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Statistical moments of the interspike intervals for a neuron model driven by trichotomous noise
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The influence of a colored three-level input noise (trichotomous noise) on the spike generation of a perfect
integrate-and-fire (PIF) model of neurons is studied. Using a first-passage-time formulation, exact expressions
for the Laplace transform of the output interspike interval (ISI) density and for the statistical moments of the
ISIs (such as the coefficient of variation, the skewness, the serial correlation coefficient, and the Fano factor)
are derived. To model the anomalous subdiffusion that can arise from, e.g., the trapping properties of dendritic
spines, the model is extended by including a random operational time in the form of an inverse strictly increasing
Lévy-type subordinator, and exact formulas for ISI statistics are given for this case as well. Particularly, it is
shown that at some parameter regimes, the ISI density exhibits a three-modal structure. The results for the
extended model show that the ISI serial correlation coefficient and the Fano factor are nonmonotonic with respect
to the input current, which indicates that at an intermediate value of the input current the variability of the
output spike trains is minimal. Similarities and differences between the behavior of the presented models and the
previously investigated PIF models driven by dichotomous noise are also discussed.
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I. INTRODUCTION

Stochastic fluctuations often evoke an unexpected response
in physical, chemical, and biological systems; the response
may consist in stochastic resonance [1–3], the ratchet effect
[4,5], hypersensitive transport [6,7], and anomalous diffusion
[8–12], to name a few. Especially during the past decades,
noise-dependent behavior of neural systems has received con-
siderable attention. As the dynamics of a neuron’s electrical
activity is quite complex, reduced models capturing the fun-
damental features of this process in mathematically simpler
terms are of interest in neuroscientific applications [13–25].
Moreover, an understanding of neuronal mechanisms gained
from reduced models could be useful in the engineering
of artificial neural devices designed to reproduce a given
real biological feature [21]. The simplest example of such
a reduced model is the white noise driven perfect integrate-
and-fire (PIF) model [14]. For the first time it was obtained
by modeling the neuron’s membrane potential evolution as
a common random walk [13]. However, research suggests
that the effect of synaptic inputs on the dynamics of the
neuron’s membrane potential cannot always be characterized
by white noise, but rather by a stochastic process with a
finite amplitude and correlation time (i.e., by a colored noise),
which does not have Gaussian statistics [25–28]. Most of
the analytical results for the cases of input colored noises
have been obtained in the limits of slow and fast noises [29],
as well as in a weak noise approximation [18,24]. Excep-
tions are integrate-and-fire (IF) models with a synaptic input
described by dichotomous noise [30], which can give ana-
lytically tractable exact results [26,29,31–33]. The analytical
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results achieved in these papers demonstrate a set of impor-
tant features of the interspike interval (ISI) distribution that
stem from noise correlation. Particularly, in contrast to the
PIF model with Gaussian input, the ISI distribution is clearly
bimodal for small transition rates of the input dichotomous
noise.

It is empirically known that the ISI density of real neurons
(e.g., pallidal and ganglion cells) can exhibit nontrivial pat-
terns, such as a bimodal or multimodal structure depending
on the input [21,34–36]. We would note that the conven-
tional models [14] driven by Gaussian noise are not able
to produce such a multimodal structure [21]. Thus, it is
of interest, from both theoretical and possible experimental
viewpoints, to know the behavior of the output ISI statistics
of a PIF model subjected to a colored three-level Markovian
noise (called trichotomous noise [3,7]). Especially, to find
an answer to the question whether the input trichotomous
noise in the PIF model can cause a three-modal structure
of the output ISI distribution. In the neurobiological con-
text, trichotomous noise is particularly suitable to mimic
three-level state inputs which may arise from presynaptic
randomly bursting neural populations [37,38]. Of course,
such a model is a gross oversimplification of any natural
neuron. The usual IF models consider the neuron to be a
single compartment that receives inputs from dendrites, whose
morphology and effects related to the latter are disregarded.
Moreover, empirical investigations show that some neocorti-
cal neurons operate as fractional differentiators [39], which
indicate possible power-law distributed waiting times between
the excitatory (or inhibitory) synaptic inputs. Recently, the
authors of Refs. [40,41] attempted to phenomenologically
include these effects by describing the effective input of IF
models by a subordinated process (i.e., by introducing a ran-
dom operational time).

2470-0045/2021/103(6)/062201(16) 062201-1 ©2021 American Physical Society

https://orcid.org/0000-0001-9754-4650
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.103.062201&domain=pdf&date_stamp=2021-06-01
https://doi.org/10.1103/PhysRevE.103.062201


MANKIN, REKKER, AND PAEKIVI PHYSICAL REVIEW E 103, 062201 (2021)

In this paper, inspired by results of [26,41] and by the
reasons presented above, we consider a stochastic PIF model
driven by a trichotomous noise. An extension of this model
to a more elaborate subordinated model with a random op-
erational time in the form of an inverse strictly increasing
Lévy-type subordinator [41] is also investigated. The aim of
the paper is to demonstrate that aside from the dichotomous
noise the trichotomous noise input is another example of a
driving non-Gaussian colored noise that can lead to exact re-
sults for PIF neurons. We provide an exact analytical formula
for the Laplace transform of the output ISI density. On the
basis of this formula we have derived exact expressions for
the dependence of statistical characteristics of the output spike
train, such as the average ISI, the variance, the skewness, the
serial correlation coefficient (SCC), and the Fano factor, on
the input parameters.

Particularly, it is shown that both models (with and without
subordination) predict at some parameter regimes a three-
modal output ISI distribution. Moreover, for the case with
subordination the SCC demonstrates a nonmonotonic depen-
dence on the mean input current μ, which indicates that the
ISI regularity is maximized at this value of μ. The latter effect
was previously reported in Ref. [41] for a subordinated PIF
model driven by a dichotomous noise. This behavior of the
SCC is in sharp contrast with the behavior of the SCC without
subordination. In the latter case the SCC always increases
monotonically to 1 when μ increases.

The structure of the paper is as follows. In Sec. II, we
present the model investigated. In Sec. III, exact formulas
are found for the Laplace transform of the ISI density. In
Sec. IV, exact formulas are derived for the ISI statistics. In
Sec. V, we discuss the behavior of the statistical measures
and illustrate their characteristic features. Section VI contains
some brief concluding remarks. Some formulas are delegated
to the Appendices.

II. MODEL

In neuroscientific applications, one of the most used re-
duced neuron models is the IF model, which describes,
neglecting the morphology of dendrites, the dynamics of the
neuron’s membrane potential in terms of synaptic inputs and
injected current [14,15]. This model describes the dynamics of
the membrane potential in time as a solution of a differential
equation, supplemented by a spike generation rule, which
states that a spike is considered to have occurred once the po-
tential reaches a fixed threshold value, and is reset to an initial
value after that. The simplest but widely accepted as one of the
canonical models in this class is the PIF model, which features
a linear input current and a threshold at spike onset. The PIF
model is a good approximation for some complicated neural
models if the mean input current is large [13,42].

A. Ordinary PIF model driven by trichotomous noise

Our starting point is an archetypical stochastic PIF model
of subthreshold dynamics, written as in [13,31]

d

dt
V (t ) = μ + Z (t ), (1)

where V (t ) is the membrane potential at time t measured in
the units of the membrane time constant τm, τm = 1; μ > 0 is
a constant proportional to the average input current if synaptic
inputs are considered homogeneous, and Z (t ) is the fluctuat-
ing part of an input current. In Eq. (1), Z (t ) is to be assumed
as a trichotomous noise [3,7]. The trichotomous noise is a
random stationary Markovian process that consists of jumps
between three values: z1 = a, z2 = 0, and z3 = −a. The jumps
follow in time a Poisson process, while the values z1, z3, and
z2 occur with the stationary probabilities

p1 = p3 = q, p2 = 1 − 2q, (2)

with 0 < q � 1
2 . The mean value and the correlation function

are

〈Z (t )〉 = 0, 〈Z (t )Z (t ′)〉 = 2qa2e−ν|t−t ′ |. (3)

It can be seen that the switching rate ν is the reciprocal of the
noise correlation time τc, i.e., τc = 1/ν. More details on the
trichotomous process can be found in Appendix A. Although
both dichotomous and trichotomous noises may be useful
in modeling natural colored fluctuations, the latter is more
flexible, including also the case of dichotomous noise (q = 1

