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Chaos on compact manifolds: Differentiable synchronizations beyond the Takens theorem
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This paper shows that a large class of fading memory state-space systems driven by discrete-time observations
of dynamical systems defined on compact manifolds always yields continuously differentiable synchronizations.
This general result provides a powerful tool for the representation, reconstruction, and forecasting of chaotic
attractors. It also improves previous statements in the literature for differentiable generalized synchronizations,
whose existence was so far guaranteed for a restricted family of systems and was detected using Hölder exponent-
based criteria.
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I. INTRODUCTION

Synchronization phenomena between chaotic systems have
deserved much attention for decades (see [1–4] for self-
contained presentations and many references). This topic has
intrinsic theoretical interest and a variety of applications rang-
ing from encryption [5,6] and communication schemes [7]
to the analysis of neurological disorders [8,9]. Generalized
synchronizations (GSs) were introduced in [10] to describe a
system driven by the observations of a chaotic dynamical sys-
tem that (asymptotically) yields a master-slave configuration.
The master is the full dynamical system (not its observations)
and the slave is the driven system. Any map that implements
this configuration is called a GS.

Given a system driven by the observations of an invertible
dynamical system, the main theorem in [11] shows that the
asymptotic stability of the system response is a sufficient
condition for the existence of a GS. Nevertheless, it was
quickly noticed in [12,13] that the GS guaranteed by this
theorem may have poor regularity properties, rendering it
useless as an attractor representation and reconstruction tool.
This fact motivated the distinction in [12] between strong and
weak GSs depending on whether the synchronization map is
differentiable or not. Differentiability was also identified in
[13] as a crucial property that determines how useful a GS
may be in important tasks such as the estimation of attractor
dimensions or Lyapunov exponents. Additionally, a differen-
tiability criterion was introduced in that paper based on the
Hölder exponent of the response, mostly for invertible driving
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dynamical systems whose attractors have only one negative
Lyapunov exponent.

In this paper we replace the analytical approach in [13]
with a geometrical one that, combined with arguments coming
from functional analysis, allows us to prove another differen-
tiability criterion. Our main statement (Theorem III.1) shows
that if the invertible dynamical system has a compact manifold
as phase space and its observations drive a fading memory
system with locally state-contracting map, then the gener-
alized synchronizations introduced in [11] always exist and
are continuously differentiable. We carefully define all these
terms later in the paper.

Recurrent neural networks and reservoir computing
[14,15] have recently enjoyed remarkable success learning
[16–19] and classifying [20] chaotic attractors of complex
nonlinear infinite dimensional dynamical systems, and de-
tecting GS phenomena [21–23]. This strongly suggested that
these machine learning paradigms have Takens embedding-
type properties [24,25]. This fact has been rigorously estab-
lished in [26] where the so-called echo state networks (ESNs)
[16,27–30] driven by one-dimensional observations of a given
dynamical system on a compact manifold have been shown to
produce dynamics that are topologically conjugate to that of
the original system. This result is actually proved by, among
other things, showing that a natural map that arises in that con-
text (called an echo state map) is a differentiable generalized
synchronization.

Theorem III.1 in this paper is an extensive generalization
of that differentiability statement, that is shown to be valid not
only for ESNs, but for any fading memory system generated
by a locally state-contracting system.

In many of the most recent studies (as in [16–20]), learning
and classifying chaotic attractors is tackled by construct-
ing state-space systems to which one naturally associates
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autonomous systems that serve as proxies for the dynamics
that needs to be learnt. An important implementation prob-
lem that arises using this approach is the so-called curse of
dimensionality which, in general, can be elegantly avoided
assuming higher order regularity [31]. More specifically, the
availability of an injective GS for a dynamical system implies
the supervised learnability (explained in the next section)
of the dynamics from its observations. The learning is done
by approximating a readout function that is defined in a po-
tentially high-dimensional state space. We shall see that the
regularity of this readout is determined by the smoothness of
the dynamical system in question and of the inverse of the GS
(available by the injectivity hypothesis). Hence, if this readout
is learnt using standard paradigms like (deep) neural networks
or splines, then classical works (see, for instance, [31,32])
show that the approximation rate depends on the ratio between
the state space dimension (again, potentially very high) and
the smoothness of the readout. The differentiability of the GS
is therefore of crucial practical importance.

A more recent framework in which GS differentiability
arises as a key feature is that of the transfer learning of
dynamical systems, as characterized in [33]. This technique
translates to the dynamical systems context a concept that
has already been successfully used in machine learning [34]
and that spells out how to adequately learn the dynamics of
a system with training data generated by another one that
is close in systems space. When the different systems to be
learnt are labeled by a parameters space, a necessary condition
for this technique to function is the structural stability of the
data generating systems with respect to those parameters, as
well as the differentiability of the readouts that are trained to
implement the learning. As we explain in the next section,
those readouts can be encoded in terms of a GS whose dif-
ferentiability ensures that of the corresponding readout and
hence makes transfer learning possible.

In view of this discussion, this paper identifies a rich
class of systems for which continuously differentiable GSs
are available for invertible dynamical systems on compact
manifolds. Additionally, when the GS happens to be injective,
the supervised learning of the attractor of a given dynami-
cal system based on finite-length observations is feasible in
practice. These results are valuable for the representation, re-
construction, and forecasting of chaotic attractors and explain
the excellent performance of reservoir computing and of ESNs
in particular evidenced in the above references.

II. DEFINITIONS AND PRELIMINARY DISCUSSION

A. The dynamical system

All along this paper we consider an invertible and discrete-
time dynamical system determined by a map φ that belongs
either to the set Hom(M ) of homeomorphisms (continuous
invertible maps with continuous inverse) of a compact topo-
logical space M or to the set of diffeomorphisms Diff1(M )
of a finite-dimensional compact manifold M. Later on, in the
differentiable case, we need to ensure that M can be endowed
with a Riemannian metric and that is why we additionally
assume that M is connected, Hausdorff, and second-countable
(see [35], Proposition 2.10]). The d-dimensional observations

of the dynamical system are realized by maps ω that belong
either to C0(M,Rd ) or to C1(M,Rd ) depending on the nature
of φ [Hom(M ) or Diff1(M ), respectively]. When M is a man-
ifold, the symbol T M denotes the tangent bundle of M, T φ :
T M −→ T M the tangent map of φ, and Dω : T M −→ Rd

the differential of the observation map ω.

