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Nearly integrable turbulence and rogue waves in disordered nonlinear Schrödinger systems
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Integrable nonlinear Schrödinger (NLS) systems provide a platform for exploring the propagation and interac-
tion of nonlinear waves. Extreme events such as rogue waves (RWs) are currently of particular interest. However,
the presence of disorder in these systems is sometimes unavoidable, for example, in the forms of turbulent current
in the ocean and random fluctuation in optical media, and its influence remains less understood. Here, we report
numerical experiments of two nearly-integrable NLS equations with the effect of disorder showing that the
probability of RW occurrence can be significantly increased by adding weak system noise. Linear and nonlinear
spectral analyses are proposed to qualitatively explain those findings. Our results are expected to shed light on
the understanding of the interplay between disorder and nonlinearity, and may motivate new experimental works
in hydrodynamics, nonlinear optics, and Bose-Einstein condensates.
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I. INTRODUCTION

Integrable turbulence (IT), as introduced by Zakharov [1],
studying the propagation and interaction of random waves
in nonlinear integrable systems, has attracted much attention
from both of the theoretical and experimental communi-
ties [2–8]. It may provide an opportunity to understand
sophisticated turbulent phenomena to some extent. One clas-
sical, but ubiquitous integrable model is the one-dimensional
nonlinear Schrödinger equation (NLSE) which is widely used
to describe nonlinear waves in deep water, optical media,
Bose-Einstein condensates, and many others [9,10]. This
equation, depending on the relative signs of its dispersion
and nonlinearity, can exhibit focusing or defocusing proper-
ties that significantly influence the evolution of the IT wave
field [10].

For the focusing NLSE, an important mechanism to gen-
erate IT is the noise-induced modulation instability (MI), a
process transforming the plane wave, by amplifying the weak
random noise superimposed on it, into a chaotic wave field
characterized by a stationary single-point statistics for the
long-time evolution [3,10–14]. This stationary state contains
numbers of highly nonlinear localized structures, such as the
Akhmediev breathers, Peregrine soliton, and Kuznetsov-Ma
solitons, and the interactions among them may randomly pro-
duce high-amplitude entities that emerge with low probability,
coined rogue waves (RWs) [15–17].

The term RW was initially used to label unexpected
and destructive giant oceanic waves [18–20], but has now
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been generalized to represent large-amplitude waves in var-
ious different systems [21–26]. It should be emphasized
that the mechanisms for RW generation are in fact many-
faceted [19–22,27,28], from linear to nonlinear effects, with
in particular the MI standing as an eminent example of the IT
phenomena.

Nevertheless, the noise-induced MI mechanism seems to
be less promising in producing a heavy-tailed probability
distribution of the wave amplitudes. Instead, its stationary
turbulent state has a Rayleigh distribution, such that the
probability of RW occurrence is just the same as for linear
waves with random phases [3]. On the other hand, the com-
plete integrability is too specific a feature. Any nonintegrable
correction to the NLSE, even in a small amount, may signif-
icantly change the fashion of RW formation. Investigations
on these aspects remain active and the answers are far from
satisfactory.

In the present work, we consider stochastic effects of the
NLS systems on the generation of RWs. We perform numeri-
cal experiments on two prototypes of disordered NLSEs, with
the weak randomness acting on the linear potential and on the
cubic nonlinearity. Starting from a plane wave, the universal
regimes of nonstationary turbulence are demonstrated where
the probability of the occurrence of RWs is significantly in-
creased in evolution. We give qualitative explanations to our
findings. Different from the wave packet spreading in weak
turbulence [29–32], presented are systematic results regarding
the relatively strong turbulence and its RW content in disor-
dered NLS systems.