2 ).
Particularly, for trichotomous noises, the kurtosis κ can be
anything from −2 to ∞, unlike the kurtosis for Gaussian
colored noise, κ = 0, and symmetric dichotomous noise, κ =
−2. This extra degree of freedom can prove useful in mod-
eling actual fluctuations. Moreover, the trichotomous noise
Z (t ) can be represented as the sum of two cross-correlated
zero-mean symmetric dichotomous noises Z1(t ) and Z2(t ),
i.e.,

Z (t ) = Z1(t ) + Z2(t ). (4)

The dichotomous noises Z1(t ) and Z2(t ) are characterized as
follows [3]: Z1, Z2 ∈ {( 1

2 )a, −( 1
2 )a} with ν1 = ν2 = ν and the

correlation function

〈Zi(t )Zj (t
′)〉 = ρi j

a2

4
e−ν|t−t ′ |, i, j = 1, 2 (5)

where ρii = 1 and ρi j = ρ = 4q − 1 ∈ (−1, 1) with i �= j be-
ing the cross-correlation intensity of the noises Z1(t ) and
Z2(t ). As a dichotomous noise is suitable to mimic the up-
down state inputs of a neuron receiving input from a randomly
bursting neural population [25,26,37,38,43], in the biophys-
ical context a trichotomous noise may be considered as an
approximation of the synaptic inputs arriving in the soma of
a neuron via dendrites from two partially correlated randomly
bursting neural populations.

Model (1) is supplemented by the spike generator rule:
if the voltage reaches a certain threshold value V (t ) = vc,
then a spike is considered to have occurred at time t and the
voltage is reset to zero. In the following, we assume that the
spike generating process is a stationary process and limit the
analysis to the case in which

μ ± a > 0. (6)

This condition implies that the voltage passes the threshold
in all states of the trichotomous noise. In the case of q = 1

2 ,
model (1) reduces to the PIF model driven by a dichotomous
noise previously considered in [31].
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B. Subordination method

Over the last decades it has become apparent that many
complex systems exhibit anomalous subdiffusion with a
mean-square displacement of particles 〈r2(t )〉 ∼ tα (α < 1)
[8]. For a description of relaxation and transport properties in
such systems the continuous-time random walk (CTRW) pro-
cess is one of the most useful mathematical tools [9,44–49].
This process generalizes the standard random walk and allows
for random waiting times between jumps of random length. In
the decoupled case the CTRW is characterized by a waiting
time distribution and an independent jump length distribution.
The power-law behavior of the mean-square displacement
corresponds to a CTRW model in which the interjump times
obey a distribution density with the characteristic power tail
�(t ) ∼ t−(1+α) for large t , 0 < α < 1. The parameter α has
its origin in a random activation energy scenario, where a
particle is trapped in a given configuration of microscopic po-
tential barrier heights which give rise to a hierarchy of waiting
times [49]. In the diffusion limit (a continuous realization of
the CTRW) such systems can be modeled by the use of the
subordination method [44,45], which is described by a system
of coupled Langevin equations [44]

d

dτ
X (τ ) = F (X (τ )) + ξ (τ ),

d

dτ
T (τ ) = η(τ ), (7)

where F (x) is a time independent external force; the trajecto-
ries y(t ) = x(τ (t )) of the random walk become parametrized
by a variable τ and the Markovian noises ξ (τ ) and η(τ ) are
assumed to be independent. Here and in the following we
denote a stochastic variable with the capital letter (e.g., T ) and
a possible value of this variable with the corresponding lower
case letter (e.g., t). In this context, η(τ ) has to be positive due
to causality.

In Eqs. (7) the parameter τ (internal time) plays the role
of the number of jumps performed along the trajectory x(τ ),
and is successively delayed by trapping events, while physical
time t is modeled by an independent random process T (τ )
called the subordinator. In fact, the subordinator T (τ ) is noth-
ing else, but the sum of independent, identically distributed
random waiting time intervals between the jumps of the
walker. To complete the subordination procedure, an inverse
subordinator S(t ) is introduced, which measures the evolution
of the internal time as a random function of laboratory time t ,

S(t ) = inf{τ : T (τ ) > t}. (8)

The process of primary interest, i.e., the particle motion as
seen by the observer in physical time t , is now obtained as
a combined random function Y (t ) = X (S(t )). The process
X (τ ) is called a parent process, and the resulting process
Y (t ) is subordinated to the parent process (sometimes called
the subordinated process). To satisfy the requirements for
physical time, the subordinator T (τ ) is defined as a strictly
increasing Lévy motion. This process is Markovian with in-
dependent time-homogeneous increments, and such that the
Laplace transform of the probability density function (PDF)
p(t, τ ) of T (τ ) is given by

〈e−sT (τ )〉 =
∫ ∞

0
e−st p(t, τ )dt = e−τφ(s), (9)

where the function φ(s) is called the Lévy exponent. If φ(s) is
a Bernstein function with φ(0) = 0 [41,46], the subordinator
T (τ ) is well defined. It starts from 0 and is a pure-jump
process with strictly increasing sample paths. In this case
the inverse subordinator S(t ) has nondecreasing continuous
trajectories and can be used as a time arrow [46]. Notice that
contrary to T (τ ) the inverse subordinator is a non-Markovian
process. The Laplace transform of the PDF h(τ, t ) of the
inverse subordinator S(t ) is given by [46]

ĥ(τ, s) =
∫ ∞

0
h(τ, t )e−st dt = φ(s)

s
e−τφ(s). (10)

C. Subordinated PIF model

There is strong evidence that the voltage trace of some neu-
rons (e.g., pyramidal neurons) can follow multiple timescale
dynamics [39,50,51]. Such dynamics can result in power-
law type behavior in which the membrane voltage cannot be
characterized with conventional PIF models. In Refs. [50,52]
fractional-order leaky integrate-and-fire models are proposed
to help understand the adapting behavior of cortical neurons
[50,51], and also to model the anomalous subdiffusion that
arises from the trapping properties of dendritic spines [52]. In
fractional models the order of the fractional derivative goes
from 0 to 1, indicating the occurrence of subdiffusive dynam-
ics in such models. For example, in [52] the Nerst-Planck
equation with fractional order operators is used to model the
anomalous subdiffusion that arises from the trapping proper-
ties of dendritic spines. This model takes into account random
motions of ions with trapping effects due to the geometry of
spines as well as the drift of ions due to the electric field of the
membrane potential. Recently, in Refs. [40,41] an alternative
approach for spike generation of neurons is developed based
on a subordination procedure. In these papers it is attempted
to phenomenologically include the effects of dendrite mor-
phology, the possible timing delays that the latter may cause,
and the possible power-law distributed waiting times between
synaptic inputs by means of a Lévy-type subordinator.

Following the argumentation presented in Ref. [41], where
a subordinated PIF model driven by a dichotomous noise is
considered, we generalize model (1) by introducing a random
operational (internal) time τ via an inverse subordinator S(t ).
According to the subordination procedure (see also Sec. II B),
we suppose that the parent process V (τ ) for the neuron’s
membrane evolution in the internal time τ is governed by
Eq. (1), i.e.,

d

dτ
V (τ ) = μ + Z (τ ). (11)

To specify the structure of the Lévy exponent φ(s), which
determines the inverse subordinator via Eq. (10), we note that
the fractional-order leaky integrate-and-fire models [50–52]
can also be considered as subordinated models with a Lévy
exponent

φ(s) = 1

τ0
(τ0s)α, (12)

where 0 < α < 1 and τ0 = τm is the membrane time con-
stant. Although the stochastic model with the Lévy exponent
φ(s) ∼ sα is very useful for modeling anomalous diffusion
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processes, it has some nonphysical properties, e.g., absence
of any finite statistical moments of the subordinator T (τ ),
which indicates synaptic traps with infinite depth in the neuron
model. From the physical perspective it is desirable to have a
model that circumvents the infinite-moment difficulty while
preserving the subdiffusive behavior for small and moderate
times. Moreover, transient anomalous diffusion is found to
emerge from a wide range of natural complex processes (see
Refs. [8,45]); at small and moderate times the behavior of
the system is subdiffusive, but demonstrates normal diffusion
at long times. References [45,53] are devoted to just this
problem. An appropriate modification of the Lévy exponent
that leads to finite moments of all orders is proposed in the
form [41,45,53]

φ(s) = [τ0(s + δ)]α − (τ0δ)α

τ0[1 + (τ0δ)α]
, (13)

where 0 < α < 1, τ0 = const has the dimension of time, and
the parameter δ > 0 characterizes an exponential truncation
of the heavy-tailed distribution �(t ) ∼ e−δt t−(α+1) of waiting
times at t → ∞. In this paper we model the Lévy exponent as
[41]

φ(s) = 1

τ0

[
n∑

i=1

ηi[1 + (τ0δi )αi ]

[τ0(s + δi )]αi − (τ0δi )αi

]−1

, (14)

where 0 < αi � 1, τ0 = const, δi > 0, and ηi � 0 character-
izes the relative weight of the ith summand (

∑n
i=1 ηi = 1).

