuracy.

III. ESCAPEMENT ERROR

Any physical pendulum is subject to friction, which causes
a reduction of amplitude over time. The common parameter
describing the energy loss of an oscillator is the Q factor,

Q = 2πE

�E
= mω

γ
, (3)

where E is the total energy and �E is the energy lost in one
period. In order to sustain pendulum motion, the escapement
mechanism of a clock needs to provide the lost energy �E in
every period by doing work,

�E =
∫ αm2

αm1

MF (α)dα, (4)

where MF is the moment of force (torque) exerted on the
pendulum and 〈αm1, αm2〉 is the range of the pendulum angle
where the force is applied. However, any force acting upon
the pendulum will change its rate, introducing an escapement
error EE ,

EE = T ′ − T

T
, (5)

where T and T ′ are periods of the free and disturbed pendu-
lum. With the above convention, positive EE indicates larger
T ′ and slower clock speed. In general, there are two distinct
cases of torque adding energy to the pendulum:

(i) force acting before the pendulum reaches its lowest
point α = 0, directed towards the lowest point;

(ii) force acting after the pendulum reaches its lowest point
α = 0, directed away from the lowest point.

In the first case, the torque adds to the restoring force
generated by gravity; therefore, the pendulum acts as though
the gravity force was greater and speeds up. Torque applied
after α = 0 reduces the “effective gravity” and slows the pen-
dulum down. One can use a symmetric range of α to avoid
influencing the pendulum speed; in other words, the period is
constant if the torque is an even function of α [1]. This is the
design goal of a chronometer escapement.

Intuitively, to reduce the error EE , one needs to minimize
the torque MF . This requirement demands low losses and
high-Q factor. Such result is in agreement with observations in
other systems such as atomic clocks; the Q factor is a measure
of the stability (precision) of an oscillator [29]. However,
some amount of friction is necessary for the pendulum to
stabilize at some amplitude A. Moreover, as it will be shown,
a pendulum with stronger damping reaches the equilibrium
point faster, making it more resistant to random external
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disturbances. Therefore, in the case of a mechanical clock, the
choice of the optimal Q factor is nontrivial.

IV. CHRONOMETER ESCAPEMENT

Let us assume a L = 1 m, m = 1 kg pendulum driven by
a constant torque MF (αm1 < α < αm2) = const applied when
the velocity α̇ is positive. The friction is assumed to be propor-
tional to speed, e.g., Mfriction = Lγ α̇, where γ is the damping
coefficient. Figure 2(a) shows the typical case where the
torque is applied exactly in the middle of the swing. A range
of simulations is performed with increasing torque MF . The
mass, geometry, and Q factor of the pendulum (Q = 1000) are
chosen to give a representative case of a real clock pendulum
[30]; a typical amplitude of several degrees is reached when
the driving torque is of the order of 1 Ncm. As expected, the
escapement error Ec is negligible; the visible, random oscilla-
tions of the order of 0.01 seconds/day (relative error �T/T ∼
10−7) can be seen as the limit of simulation accuracy. For a
given Q factor, the energy lost in a single cycle is proportional
to the total energy, which is E = 0.5mω2A2. Therefore, the
relation between amplitude and torque is A2 ∼ MF . The total
error ET = EC + EE is indistinguishable from the circular
error. Figure 2(b) shows an asymmetric system where the
pendulum is pushed when α > 0. In such a case, the EE is
positive and not negligible. Interestingly, while EC increases
with amplitude, EE decreases and their sum forms a local
minimum. At this point, the change of rate with amplitude,
e.g., ∂ET /∂A, vanishes. This means that the system is locally
insensitive to changes of force or amplitude. The particular
location of the minimum depends on the ratio of EC (which is
constant) and EE , which depends on the driving torque; for a
given amplitude A, it is a function of the Q factor. One can also
notice the lack of data points for A < αm2, indicating that the
torque was insufficient to sustain a stable oscillation. Finally,
Fig. 2(c) shows a case where the pendulum is pushed before
reaching the equilibrium point. As expected, the escapement
error is negative (period is reduced) and the total error has no
local minimum. However, ET (A) is almost linear relation in
a large range of A, which could be taken advantage of when
designing an additional error correction mechanism. In both
asymmetric cases, the absolute value of EE decreases with
amplitude. This can be explained by the fact that given fixed
values of αm1, αm2, as the A increases, a smaller portion of
the swing arc is affected by the escapement. This result is
consistent with findings in [10], where, for a short push taking
place at angle αm1, the escapement error is EE ∼ tan αm1

