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The large deviation statistics of dynamical observables is encoded in the spectral properties of deformed
Markov generators. Recent works have shown that tensor network methods are well suited to compute accurately
the relevant leading eigenvalues and eigenvectors. However, the efficient generation of the corresponding rare
trajectories is a harder task. Here, we show how to exploit the matrix product state approximation of the dominant
eigenvector to implement an efficient sampling scheme which closely resembles the optimal (so-called “Doob”)
dynamics that realizes the rare events. We demonstrate our approach on three well-studied lattice models, the
Fredrickson-Andersen and East kinetically constrained models, and the symmetric simple exclusion process. We
discuss how to generalize our approach to higher dimensions.
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I. INTRODUCTION

The complex behavior of the nonequilibrium dynamics of
stochastic systems can be characterized by studying trajectory
ensembles, that is, the set of all possible trajectories alongside
the probability that they occur under the evolution defined via
a stochastic master operator. This is analogous to standard
thermodynamics, where static properties are entirely deter-
mined by the equilibrium ensemble of all microstates and
the probabilities [1]. Often the dynamical behavior of interest
is dominated not by trajectories that are typical under the
dynamics, but by “rare events” which are exponentially (in
time and in system size) scarce. Studying these rare events
is made possible by using the framework of large deviations
(LDs) [2–7], where in large time limits time-extensive dy-
namical observables obey a LD principle, and their statistics
is encoded in functions which play for dynamics the role
that thermodynamic potentials play for statics (see below for
definitions).

LD functions can be obtained in principle from a defor-
mation or tilting of the dynamical generator (in the case of
continuous-time dynamics) or the Markov matrix (in the case
of discrete-time dynamics), through its largest eigenvalue.
Obtaining this eigenvalue is not always an easy—or even
possible—task, and often one needs to resort to numerical
methods. Methods to overcome this difficulty often include
techniques based on population dynamics, namely cloning
or splitting [8–11], and importance sampling [12–16] which
provide information about the configurations frequently vis-
ited by the rare events. Notice that even if one manages to
diagonalize the tilted generator (or the Markov matrix), the
generation of rare trajectories is nontrivial: While rare trajec-

tories are “generated” by the tilted operator, this is not a proper
stochastic operator and these trajectories cannot be directly
sampled.

The efficient sampling of rare events can be achieved
by searching for another stochastic dynamics which gen-
erates trajectories with desirable probabilities that are the
same as (or a close approximation to) those of the tilted
generator (with any small discrepancy corrected via impor-
tance sampling techniques). Methods for doing so currently
include optimal control [17,18] and machine learning ap-
proaches, where one attempts to “learn” this convenient
sampling dynamics [19–21]. The optimal choice for a refer-
ence dynamics is the so-called generalized Doob dynamics
[22–27], which generates trajectories with the exact tilting
corresponding to the deformed generator. The Doob dynam-
ics thus produces rare trajectories of the original dynamics
“on demand.” To construct such optimal dynamics, however,
requires knowledge of the leading eigenvector of the tilted
generator.

Variational tensor network (TN) techniques [28–34], origi-
nally devised as a tool to study quantum many-body systems,
are also convenient for studying classical statistical systems
[35–38]. More recently, they have been shown to be useful
in the context of LDs in stochastic dynamics [39–43]. In
particular, it is often both possible and easy to approximate the
leading eigenstate of the tilted generator of a one-dimensional
stochastic lattice system using a matrix product state (MPS)
ansatz, even those with dynamical (i.e., LD) phase transitions.
Recent works have made use of this eigenstate to determine
the statistical properties of the dynamics [39–43]. However,
such TN approach has not yet been exploited to sample effi-
ciently rare trajectories. This is what we do in this paper. We
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present a scheme to use the MPS approximation to the leading
eigenvalue of the tilted generator to construct a dynamics
which very closely resembles the optimal Doob dynamics, and
we show how we can use this dynamics to efficiently sample
rare events.

We focus on three paradigmatic models. The first two cor-
respond to kinetically constrained models (KCMs) [6,44,45],
specifically the Fredrickson-Andersen (FA) and the East [46]
model, two well-studied models known for their connection
to structural glasses [47,48]. The third model is the symmetric
simple exclusion processes (SSEPs) [49,50]. All these mod-
els have interesting LD statistics, including trajectory phase
transitions controlled by their activities and/or currents (in the
case of the SSEP) [3,5,51–54].

The paper is organized as follows. In Sec. II, we review
continuous-time Markov dynamics and LDs. We also recap
how one can apply an MPS ansatz to study KCMs. In Sec. III,
we define the Doob dynamics and introduce a scheme to
approximate it with a reference dynamics, constructed us-
ing an MPS approximation to the leading eigenstate of the
tilted generator. In Sec. IV we present the numerical results
from our method applied to the three models. We show how
our approach can effectively be used to accurately measure
the statistics of time-extensive observables. We provide an
outlook on possible generalizations and our conclusions in
Sec. V.

II. LARGE DEVIATIONS AND MATRIX PRODUCT STATES

In this section we introduce continuous-time Markov dy-
namics, giving specific examples in the context of kinetically
constrained models (KCMs) and exclusion processes. We then
also review the framework of large deviations (LDs) and how
variational matrix product states (MPS) can be used to deter-
mine the LD statistics.