As shown in [41], in the biophysical context, such a Lévy
exponent can appear if we describe dendrites as n independent
escape channels acting in parallel [the total number of escape
events in the time interval (0, t ) is considered as the inverse
subordinator S(t )]. In the particular case of one channel (n =
1) Eq. (14) reduces to Eq. (13).

The subordinated PIF model (under consideration) is de-
fined by Eqs. (8)– (11), and (14), along with the spike
generator rule described above by model (1). The correspond-
ing voltage evolution as seen by the observer in the physical
time t is given by (see also Sec. II B)

Ṽ (t ) = V (S(t )). (15)

Finally, we note that the mean 〈T (τ )〉, the coefficient
of variation C2

T (τ ) = 〈[T (τ ) − 〈T (τ )〉]2〉/〈T (τ )〉2, and the
skewness γT (τ ) = 〈[T (τ ) − 〈T (τ )〉]3〉/〈[T (τ ) − 〈T (τ )〉]2〉3/2

of the subordinator T (τ ) are given by

〈T (τ )〉 = τφ(1)(0), C2
T (τ ) = − φ(2)(0)

τ (φ(1)(0))2 (16)

and

γT (τ ) = φ(3)(0)√
τ ( − φ(2)(0))3/2 (17)

with φ(n)(s) = dnφ(s)/dsn.

III. ISI DISTRIBUTION

Usually, the output of a neuron is characterized by the
statistics of the sequence of intervals between subsequent
spikes. Instances at which the membrane potential reaches
the threshold vc define the spike times ti, i = 1, 2, . . . , and

thus a sequence of ISIs Ii = ti − ti−1 as well as the sum of n
subsequent ISIs

Tn =
n∑

i=1

Ii, (18)

called the nth-order interval, where obviously T1 = I1. The
key quantity to characterize the ISI statistics is the output ISI
probability density w(t ). The ISI distribution w(t ) equals the
probability density of the time needed to reach the threshold
for the first time after starting at the reset value. To find this
density, we start from a statistical description of the voltage
V (t ) evolution determined by Eq. (1). The following master
equation describes the time-dependent behavior of the prob-
ability distribution of the joint Markov process {V (t ), Z (t )}:

∂

∂t
Pi(v, t ) = −(μ + zi )

∂

∂v
Pi(v, t ) + ν

3∑
j=1

Si jPj (v, t ), (19)

where i, j = 1, 2, 3, Pi(v, t ) are the probability densities that
V (t ) = v and Z (t ) = zi, respectively, and the transition matrix
Si j is given by Eq. (A3). Because of condition (6) the voltage
trajectories v(t ) starting from the reset state [V (0) = 0] cannot
cross the threshold multiple times, and thus the evolution
of the probability density in the presence of an absorbing
boundary is the same as that in the absence of such a boundary.
Hence, for the stationary spike train the ISI distribution w(t )
is given by the probability current in the v direction,

J (v, t ) =
3∑

i=1

(μ + zi )Pi(v, t ) (20)

taken at the absorbing threshold V (t ) = vc, i.e.,

w(t ) = J (vc, t ). (21)

The transition probability densities Pi j (v, t ) ≡
p(v, zi, t |0, z j, 0) from reset V (0) = 0 in the noise state
z j to V (t ) = v with Z (t ) = zi at time t > 0 can be found as
solutions of Eq. (19) with the following initial conditions for
Pi j (v, t ) at t = 0:

Pi j (v, 0) = δi jδ(v), (22)

where δi j is the Kronecker symbol and δ(v) is the Dirac
delta function. The probability densities Pi(v, t ) can now be
expressed as

Pi(v, t ) =
3∑

j=1

P(s)
j Pi j (v, t ). (23)

The stationary probabilities P(s)
j to find the trichotomous noise

at reset V (0) = 0 in the state z j should be self-consistent, i.e.,
the initial distribution of noise values at reset has to be equal to
the distribution of noise upon firing. From the latter condition
and Eq. (19) it follows that

P(s)
j = μ + z j

μ
p j . (24)

Here the stationary probability p j to find noise Z (t ) in the
state z j is determined by Eq. (2). Equations (19)–(24) can be
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reduced to a third-order equation for the probability current
(see also Appendix C){[

μ
∂

∂v
+ ∂

∂t
+ ν

][
(μ2 − a2)

∂2

∂v2
+ μ

(
2

∂

∂t
+ ν

)
∂

∂v

+ ∂

∂t

(
∂

∂t
+ ν

)]
+ νa2(1 − 2q)

∂2

∂v2

}
J (v, t ) = 0 (25)

with the initial conditions

J (v, 0) = μ

(
1 + 2qa2

μ2

)
δ(v),

∂

∂t
J (v, t )|t=0 = −2νqa2

μ
δ(v) − (μ2 + 6a2q)δ′(v),

∂2

∂t2
J (v, t )|t=0 = 2qν2a2

μ
δ(v) + 8qνa2δ′(v)

+ 1

μ
[μ4 + 2qa2(6μ2 + a2)]δ′′(v), (26)

and with the boundary conditions

J (v < 0, t ) = J ′(v < 0, t ) = J ′′(v < 0, t ) = 0, (27)

where the prime denotes the derivative with respect to v.
The probability current J (v, t ) with conditions (26) and

(27) can be obtained by means of the Laplace transformation
technique. For the Laplace transform of J (v, t ), i.e.,

Ĵ (v, s) =
∫ ∞

0
e−st J (v, t )dt, (28)

we obtain from Eqs. (25) and (26) the following ordinary
differential equation of third order (see also Appendix C):

μ(μ2 − a2)Ĵ ′′′(v, s) + [s(3μ2 − a2) + 2ν(μ2 − qa2)]Ĵ ′′(v, s)

+ μ[s(3s + 4ν) + ν2]Ĵ ′(v, s)

+ s(s + ν)2Ĵ (v, s) = f̂ (v, s) (29)

with

f̂ (v, s) = μ(μ2 − a2)δ′′(v) + 2δ′(v)[μ2(s + ν) − νa2q]

+ (s + ν)

[
μ(s + ν) + 2qa2s

μ

]
δ(v). (30)

The solution of Eq. (29) with boundary conditions (27) reads
as

Ĵ (v, s) =
(

3∑
i=1

Cie
vλi

)
�(v), (31)

where the quantities λi, i = 1, 2, 3, are the roots of the alge-
braic equation

μ(μ2 − a2)λ3 + [s(3μ2 − a2) + 2ν(μ2 − qa2)]λ2

+ μ[s(3s + 4ν) + ν2]λ + s(s + ν)2 = 0, (32)

where the constants Ci are determined by

Ci = s

[
λ2

i (μ2 − a2) + 2μ(s + ν)

(
1 − qa2

μ2

)
λi + (s + ν)2

]
× {λ2

i [2μ2(s + ν) + s(μ2 − a2) − 2νqa2]

+ 2λiμ(s + ν)(3s + ν) + 3s(s + ν)2
}−1

, (33)

and �(v) is the Heaviside step function. Thus, the Laplace
transform ŵ(s) of the ISI density w(t ) is given by

ŵ(s) =
3∑

i=1

Cie
vcλi . (34)

Since the dynamics of voltage evolution, Eq. (1), does not
explicitly depend on v, n subsequent passages from V = 0 to
vc, corresponding to the nth-order interval Tn [see Eq. (18)],
are by condition (6) equivalent to one passage from V = 0 to
nvc without reset (see also [18,31]). This property allows us
to compute the nth-order interval distribution by solving the
first-passage-time problem with the threshold V = nvc, i.e.,
the Laplace transform ŵn(s) of the nth-order interval density
wn(t ) is determined by

ŵn(s) =
3∑

i=1

Cie
nvcλi . (35)

We now turn to the description of the nth-order ISI den-
sity w̃n(t ) for the subordinated model, Eqs. (11)–(15). The
nth-order interval T̃n at which the membrane potential Ṽ (t )
reaches the threshold value nvc, starting from the reset state
Ṽ (0) = 0, is a random variable which can be defined as

T̃n = inf{t � 0 : Ṽ (t ) > nvc|Ṽ (0) = 0}. (36)

Since Ṽ (t ) = V (S(t )), where S(t ) is the inverse of the subor-
dinator T (τ ), the following relation holds [48]:

T̃n
d= T (Tn), (37)

where Tn is the first passage time (nth-order interval) for the

parent process V (τ ). Here
d= stands for “equal in distribution.”