A2 . While
the above results are mostly a confirmation of the well-known
characteristics of chronometer escapement [2,10], they serve
as a validation for the numerical approach which will be used
for the analysis of grasshopper escapement.

V. GRASSHOPPER ESCAPEMENT

The grasshopper escapement, invented by Harrison around
1722, is an interesting mechanism with nontrivial timekeep-
ing characteristics and a large advantage of near-zero sliding
friction [13]. At first glance, some of its features should be
very detrimental to the accuracy; the escapement is pushing
the pendulum along its entire path of motion so that it is

FIG. 2. Numerical simulation results of chronometer escapement
with three different angle ranges α ∈ (αm1, αm2) where the pendulum
is pushed: (a) symmetrically at the lowest point (−2, 2), (b) before
the lowest point (−2, 0), and (c) after the lowest point (02). The
theoretical circular error EC , total error ET obtained from the simu-
lation, and escapement error EE = ET − EC are shown (blue lines);
the driving torque is also shown as a function of amplitude (orange
line).

never free. Moreover, the amplitude is unusually large. Due
to these factors, the grasshopper escapement has been histor-
ically neglected [13]. With the recent Guinness world record
of accuracy within one second in 100 days [14], there is a
renewal of interest in this type of mechanism.

For the purpose of analysis, the model constant-torque es-
capement used in [10] will be adapted as a first approximation
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FIG. 3. Pendulum angle (blue line) and driving torque (orange
line) in grasshopper escapement model, as a function of time. Shaded
parts denote recoil phase of motion (MF opposes the pendulum
motion) and dashed lines mark the angle αr = 4 degrees where the
driving torque switches sign.

of the grasshopper escapement. The driving torque is given by

MF (α) = MF0sgn(α − αrsgn(α̇)), (6)

where sgn(·) is the sign function and αr is an escapement
design parameter that specifies the pendulum angle where the
torque changes sign. The above relation is shown in Fig. 3.
Initially, the angle α increases and the torque MF is posi-
tive, pushing the pendulum in the direction of motion. When
α = αr = 4 degrees, the torque switches direction. In this
region (marked by the gray box) the mechanism exhibits
recoil—the escapement is pushing against the pendulum.
After the maximum amplitude A = 5 degrees is reached, the
pendulum reverses direction. The cycle repeats in the second
half of the period. Stable operation is possible only when
A > αr ; otherwise, the torque never switches sign and the
system stops. The system delivers energy to the pendulum
when αr > 0 (see Appendix B). The simulation results ob-
tained for various values of αr and Q are shown in Fig. 4.
Due to the fact that the torque acts over the whole pendulum
motion instead of small angle limits, for any given MF the
work done by the escapement and the resulting amplitude,
shown in Fig. 4(a), is larger compared to that in Fig. 2. A
very wide local minimum of error occurs at α ∼ 7 degrees.
While the total error is significant over the whole ampli-
tude range, its rate of change, ∂ET /∂A, is very small at
A ∈ (6, 8), making the system very tolerant to considerable
changes of driving torque. By increasing the angle where
recoil occurs to αr = 3 degrees, one further increases the
amplitude, as shown in Fig. 4(b). Due to the fact that recoil
occurs later, the EE is reduced and a minimum of total error
happens earlier, at α ∼ 5 degrees. However, a practical issue
becomes apparent—the location of the minimum approaches
the minimum amplitude A = αr necessary for escapement
operation. As in the case of the chronometer escapement,
the escapement error scales with torque and the location
of the minimum depends on the ratio of EE to EC . In or-
der to shift the minimum towards smaller angles, one can

