
PHYSICAL REVIEW E 103, 062202 (2021)

Critical soliton speed for quantum reflection by a reflectionless potential well
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We consider the scattering of the nonlinear Schrödinger equation bright soliton by a reflectionless Pöschl-
Teller potential well. We show that at the sharp transition between quantum reflection and full transmission,
a single-node bound state localized at the center of the potential forms and is fully occupied. The profile and
energy of the trapped mode are calculated both numerically and analytically using a variational calculation.
The critical speed for quantum reflection is then determined from a delicate balance between the energy of the
incident soliton and the energy of the trapped mode. We investigate the stability of the trapped mode against
perturbations in its profile and position which explains the sharpness of the transition and sheds some light on
the physics of quantum reflection. We show that quantum reflection by exciting the multinode trapped modes is
also possible.

DOI: 10.1103/PhysRevE.103.062202

I. INTRODUCTION

Quantum reflection is an interesting phenomenon that re-
veals the wave nature of solitons when scattered by surfaces or
steps [1–4], potential barriers [5–11], potential wells [11–15],
or impurities [16–21]. It occurs at low soliton speeds and is
understood by the formation of a trapped mode localized at the
potential [15,19]. For solitons scattered by reflectionless po-
tentials, quantum reflection occurs only below a critical speed
where a sharp transition between full (quantum) reflection and
full transmission takes place. Quantum reflection has been
used to propose useful devices such as a soliton diode and
logic gates [22–24]. Theoretically, a variational calculation
that takes into account a trapped mode generates qualita-
tively the expected behavior [14,15]. However, an accurate
calculation of the critical speed from a theoretical model is
still missing. Our investigation shows that, unless an accurate
profile and energy of the trapped mode are used, the critical
speed can not be accounted for accurately.

Soliton scattering by a potential well shows sharp transition
between full reflection and full transmission when the soliton
internal energy is larger than the potential depth. The non-
linear interaction is in this case large enough to preserve the
soliton integrity after scattering. If this condition is not met,
then soliton splitting occurs and radiation is emitted. For re-
flectionless potentials [25], this condition is not required. The
soliton integrity is always preserved and radiation is almost
absent. This allows for the investigation of the phenomenon
in terms of a wide range of potential depths. Here, we con-
sider the scattering of bright solitons by the reflectionless
Pöschl-Teller potential well. In the linear case, the spectrum
of this potential is exactly accounted for in terms of bound
states and their energies [26]. For the present nonlinear case,
the spectrum is not known, to the best of our knowledge.
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Identifying the spectrum is essential to understand quantum
reflection and resonant trapping since the trapped mode turns
out to be the nonlinear single-node stationary state of the
spectrum. Multinode states can also lead to quantum reflection
but with wider potential widths, as will be detailed below.

Quantum reflection takes place when the energy of the
incident soliton is less than that of the fully occupied trapped
mode, while full transmission occurs in the opposite case.
Therefore, the critical speed can be determined by equating
the energy of the incident soliton with the energy of the
trapped mode. This requires the knowledge of the profile and
hence energy of the trapped mode. The calculation of critical
speed for quantum reflection is challenging for two reasons.
First, the critical speed corresponds to a trapped state located
at a very sharp transition between full reflection and full trans-
mission. This requires a high precision value of the trapped
mode energy. Our first attempts with simplified variational
calculations, showed that unless a particular form is used, the
value of critical speed and its dependence on the potential
depth will be either wrong or far from the accurate values and
correct behavior. The second challenge arises from our quest
to calculate the critical speed for a wide range of potential
strengths ranging from weak to strong potentials compared to
the internal energy of the soliton. It is particularly challenging
to provide a unified theoretical account that describes both
limits.

In the present paper, we revisit this problem with the aim
of calculating the critical speed for a wide range of potential
depths obtained from an accurate account of the profile and
energy of the trapped mode. This is performed both numer-
ically, using two independent approaches, and analytically
using a variational method. While the three methods are in-
dependent, they share an excellent agreement on the critical
speed, profile, and energy of the trapped mode. To understand
why the transition between full reflection and full transmis-
sion is very sharp and to shed further light on the physics of
quantum reflection, we investigate the stability of the trapped
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mode against perturbations in its profile and position. Finally,
we present a procedure of obtaining the spectrum of the
nonlinear multinode states of the Pöschl-Teller potential and
verify that they also cause quantum reflection.