B. Sequences

Z denotes the integers and the symbol Z− :=
{. . . ,−2,−1, 0} stands for the nonpositive integers. Given
Dd ⊂ Rd , we denote by DZ

d (respectively DZ−
d ) the set of

Dd -valued two-sided infinite (respectively semi-infinite)
sequences. The symbol (�∞(Rd ), ‖ · ‖∞) [respectively
(�∞

− (Rd ), ‖ · ‖∞)] denotes the Banach space of Rd -valued
two-sided infinite (respectively semi-infinite) sequences
that have a finite supremum. For any t ∈ Z we define the
projection pt : �∞(Rd ) −→ Rd such that pt (z) := zt and
the time delay operator Tt : �∞(Rd ) −→ �∞(Rd ) given by
Tt (z)τ := zτ−t , τ ∈ Z. It is easy to see that both pt and Tt are
bounded linear operators and that for any t1, t2 ∈ Z we have

pt1+t2 = pt1 ◦ T−t2 = pt2 ◦ T−t1 . (1)

These definitions can be easily adapted to time delays and
projections defined in �∞

− (Rd ) (see [36, Sec. 2.3]).

C. The delay map

Define the (φ,ω)-delay map S(φ,ω) : M −→ �∞(Rd ) as
S(φ,ω)(m) := {ω(φt (m))}t∈Z and S−

(φ,ω) : M −→ �∞
− (Rd ) by

S−
(φ,ω)(m) := {ω(φt (m))}t∈Z− . Note that the Abelian group

(Z,+) acts both on the phase space M via φ and on the
space �∞(Rd ) via the time delay operators. The map S(φ,ω)

is equivariant with respect to those two actions, that is,

T−t (S(φ,ω)(m)) = S(φ,ω)(φt (m)), (2)

for all t ∈ Z and m ∈ M.

D. State maps, the echo state property (ESP), and the fading
memory property (FMP)

Let F : RN × Rd −→ RN be a state map with states in RN ,
N ∈ N. Whenever there exist subsets DN ⊂ RN and Dd ⊂ Rd

such that F (DN × Dd ) ⊂ DN , we shall denote the restricted
state map F : DN × Dd −→ DN with the same symbol. Given
a state map F : DN × Dd −→ DN and two subsets Vd ⊂ DZ

d

and VN ⊂ DZ
N , we say that the state map determined by F has

the (Vd ,VN )-echo state property (ESP) (see [37–39] for in-
depth descriptions of this property) when for any z ∈ Vd ⊂
DZ

d there exists a unique x ∈ VN ⊂ DZ
N such that

xt = F (xt−1, zt ), for all t ∈ Z. (3)

When the inputs in the system determined by F : DN ×
Dd −→ DN are the ω-observations of the dynamical system
φ [we assume that ω(φ(M )) ⊂ Dd ] we then talk about the
(φ,ω)-echo state property. This is a particular case of the
general definition that we just introduced as the (φ,ω)-ESP
is the same as the (S(φ,ω)(M ), DZ

N )-ESP in the sense above.
Given a system like (3) that has the (Vd ,VN )-ESP we

can naturally define a causal and time-invariant filter U F :
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Vd −→ VN by assigning to each z ∈ Vd the unique x ∈ VN that
satisfies (3). We recall that the dynamics of causal and time-
invariant filters is fully determined by their restriction (in the
domain and codomain) to semi-infinite sequences labeled by
Z−. We will use exchangeably the filters operating on two-
sided infinite and semi-infinite sequences.

Let U : �∞
− (Rd ) −→ �∞

− (RN ) be a causal and time-
invariant filter. Consider a weighting sequence w, that is, a
strictly decreasing sequence with zero limit w : N −→ (0, 1]
such that w0 = 1, and define w-norm by

‖z‖w := sup
t∈Z−

{‖zt‖w−t }, for any z ∈ (Rd )Z− .

We say that U has the fading memory property (FMP)
with respect to the sequence w if U : (�∞

− (Rd ), ‖.‖w ) −→
(�∞

− (RN ), ‖.‖w ) is continuous, that is, for any z ∈ �∞
− (Rd )

and any ε > 0 there exists a δ(ε, z) > 0 such that for any
z̄ ∈ �∞

− (Rd ) it holds that

‖z̄ − z‖w < δ(ε, z) ⇒ ‖U (z̄) − U (z)‖w < ε. (4)

We recall that for any compact set Dd ⊂ Rd (see [40, Corol-
lary 2.7]) the metric induced by any weighted norm ‖ · ‖w

on DZ−
d ⊂ �∞

− (Rd ) generates the product topology on it. The
FMP is a dynamic continuity feature that, roughly speaking,
makes the influence of the inputs on the outputs of the system
determined by F less important as they become more distant
in the past.

We shall use the following notation: in Euclidean spaces
Rd and for any L > 0, the symbol BL ⊂ Rd [respectively
BL(v) ⊂ Rd , with v ∈ Rd ] denotes the 2-ball centered at zero
(respectively at v ∈ Rd ).

The next result shows that locally contracting state maps
produce systems that have automatically the ESP and the
FMP, provided that the inputs take values in a compact set.

Proposition II.1. Let F : RN × Rd −→ RN be a contin-
uous state map, let DN ⊂ RN be a closed subset, and let
Dd ⊂ Rd be a compact subset. Suppose that F (DN × Dd ) ⊂
DN and that the restriction (denoted with the same symbol)
F : DN × Dd −→ DN is a contraction in the state variable,
that is, there exists a constant 0 < c < 1 such that for all
x1, x2 ∈ DN and z ∈ Dd

‖F (x1, z) − F (x2, z)‖ � c‖x1 − x2‖. (5)

Then:
(i) There exists a compact subset W ⊂ DN such that

F (W × Dd ) ⊂ W and the system determined by F :
W × Dd −→ W with inputs in DZ−

d ⊂ �∞
− (Rd ) has the

(DZ−
d ,WZ− )-ESP. This means that for any z ∈ DZ−

d there ex-
ists a unique x ∈ WZ− such that

xt = F (xt−1, zt ), for all t ∈ Z−. (6)

If DN is convex, then the compact subset W can be chosen to
be also convex.

(ii) The recursions (6) determine uniquely a state filter
U F : DZ−

d −→ WZ− that satisfies

U F (z)t = F (U F (z)t−1, zt ), for all t ∈ Z−. (7)

The filter U F is continuous when DZ−
d and WZ− are endowed

with the product topology. Moreover, U F has the fading mem-
ory property with respect to any weighting sequence.

E. Generalized synchronizations

Consider now a continuously differentiable state map F :
RN × Rd −→ RN with states in RN , N ∈ N, as well as the
drive-response system associated to the ω-observations of the
dynamical system φ and determined by the recursions:

xt = F (xt−1, S(φ,ω)(m)t ), t ∈ Z, m ∈ M. (8)

We say that a generalized synchronization (GS) occurs in this
configuration when there exists a map f : M −→ RN such
that for any xt , t ∈ Z, as in (8) it holds that

xt = f (φt (m)), (9)

that is, the time evolution of the dynamical system in phase
space (not just its observations) drives the response in (8). All
these concepts can be easily extended to the more general
situation in which M is just a compact topological space,
φ ∈ Hom(M ) is a homeomorphism (that is, φ is continuous,
invertible, and the inverse is also continuous), and ω and F are
just continuous.

