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Role of current fluctuations in nonreversible samplers

Francesco Coghi ,1,* Raphaël Chetrite,2,† and Hugo Touchette 3,‡

1School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, England
2Laboratoire J. A. Dieudonné, UMR CNRS 7351, Université de Nice Sophia Antipolis, Nice 06108, France

3Department of Mathematical Sciences, Stellenbosch University, Stellenbosch 7600, South Africa

(Received 25 March 2021; accepted 3 June 2021; published 25 June 2021)

It is known that the distribution of nonreversible Markov processes breaking the detailed balance condition
converges faster to the stationary distribution compared to reversible processes having the same stationary
distribution. This is used in practice to accelerate Markov chain Monte Carlo algorithms that sample the Gibbs
distribution by adding nonreversible transitions or nongradient drift terms. The breaking of detailed balance also
accelerates the convergence of empirical estimators to their ergodic expectation in the long-time limit. Here,
we give a physical interpretation of this second form of acceleration in terms of currents associated with the
fluctuations of empirical estimators using the level 2.5 of large deviations, which characterizes the likelihood
of density and current fluctuations in Markov processes. Focusing on diffusion processes, we show that there
is accelerated convergence because estimator fluctuations arise in general with current fluctuations, leading to
an added large deviation cost compared to the reversible case, which shows no current. We study the current
fluctuation most likely to arise in conjunction with a given estimator fluctuation and provide bounds on the
acceleration, based on approximations of this current. We illustrate these results for the Ornstein-Uhlenbeck
process in two dimensions and the Brownian motion on the circle.
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I. INTRODUCTION

Markov chain Monte Carlo algorithms, such as the
Metropolis-Hastings algorithm and the Langevin sampler, are
commonly used in physics, chemistry, and statistics to sample
a distribution π by simulating an ergodic Markov process X (t )
whose stationary distribution is π [1–4]. In recent years, it has
been shown in many works [5–18] that the convergence of
such algorithms can be improved by modifying them so as
to break the detailed balance condition, thus rendering them
nonreversible, while preserving π as the stationary distribu-
tion. For algorithms based on Markov chains, this is achieved
by adding transitions between states in order to create cycles,
while for algorithms based on diffusion equations, such as
the Langevin sampler, this is achieved by adding nongradient
terms to the drift. In either case, it is known that the time-
dependent distribution πt of X (t ) converges faster to π , as
the gap in the spectrum of the generator of X (t ) is increased
compared to its reversible version [5–12], a result already
noted in the 1970s by Risken [19].

The improved convergence of πt , or any quantities derived
from this distribution, means computationally that the mixing
or “burn in” time needed for a Markov process to start sam-
pling according to π , starting from some initial distribution
π0, is reduced by forcing it to be nonreversible. In a more
fundamental way, it is also known that statistical estimators
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based on nonreversible processes have better convergence
properties, as their variance is reduced by breaking detailed
balance [15–18], which means that the simulation time needed
for an estimator to reach its ergodic value within some fixed
threshold or error bar is also reduced. This is important in
practice as most quantities estimated from Monte Carlo sim-
ulations (e.g., susceptibilities, transport coefficients, model
parameters, etc.) take the form of time averages [20] having
a bias or systematic error, often related to the mixing time,
and a statistical error, which is generally more important,
determined by the estimator variance [1–4].

In a series of papers [21–23], Rey-Bellet and Spiliopou-
los have shown that the improved convergence of estimators
obtained with nonreversible samplers can be understood in
an elegant way using the theory of large deviations [24–26].
Assuming that the distribution of an estimator AT has a large
deviation form with the integration time T , which is generally
the case in Monte Carlo simulations [27], they show that the
rate function of AT obtained with a nonreversible process is
always larger than the rate function obtained with a reversible
process with the same ergodic distribution π , except at the er-
godic value of AT , corresponding to the minimum and zero of
the rate function, which is the same for both processes. Since
rate functions determine the likelihood of the fluctuations of
AT , this means that estimator fluctuations are exponentially
suppressed in a nonreversible process, compared to reversible
ones, leading to a faster convergence of AT to its ergodic value
as T → ∞. Moreover, since the asymptotic variance of an
estimator is given by the reciprocal of the second derivative of
its rate function at its minimum [26], they obtain as a corollary
that an increase in the rate function leads to a reduction of the
estimator variance.
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In this paper, we present a different derivation of these
results for the case of diffusion equations, based on the large
deviations of currents, which provides a clear physical expla-
nation of why nonreversible processes are more efficient than
reversible ones for sampling estimators. This derivation builds
on recent works on the level 2.5 of large deviations, which
describes the likelihood of joint fluctuations of the empirical
density and empirical current in Markov processes [28–32],
in addition to the theory of effective processes [33–37], which
provides a description of how fluctuations of time-averaged
quantities arise in the long-time limit in terms of effective
processes having modified rates or drift terms.

Using these two formalisms, we show that estimator fluc-
tuations are suppressed in nonreversible diffusions as a result
of current fluctuations that incur an additional large deviation
cost compared to reversible diffusions, which have no currents
because of the detailed balance condition. In other words,
estimator fluctuations in a nonreversible diffusion are created
by an effective process in which the density as well as the
current are modified, which is more unlikely than creating the
same fluctuations via an effective process that is reversible
and, therefore, only changes the density [35].

This interplay between density and current fluctuations
applies beyond Monte Carlo algorithms to any Markov pro-
cesses and time-integrated functionals or “observables” of
these processes, and it can be used to determine how dy-
namical fluctuations of such observables, which correspond in
physics to measurable quantities [38–40], arise from optimal
density and current fluctuations [35–37]. Here, we determine
the optimal density and current underlying an estimator fluctu-
ation, and we show how approximations of the optimal current
can be used to obtain upper bounds on the rate function asso-
ciated with the nonreversible process, similar mathematically
to entropic bounds recently derived in the context of stochastic
thermodynamics [41–45].

We illustrate these results with two simple but classical
stochastic processes, namely the Ornstein-Uhlenbeck process
in two dimensions with normal or transverse drift, and the
simple diffusion on the circle. Applications involving other
Markov processes and observables are discussed in the Con-
clusion.

II. MODEL AND PROBLEM

The problem that we consider is to sample the following
Gibbs distribution on Rd :

π (x) = e−βU (x)∫
Rd e−βU (x)dx

, (1)

where U : Rd → R is a potential function, such that π is
normalizable, and β ∈ R is an inverse temperature parameter
controlling the variance of π . For this purpose, we use two
diffusion processes that have π as their stationary distribution,
so they can be simulated in time to obtain (correlated) samples
from this distribution, which may then be used to estimate
expectations of the form

Eπ [ f (X )] =
∫
Rd

f (x)π (x) dx, (2)

where f : Rd → R is any (test) function with finite expecta-
tion with respect to π .

The first process that we consider is a gradient diffusion
X (t ) ∈ Rd given by the following (Itô) stochastic differential
equation (SDE):

dX (t ) = −∇U (X (t ))dt +
√

2

β
dW (t ), (3)

where W (t ) ∈ Rd is a vector of independent Brownian mo-
tions. It is known that this SDE defines a time-reversible
process satisfying the detailed balance condition [46], whose
unique stationary (ergodic) density is π in (1).