Using Eqs. (37), (9), and the total probability formula [the
processes V (τ ) and T (τ ) are independent]

w̃n(t ) =
∫ ∞

0
p(t, τ )wn(τ )dτ, (38)

where p(t, τ ) is the PDF of T (τ ), we can express the Laplace
transform of w̃n(t ) in the form

ˆ̃wn(s) = ŵn(φ(s)). (39)

This formula is fundamental for the analysis of the behavior
of the ISI statistics of the subordinated PIF model (11)–(15).

IV. ISI STATISTICS

Neural dynamics can be characterized by several quantities
[14,15,26] and here we compute some that are widely used in
neuroscientific applications. For model (1) the kth moment of
the nth-order ISIs 〈T k

n 〉, k = 1, 2, . . ., can be expressed via the
relation 〈

T k
n

〉 = (−1)k dk

dsk
ŵn(s)|s=0. (40)
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From this relation and Eqs. (32), (33), and (35) we can derive
explicit expressions for the mean 〈Tn〉 and central moments
〈�T k

n 〉 = 〈(Tn − 〈Tn〉)k〉, k = 2, 3:

〈Tn〉 = nvc

μ
, (41)

〈
�T 2

n

〉 = 4qa2nvc

νμ3
− 4qa2

ν2μ4

{
(μ2 − 2qa2)

× [1 − e−nσ1 cosh(nσ2)]

− e−nσ1
a[(1 − 3q)μ2 + 2q2a2]√

(1 − 2q)μ2 + q2a2
sinh(nσ2)

}
, (42)

where

σ1 = νvc(μ2 − qa2)

μ(μ2 − a2)
,

σ2 = νvca

μ(μ2 − a2)

√
(1 − 2q)μ2 + q2a2, (43)

and the third order central moment 〈�T 3
n 〉 is presented in

Appendix B with Eq. (B1). From these expressions, other
statistical measures of the model can be derived, such as the
stationary firing rate

r = 1

〈T1〉 = μ

vc
, (44)

the coefficient of variation

C2
v =

〈
�T 2

1

〉
〈T1〉2

, (45)

and the skewness

γs =
〈
�T 3

1

〉(〈
�T 2

1

〉)3/2 . (46)

Also the serial correlation coefficient (SCC)

ρn = 〈In+1I1〉 − 〈In+1〉〈I1〉〈
I2
1

〉− 〈I1〉2
, (47)

which measures the correlation between two intervals with lag
n, is an important statistical characteristic in neuroscientific
applications. For stationary spike trains, the variance 〈�T 2

n 〉
of the nth-order interval and the SCC ρn are related as follows
[31]:

ρn =
〈
�T 2

n+1

〉+ 〈�T 2
n−1

〉− 2
〈
�T 2

n

〉
2
〈
�T 2

1

〉 . (48)

Thus, the formulas (42) and (48) allow us to exactly compute
the SCC ρn. Moreover, the SCCs and the coefficient of varia-
tion are linked to the Fano factor F in the limit of large spike
count windows via the equation [24]

F = C2
v

(
1 + 2

∞∑
n=1

ρn

)
. (49)

Let us note that the Fano factor F is defined as the ratio of
variance to the mean of the spike count in the time window
(0,∞), and as such it determines the variability of the spike
train. Using the variance (42), Eqs. (48) and (49) yield a

simple expression for F :

F = 4a2q

νμvc
. (50)

This expression has the same form as the F found for sym-
metric dichotomous noise in [26]. The only difference is that
the factor 2q appears in the numerator. In the case of the
subordinated model, Eqs. (11)–(15), the statistical moments
of nth-order ISIs 〈T̃ k

n 〉 can be expressed via the relation〈
T̃ k

n

〉 = (−1)k dk−1

dsk−1

[(
d

ds
φ(s)

)
d

dφ
ˆ̃wn(φ(s))

]∣∣∣∣
s=0

, (51)

in terms of the moments 〈T l
n 〉 for the parent process. Particu-

larly, the output spiking rate r̃, the coefficient of variation C̃2
v ,

and the skewness γ̃s are given by

r̃ = τ

〈T (τ )〉 r, C̃2
v = C2

v + rτC2
T (τ ), (52)

γ̃s =
(

C2
v

C̃2
v

)3/2{
γs + 3τ

〈T1〉
C2

T (τ )√
C2

v

+ γT (τ )
τ 2

〈T1〉2

(
C2

T (τ )

C2
v

)3/2}
, (53)

where the mean 〈T (τ )〉, the coefficient of variation C2
T (τ ), and

the skewness γT (τ ) of the subordinator T (τ ) are determined
by Eqs. (16) and (17). For the SCC ρ̃n and the Fano factor F̃
we obtain

ρ̃n = C2
v

C̃2
v

ρn (54)

and

F̃ = F + rτC2
T (τ ). (55)

It should be noted that the formulas for ISI statistics obtained
in this section coincide in the particular case of q = 1

2 with the
results of Refs. [26,41] for a PIF model driven by symmetric
dichotomous noise (both with and without subordination).

V. RESULTS

Before analyzing the behavior of the exact ISI statistics in
more detail, it should be noted that all quantities in all figures
are dimensionless, with time and voltage scaling determined
by τ0 = 1 and vc = 1.

A. ISI density

The ISI densities wn(t ) and w̃n(t ) can be found by means
of inverse Laplace transforms from Eqs. (35) and (39), re-
spectively. In the case without subordination, it follows from
Eqs. (6), (20), and (21) that the support of ISI distribution w(t )
is a finite interval [t1, t3] with

ti = vc

μ + zi
, i = 1, 2, 3. (56)

The distribution consists of three delta peaks at ti and a
continuous part between them [cf. also Eq. (B5)]. The delta
peaks correspond to realizations of the trichotomous noise
in which no switching between noise states occurs while the
voltage rises from reset to threshold. The contribution of delta
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peaks dominates at small values of the noise switching rate
ν < 1/t3, but in the case of high switching rates ν � 1/t1 only
a negligible fraction of the total probability is contained in the
delta peaks. The continuous part of w(t ) dominates at small
and moderate values of the noise correlation time and results
from at least one change in the noise value during the passage
of V from 0 to vc. At the long-correlation-time limit ν → 0,
the continuous part is absent and the ISI density

w(t ) =
3∑

i=1

P(s)
i δ(t − ti ) (57)

is clearly three modal, reflecting that the transitions between
states of noise are so rare that the noise values do not change
during the passage of V from 0 to vc. In the fast-noise limit
ν → ∞, w(t ) behaves asymptotically as the ISI density for
the PIF model driven by white noise with the intensity D =
2qa2/ν, i.e., as an inverse Gaussian distribution (see also
Refs. [13,40]):

w(t ) ≈ vc
√

ν

2a
√

π2qt3
e
− νμ2 (t−t2 )2

8qa2t ⇒ δ(t − t2), ν → ∞. (58)

In contrast to the parent PIF model considered above the sub-
ordinated PIF model predicts an ISI distribution with support
on the whole semiaxis t ∈ (0,∞) and the delta peaks are
absent. In the case of the small switching rate, where the delta
peaks in the ISI density w(t ) are pronounced, the influence of
subordination is more expressive for the monofractional Lévy
exponent φ(s) [see also Eq. (13)]. In this case the PDF of the
subordinator T (τ ) reads as

p(t, τ ) = e−δt

(
1 + δα

τ

) 1
α

e
τδα

1+δα gα

[
t

(
1 + δα

τ

) 1
α

]
, (59)

where τ0 = 1, 0 < α < 1, and gα (x) is the one-sided α-stable
PDF [54]. A convenient formula for calculating gα (x) is
represented in Appendix B, Eq. (B10). In the limit where
the characteristic exponent α (sometimes called the memory
exponent) tends to 1, the PDF p(t, τ ) tends to a Dirac delta
function, i.e.,

p(t, τ ) = δ
(

t − τ

1 + δ

)
, α = 1. (60)

Thus, at α = 1 the ISI distribution w̃(t ) behaves like w (̃t ), t̃ =
(1 + δ)t , for the model without subordination. Figures 1(a)
and 2(a) show, in the case of the monofractional Lévy expo-
nent, the behavior of w̃(t ) for different memory exponents α.
By decreasing values of α the peaks broaden and show an
increasing overlap such that the distribution loses its three-
modal nature. At moderate and small values of the memory
exponent (a strong memory in the corresponding diffusion
process) the ISI density is monomodal. For small α, the maxi-
mum of w̃(t ) corresponds roughly to the maximum of the PDF
of the subordinator by τ = t1. Let us note that the position
of this maximum shifts in the direction of shorter times as
α decreases. Figures 1(b) and 2(b) display the dependency of
w̃(t ) on the switching rate ν for weak memory (α = 0.98) and
strong memory (α = 0.2), respectively.