When a GS is invertible, the readout h := ω ◦ φ ◦
f −1 : f (M ) ⊂ RN −→ Rd of the states xt determined by
(9) fully characterize the dynamics of the ω-observations
{ω(φt (m))}t∈Z of φ because h(xt ) = ω ◦ φ( f −1(xt )) =
ω(φt+1(m)). This observation implies that this dynamics can
be captured via supervised learning if the function h :=
ω ◦ φ ◦ f −1 is sufficiently regular to be efficiently approxi-
mated by a universal family (for instance neural networks or
polynomials). This rationale has been profusely exploited in
forecasting applications in the context of reservoir computing
(see [16–20] as well as [41,42]). We emphasize that in the
reservoir computing context the state map F is quasirandomly
generated and the readout h is constrained to be linear. We
are not aware of the existence of a dynamic representation
theorem of the type that we just evoked in the presence of
invertible synchronizations and we conjecture that such a
statement can only be formulated up to topological conjuga-
cies, in the spirit of the results in [26,43].

We emphasize that the definition (9) presupposes that
F has the (φ,ω)-echo state property and that F hence
determines a unique causal and time-invariant filter U F :
S(φ,ω)(M ) −→ (RN )Z that associates to each orbit S(φ,ω)(m)
the unique solution sequence x ∈ (RN )Z of (8).

In the following lemma we show that the map f(φ,ω,F ) :
M −→ RN defined by

f(φ,ω,F )(m) := p0(U F (S(φ,ω)(m))), (10)

with p0 : (RN )Z → RN the projection onto the zero entry
of the sequence, is a GS between the original dynamical
system φ and the response of the system F driven by its
ω-observations.

Lemma II.2. Let φ ∈ Hom(M ) be an invertible dynamical
system on a compact topological space M, ω ∈ C0(M,Rd )
an observation map, and F : DN × Dd −→ DN a continuous
state map, with DN ⊂ RN and Dd ⊂ Rd . If the system de-
termined by F and driven by the ω-observations of φ has
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the (φ,ω)-ESP, then the map f(φ,ω,F ) : M −→ DN defined by
f(φ,ω,F )(m) := p0(U F (S(φ,ω)(m))) is a generalized synchro-
nization, that is, it satisfies the defining relation (9) and, more
generally,

U F (S(φ,ω)(m))t = f(φ,ω,F )(φt (m)), (11)

for any t ∈ Z, m ∈ M.
Lemma II.3. In the same setup as Lemma II.2, the state

synchronization map f(φ,ω,F ) satisfies the identity

f(φ,ω,F )(m) = F ( f(φ,ω,F )(φ−1(m)), ω(m)), (12)

for all m ∈ M.
In the next section, the main result of the paper, Theorem

III.1, characterizes a large family of state maps F for which
the GS f(φ,ω,F ) is continuously differentiable and, additionally,
it is the unique generalized synchronization that satisfies the
recursion (12). More specifically, the crucial condition on the
state map F that makes GSs of the type (10) available is its
local contractivity in the state variable. This means that there
exists a constant 0 < c < 1 and a closed convex set V ⊂ RN

such that F (V × ω(M )) ⊂ V and, additionally, for all x1, x2 ∈
V and z ∈ ω(M ),

‖F (x1, z) − F (x2, z)‖ � c‖x1 − x2‖. (13)

This condition ensures (see Propositions II.1 and D.1) that the
ESP always holds. Additionally, we recall that the local con-
tractivity implies the fading memory property [see (4) and part
(ii) in Proposition II.1]. The FMP implies the so-called unique
steady-state property, also referred to as input-forgetting prop-
erty [36,37]. All these properties are relevant in our context as
they all coincide with the asymptotic stability that has been
identified in the foundational paper [44] as the characterizing
property for the existence of generalized synchronizations.

III. THE MAIN RESULT

The next theorem, proved in detail in the appendices (see
Proposition D.1, Theorem E.3, and Remark D.2), shows that
for invertible dynamical systems φ defined on compact topo-
logical spaces M, systems determined by locally contracting
state maps F always determine a generalized synchronization
that has the same degree of regularity as the dynamical system
φ, the system F , and the observations ω that drive it.

Theorem III.1. Let φ ∈ Hom(M ) be an invertible discrete-
time dynamical system on a compact topological space M,
ω ∈ C0(M,Rd ) a continuous observation map, and let F :
RN × Rd −→ RN be a continuous state map that is lo-
cally contracting in the state variable. Let V ⊂ RN be a
closed set such that F (V × ω(M )) ⊂ V and where F is state-
contracting. Then:

(i) The corresponding restricted system F : V ×
ω(M ) −→ V has the (φ,ω)-ESP and hence the generalized
synchronization f(φ,ω,F ) is well defined. In this case, the GS
f(φ,ω,F ) : M −→ V is continuous and it is the only map with
that codomain that satisfies the identity (12).

(ii) The same conclusion holds when M is a compact
differentiable manifold, φ ∈ Diff1(M ) is an invertible differ-
entiable dynamical system, ω is of class C1, F is of class C2,

and V is closed and convex. In this case, if

LFx < min{1, 1/‖T φ−1‖∞}, (14)

then the associated GS f(φ,ω,F ) is continuously differentiable.
In (14) LFx := sup(x,z)∈V ×ω(M ) {‖DxF (x, z)‖} and ‖T φ‖∞ :=
supm∈M {‖Tmφ‖}, with Tmφ : TmM −→ Tφ(m)M the tangent
map of φ at m ∈ M.

The strategy for obtaining the two parts of this state-
ment consists in using the natural Banach space structures
of the spaces C0(M,RN ) and C1(M,RN ) of continuous
and differentiable functions respectively, to apply the Ba-
nach Contraction-Mapping Principle to an automorphism � :
C0(M,RN ) −→ C0(M,RN ) of C0(M,RN ) [respectively of
C1(M,RN )] defined using the right-hand side of (12), namely,

�( f )(m) := F ( f (φ−1(m)), ω(m)), for all m ∈ M.

The compactness of M is a crucial hypothesis in all these
constructions. Using this approach, the local contractivity
hypotheses on F [as well as condition (14) in the differ-
entiable case] imply that � is contracting. The generalized
synchronization f(φ,ω,F ) hence arises as its unique fixed point,
a condition that amounts to the identity (12).

It is important to emphasize that for a given state map F :
RN × ω(M ) −→ RN there could exist various disjoint closed
sets like V that satisfy the hypotheses in the theorem. The
use of the restrictions of F to each of them leads in general
to different generalized synchronizations f(φ,ω,F ) with disjoint
codomains. This feature is much related with multistability
phenomena and the so-called echo index, as presented in [45].
See also [39,46] for related discussions.