FIG. 4. Simulation results of grasshopper escapement operation
for (a) reference design with αr = 2 degrees, Q = 1000, (b) larger
αr = 3 degrees, and (c) increased Q factor Q = 2000. Calculated
values of EC (A), EE (A), ET (A) (blue lines), and MF (A) (orange line)
are shown.

significantly reduce the driving torque and then increase the
Q factor to reach the necessary minimal amplitude. Such a
case is presented in Fig. 4(c); the optimal working amplitude
is A ∼ 4 degrees and one can achieve about 2 seconds/day
speed variation with 50% torque variation (0.04 to 0.06
Ncm). By regulating the torque to fall within 1% of nom-
inal value, one can easily attain stability of the order of a
few seconds per year as claimed in [14], provided that the
compensation for environmental effects such as changes of
temperature and air density is good enough. Note that in
all of the above cases, the escapement exhibits consider-
able recoil—the amplitude is much larger than the angle αr ,
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where the torque switches direction. As mentioned in [12], the
recoil is not necessarily detrimental, especially in grasshop-
per escapement, where it produces very little additional
friction.

The above results are consistent with the general observa-
tion in [10] that the escapement error has an opposite sign to
the circular error and the relation between the two depends
on the combination of driving torque and friction. The ap-
proach presented here where EE is calculated as a function of
amplitude provides a convenient way of finding the optimal
operating conditions which correspond to a local minimum
of total error. In general, while the circular error EC ∼ A2,
the escapement error is proportional to A, so that the mini-
mum always occurs as long as the errors have opposite signs.
The simple, linear dependence of EE on amplitude A can
be accurately predicted with a rather simple estimation (see
Appendix B). Interestingly, the final expression for EE de-
pends only on Q, A, and αr , with no direct dependence on
the driving torque. This result indicates a systematic way of
optimizing the system for maximum accuracy: starting with a
pendulum with a given Q factor and escapement with a geo-
metrically determined value of αr , one can readily calculate
the best amplitude A and then adjust the driving torque to
match that amplitude. Thus, in contrast to [13], the amplitude
is not a starting point of design, but rather a parameter that
is assumed to be variable within some limits. The above
calculations indicate that the large pendulum amplitude is
not, by itself, detrimental to the accuracy. In fact, when one
takes into consideration the external disturbances from the
environment, large A may be beneficial. Due to the fact that
pendulum energy E ∼ A2, the change of amplitude with en-
ergy is ∂A/∂E ∼ 1/

√
E . For any given disturbance adding or

subtracting some energy �E , the pendulum with the larger
total energy is less affected. The same conclusion is provided
by Harrison [12]. This problem is further explored in the next
section.

The cancellation of the effects of EC and EE causing local
insensibility to changes of amplitude does not occur when
the said change is not caused by a change of torque. When
the pendulum Q factor is decreased (due to the wear on the
pendulum suspension or change of air density and thus re-
sistance), the EC decreases due to the smaller amplitude and
the EE also decreases (reaches a larger negative value) due to
the fact that the motion becomes less harmonic. Thus, both
effects add up instead of compensating each other. The error
calculated for a wide range of torque and Q factor is shown
in Fig. 5. Overall, the error is negative (|EE | > |EC |) in the
low Q region and positive for high Q. Note that the optimal
conditions from Fig. 4(a), i.e., Q = 1000, MF ∼ 0.4 Ncm,
are located between the ET = −100 and ET = −50 contour,
inside a wide area where the error is insensitive to changes
of torque, but changes rather quickly with Q. By changing
the Q from 800 to 1200, one can expect a change of rate
of the order of 50 seconds/day. This considerable error can
be reduced by shifting the operating point towards a lower Q
factor; on the bottom left side of Fig. 5, the value of ∂ET /∂Q
is smaller (the contours are more vertical). However, at this
operating point, the mechanism is more sensitive to torque
variation. This area roughly corresponds to the operation point
of the more traditional escapement types, which usually use

FIG. 5. The effect of variable torque and Q factor on the total
error, calculated for the system from Fig. 4(a). The color denotes the
value of error ET , with selected contours of constant error marked
with black lines.

very small amplitude and driving torque; interestingly, one
can see that in this region, the error may either increase or
decrease with an increase of Q factor, as noted by Harrison
[12]. Overall, the correct choice of the optimal driving torque
depends not only on the escapement geometry and pendulum
Q factor, but also on the expected variation of MF and Q. In
this particular example, the smallest variation of error with
both parameters occurs near MF = 0.15 Ncm, Q = 1500. It
should be noted that the balance between EC and EE and the
resulting “landscape” of error can be further tuned by partially
compensating for the circular error, for example, by using a
modification of Hyugens cycloid pendulum suspension [12].