The second process that we consider is a nonreversible
perturbation of the gradient diffusion, defined by

dX (t ) = [−∇U (X (t )) + C(X (t ))]dt +
√

2

β
dW (t ), (4)

where C : Rd → Rd is a smooth vector field satisfying the
condition

∇ · (Cπ ) = 0, (5)

which ensures that π in (1) is a solution of the time-
independent Fokker-Planck equation [46], and so it remains
the stationary distribution. This diffusion is nonreversible in
the sense that it violates for C �= 0 the detailed balance condi-
tion with respect to π , leading to a nonzero stationary current
field given by

JF,π = Fπ − D

2
∇π = Cπ, (6)

having identified

F = −∇U + C (7)

as the total drift of the nonreversible diffusion, and

D = 2

β
(8)

as the noise variance. Many choices for C preserving π are
possible: one can use, for example, C = S∇U , where S is
any antisymmetric matrix, or more generally a C such that
∇ · C = 0 with C · ∇U = 0.

The advantage of using the nonreversible SDE, as men-
tioned in the Introduction, is that it performs better as a
sampler of π than the reversible SDE. The precise notion of
performance that we consider is the statistical performance
mentioned before, related to the simulation time T that one
needs to use in a simulation in order for the time average

AT = 1

T

∫ T

0
f (X (t ))dt (9)

to converge to the expectation Eπ [ f (X )] shown in (2) with
a given confidence interval. The convergence of AT , which
is the natural estimator of Eπ [ f (X )], is guaranteed by the
ergodic theorem, which states that

AT → a∗ = Eπ [ f (X )] (10)

in probability as T → ∞ [3]. From the central limit theorem,
generalized to Markov processes, it is known that the fluc-
tuations of AT around the limit value a∗ are approximately
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Gaussian with a variance that decreases with T according to
σ 2/T , where

σ 2 = lim
T →∞

T E [(AT − a∗)2] = lim
T →∞

T var(AT ) (11)

is the asymptotic variance of AT [47–49]. Hence, the smaller
the asymptotic variance, the better it is statistically, as a
smaller Gaussian confidence interval (viz., error bar) can be
reached for a given simulation time T .

In this context, it has been shown in many studies [15–18]
that introducing a nonreversible drift preserving π systemat-
ically improves the asymptotic variance. To be more precise,
let σ 2

0 and σ 2
C denote the asymptotic variances of the estimator

AT obtained, respectively, with the reversible (C = 0) and
nonreversible dynamics. Then

σ 2
C � σ 2

0 (12)

with equality, under some conditions, if and only if C = 0.
As a result, for a large but finite integration time T , the
estimator AT calculated along a trajectory of the nonreversible
dynamics will have a smaller error bar than if it is calculated
along a trajectory of the reversible dynamics. This also holds
when adding nonreversible transitions in Markov chains and
Markov jump processes [15], and so it implies overall that
the statistical estimation of expectations is accelerated, in the
asymptotic variance sense, by nonreversible Markov dynam-
ics [50].

The bound (12) for the asymptotic variance can be derived
using a probabilistic version of the Poisson equation [15–17]
or using large deviation techniques, as shown recently by
Rey-Bellet and Spiliopoulos [21–23] (see also Bierkens [51]).
The latter approach, which is the focus of this paper, is based
on the fact that, for many processes and estimators AT of in-
terest, the probability density PT (a) of AT decays as T → ∞
according to

PT (a) ≈ e−T I (a), (13)

up to corrections that are sublinear in T in the exponent,
so the decaying exponential is the dominant term of PT (a).
This approximation is called in large deviation theory the
large deviation principle (LDP) [24–26]. The exponent I (a)
controlling that decay is called the rate function, and it can be
obtained by the limit

lim
T →∞

− 1

T
ln PT (a) = I (a), (14)

which is a simplified version of the limit used in large devia-
tion theory to define the LDP [24].

The rate function provides detailed information about the
likelihood of the different values (viz., fluctuations) of AT , and
it can be obtained without calculating PT (a) exactly, which
explains why it is often used in simulations [27] and statistical
physics [26] to study the properties of stochastic processes. In
particular, the ergodic value of AT is determined by noting that
I (a) is always positive and has, for ergodic processes, a single
zero located at a∗ [24]. Thus, values of AT different from a∗
are exponentially unlikely with T , implying the limit of the
ergodic theorem in (10). In general, I (a) also has a parabolic
shape around its minimum a∗, related to the Gaussian nature
of the small fluctuations of AT around a∗, which implies that

the asymptotic variance can be obtained as [52]

σ 2 = 1

I ′′(a∗)
. (15)

Applying large deviation theory to the sampling problem,
Rey-Bellet and Spiliopoulos [21–23] proved that

IC (a) � I0(a), (16)

where, similarly to (12), I0 and IC denote the rate functions of
AT obtained with respect to the reversible and nonreversible
processes defined before. Moreover, they showed that the two
rate functions are equal, under some conditions, only for the
value a∗, which is obviously such that IC (a∗) = I0(a∗) = 0,
since both processes have the same π . Using (15), they then
recover the acceleration bound (12) for the asymptotic vari-
ance.

Our goal in the next sections is to derive the large deviation
bound (16), which is obviously stronger than the variance
bound (12), using the so-called level 2.5 of large deviations,
related to density and current fluctuations in Markov pro-
cesses [28–31]. For this purpose, we review in the next section
the derivation of (16) by Rey-Bellet and Spiliopoulos, who
used the level 2 of large deviations describing density fluctua-
tions, and then we present in Sec. IV the basis of the level 2.5
together with our proof of (16) using the latter level.

III. LEVEL-2 LARGE DEVIATIONS

The proof of the large deviation bound (16) given by
Rey-Bellet and Spiliopoulos [21] relies on the fact that the
observable AT , as defined in (9), is purely additive in time and
can therefore be expressed as

AT = Ã(ρT ) =
∫
Rd

f (x)ρT (x) dx, (17)

where

ρT (x) = 1

T

∫ T

0
δ(X (t ) − x)dt . (18)

The latter estimator represents the fraction of time that a
trajectory spends in the state x during the time interval [0, T ],
and it is called for this reason the empirical occupation or
local time at x. It can be seen as a random function, which
converges in the ergodic limit to the stationary distribution
π . The fluctuations of ρT around that concentration point are
known to be described by an LDP, whose rate function was
found by Donsker and Varadhan [53] to be given, for ergodic
processes, by

I (2)
C (ρ) = − inf

u>0

∫
Rd

ρ(x)
Lu(x)

u(x)
dx, (19)

where

L = F · ∇ + D

2
∇2 (20)

is the generator of the nonreversible process, and the mini-
mization in (19) is over all functions u that are positive. Given
that ρT has an LDP and that AT is a function of ρT , then AT

must also have an LDP with a rate function given by

IC (a) = inf
ρ:Ã(ρ)=a

I (2)
C (ρ), (21)
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where the minimization is over all densities ρ that are normal-
ized and such that Ã(ρ) = Eρ[ f (X )] = a.