The strategy followed in the theorem guarantees that
f(φ,ω,F ) can be obtained by iterating the map � using any con-
tinuous or differentiable function f0 (for instance, a constant
function) as initial condition. In other words, f(φ,ω,F ) is the
uniform limit of the sequence determined by the iterations

fn+1 = �( fn), with f0 := constant. (15)

There is a fundamental practical difference between the
construction of the generalized synchronization using the re-
cursion (15) or via the definition f(φ,ω,F ) := p0 ◦ U F ◦ S(φ,ω)

in (10). The former requires full knowledge about the dynam-
ical system φ while the latter only uses its ω-observations.
This difference is of much relevance when a synchronization
has to be constructed or learned using only temporal traces of
observations of a given data-generating dynamical system.

The existence of differentiable synchronizations for in-
vertible chaotic systems on compact manifolds is not a
new fact as it follows from the Takens theorem [24,25].
Indeed, this result shows that in the presence of certain
nonresonance conditions and for generic scalar observations
ω ∈ C2(M,R) of a dynamical system φ ∈ Diff1(M ), with
M compact and q-dimensional, a (2q + 1)-truncated version
S2q+1

(φ,ω) of the the (φ,ω)-delay map given by S2q+1
(φ,ω)(m) :=

(ω(m), ω(φ−1(m)), . . . , ω(φ−2q(m))) is a continuously differ-
entiable embedding. This map is in turn the GS corresponding
to the linear state map F (x, z) := Ax + Cz, with A the lower
shift matrix in dimension 2q + 1 and C = (1, 0, . . . , 0) ∈
R2q+1, which, by the Takens theorem, constitutes a differ-
entiable GS for the scalar observations of φ. Theorem III.1
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allows us to extend a part of this statement. Indeed, consider
an arbitrary linear state map F (x, z) := Ax + Cz, A ∈ MN,N ,
C ∈ MN,d , whose connectivity matrix A has singular values
bounded by one, that is σmax(A) < 1, and that is driven by
continuous d-dimensional observations ω ∈ C0(M,Rd ) of φ.
Theorem III.1 guarantees that the system associated to F
yields a continuous synchronization f(φ,ω,F ). Additionally, if
ω is of class C1 (not C2 as in the Takens theorem) and
σmax(A) < min {1, 1/‖T φ−1‖∞} then f(φ,ω,F ) is necessarily
differentiable. We note in passing that the encoding of the
Takens delay embedding as a GS shows that the local contrac-
tivity invoked in the hypotheses of Theorem III.1 is sufficient
but not necessary. Moreover, this result guarantees continuity
or differentiability for GSs but does not warrant injectivity or
immersivity for which, as we know from the Takens theorem
case, it is likely to be required additional genericity and/or
dimensional conditions.

More recently a similar fact has been proved in [26, Theo-
rem 2.2.2] for systems defined by echo state networks, that
is, recurrent neural network-like state systems of the form
F (x, z) := σ(Ax + Cz + ζ), where A ∈ MN,N , C ∈ MN,d ,
ζ ∈ RN , and the function σ : RN −→ RN is constructed by
componentwise application of a continuous squashing func-
tion σ : R −→ R. Theorem III.1 guarantees that when F is
contracting in the state variable then it yields a continuous
synchronization f(φ,ω,F ). Additionally, if ω ∈ C1(M,Rd ), σ ∈
C2(R), and σmax(A)Lσ < min {1, 1/‖T φ−1‖∞} with Lσ :=
supz∈R {|σ ′(z)|}, then f(φ,ω,F ) is necessarily continuously dif-
ferentiable. This condition coincides with the one in [26,
Theorem 2.2.2].

We emphasize that the differentiability results that we have
established in this paper obviously do not imply that the
generalized synchronizations that we introduced are diffeor-
morphisms onto their images or even injective. As it was
explained in the Introduction and in Sec. II such a feature
is very important at the time of using these results to, for
instance, learn attractors from time series. It is clear that
additional conditions (among others dimensional) need to be
required for this to hold. Even though conjectures in this di-
rection have already been formulated (see the last paragraphs
in [11]) this question remains open to our knowledge and it
will be the subject of a forthcoming publication that is now in
preparation [47].

IV. NUMERICAL ILLUSTRATION

In this section we illustrate various GSs for the Lorenz sys-
tem using a state map that satisfies the hypotheses of our main
result. We recall that the Lorenz system with the parameter
values given in the original paper [48] is determined by the
differential equation

u̇ = 10(u − v),

v̇ = u(28 − w) − v,

ẇ = uv − 8w/3.

A discrete-time dynamical system φ can be derived from the
Lorenz equation like so:

φ(u, v,w) = (u, v,w) +
∫ h

0
(u̇, v̇, ẇ) dt,

FIG. 1. A trajectory of the Lorenz system.

with u(0) = u, v(0) = v, w(0) = w, and time step h. We
simulated a 4000 point (40 time units) trajectory originating
from the initial point m = (0, 1, 1.05) with time step h =
0.01. Figure 1 shows this trajectory for times t ∈ (20, 40).
If we observe only the u-component of this trajectory, then
the observation function is ω(u, v,w) = u. The corresponding
observed trajectory is illustrated in Fig. 2.

We now define the state system F : R3 × R → R3 given
by

F (x, z) = (
xα

1 , xα
2 , xα

3

) + λ(sin(kz), cos(kz), sin2(kz))

with λ, k � 0 and α ∈ (0, 1). If we choose λ = 0, then the
state system is autonomous and has eight stable fixed points
at (1,1,1), (−1, 1, 1), (1,−1, 1), (1, 1,−1), (−1,−1, 1),
(−1, 1,−1), (1,−1,−1), (−1,−1,−1). A cross section of
the phase portrait of this autonomous system at the w = 1
plane is shown in Fig. 3.

If we now choose λ = 0.009, k = 0.1 and α = 0.9, then we
can construct a box V1 = [0.9, 1.1] × [0.9, 1.1] × [0.9, 1.1]
containing the fixed point (1,1,1). We can create a similar box
about each of the other seven fixed points and denote them
V2,V3, . . . ,V8. We have by construction for each i = 1, . . . , 8
that F (Vi, ω(R3)) ⊂ Vi and that F is state contracting on each
box Vi. Thus, by Theorem III.1 the corresponding restricted
state maps F : Vi × ω(M ) −→ Vi have the (φ,ω)-ESP, so the
generalized synchronizations f(φ,ω,F ) are well defined and dif-
ferentiable.