VI. VARIABLE TORQUE

Practical realization of grasshopper escapement cannot
guarantee exactly constant torque, regardless of the pendulum
angle. The direct numerical integration of equations of motion
allows one to study the effects of variable torque, which is
impossible with asymptotic approaches that neglect the fine
structure of the driving torque [10]. In particular, the error for
two different functions of MF (α) is shown in Fig. 6. In the
first case, the torque is reduced to 50% and increases linearly
to 150% at α = 12, which is the largest amplitude of the
constant torque system. Several interesting effects occur: The
increase of torque near the swing ends reduces the amplitude
and amplifies the escapement error. In the region where the
maximum torque is smaller than MF0 (α < 6), the error is
almost exactly the same as in the constant torque system.
Beyond that point, the error diverges from the MF = const
system in a linear manner. On the other hand, when the torque
is reduced at higher angles, the resulting amplitude becomes
larger. In this case, the error is also initially indistinguish-
able from the MF = const system, but for large amplitude
it changes to a linear function of A. The divergence from
the parabolic shape for the case of increasing torque can be
taken advantage of. One can introduce an additional quadratic
air resistance term ∼γV 2 to the numerical simulation, which

062208-5



DAVID ZIEMKIEWICZ PHYSICAL REVIEW E 103, 062208 (2021)

FIG. 6. The total error of the system from Fig. 4(a) as a function
of amplitude A, calculated for four different driving torque functions
MF (α) and with modified air drag model. Calculations were per-
formed for the same range of base driving torque MF0 ∈ (0, 1) Ncm,
with the resulting amplitude range dependent on the chosen function
MF (α).

represents a physical situation when the airflow around the
pendulum is not fully laminar [31]. In such a case, a significant
swing amplitude results in additional, considerable slowdown
of the pendulum. This, in turn, is countered by the speedup
caused by greater torque near the swing ends. The result
shown in Fig. 6 shows an example where the quadratic drag
coefficient is adjusted to provide a wide plateau of constant
error. Therefore, one can conceivably fine tune the perfor-
mance by adding air vanes to the pendulum that encourage
the transition to turbulent flow. Finally, in Harrison’s original
clock, the escapement geometry is set in such a way that the
torque is the highest just before it switches sign, and the lowest
after the switch, with the ratio of 2/3 [12]. In such a case, the
error remains almost exactly the same as in the constant torque
case. It should be noted that the dependence of amplitude on
the function MF (α) is nontrivial; for a given Q factor, the
energy lost in one period depends on total energy E ∼ A2,
which is then balanced with the work done by the escapement
given by Eq. (4), that is also a function of amplitude.

The above results indicate that the system is mostly in-
sensitive to variations of torque with angle as long as no
significant increase of MF occurs near the swing end. Thus,
the previous calculations performed with the constant torque
model are quite general and applicable to real life systems.
The lack of sensibility to small changes of torque distribution
is consistent with the results of theoretical approaches such as
in [32], where it is shown that the clock rate can be connected
with integrals over the whole period under the assumption that
large changes of acceleration (and thus force) occur near the
maximum swing angle. The large increase of error when sig-
nificant force is applied near the amplitude is also consistent
with the original observations by Harrison [12]. However, it
is shown that under the proper conditions, such an effect may
be beneficial when a more complex model of air resistance is
involved.

FIG. 7. Momentary change of amplitude (orange line) and pe-
riod (blue line) of the pendulum subject to point disturbance at
t = 2000 s. The calculation results for (a) the reference design from
Fig. 4(a), (b) the reduced Q factor and optimal amplitude, and (c) the
reduced Q factor and the same amplitude as in the reference design.