II. MODEL AND METHOD

The model of the disordered NLSE used is written in its
dimensionless form

i
∂ψ

∂ξ
= −1

2

∂2ψ

∂τ 2
− g(τ )|ψ |2ψ + ε(τ )ψ, (1)
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where the complex wave field ψ (ξ, τ ) is a function of the
evolution variable ξ and transverse variable τ . We consider
two typical but fundamentally different cases with the random
noise playing the role of a linear and a nonlinear potential
respectively,

Case 1 : g(τ ) ≡ 1, ε(τ ) = ε(τ ),

Case 2 : g(τ ) = 1 + ε(τ ), ε(τ ) ≡ 0,

where the real random function ε(τ ) is very small, having
standard deviation σ � 1, with zero mean and is an un-
correlated function, namely, 〈ε(τ )〉 = 0 and 〈ε(τ )ε(τ ′)〉 =
σ 2δ(τ − τ ′). We used Gaussian distribution of ε(τ ) [we also
examined the uniform distribution of ε(τ ) and did not find
an essential difference for our results]. The initial condi-
tion was taken as a constant background of unit amplitude,
ψ (0, τ ) = 1. As a comparison, the well-studied IT is denoted
as Case 0, where g(τ ) ≡ 1, ε(τ ) ≡ 0, and ψ (0, τ ) is com-
posed of the constant unit amplitude with some weak noise
on it.

The NLS-type equations with random effects have their
own advantages in providing platforms for exploring the
competition between the effects of disorder and those of
nonlinearity [29–37]. In particular, Case 1 is relevant for
light transport in optical media with random linear proper-
ties [38], and also for dynamics of cold atoms in disordered
potentials [39,40]; Case 2 can describe the propagation
of electromagnetic waves in a one-dimensional structure
with random nonlinear coefficients [41,42] (see examples in
Appendix A). One thus may expect results corresponding to
those related areas.

The turbulent wave field was simulated by integrating
Eq. (1) using the fourth-order split-step method [9] in a peri-
odic box of the size L � 820, and the weak random noise was
chosen as the level of σ = 4.5 × 10−3 (some computational
details can be found in Appendix B). We implemented the
simulation up to ξ = 300 where the MI-induced IT (Case 0)
has already developed to its asymptotic stationary state. In our
numerical experiments, we use ensembles of 1000 realizations
of ε(τ ) to decide the statistical quantities. We also checked
these results by varying the box size, as well as by employing
different integration schemes, and found no changes.

III. RESULTS AND ANALYSES

Figure 1 shows partial the wave field |ψ (ξ, τ )| for a spe-
cific realization of the randomness. The early stage for both
cases is similar to (but not the same as) that of the IT, where
one can see the emergence of quasiperiodic structures resem-
bling the well-known Akhmediev breathers [15,16]. However,
with ξ increasing, the wave content will switch from breathers
to mainly solitons, but in different ways for Cases 1 and 2, as
will be revealed later. These coherent excitations (breathers
and solitons) move and interact on the “sea of small radiation
waves,” as seen in Fig. 1(c), where the difference between the
amplitudes of the solitons and radiation waves may come up
to 1–2 orders of magnitude. We stress that this is a regime of
moderately strong turbulence, with the nonlinear energy and
the kinetic energy being of almost the same magnitude.

FIG. 1. Typical evolution of the turbulent wave field |ψ (ξ, τ )|
for a specific realization of ε(τ ). (a) Case 1 with the random linear
potential; (b) Case 2 with the random coefficient of the cubic nonlin-
earity. (c) Logarithm plots of |ψ (τ )| at ξ = 200. The green solid line
is for Case 1 and the red dashed line is for Case 2.

A statistical indicator of the turbulent wave field is the
moment of the amplitude |ψ (ξ, τ )|:

Mn(ξ ) = 1

L

∫ L/2

−L/2
〈|ψ (ξ, τ )|n〉dτ. (2)

In particular, the fourth-order moment M4 is of interest since
large values of this moment imply a heavy-tailed amplitude
distribution with higher probability of extreme events [43].
Figure 2 presents the evolution of M4 with ξ for Cases 1 and 2,
as compared with Case 0. Up to ξ ∼ 20, the forms of decaying
oscillations are similar for all three cases, corresponding to
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FIG. 2. Evolution of the fourth-order moment M4(ξ ) for Case 0
(blue solid line), Case 1 (green dashed line), and Case 2 (red dot-
dashed line).