We then computed the states

x = F (xt−1, ω(φt (m)))

FIG. 2. u-component of a trajectory of the Lorenz system.
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FIG. 3. A phase portrait of the autonomous system F (x, z) =
(xα

1 , xα
2 , xα

3 ) at the cross section x3 = 1 with the four stable fixed
points.

from two different initial states x0 = (1, 1, 1) and x0 =
(−1, 1, 1) and plotted the results in Fig. 4. Since F has the
fading memory property and hence the input-forgetting prop-
erty (see Proposition II.1), the values xt produced by these
iterations converge (after a washout period) to the unique
state-space solution {xt }t∈Z determined by the infinite input
{ω(φt (m))}t∈Z. We chose the interval (0,20) as washout pe-
riod. The defining property (9) of the synchronization maps
f(φ,ω,F ) guarantee that, after the washout period, the values xt

are virtually indistinguishable from the image f(φ,ω,F )(φt (m)).
Furthermore, for any initial point x0 ∈ Vi, the states xt

FIG. 4. Image of the Lorenz solution by two different synchro-
nization maps f(φ,ω,F ) that contain the points (±1, 1, 1) in their
images.

converge to the same image f(φ,ω,F )(φt (m)) contained by the
box Vi.

The mapping f(φ,ω,F ) from the Lorenz attractor to the reser-
voir space can be numerically computed using two different
methods that yield similar results. We have just described the
first, and the second uses the iterations (15), taking as an initial
conditions the constant map f0 = x0, with x0 = (1, 1, 1) or
x0 = (−1, 1, 1), respectively.

Figure 4 shows that that the GS f(φ,ω,F ) is visually a dif-
ferentiable mapping of the Lorenz trajectory into the state
space. We stress nevertheless that we have no theoretical
guarantees (yet) of the injectivity of f(φ,ω,F )(φt (m)) and hence
of the supervised learnability of the Lorenz attractor using this
particular synchronization.
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APPENDIX A: PROOF OF PROPOSITION II.1

The proof of these claims hinges on various results that are
already available in the literature.

(i) We start by using an argument similar to the one in
[49, Remark 2]. Fix an element v ∈ DN . Given that {v} × Dd

is a compact subset of RN × Rd and F is continuous, then
(see [50, Theorem 26.5]) F ({v} × Dd ) is a compact subset
of RN and hence bounded (see [50, Theorem 27.3]). This
implies the existence of a constant r > 0 such that F ({v} ×
Dd ) ⊂ Br (v) ∩ DN . We now see that for any constant M >

r/(1 − c) > 0, the compact set W := DN ∩ BM (v) satisfies
that F (W × Dd ) ⊂ W . Indeed, for any (x, z) ∈ W × Dd we
can write:

‖F (x, z)‖ � ‖F (x, z) − F (v, z)‖ + ‖F (v, z)‖
� c‖x − v‖ + r � cM + r < M,

which shows that F (x, z) ∈ BM (v). Since by construction
W ⊂ DN and by hypothesis F (DN × Dd ) ⊂ DN we also have
that F (x, z) ∈ DN and hence that F (x, z) ∈ W . Notice that if
DN is convex, then so is W := DN ∩ BM (v).

The (DZ−
d ,WZ− )-ESP of F : W × Dd −→ W and part (ii)

can be obtained as in the second part in Theorem 3.1 in [29].
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The statement on the continuity with respect to the product
topology and the FMP with respect to any weighting sequence
is a consequence of Corollary 2.7 in the same reference. Sim-
ilar results under more or less general hypotheses can also be
found in Theorem 7 and Theorem 12 of [36]. �

APPENDIX B: PROOF OF LEMMA II.2

We first recall that, by definition, as F has the (φ,ω)-ESP,
there exists a unique filter U F : S(φ,ω)(M ) −→ (DN )Z that
associates to each orbit S(φ,ω)(m) the unique solution sequence
U F (S(φ,ω)(m)) ∈ (DN )Z that satisfies

U F (S(φ,ω)(m))t = F (U F (S(φ,ω)(m))t−1, S(φ,ω)(m)t ), (B1)

for all t ∈ Z. The (φ,ω)-ESP automatically ensures that U F

is causal and time-invariant (see [29, Proposition 2.1] for a
detailed proof) and hence

U F ◦ Tt = Tt ◦ U F , for all t ∈ Z, (B2)

with Tt the time delay operator introduced above (1). With
these elements it is now easy to prove (11). Indeed,

U F (S(φ,ω)(m))t = pt (U
F (S(φ,ω)(m)))

= p0 ◦ T−t (U
F (S(φ,ω)(m)))

= p0(U F (T−t (S(φ,ω)(m))))

= p0(U F (S(φ,ω)(φt (m)))) = f(φ,ω,F )(φ
t (m)),

(B3)

as required. In this chain of equalities, we have used (1) in
the second equality, the time invariance (B2) of U F in the
third one, and the time equivariance (2) of S(φ,ω) in the fourth
one. �

APPENDIX C: PROOF OF LEMMA II.3

This is a straightforward corollary of the relation (11) and
the recursion (B1) satisfied by U F . Indeed, if we set t = 0 in
(11), we have

f(φ,ω,F )(m) = U F (S(φ,ω)(m))0

= F (U F (S(φ,ω)(m))−1, S(φ,ω)(m)0)

= F ( f(φ,ω,F )(φ−1(m)), ω(m)),

where in the second equality we used (B1) and in the third one
(11) again with t = −1. �

APPENDIX D: EXISTENCE AND UNIQUENESS OF
CONTINUOUS GENERALIZED SYNCHRONIZATIONS

Proposition D.1. Let φ ∈ Hom(M ) be an invertible dy-
namical system on a compact topological space M, ω ∈
C0(M,Rd ) an observation map, and let F : DN × ω(M ) −→
DN a continuous state map that is a contraction on the state
variable, with DN ⊂ RN a closed set. Then:

(i) There exists a compact subset W ⊂ DN such that
F (W × ω(M )) ⊂ W and the system determined by F : W ×
ω(M ) −→ W and driven by the ω-observations of φ has
the (φ,ω)-ESP and hence the generalized synchronization

f(φ,ω,F ) : M −→ W is well defined. If DN is convex then W
can be chosen to be convex.

(ii) The map f(φ,ω,F ) : M −→ W is continuous and it is the
only one with that codomain that satisfies the identity (12).

Proof. (i) This claim is a consequence of Proposition II.1.
Indeed, since ω is continuous and M is compact then so is
ω(M ). The contractivity hypothesis and the closeness of DN

imply by Proposition II.1 the existence of the compact set
W in the statement and that the corresponding system F :
W × ω(M ) −→ W has the (ω(M )Z− ,WZ− )-ESP. Given that
S−

(φ,ω)(M ) ⊂ ω(M )Z− this implies that the (S−
(φ,ω)(M ),WZ− )-

ESP also holds. This condition amounts to the (φ,ω)-ESP
and to the existence of a FMP filter U F : S−

(φ,ω)(M ) −→ WZ−

which, in passing, shows that the generalized synchronization
f(φ,ω,F ) := p0 ◦ U F ◦ S(φ,ω) : M −→ W is well defined.