This minimization, which is known in large deviation the-
ory as the contraction principle [24–26], is the main result
needed for proving (16). Its interpretation should be clear:
among the many empirical distributions ρ that can be ob-
served as leading to or underlying a given fluctuation AT = a,
the most likely minimizes I (2)

C (ρ) given the constraint Ã(ρ) =
a, so the probability of AT is given to dominant exponential
order in T by the probability of that constrained ρ. In large
deviation theory, we say that the large deviations of ρT are
contracted down to those of AT , which explains why I (2)

C is
referred to as the level-2 rate function, the level 1 being the
lower level of the large deviations of AT described by IC [26].

The minimization in (19) cannot be reduced, in general, to
an explicit expression for I (2)

C (ρ); however, it can be manipu-
lated, following [21], to show that

I (2)
C (ρ) = I (2)

0 (ρ) + D

2

∫
Rd

|∇ψ (x) − ∇U (x)|2ρ(x) dx,

(22)

where I (2)
0 is the level-2 rate function obtained with C = 0,

U is the potential associated with the invariant distribution π ,
and ψ is the unique solution (up to a constant) of the following
equation:

∇ · [ρ(−∇U + C + ∇ψ )] = 0. (23)

Since the second term on the right-hand side of (22) is posi-
tive, we then have

I (2)
C (ρ) � I (2)

0 (ρ). (24)

As this bound holds for all normalized distributions ρ, we can
use it in the contraction (21), thus recovering the bound (16)
for the level-1 large deviations of AT .

We refer to [21] for a more complete presentation of this
reasoning and for a discussion of the conditions implying
equality in all the bounds. Further conditions must be imposed
to derive the asymptotic variance bound in (12), which are
discussed in the same reference.

For the remainder, it is important to note that I (2)
0 has an

explicit expression given by

I (2)
0 (ρ) = D

2

∫
Rd

∣∣∣∣∣∇
√

ρ(x)

π (x)

∣∣∣∣∣
2

π (x) dx. (25)

Thus, the level-2 rate function is explicit when dealing with
gradient (reversible) diffusions [54], as found by Donsker
and Varadhan [53], as well as by Gärtner [55]. A different
expression for the same rate function is

I (2)
0 (ρ) = 1

2D

∫
Rd

|∇U (x) − ∇V (x)|2ρ(x) dx, (26)

where

V (x) = −D

2
ln ρ(x) (27)

is the potential associated with the distribution ρ (U is the
potential associated with π ). A physical interpretation of this
formula will be given in the next section.

IV. LEVEL-2.5 LARGE DEVIATIONS

The fact that the rate function of the empirical distribu-
tion ρT is not explicit in general arises essentially because
an ergodic Markov diffusion is not uniquely determined by
its stationary distribution alone—many diffusions having dif-
ferent stationary currents, and thus different nonreversible
properties, can have the same stationary distribution, as is
clear from the problem considered here. To uniquely identify
the drift F of a diffusion, for a given D, one must fix the
stationary distribution π and the stationary current JF,π , given
in (6). This suggests that the large deviations of a fluctuating
version of the current together with the empirical distribution
ρT , which is the fluctuating version of π , might be described
by a rate function that is explicit [56].

This is indeed the case, as was found recently in many
studies coming mainly from statistical physics (see [30] for
references) and is the main result underlying our proof of
the level-1 bound (16) and the associated bound (12) for the
asymptotic variance. For completeness, we briefly review next
this large deviation result, commonly referred to as the level
2.5 of large deviations, since it sits above or expands the level
2, for reasons that will become obvious, but sits below the
level 3, referred to in large deviation theory as the process
level [26].

The fluctuating current that enters in the level 2.5 is defined
formally as

JT (x) = 1

T

∫ T

0
δ(X (t ) − x) ◦ dX (t ), (28)

where ◦ denotes the Stratonovich product, and it represents
physically the mean velocity of the process at the point x.
The Stratonovich product is used instead of the Itô product
to ensure that, as T → ∞, JT converges in probability to the
stationary current JF,π of the diffusion defined in (4) [30].
Therefore, in that limit, we have JT → JF,π in addition to
ρT → π in probability, so that the most probable value of the
couple (ρT , JT ) is (π, JF,π ).

The likelihood of fluctuations around this concentration
point is quantified, similarly to AT and ρT , by an LDP whose
rate function is known to be

I (2.5)
C (ρ, j) = 1

2

∫
Rd

( j − JF,ρ )(Dρ)−1( j − JF,ρ ) dx (29)

if ρ is a normalized density and ∇ · j = 0 [57]. This means
that the joint probability of observing a density fluctuation ρ

away from π together with a current fluctuation j away from
JF,π decays exponentially as T → ∞ with a rate given by the
function (29), which is explicit in ρ and j. The term JF,ρ in
I (2.5)
C is given similarly as in (6) by

JF,ρ = Fρ − D

2
∇ρ = (−∇U + C)ρ − D

2
∇ρ, (30)

and it is interpreted as an instantaneous current that “sustains”
the density fluctuation ρ. For ρ �= π , this current is obviously
not the stationary current with respect to F and D, so that
∇ · JF,ρ �= 0. Also note that, despite the quadratic form of
I (2.5)
C , the joint fluctuations of ρT and JT are not Gaussian,

although the fluctuations of j are Gaussian around JF,ρ condi-
tionally on ρT = ρ.
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From the rate function of (ρT , JT ), we can express the rate
function of ρT alone using the contraction principle as

I (2)
C (ρ) = inf

j:∇· j=0
I (2.5)
C (ρ, j). (31)

This corresponds to marginalizing JT in the joint LDP of
(ρT , JT ) to obtain the LDP of ρT only. By further contracting
on ρ, as in (21), we can also express the rate function of AT as

IC (a) = inf
(ρ, j):Ã(ρ)=a,∇· j=0

I (2.5)
C (ρ, j). (32)

This is the level-2.5 representation of the level-1 rate function.
For ergodic diffusions, it is known that the solution (ρ∗, j∗) of
this constrained minimization is unique and can be interpreted
as the stationary density and current of a controlled diffusion,
called the driven or effective process [33–37], associated with
a given fluctuation AT = a.

It is beyond the scope of this paper to explain this interpre-
tation in detail; see Ref. [35]. For our purposes, we only need
four simple but important results related to the driven process:

(i) The solution (ρ∗, j∗) of the constrained variational
problem (32) represents the most probable density and current
fluctuations of the process X (t ) conditionally on observing the
fluctuation AT = a (see Ref. [37], Sec. 3).

(ii) Following the start of the section, we can identify a
unique diffusion that has ρ∗ and j∗ as its stationary density
and stationary current. This diffusion is the driven process
having AT = a as its typical estimator value (Ref. [37], Sec.
3). For the original, nonreversible diffusion defined in (4), the
typical value a∗ arises from π and JF,π �= 0, while for the
reversible diffusion (3) it arises from the same π but JF,π = 0.