062203-2



NEARLY INTEGRABLE TURBULENCE AND ROGUE WAVES … PHYSICAL REVIEW E 103, 062203 (2021)

FIG. 3. Probability density functions P(|ψ |2) of the wave inten-
sity |ψ |2 at different evolution distances for (a) Case 1, (b) Case 2.
The asymptotic stationary distribution for IT (Case 0 measured at
ξ = 200) is shown with the lowest black solid lines. Other lines,
from bottom to top, correspond to ξ = 100 to 300. Probability of
the occurrence of waves W (ξ ) with intensities (c) |ψ |2 > 8 (h = 8),
(d) |ψ |2 > 12 (h = 12). The lines from bottom to top correspond to
Cases 0 to 2.

the dominant nonlinear stage of MI. However, for longer ξ ,
both of the disordered cases remarkably deviate from the
asymptotic state of the IT, with M4 continuously increasing.
This offers us a common regime of nonstationary turbulent
wave field, where the larger M4 indicates a higher probability
of RW occurrence.

We note that the computational limit ξ = 300 units
is perhaps long enough for an experimental observation.
Nevertheless, the asymptotic states of Cases 1 and 2 as
ξ → +∞ still seem to be an open challenge theoretically.
For deterministic nonintegrable systems, the long-time for-
mation of large-scale coherent structures on a small-scale
wave turbulence was numerically observed, and this state was
assumed to asymptotically reach their statistical equilibrium
modes [44–47]. How these clues relate to our disordered
nearly integrable systems needs on the other hand a further
investigation, which is not within the scope of this work.

Figures 3(a) and 3(b) display the probability density func-
tion (PDF) of the wave intensity |ψ (ξ, τ )|2 measured at
different evolution distances. For both Cases 1 and 2, the tails
of the PDF gradually increase with ξ . They are apparently
higher than that of the exponential distribution. In particular,
at fixed ξ , the tail is more elevated for Case 2, which implies
that the probability of RWs is more increased if the random
noise is imposed on the cubic nonlinearity.

We give the probability of the occurrence of waves with
their intensities exceeding a threshold |ψ |2 > h:

W (h, ξ ) =
∫ +∞

h
P(|ψ |2, ξ )d|ψ |2. (3)

For MI-induced IT, the criterion of h � 8 was considered as
the sign of RWs [3]. Figure 3(c) presents the variation of W (ξ )
with ξ for h = 8. One can clearly find that the probability of

FIG. 4. The wave spectra Sk at different evolution distances for
(a) Case 1, (b) Case 2. The sharp black solid line denotes the asymp-
totic stationary spectrum for IT (Case 0). The smoother lines, with
their tails positioned from bottom to top, correspond to ξ = 100 to
300.

the RW appearance is growing as the wave field evolves for
both the disordered cases. This is substantially different from
the IT although the system noise is considerably weak. Up to
ξ = 300, the probability W roughly doubles from Case 0 to
Case 1, and increases by 5 times more from Case 1 to Case 2.
For larger RWs of h = 12, the situation is similar, as seen in
Fig. 3(d), with the probability at ξ = 300 increasing by about
6 times from Case 0 to Case 1, and 15 times more from Case
1 to Case 2.

Obviously, all these results in our numerical experiments
support a “disorder-assisted” mechanism that leads to the
enhancement of the RW occurrence. Nevertheless, how the
disorder influences the content of the waves seems to be dis-
tinguishable as for Cases 1 and 2. We will analyze the linear
and nonlinear spectra of the wave field in order to gain further
knowledge.

The linear wave spectrum is

Sk (ξ ) = 〈|ψk (ξ )|2〉, (4)

where ψk (ξ ) is the Fourier transformation of ψ (ξ, τ ), defined
as ψk (ξ ) = 1

L

∫ L/2
−L/2 ψ (ξ, τ )e−ikτ dτ , with the wave number

k = 2πn/L (n ∈ Z). For the MI-induced IT (Case 0), the ini-
tial spectrum consists of a central peak at k = 0 corresponding
to the plane wave and a small background due to the noisy
perturbation. With evolution, the central peak spreads its en-
ergy into the sidebands. The modes within the instability band
k ∈ [−2, 2] are amplified in the linear stage of MI, and from
some time modes of the entire spectral band should grow due
to the nonlinear interaction. When the stationary wave field
is formed, the linear spectrum presents a fixed “onion dome”
shape [3,5], for which most of the nonlinear excitations are
Akhmediev breathers.