(ii) We first show the continuity of f(φ,ω,F ) := p0 ◦ U F ◦
S(φ,ω) : M −→ W by noticing that it is a composition of con-
tinuous functions. Indeed, using the notation introduced in the
previous point, if we endow the sets ω(M )Z− and WZ− with
the product topology, the map p0 : WZ− −→ W is clearly
continuous, U F : ω(M )Z− −→ WZ− is continuous by Propo-
sition II.1, and S(φ,ω) : M −→ ω(M )Z− is also continuous
because it is a Cartesian product of continuous maps (see [50,
Theorem 19.6]).

In order to prove the uniqueness statement, we first endow
the set of continuous functions C0(M,RN ) with the Banach
space structure induced by the norm

‖ f ‖∞ := sup
m∈M

{‖ f (m)‖}, f ∈ C0(M,RN ). (D1)

We emphasize that this norm is always finite due to the com-
pactness of M. Moreover, it is easy to show that the subset
C0(M,W ) of C0(M,RN ) made of functions that have the
compact subset W ⊂ RN as codomain is closed with respect
to the topology generated by the norm ‖ · ‖∞. Indeed, let
f ∈ C0(M,RN ) be an element in the closure of C0(M,W ) and
let { fn}n∈N be a sequence of elements in C0(M,W ) that have f
as limit. This implies that for any ε > 0 there exists N (ε) ∈ N
such that for any n > N (ε) we have that ‖ fn − f ‖∞ < ε. This
implies, in particular, that for any point m ∈ M:

‖ fn(m) − f (m)‖ � ‖ fn − f ‖∞ < ε

and hence limn→∞ fn(m) = f (m), which shows that f (m) is a
limit point of W and hence belongs to W as it is a closed set.
Since m ∈ M is arbitrary this shows that f ∈ C0(M,W ) and
hence C0(M,W ) is closed in C0(M,RN ).

We now shall prove the uniqueness statement by showing
that the map � : C0(M,W ) −→ C0(M,W ) defined by

�( f )(m) := F ( f (φ−1(m)), ω(m)), (D2)

for all m ∈ M, f ∈ C0(M,RN ), is well defined and a contrac-
tion with respect to the norm introduced in (D1). The result
follows then from the Banach Contraction-Mapping Principle
(see [51, Theorem 3.2]).

First, the continuity hypotheses on φ,ω, and F : W ×
ω(M ) −→ W imply that �( f ) ∈ C0(M,W ) whenever f ∈
C0(M,W ). Now, let f , g ∈ C0(M,W ). Then, since we assume
that F is a contraction in the state variable with constant
0 < c < 1, we have that

‖�( f ) − �(g)‖∞
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= sup
m∈M

{‖F ( f (φ−1(m)), ω(m)) − F (g(φ−1(m)), ω(m))‖}

� c sup
m∈M

{‖ f (φ−1(m)) − g(φ−1(m))‖} = c‖ f − g‖∞,

(D3)

which shows that � is a contraction with respect to the norm
in (D1) and hence there exists a unique element in C0(M,W )
that satisfies the identity (12). As we just proved that f(φ,ω,F ) ∈
C0(M,W ) and by Lemma II.3 the state synchronization map
f(φ,ω,F ) satisfies (12), that unique element is f(φ,ω,F ) necessar-
ily. �

Remark D.2. It is worth emphasizing that, for a given state
map F : RN × ω(M ) −→ RN , there could exist various dis-
joint closed sets like DN that satisfy the hypotheses of the
proposition. The use of the restrictions F : DN × ω(M ) −→
DN to each of them leads in general to different generalized
synchronizations f(φ,ω,F ) whose codomains are compact sub-
sets of each of the closed set DN . This feature is much related
with multistability phenomena and the so-called echo index,
as presented in [45]. See also [39,46] for related discussions.

Remark D.3. Having obtained in the proof the state syn-
chronization map f(φ,ω,F ) : M −→ W as the unique fixed
point of a contracting map, a standard result about maps of this
type on metric spaces (see [51, Proposition 3.4]), guarantees
that f(φ,ω,F ) can be obtained by iterating the map � defined
in (D2) using any function f0 ∈ C0(M,W ) (for instance, a
constant function) as initial condition. In other words, f(φ,ω,F )

is the uniform limit of the sequence of functions determined
by the iterations

fn+1 = �( fn), with f0 := w ∈ W, (D4)

where the constant element w ∈ W is arbitrary.
Remark D.4. There is a fundamental difference of much

practical importance between the construction of the general-
ized synchronization f(φ,ω,F ) via the iteration of the map � as
in (D4) and using the definition f(φ,ω,F ) := p0 ◦ U F ◦ S(φ,ω).
The former requires full knowledge about the dynamical sys-
tem φ while the latter uses only its ω-observations. This
difference is of much relevance when a synchronization has to
be constructed or learned using only observations of a given
data-generating dynamical system.

APPENDIX E: EXISTENCE AND UNIQUENESS OF
DIFFERENTIABLE SYNCHRONIZATIONS

In this section we extend the result in Proposition D.1
and we show that when the dynamical system φ ∈ Diff1(M )
and the maps ω and F are differentiable then the state syn-
chronization map f(φ,ω,F ) is necessarily differentiable. The
strategy that we follow also consists in proving that the map
� introduced in (D2) is a contraction but, this time around,
on a well-chosen closed subset of C1(M,RN ). We start with
some preliminaries.

1. Banach space structures in C1(M,RN )

All along this section we assume that M is a compact,
connected, Hausdorff, and second-countable manifold, and
hence it can be endowed with a Riemannian metric g (see [35,

Proposition 2.10]). Now, for any f ∈ C1(M,RN ), define

‖D f ‖∞ = sup
m∈M

{‖D f (m)‖} with

‖D f (m)‖ = sup
v ∈ TmM

v �= 0

{ ‖D f (m) · v‖
[g(m)(v, v)]1/2

}
.

Analogously, if φ : M → M is a C1 map, we can define

‖T φ‖∞ = sup
m∈M

{‖Tmφ‖} with

‖Tmφ‖ = sup
v ∈ TmM

v �= 0

{
[g(φ(m))(Tmφ · v, Tmφ · v)]1/2

[g(m)(v, v)]1/2

}
.

It can be proved by using the results in Chapter 2 of [52]
that, for any δ > 0, the norms ‖ · ‖C1(δ) defined by

‖ f ‖C1(δ) := ‖ f ‖∞ + δ‖D f ‖∞ (E1)

endow C1(M,RN ) with a Banach space structure. It can also
be shown (see [52, Theorem 11.2 (ii)]) that all these norms
generate the same topology in C1(M,RN ) that is also inde-
pendent of the choice of Riemannian metric g and coincides
with the weak and strong topologies introduced in Chapter 2
of [53].