In the case of weak memory [Fig. 1(b)] the parent process
is dominant and at small values of the transition rate ν < 1/t3,

0.0 0.5 1.0 1.5 2.0 2.5
0

1

2

3

4

5

6

t

w̃
(t)

(a)

1.0 1.5 2.0

0.05
0.10

0.50
1

5

t

w̃
(t)

(b)

FIG. 1. The ISI density w̃(t ) for the monofractional Lévy expo-
nent with weak memory, computed from Eqs. (13), (38), (59), (B5),
and (B10). The parameter values are μ = vc = τ0 = 1, a = 0.5, q =
0.2, δ = 0. (a) The ISI distribution at different values of the memory
exponent α at a vanishing switching rate ν = 0. Solid line: α = 0.98;
dashed line: α = 0.92; dotted line: α = 0.85. (b) The dependence of
w̃(t ) on small values of the switching rate ν at α = 0.98. Solid line:
ν = 0.01; dashed line: ν = 0.1; dotted line: ν = 0.3.

w̃(t ) behaves similarly to w(t ), except that the delta peaks
turn into peaks of finite height. Equations (B5) and (B6)
show that these peaks are weighted with the exponential factor
e−ν(1−pi )ti , which decreases by increasing ν. At strong memory
[Fig. 2(b)] the effect of the subordinator is dominant and
the ISI distribution w̃(t ) is monomodal. By increasing ν, the
position of the maximum of the distribution changes only a
little.

The case of bifractional Lévy exponent n = 2 in Eq. (14),
with α1 < α2, is considered in Fig. 3. If the values of α1 and α2

are sufficiently distinct, then at short times t � t1, the smaller
memory exponent α1 dominates in the ISI distribution, but in
the long-time limit t � t3, the dynamics of the ISI generation
is determined by the greater memory exponent α2. Figure 3
demonstrates the emergence of bimodality in the ISI density,
induced by the bifractional Lévy exponent. In these parameter
regimes the parent process generates monomodal w(t ) with
a maximum at t ≈ vc/μ [cf. also Eq. (58)]; only a negligible
fraction of the total probability is contained in the delta peaks.
Hence, the first and second maxima in Fig. 3 are generated
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FIG. 2. The case of strong memory. The ISI distribution w̃(t ) is
computed from Eqs. (13), (32)–(34), (39), and (B13). (a) The PDF
w̃(t ) for different values of α at ν = 0. Solid line: α = 0.18; dashed
line: α = 0.2; dotted line: α = 0.22. (b) The PDF w̃(t ) for different
values of ν at α = 0.2. Solid line: ν = 0.1; dashed line: ν = 1.0;
dotted line: ν = 10. Other system parameter values are the same as
in Fig. 1.

10- 7 0.001 10
0.0
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0.8

t

w̃
(t)

FIG. 3. The behavior of the ISI density w̃(t ) in the case of the
bifractional Lévy exponent, computed from Eqs. (14), (32)–(34),
(39), and (B13) at n = 2. The parameter values are μ = τ0 = vc = 1,
δi = 10−10, α1 = 0.12, α2 = 0.9, a = 0.5, η1 = 0.25, and q = 0.4.
Solid line: ν = 10; dashed line: ν = 15; dotted line: ν = 20; dashed-
dotted line: ν = 1000.
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0.2

0.4
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0.8

1.0

1(
)

(a)
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0.00
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0.10

˜
1(
)

(b)

FIG. 4. The serial correlation coefficients ρ1 and ρ̃1 (for lag 1) vs
the mean input current μ computed at various values of the parameter
q. The curves are computed from Eqs. (54), (52), (48), and (42). The
parameter values are τ0 = vc = 1, a = 0.5, δ = 10−3, α = 0.12, and
ν = 0.1. (a) The PIF model (1). (b) The subordinated model (12)
with a monofractional Lévy exponent, Eq. (13). Solid line: q = 0.5;
dashed line: q = 0.35; dotted line: q = 0.2. In the limit μ → ∞, all
curves on (a) and (b) tend to 1 and zero, respectively.

by α1 and α2, respectively. Such a subordination-induced bi-
modality of the ISI density has been previously reported in
Ref. [41] for a PIF model driven by dichotomous noise.

B. ISI variability

In neuroscientific applications the variability of the output
spike train is often characterized by the SCC ρ1, the Fano
factor F , the skewness γs, and the coefficient of variation
C2

v [see also Eqs. (44)–(49)]. In the following we focus on
the dependence of these characteristics on the mean input
current μ. This is motivated by that μ can be easily adjusted
in possible experiments. In Figs. 4(a) and 4(b) we depict at
several values of the probability q the typical forms of the
graphs ρ1 and ρ̃1 versus μ, respectively.

Similarly to the PIF model driven by dichotomous noise
(q = 1

2 ), considered in [41], in the case of a trichotomous
noise the behavior of the SCCs for PIF models with subordi-
nation and without subordination is also profoundly different.
In the case of subordination the graphs of ρ̃1 versus μ are
clearly monomodal, which indicates that the ISI regularity is
maximized at an intermediate value of μ. This behavior of ρ̃1
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0.008

1˜
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FIG. 5. The dependence of the SCC ρ̃1(a) on the noise param-
eters q and ν by a monofractional Lévy exponent, computed from
Eqs. (13), (42), (52), (54), and (61). Other parameter values are
μ = a = 0.5, τ0 = vc = 1, and δ = 10−3. (a) The SCC ρ̃1(a) vs q
at various values of the memory exponent α, ν = 0.16. Solid line:
α = 0.2; dashed line: α = 0.5; dotted line: α = 0.8. (b) The depen-
dence of ρ̃1(a) on the noise switching rate ν at various values of
the parameter q, α = 0.2. Solid line: q = 0.2; dashed line: q = 0.3;
dotted line: q = 0.4. All curves tend to zero as ν → ∞.

contrasts with that of the model without subordination, where
the SCC ρ1 is always a monotonically increasing function of
μ. The value of ρn increases from

ρn(a) ≡ ρn|μ=a = 2a(1 − 2q)[sinh(σ )]2

{νvc − (1 − 2q)a[1 − e−2σ ]}e−2σn (61)

with

σ = νvc

4a(1 − q)
(62)

to 1 as μ increases from a to ∞. The main difference be-
tween the serial correlation coefficients for models driven by
dichotomous and trichotomous noises appears in the limit
μ = a. In the case of dichotomous noise both ρn and ρ̃n

become zero at μ = a, reflecting that in this case the threshold
is only reached in one of two noise states, i.e., interchange
of information between spikes is impossible. But for the PIF
model driven by trichotomous noise the SCCs at μ = a are
different from zero, ρn(a) �= 0 and ρ̃n(a) ≡ ρ̃n(μ = a) �= 0
(except in some limit cases). Since in this case at μ = a there
are two active states (z1 and z2), an interchange of information

0.5 1.0 1.5 2.0 2.5 3.0
30

40

50

60

70

F̃
(
)

FIG. 6. The Fano factor F̃ vs the mean input current μ at various
values of the probability q, computed from Eqs. (13), (44), (50), and
(55). The parameter values are τ0 = vc = 1, a = 0.5, δ = 10−3, α =
0.2, ν = 0.015. Solid line: q = 0.2; dashed line: q = 0.3; dotted line:
q = 0.45. In the case of large values of μ the Fano factor increases
linearly, F̃ ∼ μ.

between spikes is possible. Figure 5 illustrates how a varying
probability q of the trichotomous noise states changes the
value of the quantity ρ̃1(a).