VII. TRANSIENT EFFECTS

Let us consider the system presented in Fig. 4(a), operating
in the steady-state regime. At some point, due to the ground
vibration, sudden hit on the clock case, etc., the momen-
tary gravity acceleration is increased to g′ = 2g for a period
of �t = 1 ms. The phase of the pendulum at the moment
when the disturbance occurs determines whether the period
is increased or decreased. For example, one can choose the
starting point of the disturbance to the moment when the
pendulum passes the α = 0 angle. Then, the apparently in-
creased gravity will slow down the pendulum on its way to
α = A. The computation results of such a setup are shown
in Fig. 7. The total error is calculated by integrating the
momentary error (T − Tstationary) over time. In Fig. 7(a), one
can see the results for the system from Fig. 4(a) operating
at its optimal amplitude of A ∼ 6.6 degrees. The disturbance
causes an immediate jump of both amplitude and rate, as
opposed to the transient response of similar systems subject
to a sudden change of either driving torque or Q factor [10].
After the initial shock, the system approaches the stationary
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condition exponentially, recovering almost completely over
the time of 2000 s. The maximum change of the period is
�T/T ∼ 0.04% and the total error is of the order of 0.05 s.
The results are in agreement with the well-known general
observation that the system averages out the very short-term
errors and its dynamics is characterized by long-term changes
(in this case, noticeable effects can be observed over the time
of several hours) [10]. Figure 7(b) shows a modification of
the system where the Q factor is reduced to 500. As men-
tioned before, in such a case the escapement error is greater
and the local minimum of ET occurs at a higher angle of
A ∼ 12.15 degrees. Due to the larger amplitude and resulting
circular error, the impact changes the rate more considerably,
by �T/T ∼ 0.1%. However, the total error is only slightly
larger due to the fact that a lower Q pendulum approaches the
steady state faster. In fact, for the same amplitude as in the first
example, disturbance of the more damped pendulum yields
lower total error [Fig. 7(c)]. Again, it turns out that the design
goal of largest possible Q factor is not always beneficial for
clock accuracy.

VIII. CHAOTIC MOTION

All of the above results are based on the assumption that
the pendulum suspension point and escapement mechanism
are designed in such a way that no significant mechanical
vibrations occur in them during regular operation. The critical
point in the motion of the grasshopper mechanism where such
vibrations may occur is the moment when MF changes sign; at
this point, one of the pallets disengages from the escapement
wheel, while the other impacts it. The stress wave propagates
through the mechanism, exciting many vibrational modes in
the structure [20].

First, let us consider a grasshopper escapement with a
large driving torque MF = 20 Ncm and strongly damped
pendulum. The trajectory in the phase space (α,V = α̇) is
shown in Fig. 8(a). One can see a spiral-like shape approach-
ing the limit cycle, representing a steady-state amplitude of
A ∼ 7 degrees. Noticeable discontinuities occur at the above-
mentioned critical points α = ±αr . In the case of larger Q
factor and smaller torque, the trajectory is more circular. For
the simulation of mechanism vibrations, one can adapt the
model presented in [20] by introducing a second harmonic
oscillator, resulting in a system of equations of motion,

α̈1 + γ1α̇1 + ω2
01α1 + C1α2 = MF (α1, α̇2)/mL2,

(7)
α̈2 + γ2α̇2 + ω2

02α2 + κα3
2 + C2α1 = 0,

where γ1, γ2 are the damping constants, ω01, ω02 are the
natural frequencies of the oscillators, κ is a parameter of a
nonlinear term [20], and C1,C2 are coupling constants that
connect the second oscillator (α2) with the pendulum (α1).
A simulation has been performed with the parameters γ1 =
π/500 (pendulum Q ≈ 500), γ2 = γ1/100, ω02 = 7ω01, κ =
107, C1 = 1, and C2 = 2.5. Note that the large value of κ is
due to the fact that in computation, the angles are expressed
in radians and thus, for α2 ∼ 1 degree, the α3 term is of
the order of 10−6. The inclusion of this term means that the
equation of motion for α2 is a Duffing oscillator [33], known
for chaotic behavior. The selected parameters serve as an