The rest of the paper is organized a follows. In the next
section, we present our numerical approaches. In Sec. III, we
present the variational calculation. In Sec. IV, we investigate
the stability of the trapped mode. In Sec. V, we calculate some
multinode trapped modes and verify quantum reflection for
this case. In Sec. VI, we summarize and discuss our findings.

II. NUMERICAL CALCULATION

The scattering process is studied within the nonlinear
Schrödinger equation (NLSE) in the presence of a potential,

i
∂

∂t
ψ (x, t ) + 1

2

∂2

∂x2
ψ (x, t ) + g|ψ (x, t )|2ψ (x, t )

− V (x)ψ (x, t ) = 0, (1)

where g is the strength of nonlinearity, which for the present
case of bright soliton solutions should be positive. The Pöschl-
Teller potential reads

V (x) = −V0 sech2(αx), (2)

where α = √
V0 is a necessary condition for the soliton scat-

tering by this potential to be reflectionless.
We start with the straightforward numerical approach,

which we denote here and throughout as numerical-I, by tun-
ing the soliton initial speed till the soliton is trapped by the
potential for considerably long time. As an initial soliton, we
use the exact movable bright soliton solution of the funda-
mental NLSE, namely, Eq. (1) with V (x) = 0, which is given
by [27]

ψ (x, t ) = 1

2
n
√

gei[vx+( 1
8 n2g2− 1

2 v2 )t] sech
[ng

2
(x − v t )

]
, (3)

where v is the soliton speed and n is an arbitrary positive
constant that sets the central intensity and is equal to the norm
of the soliton.

Our first numerical procedure for calculating the critical
speed starts with solving numerically Eq. (1) with ψ (x, 0)
as the initial profile. The critical speed is then found by a
shooting method that varies the soliton initial speed such
that both transmitted and reflected intensities vanish for a
long evolution time. The critical speed can be computed
with an increasing precision by sustaining the trapped state
for longer times. The sharp transition between quantum re-
flection and transmission is shown in Fig. 1 where we plot
reflectance, R = (1/n)

∫ −�

−x f
|ψ (x, t f )|2dx, and transmittance,

T = (1/n)
∫ x f

�
|ψ (x, t f )|2dx. Here, 2x f is the size of the spa-

cial domain, t f is an evolution time such that the scattered
soliton is sufficiently far from the potential, and � is a length
larger than the potential width. The norm is defined by

n =
∫ x f

−x f

|ψ (x, 0)|2dx, (4)

which is calculated at t = 0.
The second numerical procedure, which is denoted as

numerical-II, is based on calculating the energy of the trapped

FIG. 1. Reflectance (filled circles) and transmittance (empty cir-
cles) versus initial soliton speed. Values of parameters used are:
V0 = 2, g = 1, and n = 2.

mode and equating it with the energy of the initial soliton. The
energy of the initial soliton can be calculated from the energy
functional corresponding to Eq. (1),

ES =
∫ ∞

−∞

[
1

2
|ψx(x, t )|2 − g

2
|ψ (x, t )|4

]
dx, (5)

where ψx denotes partial derivative with respect to x. Since the
soliton is initially far from the potential, the potential energy
is vanishingly small and hence we do not include it in this
energy functional. Using ψ (x, 0), given by Eq. (3), the energy
of the initial soliton takes the form

ES = 1
2 nv2 − 1

24 g2n3. (6)

The energy of the trapped mode is, on the other hand, given
by

ET =
∫ ∞

−∞

[
1

2
|φx(x, t )|2 − g

2
|φ(x, t )|4 + V (x)|φ(x, t )|2

]
dx,

(7)
where φ(x, t ) is the trapped mode solution of Eq. (1).

Equating the energy of the soliton to that of the trapped
mode, the critical speed will be given by

vc =
√

1

12
g2n2 + 2

n
ET . (8)

Hence, it is essential to calculate the energy of the trapped
mode to calculate the critical speed.