It is remarkable that the dependencies of ρ̃1(a) on the prob-
ability q and on the noise switching rate ν are of a bell-shaped
form. The SCC ρ̃1(a) is zero for both extreme values of q,
i.e., at q = 0 and 1

2 . Moreover, ρ̃1(a) vanishes also in the
fast-noise limit ν → ∞, and in the long-correlation-time limit
ν → 0, indicating that in these limits the noise cannot carry
memory of one ISI to the next. Remarkably, the maximum of
ρ̃1(a) increases by decreasing the memory exponent α [see
also Fig. 5(a)]. The behavior of the Fano factor F̃ at suffi-
ciently small switching rates confirms the statement that the
regularity of the spike train is maximized at an intermediate
value of μ (see also Fig. 6). From Eqs. (44), (50), and (55)
one can infer that if

ν <
4q

τC2
T (τ )

, (63)

the function F̃ (μ) demonstrates a minimum at

μex = 2a

√
q

ντC2
T (τ )

. (64)

Hence, at μ = μex the variability of spike counts measured
in very large observation time windows is smaller, i.e., long
spike trains are more regular than for regimes μ → a and
μ → ∞.

The minimum gets more pronounced as q increases. It
should be noted that without subordination the Fano factor is
a monotonically decreasing function on μ [see also Eq. (50)].

Finally, we consider in brief the behavior of the skewness
and the coefficient of variation of the ISI distribution. Sim-
ilarly to the SCC and the Fano factor, these quantities also
behave different for models with and without subordination.
The main difference appears in the dependencies of C2

v (μ) [or
γs(μ)] and C̃2

v (μ) [or γ̃s(μ)] as functions on μ. For sufficiently
large values of μ, both C̃2

v (μ) and γ̃s(μ) are monotonically
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FIG. 7. The coefficients of variation C2
v and C̃2

v vs the mean input
current μ at various values of the trichotomous noise parameter
q [see Eqs. (44), (45), and (52)]. The parameter values are τ0 =
vc = 1, a = 0.5, δ = 10−3, α = 0.2, and ν = 0.015. (a) The PIF
model without subordination. (b) The subordinated PIF model with a
monofractional Lévy exponent, Eq. (13). Solid line: q = 0.5; dashed
line: q = 0.35; dotted line: q = 0.2. At μ = a all curves tend to a
finite value determined by Eqs. (B18) and (52). In the limit μ → ∞
the curves for C̃2

v increase unrestrictedly, but for C2
v they tend to zero.

increasing functions C̃2
v (μ) ∼ μ and γ̃s(μ) ∼ √

μ. This con-
trasts with the case of the PIF model without subordination,
where C2

v (μ) and γs(μ) are monotonically decreasing func-
tions on μ [see also Eqs. (B21) and (B22)]. In some parameter
regimes these statistical measures for the subordinated model
show a nonmonotonic dependence on μ with a minimum at
moderate values of μ [see also Figs. 7(b) and 8(b)]. This effect
is more pronounced for small transition rates ν as well as for
large values of the parameter q. Figures 7 and 8 illustrate how
a varying mean input current μ changes the coefficient of vari-
ation and the skewness of the ISI distribution, respectively.

From Fig. 7 it is seen that the general picture of the behav-
ior of C2

v (or C̃2
v ) in the case of dichotomous noise (q = 1

2 ) is
qualitatively similar to that generated by trichotomous noise
(q < 1

2 ). In the plot a monotonic increase in the coefficient of
variation with an increasing q can be seen. Hence, compared
to models driven by trichotomous noise, the models driven
by dichotomous noise generate, by the same values of other
system parameters, more variable ISIs. The behavior of C̃2

v for
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7.9

8.0

˜ s
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FIG. 8. The skewnesses γs and γ̃s as functions of the mean input
current μ at various values of the noise parameter q. The curves are
computed from Eqs. (13), (16), (17), (44)–(46), (52), (53), and (B1).
(a) The PIF model without subordination. (b) The PIF model with
subordination. All model parameters and the notations for lines are
the same as for Fig. 7. The finite values of γs and γ̃s at μ = a are
determined by Eqs. (B19) and (53). In the limit μ → ∞ all curves
γ̃s(μ) increase in proportion to

√
μ, but the curves γs(μ) tend to zero.

a PIF model driven by dichotomous noise has been previously
considered in more detail in Ref. [41].

For reference, let us mention that the class of renewal point
processes [55] has gained popularity in theoretical neuro-
science. In a renewal model the intervals between successive
spikes are independent and identically distributed. For re-
newal models the spike count variability depends solely on
the dispersion of ISIs and it holds that F = C2

v [55,56]. Par-
ticularly, for a Poisson process F = C2

v = 1. Processes with
F < 1 are thus considered less variable than Poisson pro-
cesses, whereas those with F > 1 are more variable. In the
particular case of a periodic spike train both characteristics
F and C2

v vanish, i.e., F = C2
v = 0. Since in both our models

the interspike intervals are no longer independent, but exhibit
serial dependencies, the relation F = C2

v will change: F is
not in general equal to C2

v [see also Eqs. (49) and (54)].
Thus, in the parameter regimes exposed in Figs. 6 and 7 the
subordinated model predicts much more variable spike trains
than for a Poisson process. Moreover, it is seen that C̃2

v and
F̃ as functions of μ increase linearly by sufficiently large
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FIG. 9. The dependence of the skewness γs on the mean input
current μ computed from Eqs. (42), (46), and (B1) at various values
of the noise parameter q. The model parameters are a = 0.5, vc = 1,
and ν = 8. Solid line: q = 0.15; dashed line: q = 0.25; dotted line:
q = 0.5.

values of μ, μ � a [see also Eqs. (50), (55), and (B21)]. This
finding may be important in view of possible experiments.
As pointed out in Ref. [41], such a linear dependence on μ

can indicate a subordination in the spike generation process
of a neuron. It should be noted that in the regime μ � a
the spike generation process possesses a renewal character
with the ISI PDF w̃(t ) ≈ p(t, vc/μ) [see Eqs. (9) and (38)];
in this regime the parent process generates an approximately
periodic spike train with w(τ ) ≈ δ(τ − vc/μ). Notably, in the
particular case when the memory exponent α = 1

2 , the ISI
PDF tends at μ � a to an inverse Gaussian distribution

w̃(t ) ≈ 1

2
√

πt3/2

(
vc

μ
√

τ0[1 + √
τ0δ]

)

× exp

{
−δ

t

(
t − vc

2μ
√

δτ0[1 + √
δτ0]

)2}
, (65)

which is one of the most widely used distributions for model-
ing ISI lengths [57].

In the parameter regimes given in Fig. 8, i.e., when the
noise switching rate is small, ν � (μ − a)/vc, the skewness
γs(μ) behaves as

γs(μ) =
√

2a√
q(μ2 − a2)

+ O

(
νvc

μ − a

)
, μ > a + νvc (66)

with

γs(a) ≈ 3
√

a

2qνvc(1 − q)
, μ = a. (67)

Equation (66) implies that the ISI distribution generated by
trichotomous noise is (for sufficiently small switching rates)
more asymmetric than the one driven by dichotomous noise.
In Fig. 9 the case of a relatively high switching rate (ν �
a/2qvc) is considered. It is remarkable that relying on
Eqs. (B15) and (B22) one can discern two regimes μ < 2qvcν

and μ > 2qvcν for the behavior of the skewness γs(μ). In the

case of μ < 2qvcν, γs(μ) behaves by increasing q as

γs(μ) ≈ 6
√

qa√
νμvc

, μ � 2qvcν (68)

i.e., by increasing the noise parameter q (other parameters are
fixed) the asymmetry of the ISI distribution grows, but in the
case of μ > 2qvcν it decreases by increasing q,

γs(μ) ≈
√

2a

μ
√

q
, μ � 2qvcν. (69)

Thus, for sufficiently small values of μ the ISI distribution for
the model driven by trichotomous noise is more symmetric
than for the model driven by dichotomous noise, but in the
case of μ > 2qvcν the situation is opposite.