FIG. 8. (a) The trajectory (α, α̇) of the grasshopper escapement
in the phase space. The simulation parameters are the same as in
Fig. 4, but for clarity, very low Q factor is assumed. Initial angle
α(t = 0) ≈ αr . (b) Trajectory (α2, α̇2) of the second oscillator in the
two-oscillator model from Eq. (7), calculated for γ1 = π/500, γ2 =
γ1/100, ω02 = 7ω01, κ = 107, C1 = 1, C2 = 2.5.

exaggerated example and do not reflect any particular system;
they were chosen under the general assumption that the mech-
anism vibrations are high-frequency, highly nonlinear, weakly
damped waves. The pendulum size and escapement geometry
are the same as in Fig. 3(a) and the nominal driving torque is
MF = 0.5 Ncm; this value slowly increases with α̇2, modeling
reduced kinetic friction [20]. To fully determine the state of
the system, one needs two angular positions and two values
of velocity and momentum. Thus, the full phase space of the
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FIG. 9. (a) Time evolution of the second oscillator angle α2 (blue
line) and the driving torque MF (orange line). (b) Poincaré map of the
system obtained for α1 = 0 and two values of coupling constant C2,
illustrating the transition to chaotic motion.

system is four dimensional, e.g., (α1, α̇1, α2, α̇2). By tracking
only the second oscillator in its phase space (α2,V2 = α̇2),
one obtains the results shown in Fig. 8(b). One can see a
chaotic-looking trajectory resembling a strange attractor with
two general groups of orbits characterized with positive and
negative values of α2. This is confirmed by examining the
evolution of α2 in time; in Fig. 9(a), one can see a square-
like wave shifting between positive and negative values of
α2, with additional, smaller, higher-frequency oscillations.
The shift between phases occurs at the same moment as the
shift of the sign of the driving torque. From the mechanical
point of view, at this point one of the pallets disengages
the escapement wheel while the other impacts it. Thus, any
mechanical oscillations of the mechanism are most likely to be
excited or affected at this moment. It should be noted that the
grasshopper escapement has a unique advantage of having no
sliding friction between the pallets and escape wheel, which
could be a major source of high-frequency vibration. One
can notice the small variation of the driving torque due to
the above-mentioned velocity-dependent friction in the rest of
the mechanism. However, as mentioned before, at the optimal
operating point, one has ∂ET /∂MF ≈ 0, so that a small vari-
ation of torque has a negligible impact on the period. In fact,
the trajectory in Fig. 8(b) is similar to the one obtained for
the Duffing oscillator driven by a constant frequency source

FIG. 10. (a) Momentary error (blue line) and total error (orange
line) due to the mechanism oscillations (second oscillator α2). (b) Es-
timation of Lyapunov exponents of the first oscillator (pendulum)
and second oscillator (mechanism vibrations) in the system, indicat-
ing chaotic motion when the coupling is present.

[33], which reflects the fact that the period of the pendulum
is not significantly affected by oscillations of the mechanism.
Finally, by taking a cross section of the full phase space by
selecting only the points where α = 0, one obtains a Poincaré
map, shown in Fig. 9(b). The two cases of C2 = 2.4 and
C2 = 2.5 are shown. The increase of the coupling constant
causes a sudden transition from a regular map to a self-similar,
fractal-like one that exhibits symmetry breaking and period
doubling [34]. In conclusion, the chaotic dynamics do not
emerge unless the coupling constant is sufficiently large; an
increase of γ2 also has a stabilizing effect on the system.
Interestingly, despite a different form of coupling between the
oscillators, the obtained trajectories and Poincaré map exhibit
a structure that is very similar to the one calculated in [21] for
the case of a Josephson junction.