Examining the profile of the trapped mode, we notice
that it is always composed of two peaks separated by a
node at the center of the potential with a linear dependence
φ(x, t ) = δ(t ) x, around x = 0, where δ(t ) reaches its maxi-
mum when the mode is fully occupied. We thus conjecture
that the trapped mode is a stationary solution of the NLSE,
Eq. (1), that is localized at the potential and has a node at
the center. Substituting the general form of stationary solution
ψ (x, t ) = φ(x) exp (−iμt ) in Eq. (1) gives

μφ(x) + 1

2

∂2

∂x2
φ(x) + gφ3(x) − V (x)φ(x) = 0, (9)

where the soliton frequency, μ (or chemical potential in the
case of matter-wave solitons of Bose-Einstein condensates),
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is related to the trapped mode energy by

ET = nμ + g

2

∫ ∞

−∞
φ4(x)dx, (10)

which can be obtained by multiplying Eq. (9) by φ(x), in-
tegrating over all space, and then comparing with Eq. (7).
Stationary trapped modes and their energies are obtained by
solving Eq. (9). Based on the above-mentioned general struc-
ture of the trapped mode, the boundary conditions needed
to calculate the trapped mode are φ(0) = 0 and φx(0) = δ,
where we have removed the time dependence since we are
looking for a stationary solution. Two more restrictions need
to be taken into account while solving this equation. First, the
trapped mode has to decay outside the potential to zero, and
second, the norm of the trapped mode has to be equal to that of
the initial soliton. The numerical procedure is therefore imple-
mented in two steps. First, we solve numerically Eq. (9) with
the above-mentioned boundary conditions using trial values
of central slope, δ, and soliton frequency, μ. This results typ-
ically in an oscillatory solution. Then we search for the value
of μ that pushes the oscillations away from the localization.
With adequate fine-tuning of μ, a localized nonoscillatory
solution will be obtained. The second step is to calculate the
norm of the resulting state and require that it equals the norm
of the initial soliton, n. To achieve this criterion, the value
of δ is now varied and the search procedure for localized
solution using μ is repeated. Ultimately, a localized stationary
solution that corresponds to the profile and energy of the
trapped mode as well as the norm of the initial soliton will be
obtained.

Computing the trapped mode frequency, μ, and its central
slope, δ, with arbitrary accuracy using the above-described
numerical procedure turns out to be computationally demand-
ing, which is described as follows. We use a typical ordinary
differential equation solver such as the Runge-Kutta fourth
order (RK4) to solve Eq. (9). For higher accuracy, the it-
erative power series method may be used [28]. For quick
convergence, we use the variational values of μ and δ, which
are calculated in the next section, as starting values for the
search procedure. Alternatively, one may find such ‘good’
starting values by inspection. Most likely, the solution with
these starting values will not be the sought localized solution
and it will be rather an oscillatory solution. The task is then
to vary μ, such that a non oscillatory localized solution with
a decaying tail is obtained. The question is then how to set
such a criterion numerically? One may attempt to set the
condition that the solution vanishes at the end of the spacial
domain, x f . This does not lead to an accurate solution since
the exact value of the solution at x f , while very small, is
not zero. In addition, an oscillatory solution may have one
of its nodes at x f and thus satisfying the condition while it is
not the targeted localized solution. Based on the observation
that the localized mode must have the lowest norm among all
oscillatory solutions, we calculate the norm for a range of μ

values including its critical value. The critical value will then
be distinguished by a sharp dip in the curve as shown in Fig. 2.
The middle subfigure shows a zoom near the bottom of the
dip of the upper subfigure where another much narrower dip
appears again. The bottom subfigure shows again a zoom of
the bottom of the dip in the middle subfigure. A third dip
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FIG. 2. Norm, as defined by Eq. (4), in terms of the trapped
soliton frequency μ. Subfigure (b) is a zoom to the bottom of the
dip in subfigure (a). Subfigure (c) is a zoom to the minimum of the
dip in subfigure (b). The values of μ at the minima, starting from the
upper sub figure, correspond to refinements of the computed value.
The search for localized state started with μ = −0.25 and δ = 7.3.
The values of other parameters used are: V0 = 62, x f = 20, g = 1,
n = 2.