A. Continuous-time Markov dynamics for
KCMs and exclusion processes

We consider stochastic Markov dynamics which evolves
continuously in time. Suppose we have some system with the
set of configurations {x1, x2, . . . , xM} where M is the size of
the configuration space. The probability that the system is in
some configuration x at the time t is encoded in the proba-
bility vector |P(t )〉 = ∑

x P(x, t ) |x〉 which evolves under the
stochastic master equation

d

dt
|P(t )〉 = W |P(t )〉 . (1)

Here, the generator of the dynamics W is given by

W =
∑

x,x′ �=x

wx→x′ |x′〉 〈x| −
∑

x

Rx |x〉 〈x| , (2)

where wx→x′ are the transition rates from configuration x to x′
and Rx = ∑

x′ �=x wx→x′ is the escape rate from x. The largest
eigenvalue of the generator is zero, with the left eigenvec-
tor the flat state 〈−| = ∑

x 〈x|, and the right eigenvector the
steady state |ss〉 = ∑

x P(x) |x〉, which describes the probabil-
ity of finding any configuration at equilibrium. If our system
obeys detailed balance, then we are guaranteed that any initial

state will eventually relax to some equilibrium state given
enough time. Here, we assume this to be the case.

We will focus on two broad areas of one-dimensional (1D)
constrained systems. The first is KCMs (for reviews, see
Refs. [6,44,45]), for which configuration changes are gov-
erned by a kinetic constraint which is explicitly encoded in
the generator. For concreteness, we focus on the 1D spin facil-
itation Fredrickson-Andersen (FA) [55] and East [46] models.
Both models are defined on a 1D lattice of N binary variables
(spins) n j = 0, 1 for j = 1, . . . , N , and configuration changes
are only allowed via single-spin flips. The Markovian genera-
tors for both models are given by

W East/FA =
N∑

i=1

PEast/FA
i [cσ+

i + (1 − c)σ−
i

− c(1 − ni ) − (1 − c)ni] (3)

where σ±
i are the Pauli raising/lowering operators acting on

site i and c ∈ (0, 0.5] controls the rates at which spins flip,
given they satisfy the kinetic constraints

P FA
i = ni−1 + ni+1, PEast

i = ni−1, (4)

where the first only allows a transition if the spin attempting
to flip has a neighboring excitation, and the second only
if the neighboring spin to the left is excited. (For the FA
model the constraint is sometimes defined as the projector
ni−1 + ni+1 − ni−1ni+1, but in practice it makes little differ-
ence with the definition above.)

The second area we consider are exclusion processes
[49,50]—particles hopping around sites on a lattice, with a
hardcore exclusion such that we can have at most one particle
per site. We focus on the 1D symmetric simple exclusion pro-
cess (SSEP), adopting the lattice notation we used for KCMs,
where now n j = 1(0) implies the site is occupied (empty). In
the SSEP, a particle can hop left or right to its neighboring
sites, both with the same rate (γ = 1/2) if the neighboring
site is not already occupied. The generator for the dynamics is

W SSEP = 1

4

N∑
i=1

(
σ x

i σ x
i+1 + σ

y
i σ

y
i+1 + σ z

i σ z
i+1 − 1

)
, (5)

where σ a
i are the Pauli operators acting on site i.

For the entirety of this paper, we will assume open
boundary conditions (OBCs), which will later reduce the com-
putational cost of tensor network contractions. This formally
means that we set n0 = nN+1 = 0. Furthermore, we impose
certain restrictions on the state space. For the FA model, we
simply exclude the disconnected zero state ni = 0, ∀i. On the
other hand, we set n1 = 1 for the East model which ensures
the state space remains fully connected on each dynamical site
i > 1. Finally, we restrict SSEP such that the total number of
particles Np = ∑

i ni is fixed, with particle density np = Np/N
which will be assumed to be np = 1/2.

B. Trajectories and large deviations

Consider some general trajectory ωt = {x0 → xt1 →
· · · → xtK } where the system moves into the configuration
xti at time ti and has the total time t > tK . The dynamical
activity K̂ [3–6,56] is a trajectory observable which measures
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the number of configuration changes for a given trajectory.
The probability of observing some activity K can then be
calculated as the sum over all trajectories with K configuration
changes, and the probability they occur,

Pt (K ) =
∑
ωt

π (ωt )δ[K̂ (ωt ) − K], (6)

where π (ωt ) is the probability of observing ωt . For large
times, this obeys the large deviation (LD) principle [2–5]

Pt (K ) ∼ etϕ(K/t ), (7)

where ϕ(K/t ) is called the LD rate function and plays the
role of entropy density for trajectories. Alternatively, one can
consider the moment generating function (MGF) [2]

Zt (s) =
∑

K

Pt (K )e−sK =
∑
ωt

π (ωt )e
−sK̂ (ωt ), (8)

which contains equivalent information to Eq. (7) and can be
considered the partition function. From Eq. (8), we see that
the weighting of each trajectory is the probability that the
trajectory occurs, exponentially reweighted by its dynamical
activity. The MGF also obeys a LD principle,

Zt (s) ∼ etθ (s), (9)

where θ (s) is the scaled cumulant generating function
(SCGF), whose derivatives evaluated at s = 0 give the cu-
mulants of K scaled by time. The SCGF plays the role of
the thermodynamical free energy of trajectories and is re-
lated to the LD rate function by a Legendre transform θ (s) =
− mink[sk + ϕ(k)] [2].

The MGF Eq. (8) can be expressed as

Zt (s) = 〈−|etWs |in〉 , (10)

where |in〉 is some initial probability vector and Ws is an op-
erator which we name the tilted generator, and is a deformed
version of Eq. (2) where we tilt with respect to the dynamical
observable of interest [2–5]. For the case of the dynamical
activity [3–5], we simply tilt the off-diagonals of W with the
same factor to obtain

Ws =
∑

x,x′ �=x

e−swx→x′ |x′〉 〈x| −
∑

x

Rx |x〉 〈x| . (11)

The largest eigenvalue of Ws is the SCGF θ (s), with asso-
ciated left and right eigenvectors 〈ls| and |rs〉. Since 〈ls| in
general is not the flat state, Ws is not a proper stochastic
generator for s �= 0 [3–5]. If one could exactly diagonalize
Eq. (11) to find its leading eigenvalue and eigenvectors, then
they would entirely unravel the LD statistics. We now briefly
recap how this can be achieved using numerical TN tech-
niques [40–43].