From the perspective of accurate timekeeping, the most
important parameter is the overall effect of the vibrations
on the pendulum speed, which is shown in Fig. 10(a). One
can notice a short-term, semirandom variation of the clock
rate (blue line) of the order of 20 seconds/day. The apparent
randomness is another indication that the system is chaotic.
However, as mentioned in the discussion of transient effects,
the final amplitude and period of a high-Q pendulum are a
result of many small pushes from the mechanism delivered
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over considerable time, so that any short-time variation is
averaged out. Therefore, the total error (orange curve), which
is a sum over momentary errors, is relatively insignificant.
It is characterized by a fractal-like structure containing both
long-term and rapid oscillations (inset), similar to a random
walk.

The key characteristic of a chaotic system is the fact that
any two arbitrarily close starting points diverge exponentially
in time; for example, for two pendulum simulations given
by Eq. (7) with trajectories α11(t ), α21(t ) and α12(t ), α22(t )
accordingly, with slightly different starting conditions αi j (0),
one has

|α11(t ) − α12(t )| ∼ eλ1t ,
(8)

|α21(t ) − α22(t )| ∼ eλ2t ,

where λ1 and λ2 are the so-called Lyapunov exponents of the
pendulum and second oscillator. If either λ1 or λ2 is positive,
the system is chaotic [18]. The values of λ1, λ2 have been
calculated by performing a simulation of two pendulums with
an initial angle of α11 = 7 and α12 = 7 + 10−6 degrees which,
according to Fig. 8(c), is close to the steady-state amplitude.
The evolution of the angle difference between the two systems
is calculated and, for every time t , an exponential function is
fitted to the data, providing a set of values λ1(t ), λ2(t ). The re-
sults are shown in Fig. 10(b). The second oscillator (vibration
of the mechanism) has a significant, positive exponent that,
in time, converges to λ2 ≈ 0.05. The value for the pendulum
is much smaller and initially is negative. However, as the
system approaches the maximum amplitude, the small vari-
ations induced by the mechanism become more pronounced,
which results in a positive value λ1 ≈ 0.01. Finally, when
the coupling is turned off, the exponent converges to 0. This
means that the phase difference induced in the initial transient
part of the time evolution decreases exponentially over time,
but two pendulums operating in the steady-state regime will
keep their phase difference constant over time.

IX. CONCLUSIONS

The chronometer and grasshopper escapement have been
numerically studied. The changes of speed with variations
of escapement geometry, driving torque, and pendulum Q
factor were investigated, showing that many theoretical results
regarding the long-term dynamics of the pendulum can be
readily tested and confirmed with a direct numerical inte-
gration of equations of motion. The presented approach is
both simple and flexible, allowing for study of steady-state
motion as well as transient processes. It can be easily extended
to model additional effects such as mechanical oscillations
in the mechanism, leading to a chaotic motion. The results
concerning the optimal working conditions of grasshopper
escapement are in agreement with Harrison’s original notes
and give some additional insight into this peculiar system,
often going against established guidelines applicable to other
escapement mechanisms. It is shown that with careful selec-
tion of parameters, an exceptional accuracy can be achieved.
The possibility of chaotic dynamics emerging in the system is
investigated.

FIG. 11. The difference between circular error calculated from
arithmetic-geometric mean and the values obtained from simulations
performed with various numerical time steps (dots, circles, and dia-
monds) and one- or two-term expansion from Eq. (2).

APPENDIX A

The pendulum motion is represented as a series of angle
values αn at times tn = n�t , where �t is a finite time step.
The angle is calculated by integrating the equations

Vn+1 = Vn +
∫ t+�t

t
a(τ )dτ ≈ Vn + at�t,

(A1)

αn+1 = αn +
∫ t+�t

t
V (τ )dτ ≈ αn + Vt�t,

where V is the angular velocity and the angular acceleration is
given by

a = − g

L
sin(α) − γ

mL
V + MF

mL2
, (A2)