Shown in Fig. 4 are the wave spectra measured at different
ξ for the disordered cases. We see that the shapes of the
spectra are completely different from the asymptotic one of
the IT. These relatively smooth spectra may correspond to
the ensembles of solitons [5,48]. Widening of the spectra in
evolution, with their tails being elevated, indicates enhanced
interactions among those solitons. This widening accords with
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FIG. 5. Set of complex eigenvalues λ of the NFT calculated for ten realizations of ε(τ ). Case 1 with the red plots: (a) ξ = 10, (b) ξ = 100,
(c) ξ = 200; and Case 2 with the blue plots: (d) ξ = 10, (e) ξ = 100, (f) ξ = 200.

the increase of M4(ξ ), which is a property of the integrable
NLSE [43], and is still valid in our computation since the
random perturbative components in Eq. (1) are small. Again,
the variation of the spectrum with ξ remains larger for Case 2.

A deeper understanding of the wave content can be real-
ized by using the tool of nonlinear Fourier transform (NFT),
also known as the inverse scattering transform for integrable
systems [49–51]. Like the conventional Fourier transform that
decomposes the waveform into a set of spectral harmonics
(e.g., see Fig. 4), the NFT decomposes waves into localized
solitary eigenmodes and dispersive radiation components.
This technique for the nonlinear spectrum was recently em-
ployed in IT to investigate ensembles of coherent structures
such as breathers and solitons [4,5,48,52].

The basis of the NFT is to consider the Zakharov-Shabat
spectral problem for a given wave function ψ (ξ, τ ),

dY
dτ

=
( −iλ ψ

−ψ∗ iλ

)
Y, (5)

where Y(ξ, τ ; λ) is a vector and λ ∈ C represents the spec-
tral parameter. Finding the set of eigenvalues λ by solving
the linear equation (5) is of central importance for getting
relevant information about the wave content. In principle, the
NFT is rigorously applicable to the integrable NLSE with the
spectrum of eigenvalues independent of ξ . However, it should
be emphasized that our systems are nearly integrable [53],
and the weak disordered perturbative effects produce some
slow modulation of the spectral characteristics. Therefore we
can still calculate the nonlinear spectrum using Eq. (5) at
each point of ξ and trace the evolution of these eigenval-
ues. Similar work was recently done to analyze nonintegrable

NLSEs with deterministic perturbations, e.g., with small dis-
sipation [54–58].

Figure 5 shows the ensembles of eigenvalues collected at
different ξ for both Cases 1 and 2. The eigenvalues are nu-
merically computed from Eq. (5) with periodic boundary con-
ditions by using the Fourier collocation method [9,51] (also
checked with the periodic Boffetta-Osborne method [51]). For
the initial condition ψ (0, τ ) = 1, the eigenvalues are purely
imaginary, locating along the vertical axis, with the upper and
lower limiting points λ = ±i. They correspond to Akhmediev
breathers whose amplitudes are less than 3. In Figs. 5(a)
and 5(d), the eigenvalues begin to deviate from the imaginary
axis but stay very close to it at short ξ . Thus the statistics of
the wave field is close to that of IT. The eigenvalues appearing
very near the real axis stand for small radiation waves. As
ξ evolves longer, the spectrum disperses randomly on the
complex plane to form a specific global shape, as can be seen
in the right four panels of Fig. 5. Most of the eigenvalues
are apparently away from the imaginary axis, corresponding
to solitons. Their amplitudes are twice the absolute values of
the imaginary parts of the eigenvalues and their velocities are
defined by the real parts of the eigenvalues.

Generally speaking, dispersion of the spectrum implies that
many of the eigenvalues, but maybe not all of them, increase
the absolute values of their real parts or imaginary parts (or
both) in evolution. This means that the soliton velocities and
soliton amplitudes become larger accordingly, resulting in en-
hanced soliton interactions and the increase of RW generation.
This conclusion agrees with the tendency in Fig. 3 and also
with the linear spectral analysis. However, the changes of the
spectrum pattern for Cases 1 and 2 are visibly different. For
Case 1, the spectrum becomes wider mainly along the real

062203-4



NEARLY INTEGRABLE TURBULENCE AND ROGUE WAVES … PHYSICAL REVIEW E 103, 062203 (2021)

axis, suggesting that the RW enhancement is primarily due to
the increase of the soliton velocities. For Case 2, distribution
of the eigenvalues expands faster, along both the real and the
imaginary axes. Thus, at the same point of ξ , the solitons
acquire larger velocities and higher amplitudes than those for
Case 1, consequently producing stronger RWs. This provides
us a qualitative explanation why the RW-related statistics is
more remarkable for Case 2.