C. Variational matrix product states

A matrix product state (MPS) is an ansatz for describing
vector states of many-body systems [28–30,57,58],

|	〉 =
d∑

i1,...,iN

Tr
(
Ai1

1 Ai2
2 · · · AiN

N

) |i1 i2 · · · iN 〉 , (12)

where each subsystem k has its own rank-3 tensor Ak with the
dimensions d × D × D. The allowed entanglement within the
state is controlled by the bond dimension D [32]. It is often
convenient to represent tensor networks in a diagrammatic
form using shapes to represent tensorial objects, and (connect-
ing) lines to represent contractions over tensors. For example,
the corresponding diagram for an MPS is

|Ψ〉 = ,
(13)

where each circle corresponds to one of the tensors Ak . Sim-
ilarly, one can also attempt to write some operator Ô as
a matrix product operator (MPO) [33,34,59–62]. Operators
which act locally on the subsystems, such as Eqs. (3)–(5),
can be efficiently described as a MPO. That is to say, we
can represent them exactly in MPO form with only a small
constant bond dimension. The diagrammatic representation
for MPOs is

Ô = . (14)

MPSs allow for the easy and efficient implementation
of the widely used density matrix renormalization group
(DMRG) method [63,64], an algorithm designed to iteratively
minimize the energy of a state E	 with respect to some
Hamiltonian Ĥ . In the language of MPS [30], we start with
some guess at some fixed bond dimension, and sweep through
each tensor applying local optimizations with all other tensors
fixed. This is done until we reach convergence, which is
usually when the change in energy of the state per sweep is
small. At the end of the routine, one can efficiently calculate
the variance of the state with respect to the Hamiltonian

δE	
2 = varĤ (	) = 〈Ĥ2〉	 − 〈Ĥ〉2

	 , (15)

where 〈·〉	 = 〈	| · |	〉 denotes an expectation value. We
check to see if it has fallen below some desired value ε; if
not, we run the algorithm with an increased bond dimension,
where we typically use the state from the previous run as an
initial guess. For more details on the workings of variational
MPS (vMPS) algorithms, see the reviews [30,65].

Many recent works have shown that vMPS algorithms are
very effective for studying the LD statistics of classically
constrained systems which obey detailed balance [40,41,43].
In particular, if we write the tilted generator in a way such
that it is Hermitian, then the state we are searching for is the
ground state. This guarantees each update is an improvement
upon the last. For dynamics obeying detailed balance, the
activity-tilted generator can be brought to a Hermitian form
using a similarity transformation that is independent of s [5],

Hs = −Q−1WsQ. (16)

For the case of the East/FA models [5], the diagonal operator
Q is given by

QFA/East = [
√

1 − c |0〉 〈0| + √
c |1〉 〈1|]⊗N , (17)

and for the SSEP by QSSEP = I. The Hamiltonian Hs has
the ground state |ψs〉 with energy −θ (s). The ground state is
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related to the left and right eigenvectors of Ws in the following
way [40],

|ψs〉 = Q−1 |rs〉 , (18)

〈ψs| = 〈ls| Q, (19)

|ψs〉 =
∑

x

√
ls(x)rs(x) |x〉 , (20)

where ls(x) = 〈ls|x〉 and rs(x) = 〈x|rs〉.

III. DOOB TRANSFORMATION AND OPTIMAL
SAMPLING

We now define the so-called generalized Doob transforma-
tion [19,22–25,27,66], and show how one can use our MPS
solution to Eq. (16) to construct a reference dynamics which
closely resembles the true Doob dynamics. We then present a
method to optimally sample the rare events of our toy models
using these dynamics.

A. Generalized Doob dynamics

The goal is to find a proper stochastic generator which
generates trajectories with the same probabilities as those in
the tilted dynamics Ws, cf. Eq. (11). This can be achieved us-
ing the (long-time) generalized Doob transformation [19,22–
25,27,66], defined as

W Doob
s = L[Ws − θ (s)I]L−1, (21)

where L = diag(〈ls|) is the left eigenvector 〈ls| as a diagonal
matrix. It is easy to check that Eq. (21) is annihilated by the
flat state 〈−|, which means that W Doob

s is a stochastic operator.
Its stationary state is

|ss〉Doob
s =

∑
x

P̃(x) |x〉 =
∑

x

ls(x)rs(x) |x〉 . (22)

The generator W Doob
s can also be expressed as a sum of its

diagonal and off-diagonal elements

W Doob
s =

∑
x,x′ �=x

ls(x′)
ls(x)

e−swx→x′ |x′〉 〈x|

−
∑

x

[Rx + θ (s)] |x〉 〈x| . (23)

Thus our dynamics has the transition rates and escape rates

w̃x→x′ = ls(x′)
ls(x)

e−swx→x′, (24)

R̃x = Rx + θ (s), (25)

respectively. That is to say, the transition rates are reweighted
by e−s and by some ratio ls(x′)/ls(x) which depends on the
structure of the configurations, and the escape rate is shifted
by θ (s).

We now consider some general time-dependent observable
Â, and ask what is the expectation value in the tilted dynamics,

〈Â〉s ≡ 〈Âe−sK 〉
〈e−sK 〉 = Zt (s)−1

∑
ωt

π (ωt )Â(ωt )e
−sK̂ (ωt ). (26)

One can now apply importance sampling to arrive at

〈Â〉s = Zt (s)−1
∑
ωt

π̃ (ωt )
π (ωt )

π̃ (ωt )
Â(ωt )e

−sK̂ (ωt )

= Zt (s)−1
〈π
π̃

Âe−sK̂
〉
Doob

, (27)

where π̃ (ωt ) is the probability of observing ωt in the dynamics
generated by W Doob

s and 〈·〉Doob denotes an expectation value
with respect to trajectories with probabilities from the Doob
dynamics. At a first glance, it might appear that we have not
gained much from expressing the expectation of A using the
Doob generator W Doob

s . However, if one calculates the ratio
of probabilities in Eq. (27), then the power of this expression
becomes apparent.