Some further insight about the asymptotic behavior of pa-
rameters C̃2

v and γ̃s at various limits can be obtained from
Appendix B. The formulas presented in this Appendix may
be also useful for analysis of experimental data. For example,
the asymptotic formulas (B21) and (B22) give, under the as-
sumption that the presented subordinated model with the Lévy
exponent given by Eq. (13) is relevant, simple expressions for
estimation of the input parameters α and δ from the output
data. Namely, if μ � a, it follows that

α ≈ γ̃s − 2C̃v

γ̃s − C̃v

, δ ≈ r̃

C̃v (γ̃s − C̃v )
, (70)

where the output spiking rate r̃, the coefficient of variation C̃v ,
and the skewness γ̃s can be obtained from experimental data.
Finally, we note that time t and voltage v in all figures are
measured in units of the membrane time constant τ0 and of the
threshold potential vc, respectively. Thus, for the typical value
of τ0 = 10 ms the switching rate ν = 0.015 (see Figs. 6–8)
corresponds to 1.5 Hz, which is close to the range of the
values (2–3) Hz estimated for the transition rates from up
to down states for neurons in the striatum of rats [25,58]. In
Ref. [58] it is also found that for corticostriatal and striatal
neurons, the coefficients of variation of ISIs range from 1.0
to 1.9. For reference, in our model the value Cv ≈ 1.8 can
be achieved, e.g., in the parameter regime: ν = 0.015, vc =
τ0 = 1, q = 0.5, α = 0.2, δ = 10−2, a = 0.1, and μ = 0.2.
Of course, detailed experimental investigations are required
for any conclusion on the relevance of the model, which at
this moment remains as a speculation only.

VI. CONCLUSIONS

We have studied, in a tonically firing regime, the effect
of input trichotomous noise on the firing statistics of a PIF
neuron model. Using the Laplace transform of the output ISI
distribution, we have derived exact analytical expressions of
statistical measures for the output spike train, such as the serial
correlation coefficient, the Fano factor for large observation
time windows, the coefficient of variation, and the skewness.
Motivated by studies of the dynamics of a subordinated model
of dichotomous noise driven neurons [41], we have also con-
sidered a trichotomous noise driven PIF model inserting a
random operational time in the form of an inverse strictly
increasing Lévy-type subordinator. Exact formulas for spike
train statistics are obtained also in this case.
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As our main result, we have established that the input
trichotomous noise is, aside from the dichotomous noise, an-
other example of a driving non-Gaussian colored noise that
leads to exact results for the statistical measures of a PIF
model. Moreover, the dynamics of the generalized model with
subordination considered in this paper (see also Refs. [40,41])
is a highly non-Markovian process, which makes the model
promising, since in general the determination of ISI statistics
for a non-Markovian process is very difficult and so far var-
ious approximations or extensive computer simulations have
been used [21,23].

Particularly, we have shown that in some parameter
regimes both models predict a three-modal structure of the
ISI density for small switching rates ν of the input noise.
For the model without subordination, in the limit of high
switching rate the distribution approaches an inverse Gaus-
sian, i.e., the system behaves similarly to the PIF model driven
by white noise. In the particular case of the monofractional
Lévy exponent (13), which in the subordinated PIF model
describes a subdiffusive evolution of the subthreshold mem-
brane potential, the three-modal structure of ISI density is
more pronounced as the memory exponent α tends to 1 (i.e.,
in the case of a low memory). By decreasing values of α

the peaks broaden and show an increasing overlap such that
the distribution loses its three-modal structure and becomes
monomodal.

Considering other statistical measures of the output spike
train we focused on their dependence on the mean input
current μ. This is motivated by that μ can easily be ad-
justed in possible experiments. As a rule, these statistical
measures behave qualitatively similarly to the corresponding
characteristics of PIF models driven by dichotomous noise.
In comparison to the PIF model driven by dichotomous noise
considered in Refs. [26,41], the most important findings are
the decreased variability of the output spike train as well as
the increased skewness of the ISI distribution at the same
values of system parameters. Exceptions are the behaviors
of the serial correlation coefficient and the skewness in the
neighborhood of μ = a, where a is the noise amplitude. In the
case of input dichotomous noise the output SCC (ρ1) always
becomes zero at μ = a, reflecting that in this case the firing
threshold is only reached in one of the two noise states, i.e.,
interchange of information between spikes is impossible. But
for models driven by trichotomous noise the SCC at μ = a
is finite [ρ1(a) �= 0] since in this case there are two active
noise states at μ = a and interchange of information between
spikes is possible. It is important to note that in the case of
the subordinated model the dependence of the SCC ρn(a) on
the noise parameter q ∈ (0, 1

2 ) (for dichotomous noise q = 1
2 )

exhibits a bell-shaped form: ρn(a) = 0 at q = 0 and at q = 1
2 .

The next interesting result is that for sufficiently high
values of the noise switching rate ν, one can discern two
regimes for the behavior of the ISI skewness γs(μ): μ < μc

and μ > μc with a critical value μc, which can be roughly
estimated as μc ≈ 2qvcν, where vc is the threshold potential
of the neuron membrane. In the case of μ < μc, by increasing
the noise parameter q (the other parameters are fixed) the
asymmetry of the ISI distribution grows, but for μ > μc it de-
creases by increasing q. Finally, we note that the subordinated
model predicts in the large μ limit a specific behavior of the

skewness: by increasing μ the skewness increases unlimited
in proportion to

√
μ [see also Eq. (B22)]. Contrary to that,

the ISI skewness for the model without subordination always
tends to zero if μ → ∞. Here we emphasize that the behavior
of the skewness for a subordinated neuronal model has not
been considered previously.

We remark that in any realistic neural model, attaining the
ISI PDF should not be considered as the final achievement, but
rather as a starting point toward the description of a neuron’s
output. Since the trichotomous noise is more flexible than the
dichotomous noise and the model is robust enough to modify
the Lévy exponent, we hope that the models considered here
may be useful to shed some new light on the modeling of
dynamical aspects of real neurons. However, future investi-
gations are needed to clarify the biophysical background of
the models suggested in this paper.

Finally, we believe that the results discussed in this paper
can be a good starting point for investigations by numerical
simulations of more elaborated model systems for neuronal
dynamics in networks, and can also be of interest in other
fields where trichotomous noise is relevant for modeling a
system.
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APPENDIX A: TRICHOTOMOUS NOISE

In this Appendix we summarize in brief the main properties
of the trichotomous noise. All these properties are taken from
Ref. [3].

The trichotomous process Z (t ) is a stationary Markovian
process that consists of jumps between three values a, 0, and
−a. The jumps follow in time according to a Poisson process,
while the values occur with the stationary probabilities pre-
sented in Eq. (2). The mean value of Z (t ) and the correlation
function are given by Eq. (3). The kurtosis κ of the noise
Z (t ) proves to be a simple expression of the probability q [see
Eq. (2)]:

κ := 〈Z4(t )〉
〈Z2(t )〉2

− 3 = 1

2q
− 3. (A1)

The probabilities Wn(t ) that Z (t ) is in the state n ∈ {1, 2, 3},
z1 = a, z2 = 0, and z3 = −a, at time t evolve according to the
master equation

d

dt
Wn(t ) = ν

3∑
m=1

SnmWm(t ), (A2)

where

Snm =
⎡⎣ q − 1 q q

1 − 2q −2q 1 − 2q
q q q − 1

⎤⎦. (A3)
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The transition probabilities Ti j = p(zi, t + τ |z j, t ) between
the states zn, n = 1, 2, 3, can be represented by means of a
transition matrix Ti j of the trichotomous process as follows:

Ti j = δi j + (1 − e−ντ )Si j, (A4)

where δi j is the Kronecker symbol.
Taking the limit where the noise amplitude a → ∞ and

the switching rate ν → ∞ such that D = 4qa2/ν is finite, we
can have a delta-correlated noise, which has the properties of
white Gaussian noise with zero mean and a completely flat
spectrum.

APPENDIX B: FORMULAS FOR THE PIF MODEL DRIVEN
BY TRICHOTOMOUS NOISE

In this Appendix, we describe some formulas which are
absent from the main text, but are referred to in Sec. V.

1. Third order central moment

From Eqs. (32)–(35), and (40) it follows that〈
�T 3

n

〉 = 12vcnqa4

ν2μ5
{4q + e−σ1n[A1cosh(nσ2)

− A2 sinh(nσ2)]} + 12a4q

ν3μ4
{2B1[1

− e−nσ1 cosh(nσ2)] − B2e−nσ1 sinh(nσ2)}, (B1)

where

A1 = q[3(1 − 2q)μ2 + 4q2a2]

[(1 − 2q)μ2 + q2a2]
,

A2 = [μ2(1 − 2q) + 4q2a2]

a
√

(1 − 2q)μ2 + q2a2
, (B2)

B1 = 1 − 6q + 8
q2a2

μ2
, (B3)

B2 = 1

a
√

(1 − 2q)μ2 + q2a2

{
(μ2 − a2)

[
2 − 5q

+ 16a2q3

μ2
+ a2q3

[(1 − 2q)μ2 + q2a2]

]
+ 2a2(1 − q)(1 − 2q)(1 − 4q)

}
, (B4)

and the quantities σ1 and σ2 are determined by Eqs. (43).