does not appear since, for the x f = 20 which we consider,
the solution is localized. Had we used a larger x f , a third dip
would appear. This successive appearance of minima reflects
the refinements in the value of μ as we approach the critical
value, as shown in Fig. 3. In principle, one can determine
the critical value of μ using this procedure to an arbitrary
accuracy. However, as we mentioned above, the accuracy of
the differential equation solver sets a limit on the maximum
accuracy of the critical μ obtained by this procedure. This will
be evident by making further zooms in the curve which will
end up with a noisy curve signifying reaching the scale of the
errors in the differential equation solver. Another important
factor to pay attention to is x f . The computed critical values
obtained with this procedure will be closer to the exact value
for larger x f . This will, however, require more computational
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FIG. 3. Computed values of the trapped soliton frequency μ in
terms of the refinement iteration. The figure corresponds to the spe-
cific case of Fig. 2. Starting from the trial value of μ = −0.25, the
curve saturates at μ = −0.4289448427098.

time. Numerically, it is challenging to search for such sharp
minima embedded in a much wider range. To be able to detect
the minimum at the dip, a step size of the order of or smaller
than the width of the dip is to be used. If we use this very small
step size to search for the dip in the much wider background,
then the calculation will be excessively time consuming. We
solve this problem as follows. First, we find μ at the minimum
of the first dip using a rather large step size in μ. Then, to
find the minimum of the second dip, we reduce the step size
by a factor that depends on the magnitude of the difference
between the starting value of μ and the one found at the
first dip. This procedure is repeated for the next iterations
such that for each dip the step size of the search method is
reduced to a suitable value for the scale at which the dip
occurs. In this manner, the critical values will be computed
with arbitrary accuracy up to the differential equation solver
accuracy. While we have only explained the procedure of
computing μ, a similar procedure is followed for finding the
slope δ.

The result of the above two numerical procedures are
shown in Fig. 4 where we plot the critical speed versus a

FIG. 4. Critical soliton speed, vc, at which the soliton will be
trapped by the potential in terms of its depth, V0. Crosses correspond
to the numerical calculation of the energy of the trapped mode
(numerical-I). Squares correspond to the numerical calculation of the
initial soliton energy that leads to trapping (numerical-II). Circles
correspond to the variational calculation. Values of parameters used
are: g = 1 and n = 2.

TABLE I. Trapped mode energy of the Pöschl-Teller potential
Eq. (2) in terms of its depth, V0, calculated using three independent
methods. Numerical-I method is to calculate the energy using the
stationary localized numerical solution of NLSE Eq. (9). Numerical-
II is to calculate the initial soliton energy such that its scattering with
the potential leads to a trapped mode. Variational calculation uses the
trial solution Eq. (11) to calculate the energy functional Eq. (7).

ET

V0 Numerical-I Numerical-II Variational

2 −0.303509 −0.304217 −0.301112
12 −0.302110 −0.302857 −0.299411
22 −0.300678 −0.301305 −0.297529
32 −0.298844 −0.299452 −0.295196
42 −0.296192 −0.297212 −0.293117
52 −0.293442 −0.294420 −0.290343
62 −0.289344 −0.290803 −0.286755
72 −0.284162 −0.285808 −0.281378
82 −0.275369 −0.278242 −0.272931
92 −0.259473 −0.264321 −0.258392
102 −0.210277 −0.213457 −0.212189

wide range of potential depths. Both methods lead to almost
identical values. In addition, we list in Tables I and II lists
of numerical values of the trapped mode energy and critical
soliton speed calculated using these two numerical methods
and the variational method which we describe in the next
section. An example of a stationary state corresponding to the
trapped mode for V0 = 2 and V0 = 102 are shown in Fig. 5.
An important difference between the two procedures need
to be pointed out. In the first numerical procedure, where
an incoming soliton, is trapped by the potential, there will
be always some left over kinetic energy that results in inter-
nal oscillations of the trapped mode. Thus the profile of the
trapped mode will be oscillating around the exact one which
we consider as the one generated by the second procedure.
This slight mismatch is clear in the figure.

For verification of the above results and further insight, we
perform a variational calculation in the next section.

TABLE II. Critical speed for soliton trapping calculated using
three independent methods as described in Table I.

vc

V0 Numerical-I Numerical-II Variational

2 0.351 0.346231 0.348058
12 0.272 0.262702 0.273755
22 0.241 0.234716 0.245768
32 0.222 0.218002 0.227936
42 0.210 0.206228 0.215820
52 0.200 0.197265 0.207340
62 0.193 0.190055 0.200539
72 0.186 0.184070 0.195288
82 0.181 0.178963 0.189221
92 0.177 0.174576 0.184181
102 0.173 0.170634 0.179504
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FIG. 5. Profile of the single-node trapped mode. Dotted (blue) curve corresponds to the numerical solution of Eq. (9) with μ = −0.2198
and φ′(0) = 1.09 for V0 = 2 (a) and μ = −0.4419 and φ′(0) = 9.8 for V0 = 102 (b). Solid (red) curve corresponds to the trapped mode
resulting from the scattering of a soliton at the critical speed. Dashed (green) curve corresponds to the variational calculation. Values of other
parameters used are: g = 1 and n = 2.