Let us first consider the original dynamics described by
Eq. (2). If we have some system in configuration x, then the
probability it flips to some other state x′ at the time �t is

Px→x′ (�t ) = wx→x′e−Rx�t . (28)

It then follows that the trajectory ωt occurs with probability

π (ωt ) = P(x0)e−RxK (t−txK )
K∏

i=1

wxi−1→xi e−Rxi−1 (txi −txi−1 ), (29)

where we have also accounted for the fact that the system must
remain in the same state after the final flip for the remainder of
the time and the probability of the initial configuration P(x0)
(where we assume it is in the steady state). The probabil-
ity of the trajectory under the Doob dynamics has a similar
form, with the substitutions wx→x′ → w̃x→x′ , Rx → R̃x, and
P(x0) → P̃(x0),

π̃ (ωt ) = P̃(x0)e−sK e−tθ (s) ls(xK )

ls(x0)
e−Rxk (t−tk )

×
K∏

i=1

wxi−1→xi e−Rxi−1 (txi −txi−1 ), (30)

where all but the endpoint factors of ls(x) cancel out telescop-
ically. The ratio of probabilities then goes as

π (ωt )

π̃ (ωt )
= esK etθ (s)

ls(x0) ls(xK )
, (31)

where we have used P̃(x0) = P(x0) ls(x0)2. Substituting
Eq. (31) back into Eq. (27) cancels out the exponential tilting
esK . Furthermore, for large times, Zt (s)−1 ≈ e−tθ (s), giving the
final result

〈Â〉s =
〈

1

ls(x0)ls(xK )
Â

〉
Doob

. (32)

And so it follows that one can exactly sample the expectation
value of a trajectory observable in the tilted ensemble defined
by the nonstochastic tilted generator, by sampling it directly
from trajectories generated by the stochastic Doob dynamics
Eq. (21), up to factors at the endpoints of each trajectory
(which become negligible in the long-time limit if Â is time
extensive). We note that Eq. (32) can also be derived by means
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of linear algebra, using Eq. (21) and the ratio P(x0)/P̃(x0) (see
Ref. [67] for details).

B. Reference dynamics

While the above shows how to optimally sample if one has
access to the Doob generator, which is obtained from the exact
minimization of the tilted generator, we now consider how to
approximate it efficiently.

Suppose we have an MPS approximation |ψ ref
s 〉 to the

ground state of the Hermitian operator Hs, where our choice
of bond dimension D controls the error. By applying the
operator Q−1 to |ψ ref

s 〉, as is done in Eq. (19), one can also
retrieve an approximation to the left eigenvector. This is easily
done as an MPS-MPO product,

(33)

We then construct the generator of the so-called reference
dynamics, which goes as Eq. (2) with the transition rates and
escape rates given by

wref
x→x′ = l ref

s (x′)
l ref
s (x)

e−swx→x′, (34)

Rref
x =

∑
x′ �=x

wref
x→x′, (35)

respectively. Note that here we have not used Eq. (25) for
the escape rates, as these reference dynamics only act as an
approximation to the Doob dynamics, and thus would not
give a true stochastic dynamics. In Appendix A, we show the
steady-state solution to the reference dynamics is given by

|ss〉ref
s =

∑
x

ψ ref
s (x)2 |x〉 , (36)

where ψ ref
s (x) = 〈x|ψ ref

s 〉.
If we repeat the steps between Eqs. (27) and (32) but for

the reference dynamics, the expectation Eq. (27) appears as

〈Â〉s =
〈

1

l ref
s (x0)l ref

s (xK )
e−tθ (s)+∫

dt�R̂Â

〉
ref

, (37)

where
∫

dt�R̂ is the time integral of the difference of escape
rates between the reference dynamics and the original dynam-
ics, with �R̂x = Rref

x − Rx. We can estimate a sampling error
when using Eq. (37) in the following way [66]. First, let us
assume the effects of the time-edge factors are negligible (as
they are not exponential in time) and try to sample the quantity

〈e−sK̂ 〉 = 〈Re−sK̂ 〉ref ≈ 1

Nsp

Nsp∑
α=1

R(ωα )e−sK̂ (ωα ), (38)

where R(ωα ) = esK̂ (ωα )+∫
dt�R̂(ωα ) is the umbrella which com-

pensates for change in the sampling dynamics and we estimate
for a fixed number of samples Nsp. The variance of Eq. (38)

gives a way to quantify the sampling error,

ε2
ref =

Varref
(

1
Nsp

∑Nsp

α=1 R(ωα )e−sK̂ (ωα )
)

〈
1

Nsp

∑Nsp

α=1 R(ωα )e−sK̂ (ωα )
〉2
ref

= 1

Nsp

[
〈R2e−2sK̂ 〉ref

〈Re−sK̂ 〉2
ref

− 1

]

= 1

Nsp

[〈
e2

∫
dt ′�R̂

〉
ref〈

e
∫

dt ′�R̂
〉2
ref

− 1

]
. (39)

In Appendix B we show

ε2
ref ≈ etδE2 − 1

Nsp
≈ tδE2

Nsp
. (40)

The last approximation holds for δE small enough (tδE2 �
1). In Eq. (40), δE2 is the calculated variance on our MPS
approximation of the leading eigenvector [see Eq. (15)].

C. Simulating trajectories

We are now in a position to efficiently simulate trajectories
from our reference dynamics. The sampling of trajecto-
ries from a classical generator is usually achieved using a
continuous-time Monte Carlo [CTMC, otherwise known as
the Bortz-Kalos-Lebowitz (BKL) algorithm] [68]. Given that
our system is in some configuration x at time t ′, we need to
calculate the next jump in the trajectory. That is, we need
to decide the next configuration the system will move into,
and the time it does so. Calculating this can be split into five
separate steps:

(1) Find each configuration x′ the system can move into
from x.