2. ISI density at the long-correlation time

In the case of a small switching rate of noise Z (t ), ν < 1/t3,
the inverse Laplace transform of Eq. (34) gives

w(t ) = e−νt
3∑

i=1

C∗
i {δ(t − ti ) + [gi(a)

+ (t − ti )hi(a)]�(t − ti )} + O(ν3), (B5)

where

ti := vc

μ + zi
, C∗

i = P(s)
i eνti pi (B6)

[see also Eqs. (2), (24), and (56)],

g2(a) = −4qν,

g1(a) = g3(−a) = ν

a
[μ(2 − 3q) − aq]

+ ν2qvc

2a
(2 − 3q), (B7)

h2(a) = −2ν2q

a2
[3μ2(1 − 2q) + 2a2(1 − 3q)], (B8)

and

h1(a) = h3(−a) = ν2

a2

{
(1 − 2q)[3μ(1 − 2q)(μ + a)

− a(μ(1 − q) + aq)] + aq2

2
(μ − a)

}
.

(B9)

Equation (B5) is valid for t1 � t � t3. The ISI density w(t ) is
zero for both shorter and longer times t .

3. Formulas for the calculation of PDFs of subordinators

As shown by Ref. [54], the one-sided α-stable PDF gα (x)
can be transformed into a nonoscillating function integral that
is convenient for numerical calculations:

gα (x) = α

1 − α
x− 1

1−α

×
∫ 1

0
dξ A(ξ ; α) exp[−x− α

1−α A(ξ ; α)], (B10)

with

A(ξ ; α) = sin[(1 − α)πξ ][sin(απξ )]
α

1−α

[sin(πξ )]
1

1−α

, (B11)

where 0 < α < 1. Equations (B10), (B11), and (59) enable
to calculate the PDF of the monofractional subordinator T (τ )
determined by Eq. (13).

In the multifractional case of the Lévy exponent (14) a
convenient formula for the calculation of w̃(t ) can be obtained
if 0 < min{αi; i = 1, 2, . . . , n} < 0.5, [41]. In this case the
appropriate contour in the complex plane {s} for the evaluation
of the inverse Laplace transform of e−τφ(s) can be transformed
to the Hankel contour with a cut along the real negative semi-
axis [in the half-plane Re(s) < 0 the poles are absent]. Thus,
the PDF of the subordinator is given by

p(t, τ ) = − 1

π

∫ ∞

δ

dr e−rt Im[e−τφ(−r)], (B12)

0 < min{αi} < 0.5. Now, from Eqs. (B12) and (38) it follows:

w̃(t ) = − 1

π

∫ ∞

δ

dr e−rt Im[ ˆ̃w(−r)] (B13)

[see also Eqs. (35) and (39)].

4. Asymptotic behavior of the skewness and the coefficient of
variation

Here we present some formulas for C2
v , C̃2

v , γs, and γ̃s at the
limits of fast noise (ν → ∞), long-correlation time of noise
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(ν → 0), large values of mean input current (μ → ∞), and at
μ → a, obtained from Eqs. (42), (52), (53), and (B1).

(i) In the fast-noise limit (ν → ∞) these statistical charac-
teristics are given by

C2
v = 4qa2

νvcμ
, C̃2

v = μτ

vc
C2

T (τ ), (B14)

and

γs = 3
√

C2
v = 6

√
qa√

νμvc
, γ̃s =

√
μτ

vc
γT (τ ), (B15)

where C2
T (τ ) and γT (τ ) are the coefficient of variation and

the skewness of the subordinator T (τ ), respectively [see also
Eqs. (16) and (17)].

(ii) In the limit ν → 0 these quantities read as

C2
v = 2qa2

μ2 − a2
, C̃2

v = 2qa2

μ2 − a2
+ τ

vc
C2

T (τ )μ, (B16)

and

γs =
√

2a√
q(μ2 − a2)

. (B17)

In this limit the skewness γ̃s for the subordinated process is
now determined by Eq. (53).

(iii) At μ → a the behaviors of C2
v and γs are given by

C2
v = 4qa

νvc

{
1 − (1 − 2q)a

νvc
[1 − e−2σ ]

}
, (B18)

and

γs = 24qa2

ν2v2
c

(
C2

v

)3/2

{
2q − (1 − 2q)3

4(1 − q)2
e−2σ

+ a(1 − 2q)(1 − 4q)

νvc
[1 − e−2σ ]

}
, (B19)

where

σ = νvc

4a(1 − q)
. (B20)

The quantities C̃2
v and γ̃s can now be found from Eqs. (52) and

(53), respectively.
(iv) In the case of μ → ∞, the asymptotic behavior of C2

v

and γs can be described as follows:

C2
v = 2qa2

μ2
, C̃2

v = τμ

vc
C2

T (τ ), (B21)

and

γs =
√

2a

μ
√

q
, γ̃s = γT (τ )

√
τμ

vc
. (B22)

Note that the formulas for C̃2
v and γ̃s coincide with the corre-

sponding formulas in the limit ν → ∞.

APPENDIX C: DERIVATION OF EQS. (25), (29), AND (30)

1. Derivation of Eq. (25)

By the change

P = P1 + P2 + P3. P2 = P2,

J = (μ + a)P1 + μP2 + (μ − a)P3. (C1)

Equation (19) can be transformed into the system of equations

∂

∂t
P = − ∂

∂v
J, (C2)

M̂P2 = ν(1 − 2q)P, (C3)[
M̂ − a

∂

∂v

]
J =

[
(μ + a)

(
M̂ − a

∂

∂v

)
− νa

]
P + a2 ∂

∂v
P2,

(C4)

where the operator M̂ is defined by

M̂ = ∂

∂t
+ μ

∂

∂v
+ ν. (C5)

Using Eqs. (C3) and (C4) we obtain

M̂

[
M̂ − a

∂

∂v

]
J = M̂

[
(μ + a)

(
M̂ − a

∂

∂v

)
− νa

]
P

+ ν(1 − 2q)a2 ∂

∂v
P. (C6)

Now, this equation and Eq. (C2) give

∂

∂t
M̂

[
M̂ − a

∂

∂v

]
J = −

{
M̂

[
(μ + a)

(
M̂ − a

∂

∂v

)
− νa

]
+ ν(1 − 2q)a2 ∂

∂v

}
∂

∂v
J, (C7)

from which it is easy to find Eq. (25).

2. Derivations of Eqs. (29) and (30)

To find Eqs. (29) and (30), we start from Eq. (25). Using
for a Laplace transform of the function g(t ) the notation

ĝ(s) = L̂s(g(t )) =
∫ ∞

0
e−st g(t )dt (C8)

and the classical formula for the Laplace transform of deriva-
tives

L̂s

(
dn

dtn
g(t )

)
= snĝ(s) −

n−1∑
k=0

sk

[
dn−k−1

dtn−k−1
g(t )

]
|t=0

, (C9)

the Laplace transform of Eq. (25) gives

μ(μ2 − a2)Ĵ ′′′(v, s) + [s(3μ2 − a2) + 2ν(μ2 − qa2)]Ĵ ′′(v, s)

+ μ[s(3s + 4ν) + ν2]Ĵ ′(v, s) + s(s + ν)2Ĵ (v, s) = f̂ (v, s),

(C10)
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with

f̂ (v, s) = s2J (v, 0) + s[3μJ ′(v, 0) + J̇ (v, 0) + 2νJ (v, 0)]

+ [(3μ2 − a2)J ′′(v, 0) + 3μJ̇ ′(v, 0)

+ 4νμJ ′(v, 0) + J̈ (v, 0) + 2νJ̇ (v, 0) + ν2J (v, 0)],
(C11)

where the prime denotes the derivative with respect to v and

J̇ (v, 0) =
[

∂

∂t
J (v, t )

]
|t=0

, J̈ (v, 0) =
[

∂2

∂t2
J (v, t )

]
|t=0

.

(C12)

Thus, taking into account the initial conditions (26) Eq. (C11)
reduces to the expression (30).
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