We want to emphasize that our results are fundamentally
different from those by Soto-Crespo et al. [4], where their
spectrum information has been given in the initial condi-
tion since for the integrable NLSE the eigenvalues are ξ

independent. Thus the RWs result from the elastic interaction
of the high-amplitude solitons. In contrast, for Cases 1 and 2,
the eigenvalue spectrum evolves with ξ . Some higher solitons
are generated from inelastic interactions such as the fusion of
solitons. These solitons may further raise the amplitudes of
the RWs during their collisions. This is the reason that just
weak noise is enough to apparently increase the probability of
RWs for our cases.

IV. CONCLUSIONS AND OUTLOOKS

To conclude, in this work we have provided numerical ev-
idence of rogue wave enhancement in nearly integrable NLS
systems with the presence of disorder. This enhancement is
due to the dispersion of the nonlinear spectra of the wave
field, which leads to the increase of the soliton interactions.
We also have shown that random fluctuations of the nonlin-
earity would more significantly improve the probability of
the occurrence of rogue waves. It is highly expected that our
results will stimulate new relevant experimental work in fields
such as in hydrodynamics [54,57] and optics [7,27,38,42] for
understanding the interplay of disorder and nonlinearity. In
addition, future work has to consider some interesting issues.
An open question is the relationship between the Fourier (lin-
ear) spectrum and the NFT (nonlinear) spectrum. For small
wave amplitudes, the NFT theory approaches the Fourier
transform theory [50]. For larger waves (including solitons
and rogue waves), these two spectra appear to show certain
consistency in their dispersion (widening) speed and shape
variation (see Figs. 4 and 5), which needs a detailed inves-
tigation. This may extend studies of the interactions between
disorder and other perturbative effects such as the high-order
nonlinearities [9] and dissipations [55,58]. On the other hand,
considering evolving correlated disorder ε(ξ, τ ) gives rise
to the concept “branched flow” for linear random waves
(g = 0) [59–62]. Thus, incorporating enough large nonlinear-
ity and creating stochastic solitons triggers, one may guess,
some type of branchlike structures as “branched soliton flow.”
We hope these ideas yield many surprising results.
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APPENDIX A: THE MODEL OF OPTICAL WAVES

We briefly outline the connection of Eq. (1) with the
optical-wave system. The evolution of spatial optical waves
is described by the paraxial Schrödinger-type equation in
(1 + 1) dimensions [38,41,63],

i
∂A

∂z
+ 1

2k0n0

∂2A

∂x2
+ k0nL(x)A + k0n2(x)|A|2A = 0, (A1)

where A(x, z) is the slowly varying envelope of the optical
field with the wave number k0 = 2π/λ, n0 is the average
linear refractive index and nL(x) is the linear fluctuation
upon it, and n2(x) is the nonlinear Kerr coefficient. Such
that the overall distribution of the refractive index stands as
n(x) = n0 + nL(x) + n2(x)|A|2. Equation (A1) has no tempo-
ral dependence, and the wave dynamics is only in space. The
relevant optical system is uniform in the evolution direction
(the axis z) but contains inhomogeneities (disorder) in the
transverse direction (the axis x).

For Case 1, we consider the random fluctuations in the
linear refractive index [n2(x) ≡ n20]. Introducing the dimen-
sionless variables

ξ = z

k0n0x2
0

, τ = x

x0
, ψ (ξ, τ ) = k0x0

√
n0n20A, (A2)

where x0 is the characteristic size of the optical beam,
Eq. (A1) can be reduced into Eq. (1) of Case 1 with ε(τ ) =
−k2

0n0x2
0nL(τ ). Employing the typical parameters n0 = 1.5,

λ = 0.6 μm, x0 = 5 μm, and nL < 10−4, the requirement
|ε(τ )| < 0.4 is completely fulfilled in our simulations.

For Case 2, the random inhomogeneities act on the non-
linear refractive index [nL(x) ≡ 0]. We write n2(x) = n20 +
n2L(x), where n20 is the average nonlinear index, superposed
by the perturbation n2L(x). Using also the scaling (A2), Eq. (1)
of Case 2 can be obtained from Eq. (A1), with g(τ ) = 1 +
n2L(τ )/n20. In this work, |n2L(τ )/n20| < 0.02 is kept.