(iii) For estimators or observables AT that are purely
additive in time, the driven process is always a gradient per-
turbation of the original diffusion considered, having the same
noise as the original diffusion (see Ref. [35], Sec. 5.5). For
the nonreversible diffusion defined in (4), the driven process
is thus a new diffusion X̃ (t ) governed by the SDE,

dX̃ (t ) = [F (X̃ (t )) + ∇φ(X̃ (t ))]dt +
√

2

β
dW (t ), (33)

where φ is function determined from a spectral problem re-
lated to the generator of X (t ) (see Ref. [35], Sec. 4).

(iv) The previous point implies that fluctuations of AT for
a gradient diffusion are always created by another (driven)
gradient diffusion having zero stationary current. This yields
the variational representation of I0(a) in (21), with the explicit
rate function in (25), as it can be checked that

I (2)
0 (ρ) = I (2.5)

0 (ρ, 0) (34)

when j∗ = 0 (see Ref. [37], Appendix A.2).

V. RESULTS

We are now ready to prove the large deviation inequalities
obtained by Rey-Bellet and Spiliopoulos using the results
listed above and the level-2.5 representation (31) of the level-2
rate function. The first step is to decompose the instantaneous
current JF,ρ associated with the drift F and density fluctuation
ρ as

JF,ρ = J rev
F,ρ + J irr

F,ρ, (35)

where

J rev
F,ρ = −∇Uρ − D

2
∇ρ = D

2
ρ∇ ln

π

ρ
(36)

and

J irr
F,ρ = JF,ρ − J rev

F,ρ = Cρ. (37)

This decomposition is natural in the context of nonequilibrium
systems [46] and is justified here by noting that −∇U is
the reversible part of the drift, while C is the irreversible
part, giving rise in the stationary state to the nonzero current
JF,π = J irr

F,π = Cπ . Note again that JF,ρ is not a stationary nor
a sourceless current, in general, so neither J rev

F,ρ nor J irr
F,ρ has

zero divergence, except for ρ = π . This is important to keep
in mind.

Substituting (35) in (29), we now obtain

I (2.5)
C (ρ, j) = 1

2

∥∥J rev
F,ρ

∥∥2

ρD
+ 1

2

∥∥ j − J irr
F,ρ

∥∥2

ρD

− 〈(
j − J irr

F,ρ

)
, J rev

F,ρ

〉
ρD

(38)

using the weighted scalar product

〈a, b〉ρD =
∫
Rd

a(x) · (ρ(x)D)−1b(x) dx (39)

and ‖a‖2
ρD = 〈a, a〉ρD as the corresponding weighted norm. It

can be checked with (36) that the first term on the right-hand
side of (38) is the level-2 rate function I (2)

0 (ρ), shown in (26),
so we have in fact

I (2.5)
C (ρ, j) = I (2)

0 (ρ) + 1
2

∥∥ j − J irr
F,ρ

∥∥2

ρD

− 〈(
j − J irr

F,ρ

)
, J rev

F,ρ

〉
ρD

. (40)

This also follows since I (2)
0 (ρ) = I (2.5)

0 (ρ, 0), as noted in the
previous section, and J irr

F,ρ = 0 for C = 0. Evaluating the
above expression at the minimizer j∗ of the contraction prin-
ciple (31), which connects the level 2.5 to the level 2, we then
obtain

I (2)
C (ρ) = I (2)

0 (ρ) + 1
2

∥∥ j∗ − J irr
F,ρ

∥∥2

ρD

− 〈(
j∗ − J irr

F,ρ

)
, J rev

F,ρ

〉
ρD

. (41)

At this point, we use (36) to write〈
j∗, J rev

F,ρ

〉
ρD

= 1

2

∫
Rd

dx j∗ · ∇ ln
π

ρ
, (42)

which vanishes for all ρ by the divergence theorem and the
fact that I (2.5)

C is defined for sourceless current fluctuations
satisfying ∇ · j∗ = 0. As a result, j∗ is always orthogonal to
J rev

F,ρ with respect to the weighted scalar product:〈
j∗, J rev

F,ρ

〉
ρD

= 0. (43)

The same orthogonality applies to J irr
F,ρ and J rev

F,ρ , as can be
checked from the definition of these currents and the fact that

J irr
F,ρ = ρ

π
J irr

F,π , (44)

so that, by the divergence theorem and the divergencelessness
of J irr

F,π , we obtain 〈
J irr

F,ρ, J rev
F,ρ

〉
ρD

= 0 (45)
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for all ρ. Thus, the second term in (41) vanishes, leaving

I (2)
C (ρ) = I (2)

0 (ρ) + 1
2

∥∥ j∗ − J irr
F,ρ

∥∥2

ρD
. (46)

Since the second term on the right-hand side is positive, we fi-
nally recover the inequality (24). The same reasoning applied
to (32) yields the inequality (16) for the rate functions of AT

at the level 1 of large deviations.
We contend that this derivation is simpler than the one

found in Ref. [21], although it requires, arguably, more back-
ground material on level-2.5 large deviations. An advantage
of the level 2.5 approach is that it provides a physical inter-
pretation of the large deviation inequalities: fluctuations of ρT

are less likely in the nonreversible system compared to the
reversible one because these fluctuations are accompanied in
general by current fluctuations that incur an additional large
deviation cost in the rate function. By comparison, density
fluctuations always arise in the reversible system with j∗ = 0,
as mentioned before, since reversible processes have no cur-
rent for a fixed density, stationary or fluctuating. The same
applies to the fluctuations of AT , since this random variable
is a contraction of ρT , so its large deviations are determined
from those of ρT .

These results and interpretations apply beyond the estima-
tion problem to any ergodic diffusion processes, which means
that they can be used to understand how density and current
fluctuations arise in more general processes, be they used as
models of nonequilibrium systems or for simulations. The
crucial point in our analysis is to be able to express the drift F
similarly to the current decomposition (35) as

F = Frev + Firr, (47)

where

Frev = D

2
∇ ln π (48)

is the reversible part of the drift associated with the stationary
distribution π , which is not necessarily a Gibbs distribution.
The current associated with the reversible part of the drift is
such that JFrev,π = 0, while Firr = F − Frev is the remaining,
irreversible part of the drift such that JFirr,π = JF,π �= 0. Fol-
lowing the reasoning above, we can then write

I (2.5)
irr (ρ, j) = I (2.5)

rev (ρ, 0) + 1
2

∥∥ j − J irr
F,ρ

∥∥2

ρD
, (49)

where I (2.5)
irr is the level-2.5 rate function of the full,

nonreversible diffusion with drift F , while I (2.5)
rev is the cor-

responding rate function of the reversible diffusion obtained
with Frev only. Thus, we see that the large deviation cost
of producing a joint density and current fluctuation in a
nonreversible diffusion is the cost of producing the density
fluctuation in a reversible diffusion, which has the same
stationary distribution but no current, plus a quadratic cost
involving the irreversible current J irr

F,ρ = Firrρ.
The orthogonality conditions that we have derived for the

particular SDE (4) can also be applied in a more general way
to any ergodic diffusion with drift F , provided that we define
J rev

F,ρ with the second equality in (36), that is,

J rev
F,ρ = D

2
ρ∇ ln

π

ρ
= Frevρ − D

2
∇ρ = JFrev,ρ . (50)

Thus, the first orthogonality condition (43) holds in general
for this current, while the second condition in (45) holds for

J irr
F,ρ = JF,ρ − J rev

F,ρ = Firrρ. (51)

Moreover, note in the case of (43) that j∗ can be replaced by
any sourceless current, so this orthogonality condition can be
generalized to 〈

j, J rev
F,ρ

〉
ρD

= 0 (52)

for any ρ and j such that ∇ · j = 0. This result is potentially
useful for simplifying analytical or numerical calculations at
the level 2.5 of large deviations, since it constrains the class of
current fields that are possible solutions to either the contrac-
tion (31) or (32).