III. VARIATIONAL METHOD

Due to the sharpness of transition in scattering behavior
at the critical point, it is not easy to account for the numer-
ical results with a theoretical model unless an exact or very
accurate profile of the trapped mode is used. To the best
of our knowledge, the spectrum of the nonlinear stationary
states of the Pöschl-Teller potential are not known, unlike its
linear counter part. Nonetheless, we provide here a variational
calculation that proposes a profile of the trapped mode that
leads to the numerical results of the previous section to a high
degree of accuracy.

Initially, we have used many trial functions that account
for the node and general structure of the trapped mode. For
instance, we have used the simple trial functions x sech(cx),
x exp (−c|x|), (c1x + c2x3)sech(c3x), x exp (−cx2), etc., but
all of these trial functions did not lead to even a qualitative
agreement with the numerical results. In Ref. [29], nodal
and nodeless families of solutions to the U(1)-Higgs model
where found using a multiscale expansion. While the model
considered by that reference is slightly different than ours, the
method may be modified to obtain an approximate single node
solution which may serve as a trial function to the present
variational calculation. The proper trial function is inspired,
in fact, by the linear case where a linear Schrödinger equa-

tion with a Pöschl-Teller potential can be transformed to the
Legendre equation in terms of the variable u = tanh(x). The
first Legendre polynomial with a node is tanh(x). Since in
the present nonlinear case, the trapped mode needs also to be
localized, we propose the following trial function:

φ(x) = A sech(γ x) tanh(βx), (11)

where A is a normalizing constant, γ and β are variational
parameters. The parameter β accounts to the central slope
while the parameter γ accounts to the overall width of the
mode. First, we normalize the trial function to n, which results
in

A[γ , β] =
√

n∫ ∞
−∞ sech2(γ x) tanh2(βx)dx

. (12)

The integration can not be obtained in a closed analytical
form. One of the parameters can be scaled out and the re-
sulting one-parameter integral can be fit with an approximate
function. However, we did not find a simple fit that leads to
the correct numerical results. Therefore, we leave this integral
and similar ones in the energy functional to be calculated
numerically in terms of γ and β. Substituting the normalized
trial function in the energy functional Eq. (7), we get

ET [γ , β] = A2[γ , β]

{
1

2

∫ ∞

−∞
sech2(γ x)[βsech2(βx) − γ tanh(βx) tanh(γ x)]2dx − gA2[γ , β]

2

∫ ∞

−∞
[sech(γ x) tanh(βx)]4dx

− V0

∫ ∞

−∞
sech2(αx)[sech(γ x) tanh(βx)]2dx

}
. (13)

Plotting ET [γ , β] for specific values of n, g, and V0, shows that
it indeed has a local minimum at specific values of γ = γ ∗ and
β = β∗. Substituting back these specific values in the energy
functional, we obtain the minimum energy, ET [γ ∗, β∗], which
is supposed to correspond to the energy of the trapped mode.
Inserting this energy value in Eq. (8), gives the critical speed.

Figure 4 and Tables I and II show good agreement be-
tween the variational calculation and the numerical results for
the critical speed and trapped mode energy. In addition, the
profile of the trapped mode is almost indistinguishable from

the numerical one indicating that our trial function, not only
produces the correct energy of the trapped mode, but also de-
scribes accurately its profile. In Fig. 6, we plot the variational
trapped mode energy and the variational parameters γ ∗ and
β∗ versus the potential depth, V0. The energy of the initial
soliton shown by the dotted line in the subfigure for trapped
mode energy is always less than that of the trapped mode.
The difference between the two energies is the initial trans-
lational kinetic energy needed for the soliton to be trapped.
To a good approximation, the parameter β∗ behaves as

√
V0.
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FIG. 6. Trapped mode variational energy, ET , and variational
parameters γ ∗ and β∗ at the minimum of ET [γ , β]. Dotted horizontal
line in subfigure (a) corresponds to the energy of a stationary initial
soliton. The curve in subfigure (b) is

√
V0. Values of parameters used

are: g = 1 and n = 2.