(2) Calculate the transition rates wx→x′ for each x′.
(3) Calculate the escape rate Rx as the sum of all transition

rates.
(4) Randomly choose one x′, each with the probability

wx→x′/Rx

(5) Randomly choose the jump time �t with probability
P(�t ) = Rxe−Rx�t .

By starting at a configuration sampled from equilibrium
(which in the case of the reference dynamics can be efficiently
done using the MPS |ψ ref

s 〉 [69,70]), or otherwise, one can sim-
ply repeat this procedure until some total time t has elapsed.

We can use this method for our reference dynamics, where
the only step that needs slight adjustment is the second. While
one must still calculate the transition rates of the original dy-
namics in the usual way, we must also calculate the left vector
components l ref

s (x) and l ref
s (x′). Let us assume the former is

carried over from the previous jump in the algorithm. Then all
one needs to do is calculate each l ref

s (x′). We start by noting
that any configuration x can be written in MPS form with bond
dimension 1,

(41)
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and then we can simply calculate the left component as a
MPS-MPS contraction

(42)

The transition rates for the reference dynamics are then cal-
culated using Eq. (34), and the method proceeds as before.
The total computational cost for calculating each l ref

s (x) is
O(D2N ), and thus the total cost of each Monte Carlo (MC)
step is O(D2NNF ), where NF is the total number of configu-
rations x′ for a given step.

Let us now consider our KCMs where we have single-
spin-flip dynamics. We first note that the number of possible
configuration changes from x is bounded by the number of
sites, that is, 1 � NF � N . Using the method described above,
the computational cost for each step is, at worst, quadratic in
the system size. However, by realizing that the tensor network
contractions 〈l ref

s |x〉 and 〈l ref
s |x′〉 are identical apart from just

one tensor (corresponding to the spin which would flip), we
can reduce the computational cost by recycling partial con-
tractions from the edges. We first need to identify the first
and last sites on the lattice which are able to flip, which we
label il and ir , respectively. In a similar fashion to variational
algorithms, we then contract from the left edge of the tensor
network 〈l ref

s |x〉 up to ir − 1, and saving each tensor block
along the way,

We do the same but from the right and up to il + 1. This
initialization of partial contractions has a one-time cost of

O(D2(N + ir − il − 2)) < O(2D2N ). (43)

Calculating each l ref
s (x′) at site j is then easy. We just

contract our remaining tensors at site j with the previously
saved left and right blocks,

This is done for each possible site which can flip, and thus
entails a computational cost O(D2NF ). Once a choice is made
for which site to flip, which we will label i, we must update
the blocks of partial contractions up to (the now possibly
different) il and ir . Note that this time we do not have to start
from the edges of the MPS, but just from site i as the previous
partial contractions that come before do not change. The total
cost of updating the partial contractions is

O(D2[(ir − i) + (i − il )]) = O(D2(ir − il )). (44)

The total computation cost for each MC step is the sum of the
cost for calculating each l ref

s (x) and updating the partial blocks
after a choice is made,

O(D2(NF + ir − il )) � O(2D2N ). (45)

Consequentially, the cost of each MC step is reduced to one
which is at most linear in system size.

IV. NUMERICAL RESULTS

A. Approximating the Doob dynamics

We put to the test the general method presented above by
approximating the Doob dynamics of each model defined in
Sec. II. We show that the Doob dynamics is well estimated
using the MPS reference dynamics, and can even be well
approximated with truncated MPS.

Each of the three models is known to exhibit a trajectory
phase transition (when tilted against the activity) for long
times and in the thermodynamic limit N → ∞, manifested
in the SCGF θ (s) at s = 0 with a discontinuous drop in the
dynamical activity K̂ (s) = −θ ′(s)/N [3,5,43,52,54]. We call
the dynamical phase for s < 0 the active phase, and that
for s > 0, the inactive phase. One is able to do a detailed
investigation of this first-order phase transition by considering
the finite-size scaling of the model [40,43,53,71,72]. We can
estimate a critical point sc(N ) � 0 by finding the peak of the
dynamical susceptibility χ (s) = θ ′′(s), which shows a drastic
change in a small region around the transition point.

We start by taking the usual approach of approximating the
ground states |ψs〉 using vMPS. That is, we run the algorithm
allowing the bond dimension to increase until the variance of
the energy (with respect to the Hamiltonian) falls sufficiently
[cf. Eq. (15)]. The resultant MPS is then used to construct the
reference dynamics, which approximates the Doob dynamics
to a high accuracy, as explained in the previous section. Note
that because the vMPS tries to keep entanglement as low as
possible, for s > sc(N ) the approximated ground state exhibits
localization at just one edge of the system [40]. While for
the East case this corresponds to the structure of the ground
state in the sector with fixed occupation 1 in the leftmost site,
the FA and SSEP models have reflection symmetry, spon-
taneously broken for s > 0 and large N . Thus, in order to
maintain the symmetry in the latter two cases, we construct an
MPS which is a superposition of the result from vMPS and its
spatially reflected state to obtain our dynamics in the inactive
phase.