To close this section, we return to the original SDEs (3) and
(4) to discuss a few technical but important results. First, note
from (46) that

I (2)
C (ρ) = I (2)

0 (ρ) (53)

if and only if j∗ = J irr
F,ρ = Cρ, which leads with ∇ · j∗ = 0

to ∇ · (Cρ) = 0. We know from (5) that the latter equation
admits the solution ρ = π , so that

I (2)
C (π ) = I (2)

0 (π ) = 0 (54)

and, by contraction,

IC (a∗) = I0(a∗) = 0. (55)

Extra conditions on C and the observable AT are required to
show that having C �= 0 leads to a strict inequality, IC (a) >

I0(a), away from a∗; see Ref. [21], Theorem 2.4.
The main result in (46) can also be used to understand the

result shown in (22). Recall from the previous section that
fixing the value of (ρT , JT ) identifies the driven process in
a unique way and that this process is known to be a gradient
perturbation of the original nonreversible diffusion, as shown
in (33). As a result, we can write

j∗ = (−∇U + C + ∇φ)ρ − D

2
∇ρ

= ρ(−∇U + C + ∇φ + ∇V ),
(56)

where V is again the potential associated with the density
fluctuation ρ. Inserting this current in (46) with J irr

F,ρ = Cρ

then leads to (22) with ψ = φ + V , where V is as before the
potential associated with ρ defined in (27). Thus, the quadratic
cost in (22) involving ψ is merely the current cost. Moreover,
the abstract equation shown in (23) is merely the current
constraint ∇ · j∗ = 0 ensuring that j∗ is a stationary current
for the driven process.

We refer again to [34–37] for more information about the
properties and interpretation of the driven process. Inciden-
tally, the fact that this process is a gradient perturbation of
the process X (t ) with drift F = −∇U + C can be inferred
from the contraction formula (31) or (32), as explained in
Appendix A.1 of Ref. [37]. This property of the driven process
only holds for additive functionals, such as ρT or AT ; for more
general functionals involving X (t ) and the increments of X (t ),
the driven process is in general a nonreversible process with
both gradient and nongradient terms added to F [34–37].
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Finally, note that if we fix j = 0 in the contraction (31), re-
lating the level 2.5 to the level 2, then we obtain the inequality

I (2)
C (ρ) = I (2.5)

C (ρ, j∗) � I (2.5)
C (ρ, 0), (57)

since j∗ �= 0 in general, so that

I (2)
C (ρ) � 1

2‖JF,ρ‖2
ρD. (58)

Therefore, a density fluctuation is less likely to be produced
in a nonreversible diffusion by forcing the current to be zero,
as for a reversible diffusion, than by allowing j to attain its
optimal value j∗, corresponding again as the most probable
current of X (t ) conditionally on observing ρT = ρ. This is
clear if we consider “small” fluctuations of ρT around the
stationary distribution π . Then we expect that j∗ should differ
only slightly from the stationary current JF,π , so having JT =
0 is very unlikely. Combining this result with the inequality
(24), which can be reexpressed as

I (2)
C (ρ) � 1

2

∥∥J rev
F,ρ

∥∥2

ρD
, (59)

then shows that a density fluctuation is more likely to appear
in a reversible system than in a nonreversible system (lower
bound), although it is less likely to appear in a nonreversible
system that behaves at a fluctuation level like a reversible
system (upper bound). Speaking in terms of large deviation
cost, this means that it costs less to produce a density fluc-
tuation in a reversible system than in a nonreversible system,
although it costs more to produce that density fluctuation in a
nonreversible system forced to have JT = 0.

Note, at a more mathematical level, that if the divergence
operator (∇·) is assumed to be invertible, then the upper bound
in (58) can formally be written as

I (2)
C (ρ) � 1

2‖∇ · JF,ρ‖2
−∇ρD∇. (60)

Moreover, if we assume the same invertibility condition and
use the sourceless condition ∇ · j = 0 in (29), then we find
that I (2)

C (ρ) is given by the same expression on the right-hand
side above, but now as an equality. This shows that the in-
equality (58) results in general from the noninvertibility of ∇·.

VI. APPLICATIONS

We illustrate in this section our results using a version of
the Ornstein-Uhlenbeck process in two dimensions and the
simple diffusion on the circle, showing how nonreversible
drift terms accelerate the convergence of estimators. The re-
sults are presented for different observables both at the level 1
of large deviations and the level 2 when the latter is explicit.

A. Ornstein-Uhlenbeck process

The first model that we consider is defined by

dR(t ) = −R(t )dt + dW (t ), (61)

where R(t ) = (X (t ),Y (t ))T ∈ R2 is the state vector of
the process, with T denoting the transpose, and W (t ) =
(Wx(t ),Wy(t ))T is a Brownian motion in R2 with independent
components. This version of the Ornstein-Uhlenbeck process

is reversible, as its drift can be derived from the potential

U (x, y) = x2 + y2

2
. (62)

To make it nonreversible, we add the curl drift C(x, y) =
(y,−x)T so as to modify (61) to(

dX (t )
dY (t )

)
=

(−X (t ) + Y (t )
−X (t ) − Y (t )

)
dt +

(
dWx(t )
dWy(t )

)
, (63)

that is,

dR(t ) = −MR(t )dt + dW (t ) (64)

in vector form, where

M =
(

1 −1
1 1

)
. (65)

Since C satisfies the condition (5), the invariant density for
both processes has the Gibbs (Gaussian) form (1),

π (x, y) = e−2U (x,y)

N
, (66)

where N is a normalization constant, while the stationary
current of the nonreversible process is given by

JF,π (x, y) = C(x, y)π (x, y), (67)

in agreement with (6).
Various observables can be chosen to illustrate the acceler-

ated convergence of the nonreversible SDE. Here, we simply
consider

AT = 1

T

∫ T

0
X (t )dt (68)

and proceed to find the level-1 rate function of this real ran-
dom variable for both the reversible and nonreversible SDEs.
This can be done, in principle, using the contraction formula
(32), which expresses I (a) as a contraction of the level-2.5
rate function. For this example, however, it is easier to obtain
I (a) directly at the level 1 of large deviations by calculating
the scaled cumulant generating function (SCGF) λ(k) of AT

as the dominant eigenvalue of the spectral problem

Lkrk (x, y) = λ(k)rk (x, y), (69)

where k is a real parameter, Lk is a linear operator called the
tilted generator, and rk (x, y) is the eigenfunction, defined on
R2, associated with λ(k). Solving this spectral problem, we
then obtain the rate function I (a) of AT using the Legendre
transform