The linear expansion of the trial function Eq. (11) around
x = 0, the central slope will be given by δ ≈ A β, which is
approximately equal to β since A is close to 1 for the whole
range of V0 considered. However, and due to the sensitivity
of the calculation at the critical speed, this seemingly good
approximation is not enough to account for the numerical
values.

It is instructive to model the scattering of the soliton
by the motion of a classical object. To that end, we cal-
culate the effective potential experienced by the soliton
during scattering. A time-dependent variational calculation
gives the equation of motion for the position of the soliton
peak, x0(t ), from which the effective potential is extracted.
Using the movable form of a localized solution ψ (x, t ) =
φ[x − x0(t )] exp iv(t )[x − x0(t )], where φ(x) takes the form
of Eq. (11), the Lagrangian corresponding to Eq. (1),

FIG. 7. Effective potential for a soliton scattered by the Pöschl-
Teller potential with speeds less than, equal to, and larger than the
critical speed. The horizontal dashed and dotted lines correspond
to the energy of the single-node trapped mode energy, ET , and
the stationary initial soliton energy, Es, respectively. Values of pa-
rameters used are: g = 1, V0 = 62, n = 2. Initial soliton position is
x0(0) = −10 and time of evolution equals 1.8 × |x0(0)|/v.

namely, L = ∫ ∞
−∞[(i/2)(ψtψ

∗ − ψ∗ψt ) − ( 1
2 |ψx|2 − g

2 |ψ |4 +
V |ψ |2)]dx, leads to the equation of motion

nẍ0(t ) = − d

dx
Veff[x0(t )], (14)

where

Veff[x0(t )] =
∫ ∞

−∞

{
1

2

[
d

dx
φ(x) exp(ivx)

]2

− g

2
φ4(x) + V (x)φ2[x − x0(t )]

}
dx (15)

is the effective potential. It is only the potential term that
introduces the x0-dependence to the effective potential. In
Figs. 7 and 8, we plot the effective potential for soliton speeds
less than, equal to, and greater than the critical speed ver-
sus time and soliton peak position, respectively. For v < vc,
Fig. 8 shows that the dynamics is similar to an object of
initial kinetic energy launched from the left, then rising up the
potential ramp till it reaches a maximum height with vanishing
speed. The object will then fall back which accounts for the
quantum reflection of the soliton. At the critical speed, v = vc,
the maximum height of the potential ramp matches exactly
the energy of the single-node trapped mode. For v > vc, the
potential takes the shape of a potential barrier continued in
the positive x range. The initial kinetic energy in this case is
larger than the maximum height of the barrier and therefore, it
will cross it with a nonzero speed. This corresponds to the full
transmission case. In terms of time, the potential at the critical
speed takes the form of a potential step, as shown by Fig. 8.
The object has an initial kinetic energy barely enough to reach
the plateau with zero speed and remains there indefinitely.
This corresponds to the critical state of the soliton being fully
trapped by the potential.

IV. STABILITY OF TRAPPED MODES

To gain further insight into the physics of quantum reflec-
tion and explain why the transition between full reflection
and full transmission at the critical speed is very sharp, we
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FIG. 8. Three curves from Fig. 7 replotted versus the position of the soliton peak, x0(t ). Soliton initial speeds equal v = 0.1 for (a),
v = vc = 0.191752 for (b), and v = 0.3 for (c).

investigate the stability of the trapped mode. The variational
calculation shows that the trapped mode corresponds to a
minimum of the energy functional in terms of the width of the
mode and slope of its node given by 1/γ and β, respectively.
In Fig. 9, we show this for V0 = 12. While the trapped mode
is stable against small perturbations in these parameters, we
found that it is very unstable against variations in its position.
If the trapped mode is shifted slightly from its equilibrium
position, then it gets ejected out of the potential as a soliton.
This is shown in Fig. 10 where a trapped mode was shifted,
initially by ±10−5, has been ejected to the left or right of
the potential and remarkably emerges as a soliton with the
critical speed for trapping. This can be verified theoretically

by considering a shifted trapped mode φ(x − x0) to expand
the energy functional Eq. (7) around x0 = 0 as follows:

ET [x0] = ET +
[

1

2

∂2

∂x2
0

∫ ∞

−∞
V (x)φ2(x − x0)dx

]
x0=0

x2
0,

(16)

where the zeroth-order term is the trapped mode energy, the
first-order term vanishes because the integrand is an odd
function, and only the potential integration contributes to the
second order term since in the other terms a shift of coor-
dinates removes x0. For the trial function Eq. (11), the last
expression becomes

ET [x0] = ET − V0

{∫ ∞

−∞
[cosh(2

√
V0 x) − 2]sech4(

√
V0 x) tanh2(βx)sech2(γ x)dx

}
x2

0 . (17)

Inspection shows that the integral in the square brackets is
always positive for the range of parameters used, namely,
V0 ∈ [2, 102]. Therefore, we conclude that E ∝ −x2

0, i.e., the
trapped mode corresponds to an energy maximum in terms
of x0. For the particular case of V0 = 12 and its variational
parameters γ ∗ = 0.74 and β∗ = 3.01, we calculate the energy
functional using the trial function Eq. (11) and compare it
with the above expression which in this case takes the form
ET ≈ −0.26 − 17.7x2

0. In Fig. 11, both results agree for small
x0 and show that the energy functional has indeed a maximum,
rather than a minimum at x0 = 0. This explains the unstable
dynamics described above.

Based on all of the above, we can now synthesise a de-
scription to the dynamics of quantum reflection and critical
behavior as follows. The incoming soliton starts to populate
the trapped mode mainly from its translational kinetic energy.

If the latter is not sufficient to fully populate the trapped mode,
then the soliton will stop moving before the trapped mode
reaching a profile that has the same norm as the initial soliton
and thus will be an imbalanced profile—the intensity towards
the incoming soliton side is larger than that on the other
side—such that it corresponds to an effectively shifted profile
towards the direction of the incoming soliton. According to
the above stability analysis, the trapped mode will be ejected
towards the same direction, and this corresponds to quantum
reflection. On the other hand, if the kinetic energy of the
soliton is large enough such that the trapped mode will be fully
populated and then imbalanced towards the opposite direction
of the incoming soliton, the trapped mode will be ejected from
that direction as a soliton and this corresponds to transmission.
At the critical speed, the kinetic energy is exactly sufficient to
populate the trapped mode such that its norm is equal to that

FIG. 9. Minimum of variational energy of single-node trapped mode in terms of its variational parameters. Values of parameters used are:
g = 1, V0 = 12, n = 2. Subfigures (b) and (c) are cross sections of the surface plot in subfigure (c).
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FIG. 10. Trapped single-node mode ejected as a soliton due to
an infinitesimal shift of 10−5 for subfigure (a) and −10−5 for sub-
figure (b). Ejected soliton speed equals the critical speed for soliton
trapping. Values of parameters used are: g = 1, V0 = 12, n = 2.

of the incoming soliton and this corresponds to a balanced
trapped mode. At the same time, the kinetic energy of the
initial soliton has vanished and no more pumping of energy
is available.

V. MULTINODE TRAPPED MODES

Here we calculate the first few of the nonlinear multin-
ode stationary states of the Pöschl-Teller potential and verify
that they also lead to quantum reflection. While we will use
here the second numerical procedure described in Sec. II,
we remark first about how the multinode solutions may be
obtained variationaly. Similar to the argument led to the
single-node solution, multinode trial solutions would contain
the higher order Legendre polynomials in tanh(βx), namely,
φ(x) = sech(γ x) tanh2k+1(βx), where k is a positive integer.

Following the second numerical procedure of Sec. II, it
turns out that it is not possible to find a multinode non os-
cillatory stationary state if the inverse width of the potential
is related to its amplitude strictly by α = √

V0, i.e., when the
Pöschl-Teller potential is a reflectionless potential. Therefore,
we investigated the possibility of relaxing the reflectionless
condition by setting potential widths wide enough to accom-
modate multinode solutions. Naturally, for larger number of

�1.0 �0.5 0.0 0.5 1.0
�2.0

�1.5

�1.0

�0.5

0.0

x0

E
T

FIG. 11. Energy of trapped single-node mode in terms of dis-
placement with respect to the center of the potential. Solid (blue)
corresponds to the variational calculation and dashed (red) corre-
sponds to the expansion Eq. (17). Values of parameters used are:
g = 1, V0 = 12, n = 2.