1. Direct sampling with the reference dynamics but without
reweighting

We first check that the CTMC algorithm with our MPS
reference dynamics gives the expected results. We do this
without using the trajectory reweighting [cf. Eq. (37)]. This
amounts to only considering infinite-time dynamics, and as-
suming that our approximation is actually exact. Despite this
strong assumption, we find that it produces excellent results as
shown in Fig. 1. The expected dynamical activity (per unit site
and time, dashed lines) can be calculated as a TN contraction
over our MPS and MPO,

k̃(s) = 1

N
〈ψs|dHs

ds
|ψs〉. (46)

The same quantity can be calculated on a trajectory level
(symbols) by counting the total number of configuration
changes, 〈K〉 and taking its time (and spatial) average,

〈k〉s = 〈K〉
Nt

, (47)
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FIG. 1. The dynamical activity from brute-force Monte Carlo. We show the dynamical activity measured for (a) the FA model with c = 0.5,
(b) the East model with c = 0.2, and (c) SSEP with np = 0.5. A variety of system sizes N ∈ [20, 400] are shown for each. The dashed lines
show expected activity calculated directly from the MPS k̃(s), whereas the markers show the activity measured via CTMC 〈k〉s with a time
t = 100/k̃(s). The inactive phase is shown with a log s scale in the insets. We also show representative trajectories at s = −1, 1 for each model.

where t is the run time for each trajectory. We show results
for each model, for a range of system sizes of N ∈ [20, 400].
The expected and measured results have excellent agreement.
This simplified algorithm struggles most around the transition
point sc(N ) due to the required large bond dimension (see
Refs. [40,43]).

We also show representative trajectories for the active
(s = −1) and inactive phases (s = 1). Each model excellently
demonstrates the difference in dynamics between the two
phases. The active phase displays very rapid changes with
structures that allow for unconstrained dynamics. For the FA
and East models this means having a large number of ex-
citations, while SSEP requires particles to be spaced apart.
Conversely, this inactive phase has just few configuration
changes with highly constrained dynamics. This means mini-
mizing the number of excitations for the FA and East resulting
in the dynamics responsible for the so-called “space-time
bubble” in local regions of space [5,47,73], while for SSEP
we restrict the activity by clustering the particles [54,74]. To
our knowledge, direct dynamical sampling of trajectories for
these system sizes and values of s �= 0 is different for these
three models.

2. Reference dynamics with truncated bond dimensions

While in the extreme active/inactive limits we can achieve
a good MPS description with just a bond dimension of O(10),
one may need a bond dimension of O(100) for the more

difficult regions such as around s = 0 [40,43]. One reason
for the necessity of this high bond dimension could be that
the state has longer-ranged spatial correlations. Another could
be that when one runs the vMPS, we run it against some
constraint in the state space. For the FA model, this is the
weak constraint that restricts to the connected component of
all configurations but the one with ni = 0 for all i. For the
SSEP, we have the stronger constraint that we are within the
state space with fixed Np particles.

The goal is to look for a state with a smaller bond di-
mension than we currently have which still contains all the
necessary interactions, but, if necessary, discards the infor-
mation which enforces the constraint. Then, by starting our
CTMC algorithm in a state which satisfies the constraint, we
will automatically enforce it for the rest of the trajectory, as
the dynamics keeps the system in the constrained subspace.

Approximating a TN by another one with a small bond
dimension is known as truncation. For MPS as we use, this can
be achieved via a singular value decomposition across each
bond, where only the largest D′ < D singular values are kept.
We show this truncation in Fig. 2(a) for SSEP (as this typically
requires the largest bond dimension), where we run the vMPS
to at least (but higher if required) D = 50 to find the state
|ψD〉, and then truncate to |ψD′ 〉 with the bond dimension D′ <

D. We measure the truncation error ε = 1 − | 〈ψD|ψD′ 〉 |2 be-
tween the two states, where we assume both are normalized.
We find that when far from the critical point, we can describe
the original state to a high accuracy with bond dimensions as
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FIG. 2. Reference dynamics from a truncated MPS. All data are for the system size N = 100. (a) The truncation error ε = 1 − | 〈ψD|ψD′ 〉 |2
as a function of the truncated bond dimension D′ for SSEP at various values of s. (b) The measured average dynamical activity 〈k〉s with a
reference dynamics constructed with truncated MPS. The dashed line shows the expected value obtained through vMPS with a large (D � 50)
bond dimension, and the inset shows the same but on a log scale around the critical point. (c) The same but for the East model. (d) The
measured dynamical activity 〈k〉s as a function of D for s = 10−3 close to the critical point sc. The purple circles show the values measured
using the reference dynamics alone, whereas the blue squares show values obtained using the reference dynamics and TPS to incorporate
umbrella sampling. The dashed line shows the expected value obtained from vMPS. Each point is done for a trajectory time of t = 100 and
Nsp = 106 trajectories.

small as D′ ∼ 20. Conversely, we cannot attain the same level
of accuracy for s ∼ sc, where the state exhibits larger amounts
of entanglement.

There are multiple reasons that one may want to find
a state with a truncated bond dimension. The first is that
our Monte Carlo algorithm scales quadratically with the
bond dimension—this could hinder the convergence of time-
dependent observables at large times, which can require a
large sample size to be determined with sufficient accuracy.
For such situations, reducing the scaling of the algorithm
would be desired. Another reasoning could be that we want
to investigate a system which requires a higher complexity of
TN, such as a 2D system with projected entangled pair states
(PEPS) [65,75]. Not only would the scaling of our CTMC
algorithm increase, but so would the scaling of the variational
algorithm used to find the reference dynamics. In this case,
one may not be able to reach a bond dimension large enough
to give a desirable variance.

We show the measured dynamical activity for SSEP and
the East model (symbols), with a reference dynamics con-
structed from states with a truncated bond dimension in
Figs. 2(b) and 2(c), and compare to the expected result from
the nontruncated MPS (dashed line). Surprisingly, we find
that for the most part, even for bond dimensions as small as
D = 2, we can accurately reproduce the correct dynamical
activity for each of the models. As expected, the truncation
struggles mostly around the transition point. Nevertheless, we
can achieve good results for the FA (not shown) and East with
a truncated bond dimension of D = 4, and D = 10 for SSEP.