I (a) = k(a)a − λ(k(a)), (70)

where k(a) is fixed by

a = λ′(k(a)). (71)

We refer to [40] for a presentation of these results and the
conditions underlying them. For the reversible process (61),
the tilted generator reads

Lk = −∇U · ∇ + 


2
+ kx, (72)
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where ∇ = (∂/∂x, ∂/∂y)T and 
 = ∂2/∂x2 + ∂2/∂y2 is the
Laplacian in R2, whereas for the nonreversible process (63)
we have

Lk = (−∇U + C) · ∇ + 


2
+ kx. (73)

The spectral problem associated with the tilted generator
of the reversible process can easily be solved, giving

λ0(k) = k2

2
(74)

with r0,k (x, y) = ekx, where the subscript 0 indicates, as be-
fore, that we are dealing with the reversible process. From the
Legendre transform (74), we then obtain

I0(a) = a2

2
, (75)

showing that the large deviations of AT are Gaussian around
E [AT ] = a∗ = 0, with asymptotic variance σ 2

0 = 1 given by
(15). For the nonreversible process, the spectral problem can
also be solved exactly and yields

λC (k) = k2

4
(76)

with

rC,k (x, y) = e
k
2 (x+y). (77)

In this case, the rate function obtained from the Legendre
transform of λC (k) is

IC (a) = a2, (78)

so that σ 2
C = 1/2, confirming the inequalities (16) and (12)

for the rate functions and asymptotic variances, respectively.
Hence, the convergence of AT to a∗ = 0 is faster when sim-
ulating the nonreversible process than when simulating the
reversible one.

To understand physically why there is faster convergence,
we now consider the driven process describing how the fluc-
tuations of AT are created by density and current fluctuations.
In the reversible case, we find from (33) and φ = 2

β
ln rk that

the driven process is a linear (affine) process described by the
modified drift

F0,k (x, y) = −
(

x
y

)
+

(
k
0

)
, (79)

whereas the modified drift associated with the nonreversible
process is

FC,k (x, y) = −M

(
x
y

)
+ 1

2

(
k
k

)
. (80)

These drifts are parametrized by k; to relate them to a given
fluctuation AT = a, we need to use the duality relation (71) of
the Legendre transform to obtain

F0,k(a)(x, y) =
(−x + a

−y

)
(81)

and

FC,k(a)(x, y) =
(−x + y + a

−x − y + a

)
. (82)

From this, we see that a fluctuation AT = a is created in the
reversible process by translating the attractor of that process
on the x-axis to a, effectively moving the stationary density π

to a new, fluctuating density ρ∗ centered at (a, 0), that is,

ρ∗(x, y) = π (x − a, y). (83)

In this way, the process spends most of its time around (a, 0),
leading to AT → a = Eρ∗ [X ] in the ergodic limit. In this case,
we also have j∗ = 0 for all a, since the driven process asso-
ciated with the reversible process is known to be reversible.
Thus, fluctuations of AT , which involves only the component
X (t ) of the process, are created by translating the stationary
density on the x-axis, while keeping the zero current.

For the nonreversible process, the stationary density π is
also modified to ρ∗, shown in (83), since the drift (82) is still
only a translation in the x-direction of the original drift in (63),
but the stationary current is now modified as a result of this
density fluctuation to

j∗ = JFC,k ,ρ∗ =
[
−∇U + C + 1

2

(
k
k

)]
ρ∗ − 1

2
∇ρ∗. (84)

It can be checked, by changing the parametrization to a, that
this is equivalent to

j∗(x, y) = JF,π (x − a, y) = ρ∗(x, y)

(
y

−x + a

)
(85)

so the current underlying the fluctuation AT = a is an x-
translation of the stationary current, similarly to the density,
as shown in Fig. 1(b) for a = 1. This modified current is re-
sponsible for the added large deviation cost, which makes the
fluctuation less likely in the nonreversible process compared
with the reversible process.

From the known density ρ∗, we can also find explicit ex-
pressions for the instantaneous current JF,ρ∗ associated with
AT = a, as well as for its reversible and irreversible compo-
nents, defined by (36) and (37), respectively. The results are

JF,ρ∗ (x, y) = ρ∗(x, y)

(
y − a
−x

)
,

J rev
F,ρ∗ (x, y) = ρ∗(x, y)

(−a
0

)
,

J irr
F,ρ∗ (x, y) = ρ∗(x, y)

(
y

−x

)
. (86)

These currents are illustrated in Figs. 1(c)–1(e) for a = 1.
Following Gauss’s flux theorem, it is clear from the plots
shown, especially from that of J rev

F,ρ∗ , that the instantaneous
currents are not sourceless in general. The orthogonality of
j∗ and J rev

F,ρ∗ is not as obvious visually, as it is defined with
respect to the weighted scalar product, but it can be checked
explicitly from the expressions above. The same applies for
the orthogonality of J rev

F,ρ∗ and J irr
F,ρ∗ .

These results can be generalized slightly by replacing C
with αC, using α ∈ R as a parameter to continuously go from
the reversible case (α = 0) to the nonreversible case (α �= 0).
It can be checked that the spectral calculation with α yields

λαC (k) = k2

2(1 + α2)
(87)
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FIG. 1. Vector plots of stationary and fluctuating currents associated with the Ornstein-Uhlenbeck model. The density plot shows
the magnitude of the corresponding current field. (a) Stationary current JF,π . (b) Stationary current j∗ = JFC,k(a),ρ

∗ of the driven process
corresponding to the fluctuation AT = a. (c) Instantaneous current JF,ρ∗ . (d) Reversible part of the instantaneous current. (e) Irreversible
part of the instantaneous current. Parameters: k = 2 corresponding to a = 1.

and

IαC (a) = (1 + α2)a2

2
, (88)

leading to

σ 2
αC = 1

1 + α2
(89)

for the asymptotic variance. This recovers our previous results
for α = 1 and shows that there is acceleration as soon as the
curl field is switched on with α �= 0.

Note that all of these results are explicit because the driven
process retains the linear form of the Ornstein-Uhlenbeck
process when considering a linear observable. For more gen-
eral processes and observables, the spectral problem (69) is
unlikely to be solvable exactly, in which case we may try
to approximate the result of the contraction in (31) using
suboptimal currents ĵ �= j∗, which yield upper bounds for the
rate function. Three choices of currents are worth mentioning.
First, we can use ĵ = 0 to obtain the upper bound

IC (a) � I (2.5)
C (ρ∗, 0) = a2 + 1

2 , (90)

which corresponds to the upper bound (58) with ρ∗. Second,
we can choose ĵ = Cρ∗, which, as we know, is not the true

optimal fluctuating current j∗. However, since this current
is not sourceless, it is not valid for the contraction. Instead,
we can use ĵ = Cπ as an obvious third choice, which is
divergenceless, to obtain the upper bound

IC (a) � I (2.5)
C (ρ∗,Cπ ) = a2

2
+ ea2

(a2 cosh a2 + sinh a2).

(91)

The two bounds (90) and (91) are compared in Fig. 2 with
the rate function IC (a) of the nonreversible process, as well
as with the rate function I0(a) of the reversible process, lying
below IC (a).