APPENDIX B: NUMERICAL CONFIGURATION AND
ERRORS

We here list some detailed parameters for our sim-
ulations: Equation (1) was integrated in the spatial box
τ ∈ [−L/2, L/2], L = 260π , with a uniform grid of N =
214 nodes (the grid size �τ = L/N); the evolution inter-
val was ξ ∈ [0, 300] with the discretized step size �ξ =
0.0005; our Fourier spectral domain was consequently k ∈
[−π/�τ, π/�τ ] with �k = 2π/L.

The systems have two conserved integrals over the evolu-
tion coordinate, the mass S(ξ ), and Hamiltonian H (ξ ),

S = 1

L

∫
|ψ |2dτ, (B1)

H = 1

L

∫ [
1

2

∣∣∣∣∂ψ

∂τ

∣∣∣∣
2

+ 1

2
g(τ )|ψ |4 + ε(τ )|ψ |2

]
dτ. (B2)

We checked the preservation of these integrals by track-
ing their relative errors as Sr (ξ ) = |S(ξ ) − S(0)|/|S(0)| and
Hr (ξ ) = |H (ξ ) − H (0)|/|H (0)|. A typical result is presented
in Fig. 6, where we see that Sr and Hr are considerably
small for both cases. For all realizations (others not shown
for brevity), the errors are generally bounded at the level of
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FIG. 6. Evolution of (a) the relative mass error Sr and (b) the rel-
ative Hamiltonian error Hr for a specific realization of randomness.
Plots of M4(ξ ) for different sizes of the integration box: L = 64π

(blue dashed-dotted line), L = 130π (green dashed line), and L =
260π (red solid line). Here (c) is for Case 1 while (d) is for Case
2 (the results are averaged over the ensembles of 100 realizations
of randomness). Note that the lines in (a), (c) and (d) are almost
overlapped.

Sr < 10−9 and Hr < 10−7. Thus the mass and Hamiltonian
are well conserved in our simulations.

On the other hand, our numerical scheme uses the peri-
odic boundary conditions, for which the waves touching one
boundary may be “reflected” back to the wave field from the
other boundary (this computational effect can be generally
found, e.g., in [64,65]). In principle, the results tend to the case
of a turbulent wave field without boundaries when the box size
L becomes larger. We have tested various L to make sure that
our results do not change with the increase of L, as seen in
Figs. 6(c) and 6(d). Thus L = 260π used is large enough to
keep those results free of numerical artifacts.

FIG. 7. Evolution of the normalized fourth-order moment M4(ξ )
for different loss parameters: γ = 0 (upper blue dashed-dotted line),
γ = 0.0005 (middle green dashed line), and γ = 0.002 (lower red
solid line). Here (a) is for Case 1 and (b) is for Case 2 (the results are
averaged over the ensembles of 100 realizations of randomness).

APPENDIX C: EFFECT OF LINEAR LOSS

We briefly consider the effect of linear loss in the systems.
The loss term R = −iγψ is incorporated into the right-hand
side of Eq. (1), where γ is the normalized loss per propagation
distance. For this situation, the mass of the wave field is
dissipated as S(ξ ) = S(0) exp(−2γ ξ ), and the fourth-order
moment should be normalized: M4(ξ ) = M4(ξ )/S2(ξ ). Two
typical examples are presented in Fig. 7 where the loss is
small: For γ = 0.0005 about 74% of the initial mass is pre-
served at ξ = 300, while for γ = 0.002 this ratio is 30%.

With a loss, the value of M4 is generally smaller than that
of the lossless case. However, when ξ � 20, M4 increases
with ξ for a certain interval, then begins to decrease for the
longer propagation distance. This two-phase effect holds for
both Cases 1 and 2, which is due to the competition between
the disorder and the linear loss. When the mass dissipation is
small, the disorder still can improve the soliton interactions
effectively; if more mass is dissipated, the wave amplitudes
become smaller, and M4 may finally approach the value of
2. Thus the linear loss reduces the probability of rogue wave
occurrence, especially for a long propagation distance.
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