The calculations done thus far have been with a refer-
ence dynamics constructed using a truncated bond dimension
without any trajectory reweighting. In principle, Eq. (37) is
exact and thus allows for further improvements by using the
umbrella

g(ω) = e−tθ (s)+∫
dt�R̂(ω). (48)

We implement this reweighting via transition path sampling
(TPS) with the shifting method (see Refs. [12,66] for further
details). Figure 2(d) shows the results of this umbrella sam-
pling for the FA model with an s value close to the critical
point sc. It is here the discrepancy is the largest, and we can do
a more detailed analysis by looking at a larger range of bond
dimensions. We see a significant improvement when using the
reweighting factor Eq. (48). It might be that we could see
further improvements with more TPS iterations.

The main point to take from this is that we are able to
achieve accurate results for the dynamical activity (the ob-
servable we are tilting) and some local observables with a
relatively small bond dimension. This of course comes at a
cost, however, as when we truncate we discard some of the
information that accounts for the long-ranged spatial corre-
lations. For the case of SSEP, even though apparently we
are discarding a large amount of information when truncating
[cf. Fig. 2(a)], it seems that we keep the relevant information
needed to reproduce the correct dynamics, but at the cost of
not maintaining the conservation law. We note, however, that
it is possible to explicitly implement the conservation laws in
the MPS [76], but it is not clear how this will affect the quality
of the reference dynamics in the CTMC algorithm.

B. Sampling rare events of finite times

For the previous results, we disregard finite-time effects
by considering our sampled trajectories to be a “slice” of
a larger infinite-time trajectory. We now look to incorporate
these effects back into our sampling by considering the full
reweighting factor

g(ω) = e−tθ (s)+∫
dt�R̂(ω)

l ref
s (x0)l ref

s (xK )
. (49)

Note that previously, for a large bond dimension, the part of
Eq. (49) which accounts for the difference in escape rate had
a negligible effect, and could be ignored. This is not always
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FIG. 3. Sampling finite-time trajectories. All results are done for the FA model with c = 0.5. (a) The measured dynamical activity 〈k〉 as
a function of time t for s = −0.1 (top) and s = 0.1 (bottom) for Nsp = 106 trajectories and system size N = 40. The circles show the values
obtained via TPS with the normal dynamics, and crosses TPS with the reference dynamics. The dotted lines show the expected value at infinite
times. (b) The local occupations 〈ni〉 as a function of time in the inactive regime s = 0.1 and N = 40. (c) The average excitation density 〈n〉 as
a function of time in the active regime, s = −0.1. The value approaches the expected value in the Doob dynamics (dotted line) in the bulk, but
moves towards the equilibrium value (s = 0, dashed line) at the edges and N = 40. (d) The dynamical activity as a function of s and time t .
The data for t = ∞ are obtained directly from the MPS, whereas finite t is obtained using TPS. Note that the sharp drop in activity shifts with
time. The dynamics are run at the system size N = 100.

the case here, as the umbrella sampling at the time edges of
the trajectory causes the system to visit configurations which
are atypical in the Doob dynamics, and not well described by
our MPS approximation.

As a proof of principle, we start by comparing results
from TPS with the original dynamics against TPS with the
reference dynamics for a small system size N = 40, and a
variety of times, as is shown for the FA model at s = ±0.1
in Fig. 3(a). For small times, both show excellent agreement.
For large times, however, the normal dynamics struggles to
correctly account for the expected activity shown by the dotted
lines, a result of the exponential time dependence in Eq. (26)
(as K̂ is time extensive). While sampling with our reference
dynamics reduces the exponential cost in time, the time edges
still suffer from an exponential sampling difficulty in the sys-
tem size. This is most noticeable for the inactive phase, where
each model exhibits an exponential localization [40,43,77] at
the spatial edge(s) of the system. This causes the l ref

s (x) values
to exponentially vary. Nevertheless, it is still a significant im-
provement on the previously exponential cost in space, time,
and s.

The average occupations 〈ni〉s (at site i) for s = 0.1 and
t = 100 is shown in Fig. 3(b), while Fig. 3(c) shows the
average excitation density 〈n〉s = N−1 ∑

i 〈ni〉s for s = −0.1
and t = 10. It is here the time-edge effects become obvious;
we start at a state which lies somewhere between the expected
s = 0 (dashed line) dynamics and the expected long-time
dynamics, which depends on the whole spectrum of Ws, as
well as the total trajectory time. The system quickly evolves
and resembles the Doob dynamics. Note that at the end of
trajectory, it is again described by the original probability
vector, as is expected due to the time symmetry in Eq. (37).

Finally, Fig. 3(d) shows the average dynamical activity as
a function of s and time t . We show the expected activity
in the infinite time limit t = ∞ as a black dashed line, and
the measured activity for finite times as symbols. Notice that
as time decreases, the drop in activity becomes less sharp.
Furthermore, the transition from the active to inactive phase
happens at decreasing s. While the methods presented here

could allow for a detailed investigation into the temporal scal-
ing of the critical point [52,53,71,72], doing so for desirable
system sizes would be at a large computational cost. We
hope to investigate this more extensively using time-evolution
methods (see, e.g., Refs. [30,65,78]).

V. CONCLUSIONS

We have expanded on previous applications of TNs to
classical constrained models [40–43], using the MPS ap-
proximation of the leading eigenstates of a tilted stochastic
generator in 1D to construct a reference dynamics which well
approximates the exact Doob dynamics. This allows us to
(nearly) optimally sample the rare events of 1D constrained
systems with just a polynomial cost in both space and time,
rather than the exponential cost of most sampling methods.
We have demonstrated here the efficiency of this approach
by generating tilted trajectory ensembles for the FA and
East KCMs and the symmetric simple exclusion process. Our
simulations are for sizes and times different for such large
deviation studies.