B. Diffusion on the circle

We revisit as our second example the Brownian motion
on the circle, studied by Rey-Bellet and Spiliopoulos [21] in
the context of the acceleration problem at the level 2 of large
deviations. We briefly show for this model how the level-2 rate
function is obtained from the level-2.5 rate function, and we
consider a new type of acceleration obtained by changing the
noise amplitude.
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FIG. 2. Comparison of the rate functions I0(a) and IC (a) obtained
for the reversible and nonreversible Ornstein-Uhlenbeck processes,
respectively. Iĵ=0 and Iĵ=Cπ are upper bounds on IC (a) obtained from
the suboptimal currents ĵ = 0 and ĵ = Cπ , respectively.

The simple Brownian motion on the circle is defined by the
SDE

dθ (t ) =
√

D dW (t ) mod 2π, (92)

where W (t ) is the usual Brownian motion on R, so that
θ (t ) ∈ [0, 2π ), and D is a real, positive constant determining
the noise intensity. This motion is forced in the simplest way
by adding a constant drift C ∈ R, yielding

dθ (t ) = Cdt +
√

D dW (t ) mod 2π, (93)

as a nonreversible version of (92), which preserves the con-
stant stationary density π (θ ) = 1/(2π ) [58]. The stationary
current JC,π (θ ) of the drifted motion is also constant and equal
to C/(2π ).

The level-2.5 rate function simplifies for the drifted
Brownian motion because of the one-dimensional sourceless
condition, which implies that currents have to be constant.
Hence, (29) takes the form

I (2.5)
C (ρ, j) = 1

2
‖JC,ρ‖2

ρD + j2

2
‖1‖2

ρD − j〈1, JC,ρ〉
ρD, (94)

where j ∈ R and the scalar product is performed on the circle.
The minimization with respect to j in (31) is straightforward
and leads to the level-2 large deviation rate function

I (2)
C (ρ) = D

8

〈
ρ−1,

(
dρ

dθ

)2〉
+ C2

2D

(
1 − 4π2

〈ρ−1, 1〉
)

(95)

with the optimal current

j∗ = 2πC

〈ρ−1, 1〉 . (96)

Note that we use now the unweighted scalar product 〈·, ·〉 =
〈·, ·〉1 obtained with ρD = 1 to make the dependence on D
more explicit.

The result in (95) recovers for D = 1 the level-2 rate func-
tion found in Example 2.9 of Ref. [21]: the first term on the
right-hand side is the explicit rate function in the reversible
case, as given by (25), whereas the second term is the added
contribution coming from the nongradient forcing C. Accel-
eration follows from the latter term, since 〈ρ−1, 1〉 � 4π2 by

the Cauchy-Schwarz inequality, so the inequality (24) at the
level 2 of large deviations holds, implying the inequality (16)
at the level 1 for any additive observables. The same inequality
implies with (96) that j∗ � JC,π , which means that density
fluctuations reduce the stationary current.

This calculation shows that statistical acceleration follows
by changing the average speed of the Brownian motion. Since
π for this model is also independent of D, it is interesting
to see whether there is acceleration by changing the noise
intensity. To this end, we can take the first derivative of the
level-2 rate function (95) with respect to D for a given ρ to
obtain

∂I (2)
C (ρ)

∂D
= 1

8

〈
ρ−1,

(
dρ

dθ

)2〉
− C2

2D2

(
1 − 4π2

〈ρ−1, 1〉
)

. (97)

This result is non-negative when

D � 2|C|
√√√√ 1 − 4π2

〈ρ−1,1〉〈
ρ−1,

( dρ

dθ

)2〉 . (98)

Consequently, if we choose D large enough according to the
inequality above, then I (2)

C (ρ) increases, implying that fluctu-
ations around ρ are exponentially suppressed. Hence, adding
noise suppresses density fluctuations.

This is a counterintuitive effect, which holds, interestingly,
for any D > 0 when there is no drift (C = 0). This means
that increasing the noise intensity in the simple Brownian
motion always leads to a statistical acceleration of ρT toward
π and, by contraction, a statistical acceleration of additive
observables toward their ergodic values. The same holds when
C �= 0 if we consider density fluctuations close to π . In this
case, the expansion of (97) around π using the perturbation
ρ = π + δρ with

∫ 2π

0
δρ(θ )dθ = 0 (99)

gives

∂I (2)
C (ρ)

∂D

∣∣∣∣
ρ=π+δρ

= 1

8

〈
π−1,

(
dδρ

dθ

)2〉
+ O(δρ3). (100)

The right-hand side of the above equation is obviously non-
negative, so the level-2 rate function increases or stays the
same around π if we increase D, which means again that
we can accelerate the statistical convergence of ρT to π by
increasing the noise intensity.

This result, we should emphasize, is specific to additive
observables having the form defined in (9). If we consider
more general observables contracted from ρT and JT rather
than just ρT , then the rate function is generally less steep if
we increase the noise intensity. A case in point is the empirical
velocity of the drifted Brownian motion, defined by

BT = 1

T

∫ T

0
dθ (t ) =

∫ 2π

0
JT (θ ) dθ, (101)
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which has the trivial rate function [59]

IC (b) = (b − C)2

2D
, (102)

describing Gaussian fluctuations around the expected velocity
b∗ = 2πJC,π = C. Therefore, increasing the noise in this case
increases rather than decreases the asymptotic variance. It
is also clear that increasing the drift does not decrease the
asymptotic variance.

VII. CONCLUSION

We have used the theory of large deviations to explain
why statistical estimators defined in the context of diffusion
processes (viz., Langevin samplers) converge faster in time
when adding irreversible component to the drift. The accel-
erated convergence comes, as we have shown, because the
fluctuations of these estimators are exponentially suppressed
in nonreversible processes, compared to reversible ones, due
to current fluctuations being created in the former. We have
studied these currents using the level 2.5 of large deviations,
and we have shown that there is a most probable current
fluctuation arising in conjunction with a given observable
fluctuation. This current fluctuation can be interpreted as an
optimal current field that yields the large deviation function
of the observable of interest, as well as the stationary current
of a modified diffusion, called the driven or effective process,
which describes how fluctuations arise in general by means of
modified densities and currents.

These results provide an alternative interpretation of the
work of Rey-Bellet and Spiliopoulos [21–23], who estab-
lished the accelerated convergence of nonreversible samplers
by studying density fluctuations at the level 2 of large devi-
ations. Our approach consists in adding current fluctuations
in the analysis using the level 2.5 of large deviations in or-
der to get a more complete and physical understanding of
nonreversible samplers compared to reversible ones. This pro-
vides an application of the level 2.5 in statistical estimation,
complementing the more physical applications that have been
discussed up to now [41–44,60–62].