We introduce two technical lemmas that are needed later.
Lemma E.1. In the setup that we just described, let R > 0,

W ⊂ RN a closed set, and define

�(R,W ) := { f ∈ C1(M,W ) | ‖D f ‖∞ � R},
where f ∈ C1(M,W ) is by definition the subset of f ∈
C1(M,RN ) made by the functions which take values in W ⊂
RN . The set �(R,W ) is closed in (C1(M,RN ), ‖ · ‖C1(δ) ) for
any δ > 0.

Proof. We proceed by showing that �(R,W ) is the in-
tersection of two closed sets, that is, �(R,W ) = �(R) ∩
C1(M,W ), where �(R) := { f ∈ C1(M,RN ) | ‖D f ‖∞ � R}.

We first prove that �(R) is closed by showing that the com-
plementary set �(R)c is open in (C1(M,RN ), ‖ · ‖C1(δ) ). Let
f ∈ �(R)c such that ‖D f ‖∞ = K > R. Given ε := δ(K − R)
we will show that the ball BC1(δ)( f , ε) is a subset of �(R)c.
Indeed, for any g ∈ BC1(δ)( f , ε):

K = ‖D f ‖∞ = ‖D f + Dg − Dg‖∞
� ‖D f − Dg‖∞ + ‖Dg‖∞

� 1

δ
‖ f − g‖∞ + ‖D f − Dg‖∞ + ‖Dg‖∞

= 1

δ
‖ f − g‖C1(δ) + ‖Dg‖∞ <

ε

δ
+ ‖Dg‖∞

= K − R + ‖Dg‖∞,

which implies that ‖Dg‖∞ > R and hence that BC1(δ)( f , ε) ⊂
�(R)c.

We now show that C1(M,W ) is closed in C1(M,RN ). Let
f ∈ C1(M,RN ) be an element in the closure of C1(M,W ) and
let { fn}n∈N be a sequence of elements in C1(M,W ) that have f
as limit. This implies that for any ε > 0 there exists N (ε) ∈ N
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such that for any n > N (ε) we have that ‖ fn − f ‖C1(δ) < ε.
This implies, in particular, that for any point m ∈ M:

‖ fn(m) − f (m)‖ � ‖ fn − f ‖∞ + δ‖D fn − D f ‖∞
= ‖ fn − f ‖C1(δ) < ε

and hence limn→∞ fn(m) = f (m), which shows that f (m) is a
limit point of W and hence belongs to W as it is a closed set.
Since m ∈ M is arbitrary this shows that f ∈ C1(M,W ) and
hence C1(M,W ) is closed in C1(M,RN ). �

The following notation will be used in the sequel. Let
DN ⊂ RN and Dd ⊂ Rd be open subsets and F ∈ C2(DN ×
Dd , DN ). The symbols DxF (x, z), DzF (x, z), DxxF (x, z), and
DxzF (x, z) denote the partial derivatives of F with respect to
the variables indicated in the subindices at the point (x, z) ∈
DN × Dd .

Lemma E.2. Let φ ∈ Diff1(M ) be a dynamical system on
the compact differentiable manifold M and consider the obser-
vation ω ∈ C1(M,Rd ) and state F ∈ C1(DN × Dd , DN ) maps,
with DN ⊂ RN and Dd ⊂ Rd open subsets. Let W ⊂ DN

be a subset and suppose that ω(M ) ⊂ Dd and that F (W ×
ω(M )) ⊂ W . Define

LFx := sup
(x,z)∈W ×ω(M )

{‖DxF (x, z)‖},

LFz := sup
(x,z)∈W ×ω(M )

{‖DzF (x, z)‖}. (E2)

Suppose that the constants LFx and LFz defined in (E2) are
finite and that LFx ‖T φ−1‖∞ < 1. Choose a constant R > 0
such that

R >
LFz‖Dω‖∞

1 − LFx ‖T φ−1‖∞
. (E3)

Then the map � introduced in (D2) maps the space C1(M,W )
into itself and, additionally, it restricts to �(R,W ), that is,
�(�(R,W )) ⊂ �(R,W ).

Proof. We first note that, for any f ∈ C1(M,RN ), its image
�( f ) belongs necessarily to C1(M,RN ) as it is a composition
of C1 maps. Moreover, the hypothesis F (W × ω(M )) ⊂ W
guarantees that � preserves C1(M,W ).

We now prove the inclusion �(�(R,W )) ⊂ �(R,W ). Let
f ∈ �(R,W ). By the chain rule and the definitions (E2), for
any m ∈ M and v ∈ TmM:

‖D�( f )(m) · v‖
= ‖DxF ( f (φ−1(m)), ω(m)) · D f (φ−1(m)) · Tmφ−1 · v

+ DzF ( f (φ−1(m)), ω(m)) · Dω(m) · v‖
� (LFx ‖D f ‖∞‖T φ−1‖∞ + LFz‖Dω‖∞)‖v‖
� (LFx R‖T φ−1‖∞ + LFz‖Dω‖∞)‖v‖,

which, using the hypothesis (E3), implies that

‖D�( f )‖∞ � LFx R‖T φ−1‖∞ + LFz‖Dω‖∞ < R

and guarantees that �( f ) ∈ �(R,W ), as required. �

2. The main theorem

The following result extends Proposition D.1 to the dif-
ferentiable case. The statement requires an extension of the

constants introduced in (E2) to higher order derivatives and
with respect to a set V ⊂ DN , that is:

LFx := sup
(x,z)∈V ×ω(M )

{‖DxF (x, z)‖},

LFz := sup
(x,z)∈V ×ω(M )

{‖DzF (x, z)‖},

LFxx := sup
(x,z)∈V ×ω(M )

{‖DxxF (x, z)‖},

LFxz := sup
(x,z)∈V ×ω(M )

{‖DxzF (x, z)‖}. (E4)

Theorem E.3. Let φ ∈ Diff1(M ) be a dynamical system
on the compact manifold M and consider the observation
ω ∈ C1(M,Rd ) and state F ∈ C2(DN × Dd , DN ) maps, with
DN ⊂ RN and Dd ⊂ Rd open subsets such that ω(M ) ⊂ Dd .
Let V ⊂ DN be a closed convex subset and suppose that
F (V × ω(M )) ⊂ V . Suppose that the bounds for the partial
derivatives of F introduced in (E4) are all finite and that,
additionally,

LFx < min{1, 1/‖T φ−1‖∞}. (E5)

Then there exists a compact and convex subset W ⊂ V such
that F (W × ω(M )) ⊂ W and:

(i) The system determined by F : W × ω(M ) −→ W and
driven by the ω-observations of φ has the (φ,ω)-ESP and
hence the generalized synchronization f(φ,ω,F ) : M −→ W is
well defined.

(ii) The map f(φ,ω,F ) belongs to C1(M,W ) and it is the
only one that satisfies the identity (12).