Furthermore, our results show that it is possible to obtain
an accurate dynamics away from the dynamical transitions
of the models we studied with a truncated bond dimension,
which enables close to optimal sampling simulations at lit-
tle cost. Further extensions of our work include generalizing
our methods to higher dimensions, for example, by using
two-dimensional variational tensor network techniques, such
as PEPS [65,75] to approximate the leading eigenvectors of
2D classical generators, as is done in Ref. [42]. From the
associated leading eigenvectors, as we have shown here, we
can in turn construct a reference dynamics which is nearly
optimal for sampling rare trajectories. While PEPS algorithms
do not currently allow for bond dimensions comparable to
vMPS, they remain a fruitful area of research which is con-
stantly being improved on [79–87]. Recent works [88] have
shown the effectiveness of using recurrent neural networks
(RNNs) to approximate the leading eigenstates of tilted gen-
erators in two dimensions. The methods presented here can be
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generalized to RNN to allow for the efficient sampling of 2D
rare events.

Another area that deserves exploration is to apply sim-
ilar TN methods to systems which do not obey detailed
balance, and for which their generators cannot be brought
to a Hermitian form. While this would damper the ef-
fectiveness of variational algorithms, approaches based on
time evolution may offer a promising solution (see, e.g.,
Refs. [30,65,78]). Such approaches could also offer further
insights into intermediate-time rare events, where both usual
sampling methods and large deviation approaches fall short.
We hope to report on such studies in the near future.
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APPENDIX A: STEADY STATE SOLUTION IN THE
REFERENCE DYNAMICS

The generator of the reference dynamics defined by
Eqs. (34) and (35) can be written as

W ref
s =

∑
x,x′ �=x

e−swx→x′
l ref
s (x′)
l ref
s (x)

[|x′〉 〈x| − |x〉 〈x|]. (A1)

By definition, the stationary state |ss〉ref
s = ∑

z Pref
s (z) |z〉 is

annihilated by Eq. (A1). It follows that

W ref
s |ss〉ref

s =
∑

x,x′ �=x

e−swx→x′
l ref
s (x′)
l ref
s (x)

Pref
s (x)[|x′〉 − |x〉]

=
∑

x,x′ �=x

e−s

[
wx→x′

l ref
s (x′)
l ref
s (x)

Pref
s (x)

−wx′→x
l ref
s (x)

l ref
s (x′)

Pref
s (x′)

]
|x′〉

= 0, (A2)

where we have used a change of variables in the second and
third line. Let us assume our original dynamics obeys detailed
balance, and that the state space is connected (that is, the
dynamics is irreducible). Then it follows that if wx→x′ = 0,
so does wx′→x, in which Eq. (A2) is satisfied. Otherwise, we
must have that

Pref
s (x)

Pref
s (x′)

= wx′→x

wx→x′

l ref
s (x)2

l ref
s (x′)2

. (A3)

Given detailed balance we can use a similarity transformation
to write the generator in a Hermitian form [cf. Eq. (16)]. In

particular, let us define the diagonal transformation matrix as

Q =
∑

z

Q(z) |z〉 〈z| . (A4)

One can easily show that for H to be Hermitian, we must have

Q(x)2

Q(x′)2
= wx′→x

wx→x′
. (A5)

Substituting this back into Eq. (A3), we find

Pref
s (x)

Pref
s (x′)

= Q(x)2 l ref
s (x)

2

Q(x′)2 l ref
s (x′)2 , (A6)

and it follows the stationary state is given by

|ss〉ref
s =

∑
x

l ref
s (x)

2
Q(x)2 |x〉 . (A7)

For the case of our MPS dynamics, we defined 〈ls| = 〈ψs| Q−1

of our solution 〈ψs|. It follows that Eq. (A7) can be written as
|ss〉ref

s = ∑
x ψ ref

s (x)2 |x〉, where ψ ref
s (x) = 〈x|ψs〉.

APPENDIX B: SAMPLING VARIANCE IN THE
REFERENCE DYNAMICS

We start by assuming that we are always at the stationary
state of the dynamics. This allows us to calculate the trajectory
ensemble average of some observable (per unit time) as the
average over all configurations with respect to the stationary
state,

〈Ô〉ref ≡ 1

t

〈∫ t

0
dt ′Ô(t ′)

〉
ref

= 〈
l ref
s

∣∣Ô∣∣rref
s

〉
. (B1)

The aim is to calculate the expectation value and the variance
of the time-integrated difference in escape rates [cf. Eq. (39)].
Using Eq. (B1), we can write

〈�R̂〉ref =
∑

x,y �=x

lx

(
ly
lx

e−sωx→y − ωx→y

)
rx

=
∑

x,y �=x

lye−sωx→yrx − lxωx→yrx

= 〈
l ref
s

∣∣Ws

∣∣rref
s

〉 = θ ref(s), (B2)

where we have written lx ≡ l ref
s (x) and rx ≡ rref

s (x) for brevity.
Performing the same calculation for �R̂2, we find

〈�R̂2〉ref = 〈
l ref
s

∣∣Ws
2
∣∣rref

s

〉
, (B3)

giving the variance

Varref�R̂ ≡ 〈�R̂2〉ref − 〈�R̂〉2
ref = δE2, (B4)

where δE2 is the measured variance of the MPS used to
construct the reference dynamics with respect to the tilted
generator (or tilted Hamiltonian).

We are now in a position to estimate the sampling error
Eq. (39). From Eqs. (B2) and (B4) we have that the integrated
difference in escape rate,∫ t

0
dt ′�R̂(t ′), (B5)

062144-10



OPTIMAL SAMPLING OF DYNAMICAL LARGE … PHYSICAL REVIEW E 103, 062144 (2021)

has the average

t 〈�R̂〉 = tθ ref(s), (B6)

and variance

tδE2. (B7)

If we also assume this integrated difference to be normally
distributed, then we get Eq. (39),

ε2
ref = 1

Nsp

[〈
e2

∫
dt ′�R̂

〉
ref〈

e
∫

dt ′�R̂
〉2
ref

− 1

]
≈ etδE2 − 1

Nsp
. (B8)
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