FIG. 12. Nonlinear trapped mode stationary states and energies
of the potential V (x) = −V0sech2(

√
V0x/4) for V0 = 2. Values of

initial slope are 0.96, 0.83, and 0.40 for the single (a), triple (b), and
quintic (c) nodes solution, respectively. Values of parameters used
are: g = 1 and n = 2.

nodes, wider potential width is needed. In Fig. 12, we plot the
profile of the first few multinode solutions for specific values
of normalization, nonlinearity strength, and potential depth.

Quantum reflection by a multinode trapped mode is shown
in Fig. 13 for the potential V (x) = 62 sech2(

√
62 x/3) and

norm n = 4. The figure shows clearly the formation of a three-
node trapped mode. Solving independently the NLSE with
this potential and norm using the numerical method described
in Sec. II, the exact stationary three-node solution is obtained.
Both profiles are shown also in Fig. 13 with an agreement
on the number and location of the nodes. The maxima in the
profile obtained by the scattering experiment are less than
those of the exact solution because the trapped mode is not

062202-8
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FIG. 13. (a) Quantum scattering of soliton by the three-node
trapped mode of the potential V (x) = −V0 sech2(

√
V0x/4) for V0 =

62. (b) Profile of the maximally occupied trapped mode. Dotted
(blue) curve is the result of the numerical solution of Eq. (9) and
solid (red) curve is the maximally occupied trapped mode obtained
by the scattering shown in the left subfigure. Values of parameters
used are: g = 1 and n = 4.

fully trapped. One can also show that when the speed is large
enough, the soliton will pass through the potential leaving a
small three-node trapped mode behind. Due to the fact that
the potential we use here is not purely reflectionless, the sharp
transition between full reflection and full transmission is not
present. Instead, there will be a range of soliton speeds where
a considerable portion of the soliton is trapped. For the case
of Fig. 13, almost full quantum reflection occurs for speeds
less than about 0.8. For speeds larger than 1.5, the soliton
will transmit but with a residual small three-node mode left
trapped. Between these two speeds, the scattered soliton is
split between trapped part, transmitted part, and a consider-
able amount of radiation.

VI. DISCUSSION AND CONCLUSIONS

We have calculated the critical speed for quantum re-
flection of a bright soliton scattered by the reflectionless
Pöschl-Teller potential in terms of its depth. The calculation
was performed both numerically and variationaly with very
good agreement on critical speed and trapped mode energy
and profile. Quantum reflection and resonant trapping were

explained in terms of the single-node stationary mode of the
potential. The accurate account of profile and energy of the
trapped mode was essential to calculate the critical speed.
Using the variational calculation, we mapped the dynamics
of the soliton to a classical object launched up a potential
ramp in the case of quantum reflection, a potential barrier
in the case of full transmission, and a potential step in the
case of resonant trapping. To understand the reason for the
sharp transition between full reflection and full transmission,
we have investigated the stability of the trapped mode against
perturbations in its width and position. It turned out that, while
the trapped mode is stable against perturbations in its width,
it is very unstable against perturbation in its equilibrium posi-
tion. Consequently, the time-reversal of soliton trapping was
generated, namely, an initially trapped mode is ejected as a
bright soliton moving with the critical speed. We have also
verified that quantum reflection may occur by exciting the
multinode trapped modes and found the profile and energy of
the first few of them.

The original aim of this work was to obtain an analytical
formula for the critical speed in terms of the potential depth
in a generalization to the linear case. However, the integra-
tions needed to be performed using the trial solution Eq. (11)
and energy functional of the trapped mode Eq. (7), such as∫ ∞
−∞ sech2(γ x) tanh2(βx)dx, turned out to be not integrable

in analytical form. We have used alternative interpolations, but
as we mentioned earlier, the high degree of accuracy required
at the critical speed, required more accurate calculation of the
energy of the trapped mode.

We were unable to find a rigorous proof for that only the
single-node trapped mode being excited when the potential
well is reflectionless. This needs to be investigated further
also for other potentials. We had to break the reflectionless
condition α = √

V0 to excite the multinode trapped modes; we
needed to have a wider potential such that more nodes can be
accommodated. However, this poses the question of whether
multinode trapped modes do exist or do not for the reflections
Pöschl-Teller potential.
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