We should mention that another study [63] has looked at
the role of fluctuating currents in the acceleration problem,
but has done so in the context of a large deviation formalism
known as the macroscopic fluctuation theory (MFT) [64–66],
in which the orthogonal decomposition of forces and currents
that we have used also appears naturally [67–70]. The level 2.5
of large deviations looks similar in form to that theory [71],
but the two are in fact different as they deal with different
random variables and scaling limits: the level 2.5 deals, as
we have seen, with the fluctuations of the empirical density
and current of a single process in the long-time or ergodic
limit, whereas the MFT is concerned with the occupation and

current of many-particle Markov dynamics as a function of
time in the limit where the number of particles goes to infinity,
similarly to the thermodynamic limit of equilibrium systems.
The correct formalism to use for studying the convergence of
statistical estimators is the level 2.5 because that convergence
is in the ergodic limit.

Future studies could focus on generalizing our results to
jump processes and Markov chains, which have also been
covered by Rey-Bellet and Spiliopoulos at the level 2 of
large deviations [23]. The case of Markov chains evolving in
discrete time is especially interesting, since it underlies many
algorithms used in Monte Carlo simulations, in particular the
Metropolis algorithm. An obvious complication is that these
algorithms often involve high-dimensional (discrete) state
spaces on which currents, defined as multidimensional matri-
ces, cannot be visualized easily. However, the very presence
of fluctuating currents could be sufficient to prove accelera-
tion, as done here, starting from the known expression of the
joint density-current (or density-flow) rate function of Markov
chains or Markov jump processes [30].

Another interesting problem is to study more general ob-
servables defined as contractions of the empirical current or
the empirical flow in the case of jump processes [30]. We have
shown with the example of the Brownian motion on the circle
that adding a nonreversible drift does not necessarily decrease
the asymptotic variance of currentlike observables, but there
might exist a class of such observables, or mixed observables
obtained by contraction of the empirical density and current
(or flow), for which the variance does decrease.

Finally, it should be clear that, although we have focused
on the simple case in which D is a scalar, much of our results
can be generalized to a larger class of nonreversible diffusions
that include different noise temperatures, as well as correlated
and multiplicative noise [23]. This is suggested by the way
that we have written the level-2.5 rate function in (29) with
the term (ρD)−1, which applies to any ergodic diffusions with
drift F and noise matrix D assumed to be invertible. From
this more general rate function, one can extend our results by
noting that currents are defined not with the drift itself but
with a modified drift that takes the multiplicative nature of the
noise into account [30].

ACKNOWLEDGMENTS

F.C. is grateful to the Institute of Mathematics and its
Applications (Small Grant scheme) and the University of Nice
for its hospitality and support during a visit to finalize this
project. The research of R.C. is supported by the French
National Research Agency through the projects QTraj (ANR-
20-CE40-0024-01), RETENU (ANR-20-CE40-0005-01), and
ESQuisses (ANR-20-CE47-0014-01).

[1] M. E. J. Newman and G. T. Berkema, Monte Carlo
Methods in Statistical Physics (Clarendon, Oxford,
1999).

[2] J. S. Liu, Monte Carlo Strategies in Scientific Computing,
Springer Series in Statistics (Springer, New York, 2001).

[3] S. Asmussen and P. W. Glynn, Stochastic Simulation: Al-
gorithms and Analysis, Stochastic Modelling and Applied
Probability (Springer, New York, 2007).

[4] M. H. Kalos and P. A. Whitlock, Monte Carlo Methods (Wiley-
VCH, Weinheim, 2008).

062142-11



COGHI, CHETRITE, AND TOUCHETTE PHYSICAL REVIEW E 103, 062142 (2021)

[5] C.-R. Hwang, S.-Y. Hwang-Ma, and S.-J. Sheu, Accelerating
Gaussian diffusions, Ann. Appl. Probab. 3, 897 (1993).

[6] C.-R. Hwang, S.-Y. Hwang-Ma, and S.-J. Sheu, Accelerating
diffusions, Ann. Appl. Probab. 15, 1433 (2005).

[7] T. Lelièvre, F. Nier, and G. A. Pavliotis, Optimal non-reversible
linear drift for the convergence to equilibrium of a diffusion, J.
Stat. Phys. 152, 237 (2013).

[8] S.-J. Wu, C.-R. Hwang, and M. T. Chu, Attaining the optimal
Gaussian diffusion acceleration, J. Stat. Phys. 155, 571 (2014).

[9] K. S. Turitsyn, M. Chertkov, and M. Vucelja, Irreversible Monte
Carlo algorithms for efficient sampling, Physica D 240, 410
(2011).

[10] A. Ichiki and M. Ohzeki, Violation of detailed balance acceler-
ates relaxation, Phys. Rev. E 88, 020101(R) (2013).

[11] M. Ottobre, Markov chain Monte Carlo and irreversibility, Rep.
Math. Phys. 77, 267 (2016).

[12] Y. Sakai and K. Hukushima, Eigenvalue analysis of an irre-
versible random walk with skew detailed balance conditions,
Phys. Rev. E 93, 043318 (2016).

[13] H. Suwa and S. Todo, Markov Chain Monte Carlo Method
without Detailed Balance, Phys. Rev. Lett. 105, 120603
(2010).

[14] H. C. M. Fernandes and M. Weigel, Non-reversible Monte
Carlo simulations of spin models, Comput. Phys. Commun.
182, 1856 (2011).

[15] T.-L. Chen and C.-R. Hwang, Accelerating reversible Markov
chains, Stat. Probab. Lett. 83, 1956 (2013).

[16] C.-R. Hwang, R. Normand, and S.-J. Wu, Variance reduction
for diffusions, Stoch. Proc. Appl. 125, 3522 (2015).

[17] A. B. Duncan, T. Lelièvre, and G. A. Pavliotis, Variance reduc-
tion using nonreversible Langevin samplers, J. Stat. Phys. 163,
457 (2016).

[18] A. B. Duncan, N. Nüsken, and G. A. Pavliotis, Using perturbed
underdamped Langevin dynamics to efficiently sample from
probability distributions, J. Stat. Phys. 169, 1098 (2017).

[19] H. Risken, Solutions of the Fokker-Planck equation in detailed
balance, Z. Phys. A 251, 231 (1972).

[20] T. Lelièvre and G. Stoltz, Partial differential equations and
stochastic methods in molecular dynamics, Acta Numer. 25,
681 (2016).

[21] L. Rey-Bellet and K. Spiliopoulos, Irreversible Langevin sam-
plers and variance reduction: A large deviations approach,
Nonlinearity 28, 2081 (2015).

[22] L. Rey-Bellet and K. Spiliopoulos, Variance reduction for irre-
versible Langevin samplers and diffusion on graphs, Electron.
Commun. Probab. 20, 1 (2015).

[23] L. Rey-Bellet and K. Spiliopoulos, Improving the convergence
of reversible samplers, J. Stat. Phys. 164, 472 (2016).

[24] A. Dembo and O. Zeitouni, Large Deviations Techniques and
Applications, 2nd ed. (Springer, New York, 1998).

[25] F. den Hollander, Large Deviations, Fields Institute Monograph
(AMS, Providence, RI, 2000).

[26] H. Touchette, The large deviation approach to statistical me-
chanics, Phys. Rep. 478, 1 (2009).

[27] J. A. Bucklew, Large Deviation Techniques in Decision,
Simulation and Estimation, Wiley Series in Probability and
Mathematical Statistics (Wiley Interscience, New York, 1990).
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