Proof of the theorem. (i) First, since by hypothesis 0 <

LFx < 1, then F : V × ω(M ) −→ V is a contraction in the
state variable. Indeed, by the Mean Value Theorem and the
convexity hypothesis on V , for any x1, x2 ∈ V , z ∈ ω(M ):

‖F (x1, z) − F (x2, z)‖ � sup
x∈V

{‖DxF (x, z)‖}‖x1 − x2‖

� LFx ‖x1 − x2‖. (E6)

The claim then follows from part (i) in Proposition D.1.
(ii) The strategy of the proof consists in showing that, in

the hypotheses in the statement, and using the restricted state
map F : W × ω(M ) −→ W obtained in part (i), the map � :
�(R,W ) −→ �(R,W ) introduced in (D2) and with R > 0
satisfying the condition (E3) is a contraction for some norm
‖ · ‖C1(δ0 ) of the type defined in (E1). The value δ0 > 0 will be
specified later on.

This construction is feasible because the hypothesis (E5)
implies that LFx ‖T φ−1‖∞ < 1. Moreover, by Lemma E.2 and
the finiteness of the constants introduced in (E4), a con-
stant R > 0 can be chosen so that the map � : �(R,W ) −→
�(R,W ) is well defined. Moreover, since by Lemma E.1
the set �(R,W ) is closed in (C1(M,RN ), ‖ · ‖C1(δ) ) for any
δ > 0, it is hence a complete metric space to which the Ba-
nach Contraction-Mapping Principle [51, Theorem 3.2] can
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be applied. Consequently, if we are able to prove that � :
�(R,W ) −→ �(R,W ) is a contraction with respect to the
metric inherited from (C1(M,RN ), ‖ · ‖C1(δ0 ) ), for some δ0 >

0, we can then conclude the existence of a unique element
f0 ∈ �(R,W ) such that �( f0) = f0. Now, as we already saw
in the proof of part (i), the condition (E5) implies that LFx < 1
and hence Proposition D.1 guarantees that f(φ,ω,F ) : M −→
W is the unique continuous map that satisfies the identity
�( f(φ,ω,F ) ) = f(φ,ω,F ). Since the element f0 ∈ �(R,W ) will
be obviously continuous, we shall immediately be able to con-
clude that f(φ,ω,F ) = f0 and hence that f(φ,ω,F ) ∈ �(R,W ) ⊂
C1(M,RN ), necessarily.

We hence conclude the proof by showing the existence of
a constant δ0 > 0 for which � : �(R,W ) −→ �(R,W ) is a
contraction in the norm ‖ · ‖C1(δ0 ). Let f1, f2 ∈ �(R,W ), and

δ > 0 arbitrary. By definition,

‖�( f1) − �( f2)‖C1(δ) = ‖�( f1) − �( f2)‖∞
+ δ‖D(�( f1)) − D(�( f2))‖∞.

(E7)

Since in (E6) we showed that F : V × ω(M ) −→ V is a con-
traction in the state variable with constant 0 < LFx < 1, then
so is F : W × ω(M ) −→ W . We can hence conclude using
(D3) that

‖�( f1) − �( f2)‖∞ < LFx ‖ f1 − f2‖∞. (E8)

Let now m ∈ M and v ∈ TmM arbitrary. By the chain rule, the
Mean Value Theorem, the convexity of W , and the definitions
in (E4):

‖D�( f1)(m) · v − D�( f2)(m) · v‖ = ‖DF ( f1(φ−1(m)), ω(m))(D f1(φ−1(m)) · Tmφ−1 · v, Dω(m) · v)

− DF ( f2(φ−1(m)), ω(m))(D f2(φ−1(m)) · Tmφ−1 · v, Dω(m) · v)‖
� ‖DF ( f1(φ−1(m)), ω(m))(D f1(φ−1(m)) · Tmφ−1 · v, Dω(m) · v)

− DF ( f1(φ−1(m)), ω(m))(D f2(φ−1(m)) · Tmφ−1 · v, Dω(m) · v)‖
+ ‖DF ( f1(φ−1(m)), ω(m))(D f2(φ−1(m)) · Tmφ−1 · v, Dω(m) · v)

− DF ( f2(φ−1(m)), ω(m))(D f2(φ−1(m)) · Tmφ−1 · v, Dω(m) · v)‖
� LFx ‖(D f1(φ−1(m)) − D f2(φ−1(m))) · Tmφ−1 · v‖ + ‖(DxF ( f1(φ−1(m)), ω(m))

− DxF ( f2(φ−1(m)), ω(m))) · (D f2(φ−1(m)) · Tmφ−1 · v)‖
+ ‖(DzF ( f1(φ−1(m)), ω(m)) − DzF ( f2(φ−1(m)), ω(m))) · Dω(m) · v‖

� LFx ‖D f1 − D f2‖∞‖T φ−1‖∞‖v‖
+ LFxx ‖ f1 − f2‖∞‖D f2‖∞‖T φ−1‖∞‖v‖ + LFxz‖ f1 − f2‖∞‖Dω‖∞‖v‖.

If we now use that, by hypothesis, f2 ∈ �(R,W ), the last inequality implies that

‖D�( f1)(m) · v − D�( f2)(m) · v‖�(LFx ‖D f1−D f2‖∞‖T φ−1‖∞+LFxx ‖ f1− f2‖∞R‖T φ−1‖∞+LFxz‖ f1 − f2‖∞‖Dω‖∞)‖v‖,
which ensures that

‖D�( f1)(m) · v − D�( f2)(m) · v‖ � (LFxx ‖T φ−1‖∞R + LFxz‖Dω‖∞)‖ f1 − f2‖∞ + LFx ‖T φ−1‖∞‖D f1 − D f2‖∞.

Together with (E1) and (E8), this inequality implies that

‖�( f1) − �( f2)‖C1(δ) �
(
LFx + δ

(
LFxx

∥∥T φ−1
∥∥

∞R + LFxz

∥∥Dω
∥∥

∞
))‖ f1 − f2‖∞ + δLFx ‖T φ−1‖∞‖D f1 − D f2‖∞. (E9)

Choose now δ0 > 0 small enough so that

LFx + δ0
(
LFxx

∥∥T φ−1
∥∥

∞R + LFxz

∥∥Dω
∥∥

∞
)

< 1, (E10)

which is always possible due to the hypothesis LFx < 1. Additionally, the hypothesis LFx ‖T φ−1‖∞ < 1 together with (E10) and
(E9) imply that

‖�( f1) − �( f2)‖C1(δ0 ) � c0‖ f1 − f2‖C1(δ0 ),

for any 0 < c0 < 1 such that

c0 < min
{
LFx

∥∥T φ−1
∥∥

∞, LFx + δ0
(
LFxx

∥∥T φ−1
∥∥

∞R + LFxz

∥∥Dω
∥∥

∞
)}

,

which guarantees the contractivity of � : �(R,W ) −→ �(R,W ), as required. �
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