where γ is a damping constant. The drag force proportional
to the velocity is a good approximation of the laminar drag
[31], provided that the velocity variation is small; in gen-
eral, the drag coefficient reduces with Reynolds number,
which is proportional to the velocity. Precise determination
of drag forces can be achieved with fluid dynamics simu-
lations [35]. To choose the appropriate time step, a series
of simulations has been performed (Fig. 11) and the dif-
ference between the calculated circular error and the exact
(within floating point arithmetic accuracy) value obtained
with arithmetic-geometric mean [26] has been investigated.
Additionally, one- and two-term expansion of Eq. (2) has
been added. Interestingly, even one-term expansion provides
a good approximation of the circular error, with a difference of
under 6 seconds/year (relative error ∼10−7) at α = 5 degrees.
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Numerical simulation spanning 2000 seconds, with a time
step of 100 μs (N = 2 × 107 steps in total) provides compa-
rable accuracy when the period is averaged over the whole
simulation time (∼1000 periods). By reducing the time step to
10 μs, for the same simulation time N = 2 × 108, one obtains
an error roughly 10 times smaller. However, the computation
time, which is proportional to N , is increased by a factor of
10. Further reduction of the time step to �t = 1 μs provides
only a modest increase of accuracy. Therefore, �t = 10 μs is
selected.

In the simulations where a steady state has to be reached,
considerable simulation time of the order of hours is often
needed for the amplitude to stabilize fully. In order to speed
up such computations, a dynamic time step is used. The initial
phase where the pendulum quickly increases its amplitude is
simulated with �t = 1 ms. As the step number n increases,
the time step is reduced exponentially to its final value of
�t = 10 μs. By doing so, one can dramatically increase the
total simulation time while preserving the small time step for
the stationary regime, where the changes of amplitude and
period are very small and require additional accuracy. This
method is used in all calculations regarding chronometer and
grasshopper escapement, with N = 2 × 107 steps and total
time t ≈ 6000 s. The steady-state period is an average of the
last 100 values.

APPENDIX B

One can estimate the escapement error of the grasshop-
per escapement on the basis of energy conservation. Let us
consider a single period that starts at α = −A, α̇ > 0. The
pendulum is constantly pushed in the direction of motion,
passing the middle point α = 0 and climbing up to α = αr ,
which results in the work done by the escapement,

W1 = MF (A + αr ), (B1)

where MF is assumed to be constant. In the last part of motion
αr < α < A, the torque counteracts the pendulum motion,
doing work

W2 = −MF (A − αr ). (B2)

These two phases repeat in the second part of the period.
Neglecting the frictional losses, the kinetic energy increases

by

�Ek = 2W1 + 2W2 = 4MF αr . (B3)

Thus, a nonzero αr is necessary to deliver energy to the pen-
dulum.

As mentioned in the discussion of the chronometer es-
capement, a torque acting symmetrically around α = 0 has
no impact on the period; therefore, for estimation of the es-
capement error, the crucial part of the pendulum motion is
the recoil phase α > αr . With this assumption, one can again
consider the change of kinetic energy,

�Ek

Ek
= 2�V

V
= 2MF (A − αr )

mω2A2
, (B4)

where ω is the angular frequency of the pendulum and Ek =
1
2 mω2A2 is the kinetic energy. With this, one obtains

T − T ′

T ′ = V − V ′

V ′ ≈ �V

V
= MF (A − αr )

mω2A2
. (B5)

The perturbed period T ′ is smaller than T , so that the error EE

given by Eq. (5) is negative. In a steady state, from Eq. (3) and
Eq. (B3), one has

MF = πmω2A2

4Qαr
, (B6)

so that

EE = −MF (A − αr )

mω2A2
= −π (A − αr )

4Qαr
. (B7)

The error has a linear dependence on A and converges to
EE (A = αr ) = 0. It also decreases with increase of αr and Q.
The latter effect is an indirect result of smaller torque MF

necessary to achieve the given A with larger Q. Despite the
simplistic nature of the derivation, the result reflects all the
key properties of escapement error visible in Figs. 4; the EE

is a negative, linear function of A. By comparing Fig. 4(a)
and Fig. 4(b), one can see that for any given A, the ratio
of errors for αr = 2 and αr = 3 is close to 3/2. The error
for Q = 1000 [Fig. 4(a)] is twice as large as for Q = 2000
[Fig. 4(c)]. For a specific numerical example, let us consider
the value of EE in Fig. 4(a) for A = 5 degrees, which is
EE ≈ −100 seconds/day. From Eq. (B7), one obtains EE ≈
1.178 × 10−3 ≈ 102 seconds/day.
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